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On super theta functions

By

Yoshifumi TSUCHIMOTO *

1. Introduction

The purpose of the present paper is to define super theta function of a su-
per R iem ann surface. It is identified w ith a section of a line bundle on a su-
pe r Jacob ian . In  the  non  supe r case , it  is  k n o w n  in  conformal field theory
that the tau function associated to a  family of Virasoro uniformalized Riemann
surfaces (Riemann surfaces with speciated points and coordinates around the
poin ts) is expressed by m eans of Riemann's theta function ( [4]). M oreover,
all the coefficients of Taylor expansion of Riemann's theta function is encoded
in the tau function. W e m ay thus use tau function to calculate theta function.
In  the  present paper w e use th is  observation and first w e define a super tau
function in  a n  analogous way to th e  usual theory o f  tau  function (which we
review in section 2) . It is defined as a Berezinian (super determinat of an in-
finite matrix representing the  effect of multiplication by  a  function on  a  func-
tio n  sp ace  (T h eo rem  5 .2 ) . W e  use  the  space of form al pow er series as the
function  space . This enables us to develop our theory within a  framework of
(infinite dimensional) super algebraic geom etry. A  theory on super tau func-
tions constructed by choosing L 2 -space as the function space already appeared
in  [ 1 0 ] .  O u r  approach seem s to  be easier to  handle w ith w hen w e use the
tau  function to study the  moduli space of line  bundles (super Jacobian in our
terminology.).

Having defined the super tau function, our next task is to interpret it as a
sort of super theta function. W e need to define "super Jacobian" and identify
the super tau function with a section of a line bundle on it. W e will define in
section 6 super Jacobian, w hich w e call the  n-super Jacobian , as the  moduli
space o f  line  bundles (w ith  triv ia liza tion  a t th e  distinguished point) on the
original R iem ann surfaces. W e employ there analytic methods, and  obtain a
description of the n-super Jacobian using "periods". W e finally  show in sec-
tio n  7  tha t th e  su p e r  ta u  function m ay be interpreted a s  a  se c tio n  o f  a  line
bundle on an n-super Jacobian for so m e  n . Our main theorems are the follow-
ing.

Theorem. (Theorem 7 .1) The super tau function may be interpreted as a
functional on the space of convergement power series.
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Theorem. (Theorem 7.2)T h e  s u p e r  t a u  function, interpreted as above,
has a periodicity  so that it m ay be identif ied as a section of a  line bundle on
n-super Jacobian for some n  (outside an analytic subvariety).

Let us describe here a background of the present paper.
I n  t h e  p rocess  o f  development o f  q u a n tu m  f ie ld  theories, physicists

noticed importance of so called super theories. It em erged  from  a  considera-
tio n  o f  a  "classical" counterpart o f  F e rm io n s . In  mathematical words, this
consideration corresponds to  the fact that a  limit of the Clifford algebra is an
ex te rio r a lgeb ra . The theory goes further and focuses on studies in  nice rep-
resentations of ring objects in  derived  ca tegories. F o r example, we consider
the cohomology ring H* (M ) of a manifold M .  It h a s  a  natural structure of a
super commutative ring, the multiplication being defined by th e  cup product.
W e m ay also consider a  r in g  object RFm C in  th e  derived category D ±  (C).
This object is represented by the well-known de Rham  com plex. It goes with-
out saying that th e  com plex itself is interesting a n d  im p o rta n t. Homological
algebra gives many other interesting complexes and the corresponding objects
i n  su itab le  de rived  ca tego rie s . Im portance  o f supe r th e o rie s  is  fa ir ly  in -
creased by argum ents of W itten . It suggests that geometrical invariants of a
manifold is obtained by considering the  d istribu tion  of super R iem ann sur-
faces in  th e  d e  R h am  su p e r sp a c e  (M , A * T *W  th e  su p e r  space  w ith  the
underlying topological space M  and  w hich  has the  de  R ham  complex a s  its
struc tu re  s h e a f .  I f  w e  rega rd  each  o f  th e se  super R iem ann surfaces as a
"particle" on the m anifold, the number o r the  d is tr ibu tion  o f these particles
seem s to  be  a  fundam ental quantity o f  th e  m a n ifo ld . W e recall here  three
analogues of this kind of observation.

I. The number of rational points on a variety defined over a  finite field
Fq . The number of rational po in ts (defined over various extension fields F an
of F q ) on the variety is an important invariant of the v a r ie ty .  The data is en-
coded in its generating function, the W eil zeta function of the variety.

H .  The distribution of lengths of geodesics o n  th e  m an ifo ld . If  we re-
gard  a manifold M  a s  a  space-tim e, classical particles appear a s  world lines,
not p o in ts .  W e equip M  w ith a  R iem annian m etric. W e define the action of
a world line to be its length, and follow the minimal principle . Then partic les
correspond to  geodesics. T hus the distribution of lengths of geodesics on M
is  a  fundamental invariant of M .  It is again encoded in  its generating func-
tion, which is also called a  zeta function. W e m ay also consider the distribu-
tion of length of all curves on M .  This is equivalent to considering the length
function on  the  moduli space of curves on M .  Geodesics a re  clearly critical
points of the length function on the moduli space.

III. D im ensions o f the  space of harm onic  form s. In  relativistic quantum
m echanics, w ave functions o f  p a r tic le s  o b e y  the  K le in -G ordon  equation.
W hen we suppose again that the  space-time M is Riemannian with a positive
definite metric, K lein-Gordon equation is interpreted as an  e igen  equation of
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the Laplacian of M;
Af-m2f .

Again we "count the number of particles" on the manifold, namely consider the
dimension of harmonic functions of fo rm s. W hen  M  is  compact, the space of
harm onic form s o f  degree d  m ay be  iden tified  w ith  the cohomology group
Hd (M ) .  Thus in  th is  case the number of particles gives the Betti numbers of
M.

It is in teresting to  note th a t the data  obtained in  I  and  in  III a re  related
by the W eil conjecture, p roved  by  D eligne . It is  a lso  true  tha t II and III are
related to each other in  a  sim ilar w a y .  (Physically, III may be regarded as a
quantization of IL)

L e t  u s  p u t  t h e  d a t a  I I  in  ano ther w a y .  T h e  m odulus of a com pact
1-dimensional Riemannian m anifold (c irc le )  is  its  le n g th . T h u s  th e  moduli
space of compact Riemannian manifold of dimension 1 is g iven by R > 0. The
d is tr ib u tio n  o f  len g th s  o f  geodesics o n  th e  m a n ifo ld  is equivalen tly  de-
scribedby a  function N  o n  th e  m oduli space, w here N (1 ) i s  th e  num ber of
geodesics of length 1.

Similarly, we may describe the distribution of super Riemann surface on
(M , A T * M ) a  given manifold by considering a  function o n  a  moduli space of
super R iem ann surfaces. The description of the m oduli space is thus of the
fundamental im portance . In  the  usua l (non super) conformal field theory, the
moduli space of Virasoro uniformized Riemann surfaces is embedded into the
Sato 's universal G rassm ann m anifo ld  (U G M ). C oeffic ien ts o f tau  function
gives the Plücker coordinates of the point of UGM corresponding to a Riemann
surface R  [ 4 ] .  W e m ay  thus u se  ta u  function o r  theta function to classify
Virasoro uniformized R iem ann surfaces. W e want to use super theta function
to classify V irasoro uniform ized super R iem ann  su rfaces in  a  sim ilar way.
When the base scheme S of the fam ily is pure  even and the odd dimension N
of the super Riemann surface is equal to  1 , then w e w ill show in Proposition
5 .3  that the super tau function of the family and the tau function associated to
the reduction of the family together determines the original family.

T h e  a u th o r  is  g ra te fu l to  P ro fe sso r  K e n ji U e n o  f o r  giving him good
advice.

2. Review of non super case

To give a  concrete picture of what is done in th is  paper, let us review the
theory in  [4 ]  in  p rec ise . It is  w e ll know n  tha t th e  whole data of a Riemann
surface X with a specified point Q is encoded in the affine coordinate ring A =
r(X ; ex(*Q)) of the afine variety X \Q . In fact, we have X\Q=Spec (A ) (C),
and the inform ation of the neighbourhood of Q is determ ined uniquely by the
requirement o f non  singularity  of X .  T o ex trac t th e  d a ta  o f  A  w e use the
so-called V irasoro uniform ization. W e choose a  formal coordinate z around
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Q .  We employ th e  word "Virasoro uniformized Riemann surface" to indicate
a  trip le  (X , Q, z) of a Riemann surface with a  specified point and a coordinate.
The Laurent power series expansion gives an inclusion

tz: A c C  ( (z ) )

T hus w e h av e  a  linear subspace U =  ( A )  o f  a  vector space C  ( ( z ) ) .  The
ambient space is independent o f  (X, Q, z), and U subjects to a  remarkable con-
stra in t in size. Namely, it satisfies the following condition.

in fact, arguments in formal tech cohomology ([1]) suggests

C [ [z ]] n ez (A) =H° (X; ex ) ,
c(cz)) 

c cz) ) +ez (A) '= 111 (X ;  x)

T h e  se t o f  a ll linear subspaces of C  ( ( z ) )  w h ic h  sa tis f ie s  (2 .1 )  h a s  a
n a tu ra l s tru c tu re  o f  infinite  dim ensional schem e called th e  S a to  universal
Grassmann m anifo ld  (U G M ). It is em bedded in  a n  infinite dimensional pro-
jec tive  space  by  th e  P lü ck e r em bedding . L e t  u s  recall its definition here.
T h e  homogeneous coordinates (Plucker coordinates) o f  U  is  de fined  a s  fol-
low s. W e first consider a  "generic function" (formal power series with inde-
terminate coefficients)

F = F  (a) E
We put

t: ( (4 ) the inclusion,

Mexp(F): C ( (z) ) — +C ( (4 )  multiplication by exp(F),

P:C ( (z)) — 'C [ [z] the projection.

Then the "infinite determinant" of the composition of the above maps,

(2 . 2) r( lail ) (a; U )  det(p° Mexp (F)

gives a  generating function of the  requ ired  P lücker coord ina tes. (The deter-
minant is considered as a  "formal function in  lad ". S ee  be low .)

W e need to explain th e  meaning o f the  above infin ite  determ inant. The
difficulties are that above determinant is a  determinant of a  map between infi-
nite dimensional spaces, and th a t the domain and the target a re  not the  same
s p a c e . I f  w e  f irs t a re  regardless o f the  infinite dimensionality, the  determi-
n a n t  ( 2 .2 )  i s  d e f i n e d  a s  a  m a p  b e tw e e n  t h e  t o p  ex terior pow ers
(determinants) of vector spaces.
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det (p°Me xp (F) ° t): detU—, detC ( (z)) /  C [[z]] .

In other words, r  is an element of a line

(detU) v ® (detC ( (z))/C [ [z] ] ) .

To explain this line in  term s of determinants of finite dimensional vector
spaces, we first note that the condition implies that the complex

U C  (Z )) CHZU
being quasi-isom orphic to a  complex C  o f  finite dimensional vector spaces.
For example, it is quasi-isomorphic to the following complex.

K°—>° 10
Where

K° =ker (P ° M exp(F )

and

= (complementary linear subspace to /I= ° Mexp (F) ° t) (U) C  [[z ] ] /C
[[z ]] in C ((z ))/ C [[z ]]) ,

C ((z))/C [ [z]] =K leD/1

The fact guarantees us an existence of the determinant line,

2=det(U C ((z )))= ( 0  ( d e t C ) )  O ( P  ( d e tC ') )  .
j:odd j:evc

It is proved in  [6 ] that this definition is independent of the choice of C .
If  w e assume U  to  b e  the  one which corresponds to  a  Virasoro uniformized
d a ta  (X , Q, z ) ,  then  it is  isom orph ic  to  detRrx(O x) b y  v ir tu e  o f  th e  above
cited cohomology argum ent in  [1]. In  any case, our line I is (by definition)
equal to /1". To explain this intuitively, we take a  complementary linear sub-
space l o to  K° in  U and employ the following decompositions.

U=K°031/° ,

C ( (z))/C [ [z]] = (A ±C [[z]] ) 1EBK1 .

Then we have

detU = deteO detr

detC((z) ) / C[[z]] = det/lOdetK i .

So i v  is isomorphic to

detK°Odetr® (clet/ l ) V ®  (detK1) V .

But by virtue of the homomorphism theorem, there is a  canonical isomorphism
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between I
°
 and W e m ay thus substitute detr0  (detP )  V  b y  a  tr iv ia l line

and obtain

= dete0 (det10) = det (C [ [z]] 'EDU— )C ( ( z ) ) )  .

T he above formal treatment o f the  determ inant line including the use of
determinants o f infinite vector spaces, is justified by handling "sem i-infinite
form s" directly ( [ 4 ] ,  [ 1 2 ] ) .  For example, we may represent an  element of
by assigning topological b a se s  ("fram es") IV  , 17/;} , lek} o f  U , C [[z ]], and
C ( ( z ) ) ,  re sp ec tiv e ly  su ch  th a t th e  t r ip le  ( ,  1 1 7 ;}  ,  le k }  )  i s  consistent
( [ 1 2 ] ) .  We may denote it symbolically as

(A, ) 0 (A .0 )0 (A k e k ) - 1

Now le t u s  e x a m in e  th e  geometric meaning o f  th e  determinant line A.
F irs t  of all, F  determines, v ia  form al •Gech cohomology, a n  element of 111 (X;
e x ) .  Let us denote by [F] the cohomology class:

[F] EC ( ( 2) ) ) C [ [ 2] ] H i (X; ex) .
[ F ]  in turn determines a  line bundle  H 1 (exp) [F] =L F of degree 0 via the map

H' (X; eYx) '=11' (X a n ;  , „ ) 111 (X a n ;  x . x ) (X a n ;  x x )

obtained by exponetial map and the GAGA isom orphism s. Intuitively speak-
ing, it is a  line bundle obtained by gluing a  triv ia l line bundle on  rt- 4:0 , and a
t r iv ia l  lin e  b u n d le  o n  S p fC [[z ] ]  b y  th e  t r a n s it io n  func tion  e x p (F ) on
SpfC (z)). A simple diagram chasing shows tha t L F  corresponds to  th e  fol-
lowing point of the Jacobian Jac (X) =H ° (X ; wx/s) v / Hi (X ; Z) .

(2.3) co ResQ (F . )  .

W e may also be more explicit and rew rite the above. C hoose  a  basis {cod
of coxi s and a symplectic homology basis (a i , iSi )1=1 so  that

fat 
Wi = .

Then the Jacobian of X  is given by a complex torus

Cg /A=C g /Za + QZ ,

where Q is period matrix of X,

Qij= f  .
Then LF corresponds to 1(a) modulo A, where 1(a) is given by the following.

I (a) = (ResQ (F(01) ) .

We may see that the determinant line Â is expressed as
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detRFx (LF) = det (11° (X; LF)) Odet (H' (X; LF)) v  .

To obtain a  number instead of an element of the determinant line, we have to
trivialize th e  determ inant line. T o  d o  th is , w e  f irs t c la r ify  th e  meaning of
"formal function o f  icti " .  Our coefficient ring should be 33 = C [E a il 1 ], the
completion o f the  po lynom ia l ring  on  infinite variab les w ith  respect to  the
gradation given by the following.

deg (a i) =m ax  ( —i, 1) .

We actually are  considering things over a  formal scheme S = S p fX . L F should
be regarded as a  family of line bundles parametrized by S. Put

q/=UO
-
 X  ,

[ [z ] ]  =C [ [z ] ] ,

I 1z11 =C((z))O- 4

To trivialize A, we first tw ist L F to make a degree g -1  line  bundle .

EF =
L FOOX ((g — 1 ) Q)

Then for a general F , we have

H
°
 (X; LF) =H i  (X ; LF) =0

(Note that 2 .3  implies that X I EJac gives a subm ersion (induces
a surjective map on the tangent s p a c e ) .)  W e m ay thus trivialize the  depter-
minant line detRF(X; EF) of tw isted line bundle L F for general F .  There is
an  isomorphism between detRF(X; L F ) and detRF(X; L F ) .  W e may put this
in  concrete w a y .  Instead of det (p.Mexp(F) °  () ,  w e consider det (F°Mexp(F)°().
where we denote by F the following canonical projection

C ( (z)) — >C ( (z ))/zi
-
gC [ [z] ]

We fix an isomorphism

C ( (z))/z"C [ [z] ] — *A

so that there exist an  integer N and we have the following Laurent expansions
at Q.

P (z )  =in (z) Ez— n +C [ [z]] [C]z—isi

(If  w e  a re  given tw o such isom orphism s 01 , 0 2 ,  th en  th e  difference is
given by a "compact operator", See the section 4)

W e then  ob ta in  a  num ber (o r , a s  w e  have  sa id , a  form al function on

z= d e t c ( ( z ) ) / c [ H ]  (./7 0 Mexp(F) ° ( °

This function is called the  tau  function associated to the Virasoro uniformized
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Riemann surface (X , Q , z ) .  W e m ay regard  the  tau  function as a section of
the determinant line on the Jacobian of the Riemann surface. It is well known
th a t su c h  sec tions a re  described in  te rm s o f  th e ta  fu n c tio n s . In  o u r  case,
argum ents in [4] give the following formula relating the tau function and theta
functions.

Theorem 2.1. ( [4] ) We have,

r (a) =exp (q (a)) 19 (I (a) ±d)

where q ( a )  is  a  quadratic function o f  a, A i s  the  vector of  R iemann constants
associated to (X , Q, (a, IS)) and 19 is  the theta function on Ja c X = c gA = c g /z g +
Q z g .

We may add a few comments to the above theorem . F irst w e note that

T (a) 0 > H° (X; LF (a) ) 0   -19 (I (a) +d, S2)=0
w hich  expla ins w hy w e need  th e  vector o f R iem ann  constan t in  the  above
theorem.

Second w e rem ark that the Jacobian comes into consideration because we
consider an action M e x p F  o f  a  generic element of exp (C ( ( z ) ) ) .  W e m ay of
course consider

Ber c ( ( 4 ) / ,-, 2 [ [ ,i i  (13".°Mexp(F)°(°

for arbitrary continuous linear endomorphism M  o f  C ( ( z ) ) .  B u t  th e  follow-
in g  p roposition  (w h ic h  is  a  c o ro lla ry  to  th e  theorem  of "Boson-Fermion
correspondence") enables u s  to  re s tr ic t  o u rse lv e s  to  c o n s id e r  o n ly  e x p
(C ( (z ) ) ) .

Proposition 2.2. (corollary  to B oson-Ferm ion correspondence) ([4])
The map

(a; U) (modulo scalar multiples)

gives an  embedding of  UGM to a inf inite dim ensional projective space P (93). In
other words, the tau function T (a; U ) determines completely the linear subspace U
of C ((z ) )  w ith the property (2.1).

W e m ay also consider a  ta u  function of a Virasoro uniformized Riemann
(X , Q , z ) su rface  w ith  a  line  bund le  L  a n d  a  tr iv ia liz a tio n  t  ("Virasoro
uniformization") of L on SpfC[ [z ]].

r (a ; (X , Q, z, L, t))=r(a; c r,z (H
°
 (X\Q; L)))

where we denote by ct,z the Laurent expansion of sections of L  in the coordin-
ate z with the help of trivialization t of L. [4] [13] Then we have the follow-
ing extension of the theorem.

Theorem 2.3. [4]
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z-  (a; (X, Q, z, L, t)) exp (q(a ) ) ( /  ( a )  ± i+c(L ))

where c (L ) denotes the point of the Jacobian corresponding to the line bundle L O
x ( — deg (L) Q).

Our final rem ark is that the factor exp (q (a ) )  in  the theorem comes in the
process of "renormalization", a method fo r  dealing with determ inants o f mat-
rices of infinite size. A n  explanation of this m ethod is given in  [4 ]  in  terms
of representation theory of cu rren t a lg eb ra s . In section 4 we give another ex-
planation, defining a  determinant o f  infinite matrix by using LU- decomposi-
tion.

3. Recollection of super geometry

In  th is section w e record and give sketchy proofs for som e results of su-
pe r geom etry . M ost of them  a re  w ell know n to specialists, b u t they  do  not
seems to be easy to access for non specia lists. M any resu lts go parallel to the
u su a l (non  super) case , and  in  th a t case w e om it p ro o fs . W e  re fe r  [8 ]  for
th e  fundam ental language o f  s u p e r  g eo m e try . R esu lts  o f  usual algebraic
geometry are w ritten in several texts, for example in [2].

3 .1 .  Finiteness theorem. In  th is subsection  w e show existence of
enough functions o n  families of super R iem ann surfaces. (P roposition 3.9).
To do this, we briefly recall super algebraic geometry.

A super commutative ring A is by definition a Z /2Z-graded ring

A =A 0e A

with the following commutation relation.

(3.1) f g  =  ( - 1) 7-4-g f for a l l  f  EAT, g EA r  .

A s in  here, for any homogeneous element f  of A, we denote its parity by 7: f e
AT. E le m e n ts  of A 0 a re  said to be even. E lem ents of A 1 is said to be odd.

W e define a super com m utative ringed space a s  a  ringed  space  (X , Ox)
with a Z /2Z-graded structure sheaf

V x=ex,000x,i

with the analoguos commutation relation as 3.1 a b o v e . E a c h  super commuta-
tive ringed spaces has its reduction, denoted by Xrd, defined as

Xrd= (IXI, e x / f x ) w h e r e  , i x =e x , i+V i i  .

W e define a  locally super commutative ringed space to  be a  su p e r  com-
m utative ringed space whose reduction is a  locally ringed space in  the  usual
sence.

Suppose w e  a re  g iven  a  su p e r co m m u ta tu v e  r in g  A . I ts  e v e n  part Ao
form s a  su b a lg e b ra  o f  A , a n d  is  c o ta in e d  in  t h e  cen te r  o f  A .  A ,  as an
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Ao-algebra, corresponds to  a  sheaf o f  su p e r algebras AT o n  th e  usua l affine
scheme SpecA o. W e thus obtain a  locally super commutative ringed space

(SpecAo, 71)

w hich w e w ill denote by S p ecA . A  locally super commutative ringed space
which is isomorphic to SpecA for some super algebra A  is called an affine su-
p e r  sc h e m e . A  locally super commutative ringed space which is locally iso-
m orphic to a  an  a ffine  super schem e is called a  su p e r  schem e. W e explain
here some basic topics about super schemes.

The f ir s t  is  a  criterion o f affineness fo r super sc h e m e s . I t  is  an  analog
of the well known criterion of affineness for schemes due to Serre.

Lemma 3.1. Let X  be a super schem e. I f  ex ,i  i s  a f initely generated
module o v e r x,o, then the following statements are equivalent.

(1) X is an affine super scheme.
(2) Xrd is an affine scheme.
(3) H' (Xr d; .7) =0 for all i >0 and for all ex r d -m odu le g .
(4) H  (X; .7 )= 0 for all i >0 and for all ix -m odule

Proof. (1 ) clearly im plies (2). The equivalence o f  (2 ) a n d  (3 ) is  the
resu lt o f  the  usual Serre's c r ite r io n . T o  d e r iv e  (4 )  f ro m  (3 ), we introduce
the following filtration on

g n =.561,7

and note tha t Grn (7) - =- g n /g n +i is  an  exi-d-module. Finally, the  same proof
as in  the  proof on  the  usual Serre's criterion w orks, and  w e  see  tha t (4 ) im-
p lies (1).

A s  in  usua l non super case, w e m ay consider a  super p ro jec tive  space
p (m n ) ([8 ]). It represents the  sheaf associated to the  following presheaf of
sets on the Zariski site of affine schemes.

SpecB T  (B) (110) -dimensional direct summand of@ni+1/3@nriB

(b 0 , Sn); biEB0, /3EB1,

the  ideal of B generated by bo, bm  is  B  itself

L e t (Xo, Xi, ..•, Xm, E 1 , 2 ..... E )  be the homogeneous coordinate of 1 " 1") .
We denote by Ho, ..., Hm the  d iv iso rs (hyperplanes) defined by Xo, X m ,  re-
spec tive ly . W e  have  the  follow ing result fo r  th e  cohomology groups of the
projective space.

Lemma 3.2. For any super commutative algebra A, we have the following
result.

(1) Hk (P P ln ) ; d  (PI10)) * 0 only if k =0 or k=m.
(2) For k= 0, we have,
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H° (P (n iln ) ; 0 (PH0))''=" (elements of A[X0, Xm, E1, ..., En] of degree p).
(3) For k =m , we have,

Hm ( P r n) ; p H 0))

(elements of A  [X V , ..., El,
1 

x o . . . x .  of  degree p).

The proof of the above lemma is the same as the  usual case, by using the
èech cohom ology. W e note that the Lemma 3.1 guarantees us that cohomolo-
gy groups m ay be calculated as èech cohomology groups w ith  respect to  an
affine open covering.

Lemma 3.3. For any coherent sheaf g  on Vinin ) , there ex ists an  integer
M such that g  (Milo) = g 0 00 (MH0)  is generated by its global sections.

W e call a  super scheme X  projective if it can be embedded in a projective
space P (mln) fo r  som e m , n. W e m ay define the notion of an ample line bundle
on a projective super scheme in the obvious w a y .  W e have the following ana-
log o f  S e rre 's  van ish ing  theorem . T h e  p roo f is  aga in  pa ra lle l to  th e  usual
case.

Lemma 3.4. (1) For any coherent sheaf g  on a super projective scheme
X  over a super commutative ring A , and for any  ample invertible sheaf 0 (1) on X ,
there exists an integer M such that,

H' (X; g  (p ) )  =0  for all i >0  and for all p>M  .

(2) A ssum e furtherm ore that the coef f icient ring A  i s  noetherian. Then
cohomology groups H i (X ; g (g)) are finitely generated over A  for all i and for all g.

Proposition 3.5. (S uper analogue of  GA GA  [11]) For any  projective
super scheme X  over C, denote by X an its associated super analytic space. T h e n
there ex ists a one to one correspondence between the set of  coherent sheaves on X
and the set of  coherent sheaves on X an . For any coherent sheaf g  on X , we denote
by an th e  corresponding coherent sheaf on X an . T hen the cohomology groups of
these two sheaves are canonically isomorphic.

111(X ; g) = H 1 (Xan; pan)

Proof. Almost identical with the usual case.

W e  in tro d u c e  a  n o t io n  o f  " a  fam ily  o f V irasoro  un ifo rm ized  super
R iem ann surfaces". It is this object w e w ill discuss extensively through this
paper.

Definition 3.1. By "a family of Virsoro uniformized (compact) super
R iem ann surfaces (w ith  th e  odd  dimension N )  (X, i r,  ( S ,  so), 9, (z ,
CN))'', we mean the following data.

(1) A proper smooth super scheme X  of relative dimension (11N) over a
smooth super scheme S  (over SpecC) with the structure m orphism  r.
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(2) A section q: S- - , X  of the structure m orphism  7E. We will denote by
Q the image of q.

(3) A local coordinate system  (z, Cl, C A I) along Q relative to  S, with
the following condition.

Z (Q ) = Cl ( Q )  =  CZ ( Q )  = Cis/ (Q )  =  0  .

(4) A  distinguished closed p o in t (=  C -v a lu e d  p o in t)  so  o f the  base
scheme S.

Furthermore, in the above situation, we employ the following notation.

) =X\Q

O ur argum ents focus o n  properties w hich a re  loca l on  S. So we some-
times shrink S, tha t is, replace S by an open neighbourhood U of so in  S.

Remark 3.1. Unlike the  usual case, 'points' and  'divisors' of a super
Riemann surface are not the  sam e. B ut if  D and E are divisors w ith the same
reduction of their wupports, we see that there exists an integer M such that

M D > E  a n d  M E>D .

This is because odd dimensions give merely nilpotent functions.

Our first observation is the following.

Lemma 3.6. X is projective over S.

Proof. (W e prove th e  lemma without assuming the existence of the sec-
tion q o f r  and  the  coord ina te  system ) W e m ay  shrink  S  and  m ay assume
that S is affine, and that there exist two disjoint sections p  and q of 7E. L e t  u s
denote by P and Q their im a g e . W e shrink S again if necessary and find local
coordinate systems (zp, •••• C/s/P) a n d  (z0, C v e )  around P and Q, re-
sp ec tiv e ly . Let Dp and DQ be divisors on X  defined by 4  =  0  and zp= 0  re-
spectively.

By Lem m a 3.1 w e see that X \P and X\Q a re  both affine. So we have a
positive  in teger M  a n d  f in ite  co llec tion  o f homogeneous s e c t io n s  f j  o f
td (M D ) a n d  i g i i  o f  (MD Q ) ,  such that they give an  embedding of X\P, X\Q
to  projective spaces. S ince  X\Q is  affine, we have, for sufficiently large inte-
ger a section s of d  (M'DQ) w ith non zero reduction which vanishes at D .
This gives an injection of sheaves,

X s: (D e ) — )0(M'DQ) .

T h is  implies that (MM' (1342) )  has enough sections to em bed X  to  a super
projective space.

W e next mention a powerful tool for the analysis of (super) Riemann sur-
face, namely, the formal à. ech cohomology. [1] [4]
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Lemma 3.7. Let (7r: X — ,  S , g, (z , Ci, C N ))  be a fam ily  of Virasoro
uniformized super Riemann surfaces. Assume S is affine, S =S p e c B . Let g  be a
coherent sheaf on X  which is locally free (of rank ( r ip ))  an a neighbourhood of Q.
Then we have the following.

(3.2) II° (X; g):_ 'g  (U ) n ,

g (0) (3.3) Hi (x; g )
+.7 (..10

where we denote by g  (u )  the set of global sections of the completion g Q  of g  along
Q and g  ( 0 )  the localization of g  ( I I )  a t  Q .  If we choose a form al trivialization
of Faround Q, then we may identify them as follows.

(3.4)g  ( U )  "B [[z ]] ..., (riP)

(3.5)g  ( 0 ) B ( (Z )) [C 1 , (riP)

Proof. Let D  be  a  divisor on X  defined by z = O. T he  lemma is an  easy
consequence o f  th e  cohomology ex ac t sequence associated  to  th e  following
short exact sequence of sheaves.

Q( - F n D )  >0.
g  -D

L em m a 3.8. (S pecial ca se  o f upper sem i con tinu ity  theorem  of
cohomology.)

Let (7r: X —  +S , g , (z , Ci, ..., C7,1)) be a fam ily  o f Virasoro uniformized super
Riemann surfaces Assume S  is affine, S =S p e c B . Let g  be a coherent ex-module
flat over S .  I f  H 1 (X; g )  =0 , then H

°
 (X ; g )  is  a flat B-module.

Proo f . W e m ay assume th a t TC admits two disjoint sections p i , P2 . Then
X  is a union of two affine open sets, ui=x\pi(s), i = 1, 2. The cohomology of
g

-
 is  the cohomology of the following complex.

0
—

g
-
 (U1) (Bg (U2) 

—
>g

.
 (U1 n u2) —o

Since U i, U 2, u 1  n U 2  a r e  a l l  affine, g  (U 1 ), g  (U 2 ), g  (U 1  n U 2) are  fla t
B -m odu les. By the  hypothesis on H I , w e  see  tha t H

°
 (X ; F )  is  a  kernel of a

surjection of flat modules, so  it is flat.

Proposition 3.9. Let g  be a locally free super ex-m odule of rank  (rip).
Suppose g  is form ally  triv ializ ed around Q. T hat is, we are given an isomorphism

( (Z )) [C1, ,  CAA (rip)

W e denote the standard es ((z )) [C I ,  ..., CAT] -basis of the right hand side of the
above formula as le, El , where e = lei , e 2 . .... en (ev en), and E= lEi, E p l  (odd).
Then, shrink ing S  if neccessary, there exists an integer M  such that w e m ay  f ind
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sets of sections

ifn,10; —M, lc [1 ,1\ ], i=  1, 2, ..., r ,

ig n <—M, I c [1, , j =1, 2, ...,

of g on with the following Laurent expansion at Q (with respect to the formal
trivialization).

(1) f,j,j (z) —= e ,mod (e s CS) [[z ]] [C i, , Cid z-m)  (r  p )

(2) g n ,/,; (z) = C n Cl cimod (es (S ) [ [2 ]C i v ]  C m ) ( r i p ) .

Proof. We combine Lemmas 3.4, 3.7 and 3.8.

Shrinking S if necessary, we may use the above proposition to obtain a  Os (S)
- basis of Ox() *( )  (see Lemma 5 .1 ), or, in  other words, O x ( )  is  a  free Os (S)
- module (o f in fin ite  rank ). This fact and Lemma 3.7 yields the following.

Lemma 3.10. Let (7: X 5 , q , (z , C i, CN)) be a family of Virasoro
uniformized super Riemann surfaces. Assume S is affine, S=SpecB. Let g be a
locally free ex-module of finite rank. If H ° (Xs; g s) =O for any closed point s of
S, Then R17* (g ) is  a locally free sheaf on S.

3 .2 .  Relative de Rham complex and the residue theorem. Let us
describe the  m ost pow erful result in  th is  section, the super residue theorem.
It p lay s  a  fundamental role fo r  studying super R iem ann  surfaces. First w e
describe the relative de Rham complex of super m anifo lds. T he absolute case
is described i n  [ 8 ] ) .  It is by  defin ition  a  locally super commutative ringed
spase (M , m ) which is locally isomorphic to

(Bm  (r), Oc-OS . (Cn  fl) )

where B,n (r) is  th e  ba ll o f rad ius r  in  Rm a n d  rt is  th e  pa rity  change [8].
We see from the definition that locally, the function space on a super manifold
is isomorphic to

Func. ( B .( r) ) 0 s .  (CnI1))

w h e re  F unc. deno tes  som e  func tion  space  (depend ing  o n  w h a t  k in d  of
geometry we are  going to focus on, for example C- , continuous, ...), W ith this
identification w e m ay equip th e  function space of a  super m anifo lds several
topo log ies. Among them we use C- -topology, C 1 -topology, and uniform topol-
ogy.

Let to: M- - q3 be a submersion between differentiable super m anifolds. We
denote by (m, f t) a n d  (n, v) the dimension of M and B, re sp ec tiv e ly . The re-
lative tangent and cotangent sheaves are defined in  an  obvious w ay. (Actually
these sheaves a re  locally free , so  w e  m ay  a s  w ell regard  them  a s  bundles.
But in the sequel, we prefer the word sheaves rather than bundles.) W e have,

(3 . 6) = *S21 ,
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(3.7) g M/B
— k e r  to * : to*: g B1 •

W e sta te  a  few  w ords ab o u t th e  p a rity  o f  th e  co tan g en t sh ea f. T h e  even
cotangent sheaf has the parity determined by

p k / B , e v e n —  H O M  ( Y M/ B ,  
0

)

w hich is not a  usual parity  if  it is  regarded  a s  th e  bundle o f  1 - fo rm s . The
co tangen t sheaf w ith  th e  o d d  ( b u t  usual) parity  is denoted  by  pk/B .odd.
Namely,

_  1
JaM/B,odd — QaM/B,even •

We define the relative Berezinian line as the Berezinian of the cotangent sheaf.

r) —1) COL /B,even) •

W e recall that each vector bundle on  M  has s B erezinian line, the transition
function being the B erezinian of the original boundle. Each relative coordin-
ate system (xi, x m ,  on M  over B  determines a section Ber (dx i,

d U .  T he  parity  of the Berezinian bundle differs in  literature,
but is no t important for our a rg u m e n t. So we simply write Ber to denote the
parity . W e choose the following ([8]).
Ber (dxi, dxm -n , cf 1, -=m — n =  even relative dimension of M  over
B .  In  the pure  even case, the Berezinian line reduces to the  bundle of forms
of the top degree. W e see from  the relation 3.6 that the relative and absolute
Berezinian lines are related in the following way.

(3.8) Berm /B Ber m ® ( to * BerB) v .

A s in  the absolute case, each section of the relative Berezinian line (with
proper support) can be integrated along th e  fibers. W e m ay  define  th is by
the following identity.

(3 . 9 ) f
m
ccroo)*,)=f

B  M
(f 

/B
a) 77 for all a E C7pi(Ber m B) CePt(Ber B )  .

In fact, the uniqueness o f the  im/B with the above property is c le a r .  F o r  any
local coordinate system (b1. .... b, S i, IC  o f  B  and (x1. .... x » _ ,  b1. .... b ,
••., /3i . . . . . I3 ) of M , we have,

LB Ber (dx, f ( x , =  f  d x  (the coefficient of in f  ( x ,  ) )

fo r  any C - -function f  on  M  w hich  has a  com pact support contained in the
coordinate p a tc h . T h is  provide the  local ex istence  of the  integral and  this,
together with local uniqueness, provides the proof of the existence of the integ-
ra l in  genera l. W e next in troduce the  sheaf of relative in teg ra l fo rm s. It is
defined as follows.
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Em /B =Berm/B® (S . (Tm/Bil) )

It is  g raded  in  a  natural w a y .  W e define a  derivation 6 "  on  this sheaf to
make it a  differential com plex . T o  do this, w e note tha t the isomorphism 3.8
gives an inclusion,

'Ç '
E A /  .

Then the relative exterior derivative 01"  is defined as the unique differential
satisfying the following relation.

(3.10) 5"  (a) to * 7 7  = (a®  69 * 0  for all a c E M / B ,  I7 EBer B .
The same reasoning as in the case of integral applies and we see that the rela-
tive exterior derivative exists. In local term s, it is expressed as follows.

5"  (Ber (dx , d )f (x ,  OF)

=E (V r,-E) 0 0 (Ber (dx, d 0 f (x, OF)ax, s a u   n
ax,

—E 7,,A) ®,„ (Ber (dx, d of (x, OF)
aae,

=  ( - 1 ) +1EBer (dx, :xf
O F  

a nax,

± (-1) (i)EBer (dx, d )
L

(D  
ao

0 ll
Where we put

f :  a C .' function on X

fE  S.  (Tm/B11)

One reason to introduce the  super de  Rham comlex is that we m ay inte-
grate in  p a r t s .  Namely, Following lemma holds.

Lemma 3.11.

fM /B  
5 M /B a , 0 for all a c  T u t ( EM/13)

Proof. T his follows directly from the  absolute case, using the  equations
3.9 and 3.10.

We define the affine super line A w l 's' ) of dim ension (01N) to be the unique
connected super manifold of dimension (01N ). The ring of functions on A " )

as r1 , ...,
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Let 0  be an open subset of C which contains th e  o rig in . L e t B be a  com-
plex super manifold.

Definition 3.2. Embedded smooth super paths on  0  X B is defined as
a C- -map

r: [0, 1] x A " )  x B—>0 x A " ) X B

which commutes w ith  projections on B and  is  an  em bedding (in  the  sense of
[8].)

Lemma 3.12. Let

w=Ber (dz , dC1, dCN)f (z, CN)

be a C- -relative integral form  on 0, whose support is contained in the image of
(0, 1) X  A (0 1 N )  

x  B .  T h e n  w e  h a v e

[ f (z ' C1 ' .." C N ) 1
f r w— f dtdtdz a...a 

Proof. W e give here  a  computational proof o f  th e  le m m a . W e  f irs t assume
that . . . .  CAT do not have constant term s if they a re  expanded in  terms of r 1,
..., T N ) .  In other words, we assume that

(3.11) (Cil r,=0 ... z-,=0) -- = (CNI '1)=0 ... z-A =0 ) 
= 0

We expand f  in terms of the odd coordinate C I , ...,

f =  E (z) C/

/ c  11,N1

W e know a s  in  th e  absoulute c a se  ( [8 ])  th a t the  integral form  B e r  (dz , dC)
f iC i is 5-exact unless 1= [1, N ] . Let us denote the  function fu,Ni simply as
Then we have,

fBer (dt, dC)f(z, C)= f Ber (dt, dr) [Ber ( ' d
d

z_ (z ) CI , . . . ,  C A T ] .

But the assumption 3.11, w e see that Ci...CN is already a m ultiple of r 1 ,

so we see that the right hand side of the above formula equals to

f B er (dt, dz- )  [Ber (d z '
 d) dr ) : f  (z)1 

V i, ..... 7N=0 
X ( th e  c o e f f ic ie n t  o f  (z-

1...rN) in

CN) ) .
d e t ( d z  c/C(c/C) - 1 dz\ I

=fdt/(z ( t ) , 0, ..., 0) \ d t dt\dz- 1 dr J  

d e t
K )

\dr I ri=...=TN=0

X det [ (IC1
L d 2- 1 ri= ...= T N = 0

dz . dC = f dt:f (z (t, 0, ..., 0) [A (since d i .1-1=...=i-N=0= 0.)u t Ti= ...=2" N=0

N.
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This completes the proof of the lemma under the assumption 3.11.
Let us now consider the general c a s e .  W e first notice that, using a  parti-

tion  o f  un ity  o n  C, w e m ay  d iv ide  r  in to  p ieces and  assum e r sufficiently
sm all. W e a lso  note that the set of paths which satisfy the lemma is a  closed
se t in  the  C1 -topology. W e m ay thus prove the  lemma fo r paths of good na-
ture w hich form  a  C1-dense subset of the  whole space o f p a t h s .  In  fact, re-
placing B  b y  its  re la tiv e ly  com pact open submanifold, w e deduce from  the
W eierstrass theorem  that r m ay be arbitrarily  w ell approxim ated by paths
which are analytic along each fibers. So w e restrict ourselves to cases where
r is analytic along each fibers. In this case, r extends to a  map

u  x  Acton x x  A w i N )  x  B

which is complex analytic along the fibers, where U is  an open neighbourhood
o f  [0, 1] i n  C .  Shrinking 0  and U if necessary, we may assume tha t f  i s  an
isomorphism of C"-super m anifolds. L et us divide f  in  components.

r'(t, b, le) = b, /3),( t ,  r ,  b, iS)), (b, S))

We see immediately that

(t, b, ,3) =?0(t, 0, b, )3): U x B—>0 x B

is a  diffeomorphism. From this we conclude the existence of a C"-map

u  x  B ,A(oinr) x  B

which is defined o n  a  neighbourhood U x B of the im age of r, commutes with
the projection on B, and is complex anayltic on each fibers, such that,

(t, 0, b, 8) (z (t, 0, b, S), (b, IS)) for all t E [0, 1] and for a ll  (b, IS) EB .

In fact, we define 0 as follows.

(z, b, p) = r ( (t) - ' (z, b, 13), 0, b, /3)

Then we may change the coordinate of the target space C X X B of r by

C= —q (z)
and get,

LBer (dz, dC) f (z, C)

=1 Ber (dz, d CV (z) Cl-CN

=fBer dojo (cl+oi(zj)...(c,,,+0N()
 

(coordinate change)

= f B er (dF, d CV(T) (CO ... (CN) (other terms are  0)
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=fcic ( t ,  , 0):f (F(t, 0, ..., 0))dt by the assumption 3.11 case

= f 0).-f (F(t, 0, ..., Ondt

This completes the proof.

Proposition 3.13. (Super residue theorem) Assume furthermore in the
above lemma that o.) is holomorphic and that the path is closed, that is, we have

ri O x k " '" ' X ri i i  x A—, X s
and winds exactly once around the origin 0 on each fiber. Then we have

frBer (dz, dC)f(z, C)= resso (Ber (dz, dC)f):= (the coefficient of z- 'ci...CN in f ).

The formula shows in particular that super residue ress is invariantly defined.

It is  ve ry  like ly  tha t the  algebro-geomitric counterpart ho lds (for exam-
ple in positive characteristics), but the author does not know a proof.

F o r  a n y  su p e r scheme S w hich  is sm ooth  over C, w e m ay associate  a
C- -super manifold Sc- a s  in  th e  usua l w a y .  T h a t is , th e  topological space
S (C ) equipped with the sheaf of ring Oc-, where OC.. is defined as the comple-
tion of Os with respect to  the C- -topology on each compact subset of S. This
procedure enables us to apply the above proposition to  super schemes, and we
obtain,

Corollary 3.14. For all f E r * V  wcr*co,o s , we have

ressQcof= 0 .

Furthermore, 7r*V,,, and n::*co l .s. are the annihilator of each other.

Proof. Same as the usual case.

4 .  Theory of Infinite determinants

4 . 1 .  motivations. In  th is  section w e give a  way to deal with deter-
minants of matrices of infinite size. T h e  method we employ here uses a  LU-
and UL-decomposition o f m a tr ic e s . That is, we decompose a  m atrix to a  pro-
duct of an essentially lower-half matrix and an essentially upper-half matrix.
Then the determinant of the original matrix is defined to be the product of the
low er- a n d  upper-half m a tr ic e s . Unfortunately, th e  determ inant defined in
th is  w ay  does no t commute w ith  m ultip lica tion . I t  i s  a  fea ture  o f determi-
nants of matrices of infinite size. We may as well define determinants of infi-
n ite  m atrices by  u sing  a  representation theory o f  th e  cu rren t a lgeb ra . W e
will show in th is section tha t the two definition of determinants actually coin-
cide. But the determinants defined by representation theory does not seem to
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be convenient for application to  super th e o r y .  T h e  idea o f  defining infinite
determ inants using  L U -  decom position already appears in  S c h w a rz  [l a
O ur approach differs from his in the point that w e use more algebraic machin-
ery and formal topology, where his approach uses Hilbert s p a c e s . The author
admists th a t th e  la tte r  approach is geom etrically m ore in te re s tin g . B u t our
approach has an advantage of being easy to handle with and may be extend to
the positive characteristic case.

In  th is  section w e  f ix  a  family o f  Virasoro uniformized super Riemann
surfaces (7r: X — S , q, (z , CN )) (definition 3 .1 ) .  W e consider the  fol-
lowing algebras.

B =  (0 s)

A =/(X; ex)
OA =B [ [ iT111 ,ezic [1.N] ]

g i = A  [ [ IT ,A ,ezic E1.0

The double brackets in  th e  definition o f the  last tw o algebras m ean the
completion of polynomial algebras in  infinite v a r ia b le s  iT 

e zi c [uv] -  
The

com pletion is given w ith respect to  th e  following grading on the polynomial
algebras.

degTiJ= max (—i, 1)

W e develop here a  linear algebra over the  tpoplogical vector space 1 "
)
.

There are two important features in this algebra.
(B1) The topology of 13

(°)
 is determ ined by a  conutable set of its topological-

ly nilpotent open ideals A.
(B2) It is complete.
In fact, J is  g iven  by  the following.

= closed ideal of Ow generated by m onom ials o f degree larger than n.
The discussion of th is section is based on the above two properties.

4 .2 .  Various function spaces. I n  t h is  sec tion  w e define several
func tion  spaces. In  contrast w ith argum ents in  [10] w here one uses Hilbert
s p a c e  (L 2 (S 1 ) )  a n d  lin e a r  o p e ra to rs  o n  i t ,  w e  u s e  fo rm al func tions on
SpfC (  (z ) )  and  linear operators o n  i t .  A s  it w as explained in section 2, for
the la ter use we have to add formal variables to  th e  b a se  r in g . So we fix, as
a ring of coefficients, a topological ring which satisfies the  properties (B1)
a n d  (B2) above (w ith )3(0 ) rep laced  by  g3). W e define the  completed ring of
formal Laurent power series )9 I tzi in the following way.

CO

izi =I E iizi; „EA x 1— *0 as i
—

> — 0 0 1  .

j = - 0 0

The set of formal power series,
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CO

x [[2]]=1E.T z .z i;x ,Ey 31 .

t=0

form s a  subalgebra ofI Izi .  O u r consideration is centered round  prop-
erties o f 33 I lzl I / Ja[[z ]] a s  a  topological linear space. So w e define a n  ab-
stract topological vector space as follows.

V=Co(Z o;

=1Ex iei; x i E  x i — ■0 as j - > 0 0 1

; SO

W e equip V the uniform topology: a  n e t  10 converges to f  if and only if
for every open ideal J of 59 there exists an index Ao such that

f 2 — f 0  (modulo )J e j ) for all >Âo

It is an easy exercise to show that V  is complete with respect to this topology.
We denote the ring of continuous endomorphism of V  by E (CIL);

E (611) = HoMcont (61/, 611)

We may represent each element M of E (V ) by a m atrix  ( (M),;):

M (Ex y i ) =E (M) i g y i

(We use paretheses to  express the martix elements of the corresponding linear
operators.)

Next we define a  subalgebra of E (CIL), th e  algebra of "compact" operators.

{
For all open ideal J of 59 , (M mod J)  is of finite rank

M,I{(V) = EE (V); i.e., there exists a positive integer N  such that
(M) 0 J  fo r all i < —N and for all j

Note tha t ,Il (V ) is  a n  ideal of E OW .  Its elem ents a re  "limits" o f finite
rank  m a tr ic e s . I t p lay s  a  sim ilar ro le  as the set of com pact operators on a
Hilbert space in  the  theory of ope ra to r a lgeb ra . T he definition of ,Y( is inde-
pendent o f  a  choice o f  a  topological b a s e  jeil o f  V .  I n  o ther w ords, it is
stable  under automorphisms o f V .  T h is  is  a n  easy consequence o f  th e  fact
that .1( is an ideal. W e  m a y  use the fact to give the following definition.

Definition 4.1. Let V ,, V T /  be tw o topological vector space over 33
w h ich  is  iso m o rp h ic  to  V . F ix  a  topological linear isomorphism 0 between
the two vector space. Then we define,

X (V', lin-) = 10°K; K c X O W  .

This actually does not depend on the choice of 0.
W e further define the following subsets of E (CIL).
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(4.1) U<0> (V) =  ME E
((M) is strictly upper triangular.

(V);
i.e., (M) 11 = 0 for

( 4.2) uo, (v) =1+ Uo> (V) = 11 - 1- M; ME Uo> (U) I ,

(4.3) (v) [ A i  ( m 1 . 7 )  E E ; i i )  is upper triangular. 1

H ere w e add  som e rem arks. E ach  e lem ent o f  U  OW is  inve rtib le  in
E (011) and the inverse is again an  element o f Uo )  (V ) . A n element o f U* (01I)
is invertible if and only if its  diagonal entries a re  all invertible elements in g3,
and in that case the inverse is again an element of U* (V ) . The condition of a
m atrix being continuous is autom atic fo r  upper triangular one . In  con tra st,
th e  following definition o f  a n  algebra o f  low er triangular m atrices requires
some conditions concerning topology.

(4.4)

{
((M) u) is strictly low er triangular and

L<0> (V M CE (q1); t) = here exists a topologically nilpotent ideal J of 33
such  that (M) i f  E J  for all i and j

(4.5) L  OW =1-FL <„ (V) = 11 ±M; ME L <0> (01

(4.6)

{
((M ),;) is lower triangular and

MEE (611); tL*(q1) = here exists a topologically nilpotent ideal J of 59
such that (M ),JEJ for all i * j

Note each element of L<1> (11) has an inverse in itself.
A s in  the  operator algebra theory, it is convenient to consider elem ents

which are  in  the  above sets "modulo compact o p e ra to rs" . For every subset S
of E (V), we define,

(4.7) (°l1) = 1M±K; M ES , K EX  (ql)

T he following lemma is an  easy consequence o f the  fact that each elem ent of
L<1> (011) and U<> (011) is invertible.

Lemma 4.1.

Lo , (°n) n (Jo> (V) =  +  (V)

4.3. Denfinition of "finite" determinants. In  this subsection we
define determinants for matrices of elements in  1-F 1{ (V).

F o r each positive integer n, w e define clin Furthemore, we
define the injection en: 61.1,,--*ql and a projection pn: 6/1- 0 11n a s  follows.

i.e., (M) 11 = 0 for j > i
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tn (
i> — fli > — fl

pn (E xie i) =  E  x,e, .

It corresponds to the following decomposition of V.

(4.8) ou=image(nacerpn=oune E x,e, .
<

Note that V n  is  a  free  -m odu le  o f f in ite  ran k . W e  have the following lemma,
which is a  consequence of the definition of (V).

Lemma 4.2. Let K E X (611). Then det (Pn  °  (1 ± X ) ° (n) converges as
n— > 00 . It is  in fact independent of  the choice of  the topological base  led of  it.
We denote it by det f  (1 ± K ).

It is  easy  to  see  tha t de t f  commutes w ith  m ultip lica tion . Moreover, we
have the following

Lemma 4.3. Let K E  (ii). Then for any EE (V), we have,

det f  (EK) = det f  (KE) .

Proof. If E  is invertible, then replacing K  in  th e  above formula by E - 1 K
we see that it is equivalent to

det f  (10 det f  (E- 1 K E  .

T his holds because the  definition of det f  is independent o f a  choice of a base.
In case E is not invertible, the proof of the lemma is obtained by taking a  limit
of the invertible case.

4.4. LU -  and UL - decomposition of matrices. In  this subsection
we define determinant fo r  a  w ider c lass o f  m a tr ic e s . W e first decom pose a
matrix into a  product of an upper half m atrix and a  low er half m atrix . Then
we define the determinant of the original m atrix by the product of determinant
of the tw o com ponents. O ur first task  is to  define  a  class of m atrices which
are decomposable into product of upper- and lower half matrices.

M (V ) = Uo> (V )  . L o >  (V)

N  ( i l )  =  L  ( i l )  .  U  ( 611)

A gin  it is  important to consider the  above class modulo "compact" oper-
a to r s  ( 4 .7 ) .  The follwing lemma is fundamental.

Lemma 4.4. For M E M (i1 ), le t us may decompose M in  the  following
way.

M =UL(1-f-K )
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where U E U ( 1 ) L  E L <D (OU) , and K E . We refer to this decomposition
as a UL-decomposition of M.

Then we have the following facts.
(1) Both L and U are determined uniquely modulo (O U ).
(2) detuLM= detf (1+K) depends only o n  M . We call it the determinant of

N according to a UL-decomposition, or UL-determinant.

W e note that detuL(M ) is invertible if M is invertib le  in E (OU). Indeed,
(1 + K ) is invertible in  tha t c a s e .  Similarly, we have also the  following lem-
ma.

Lemma 4.5. For N E N (OU), let us decompose M  in the following as a
LU-decomposition of N.

Then we have the following facts.
(1) Both L and U are determined uniquely modulo ,Y{ (OU).
(2) detLuM= detf (1+K) delends only a n  N . We call it the determinant of

N according to a LU-decomposition, or LU-determinant.

As in the case of UL-determinant, we note that detLu (N ) is invertible if N
is invertible in E .

There is a  useful formula for a calculation of LU-determinant.

Lemma 4.6.

dettu (N )=  lim det (Pn °N° en)

Proof. Let

N = L U (l+ K )

a LU-decomposition of N .  We may rewrite the above formula as

N =L(1+K u)U  ,

where Ku =UKU -
1 i s  an element of (O U ) . N o w , fo r  any operator E  E  (V) ,

le t us denote the operator pn .E. en  o n  q/(n ) =NV by E .  T h e n  the triangular-
ity of L and U enables us to decompose the matrix N ( n ) =pn AT c„ as,

N (n ) =L  ° (1 + K u) ( n ) U (n ) .

W e therefore  see  that th e  righ t hand  side  o f  th e  statem ent o f  th e  lemma is
equal to det f  (1+Ku), which is equal to det f  (1 +K ) (L em m a 4.3).

W e should note that although this formula is  the  same as  in  the  calcula-
tion of det f , th e  LU-determinant does depend on  the  choice of the topological
b a se  14 .

Unfortunately, we can not obtain a UL-decomposition in an easy w ay as
above. W e denote the difference between the U L-and LU - determinant as p l .
In precise, we give the following definition.
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Definition 4.2. Let A  b e  a n  invertible elem ent o f X (V ) =M (q t)
N (d?1) . (A ) is given by

detw (A) 
pi VI) 

d e t u L  ( A )  •

It is clear from  this definition that for two elements A , B  of X (N ) whose
difference A —B is  in (N ), pi (A) is equal to pi (B ).

F or each element M  of E (
°.11) and for each pair of non positive integers c

and d  w ith c w e denote by M (,,, ) th e  tra n sp o se  o f  th e  ( ((— 00, d] \c) x
( -00 , d —1])) -portion of M .  In other words, M (d ) is•an element of E (al l ) de-
fined by the following formula.

if jd - d— l c
if j+ d -1 < c

Lemma 4.7. Let N be an element of K• (CU). T h e n ,
(1) N (d ) is an element of f\-1(q1) for all d, c.
(2) There exists an open ideal j  of 99 and a non positive integer Jo such that,

detLu(N )) —=1 mod,/ fo r a ll j .

In particular, N o , ) is invertible for all j
(3) For all non positive integers k, 1 with k l, we have,

E (-1 )0 + 1) (N),,,deti,„(N 5 N( i ;,) , = -  - LU ( 0_ 1 ) )  .

Proof. W e  note that each element E  in  E (O 1) adm its a  representation in
block form,

[ E n  E n
E=

E 2 1  E22 1
corresponding to the  decomposition 4.8. (1 ) a n d  (2 ) follows from the block
form  representation o f  each  fac to rs  in  th e  LU-decomposition o f N .  On the
o the r hand , b y  th e  Lemma 4 .6 , ( 3 )  reduces to  a n  e a sy  exericise o f  finite
dimensional case.

Corollary 4.8. Let N, Jo  be the same as in  the  above lemma. L et U be
the element of U <1> (

°
U) determined by

i+ i  detLU ( N )  
= dettu (N(I„)) if i and -.7*()

otherwise

Then UN is an element of  (E) and we have,

(M) f+d ,i+d-1
(11 ( ( I x ) )

i+d -1 ,i+d -1
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de t ix  (N o-Fid+ i)) (UN),J = if i< jodet (N 0

We have the following lemma which gives an explicit description of pi.

Lemma 4.9. For M EN  (q1), Mis an element of M(V ), if and only if the
seuence idetLuMn1 converges to an element r of a s  n — c o .  I f  th is is the case, r
is equal to pi (M).

Proof. T he  first sta tem ent results from  th e  corollary 4 .8 . F o r  generic
N, we may put the number jo in the corollary 4.8 as 0 and see that the second
statem ent is true in  th is  c a s e .  Now an argument of specialization proves the
lemma.

The following lemma states that L U - and  UL- determinants do not com-
mute with multiplication.

Lemma 4.10. Let A, B be elements of X( °l1). Assum e also that AB E
X . Let

A=UALA(1±KA)

B=UBLB(1+KB)

be LU-decompositions of A and B, respectively. Then, we have

detLu (AB) = detix (A) detix (B) p  (A, B)

detuL (AB) = detui. (A) detm. (B) p  (A, B)

where p  (A , B ) is defined by

p (A , B )=  p i(L  AU B ) .

p  (A , B ) satisf ies the following cocycle condition.

(4.9) p (A , BC) p (B , C) = p (AB , C) p (A ,  B )  .

Proof. This is  an easy consequence of the definition of p i .

W e can prove the Lemma 4.6 by another m ethod. F o r each element E of
E (V) a n d  fo r  each pair of non positive integers c and d such that c_d , we de-
note by E ( d ' )  th e  tra n sp o se  o f  th e  aj +1 , 0 ] x  ( [ i, 0] \ 41)) -portion of E.
That is, E ( d ' ) i s  a  ( —d) -square matrix defined by

(E) Li if i
(E (d' ) ) i ,.=

(E) 1 i f  i<c

Then we have the following.

Lemma 4.11. For all integers i, k such that i >k, we have,

(E) ( —1) i+ k det (E (''' ) ) = .
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Now, a similar arguments as in the proof of 4 .9  gives the following

Lemma 4.12.
are equivalent.

(1) The limit

limdet(E ( - "' - ") )
n—.Co

For any element E of E (V ) ,  the following two statements

exists and is invertible.
(2) E is  an element of i■-7 and is invertible.

Suppose the index set —N of
 l l

 is decomposed into a disjoint union,

,

and assume tha t each  a , is  isom orph ic  to  —N a s  a n  ordered set. T h e n ,  we
have a direct sum decomposition

Co (— N; 33) Co (o; 33) (BC0 (. ).; 33) ED...EDC0(ak; 5a) .

Lemma 4.13. Let N, X be elements of E (V ) such that,
(1) N (Co (a i; c  1 ,Co(3i; JI)
(2) X (Co (a i; ) )  C ED i> ;Co (a i; J3)

A ssum e that N is  an  invertible element of (V ) .  T h e n  N  X  is  an  element of
■T (V ) and we have detw (N - FX) = detw (N).

Pro o f . W e  u s e  Lemma 4 .1 2 .  T h e n , th e  lem m a  red u ces  to  th e  finite
dimensional case.

Lemma 4.14. Let N=L (1-I-K)U be an element of  -Al-  (V ) .  For each non
positive integers c, d, let N4" ) be  th e  (((— 00 , 0]\c) X  ((— 00 , 0]\d)) -portion of
N . T hen ,

(1) N {c 'd } is  an element of (V ).
(2) Put N [' d i =  ( -1 )  ( c + d ) detLuN1d 'c l ( th e  "cofactors" of  N {d 'c}). Then, the—

matrix N defined by

(R) c,d
_  N [c ,d 1

is an element of E (V ), and we have,

NIV =RN = detLu (N)

(3) W e have

UKTL=l+K .

In other words, we have

= U - 1 1+ K C ' ,
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4 .5 .  Matrices related to  power series. In  this subsection w e res-
tric t ou rse lves to  a  sm aller c lass of m atrices, corresponding to "multiplica-
tions" by elements of exp (59 I W I )  on 93114 / 9 [ [z ] ] .  (The "multiplications"
are defined if we fix a direct sum decomposition,

13 1 izH--=:931 14E / [[z]] 093 [ [zi

A  change of choice o f  this decom position is not im portant in  o u r  argument,
since difference o f  choices is g iven  by  a com pact opera tor and  w e a re  con-
cerned with the properties which are not affected by perturbations by compact
operators.)

W e first introduce "z" and "z- 1 ".

(// u =

(g) = 51J-1

W e see immediately that r is  an  element of U  (OU). I t  is  not, on  the other
hand, true  tha t '4  is  an  element of L o> (V ) due to  the  topological condition in
the definition of L o> (V ) . It is of course true that tlIEL <o> (V ) for any topolo-
gically nilpotent element t of I .  W e  f u r th e r  observe that,

(4.10)1 -1 =1

(4.11) IIT= 1 — diagonal 11, 0, 0, .

In  other w ords, r and  II are  the inverse  to  each other modulo ( V ) .  Next
we define

E=IEti ,+E s

i,„
. t,, si E93, si— q) as j — , 00 and the ideal
J generated by sis is topologically nilpotent.

Again we put = +  (ow. Looking at the m ultiplication ru le  4.10 and
4.11, we see that E —  is c losed under multiplication, although E  itself is not.
T he  following lem m a states that modulo "compact" opera to rs, (E )  X  fo rm s  a
commutative group.

Lemma 4.15. For all non negative integers i, j, define fo by

fo =  [I", 1-F] .

Then, f d ; is an element of ,Y{ (V ), and we have the following commutation relation,

Ea,P , E aibdfo ,
i>0 i>0 i>0,i>0

for all jai}  ,  1b.,1 such that the ideal generated by  161 is topologically nilpotent.
The right hand side of the above equation is in ,Y{ (V ), so Ehi forms a commuta-
tive ring. In fact, it is isomorphic to a subring of 9311z11 defined as
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I

t 0 = 0 , ti- - q) as i— *— co,

o ( t iz i ) ;
the ideal J generated by

g3 1 izi [ = E  
i t i  i< 0  is topologicallyi

Thus E  is  an extension of a function ring by the space of "compact" oper-
a to r s .  I t  m a y  b e  in te r e s t in g  to  n o te  th a t C * -ana logue  o f  t h i s  extension
appears a s  a  deformation o f  th e  space o f bounded holomorphic functions on
the unit disk. [ 5 ]

We may define the exponential of an element of E  by

exp (A) =

W e see easily that the sum converges in E (V )  and defines an element of E .
We set,

1k + exp (cr) is an invertible element of E (V) ,
o• no constant term. 

It form s a subfgroup of the sem igroup (E, x ) .  W e  have the following lem-
ma.

Lemma 4.16.

(E <„)cx(v) =N (qt) nm(v) .

So we may consider both LU- and UL- determinant of an element of E .

Put

(1-1-.1{ =  11+K; K EY ( (.1), det f  (1-FK)

G = (2 ) x  (1±X (V ))i .
Then, using the isomophism

(1-FX (31)) x /  ( 1 + X ( 6//)) -='33x ,

defined by the finite determinant, we have the following exact sequence.

1- - qix — >G— +exp (2 jjz1 ,
which shows that G is  a central extension of the function space exp ( I ).
It is not a  trivial extension. In  fact, the L ie algebra of G is  the U(1) -current
a lgebra . W e w ill study  th is in the next subsection.

4 . 6 .  Relation with current algebras. In order to describe the mul-
tiplication table of G, it is convenient to introduce the Fock space and second

nilpotent.

(E<D) x =

= 11H-exp (a); k Ei{ (31), (7E E -

'
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quan tiza tion . F irs t let us define the set of M aya d iag ram s [4 ]. It is  d iv ided
into infinitley many sectors labeled by integers called charges:

(Maya) = U k (Maya) k  •

Each sector consists of order preserving m aps a: ( — 00, k ) n z—z with
the following property.

(*) For all but finite x , we have a (x) = x.

The Fock space is defined by

F =  11 59z .

ae(M ay a)

Each vector z a  is interpreted as a  semi-infinite form,

z a _ a ( k )  A z a (k _ i) A z a(k_2) A

and the Fock space is also called the space of sem i-infin ite  form s. It is an in-
finite version of exterior algebra. W e m ay extend various operations on ex-
terior algebras of finite dimensional vector spaces to this infinite dimensional
case. Among them is the second quantization o f linear operators on 33 iz[
For any linear operator L  on ga 1121 , we p u t  (heuristically)

q (L ) (z a (k ) Aza(k1) A za(k 2) A . . . . )

_ L  (z aw) A z a(k-n A z ack-2) A  ....

± z a co A L  ( z a ( k - 1 ) )  A z a(k -2 )  A

± z a(k) Az ack-o A L  ( z a(k-2)) A  ....

This lifts an action of a L ie algebra on 98 to the Fock space in  principle.
But here we added the word "heuristically", because the right hand side of the
above formula does not converge in g e n e ra l. F o r  example, q (1) can not de-
fined by the above fo rm ula . B ut when we deal with the case

( f )  =z i x f  VE 112 1 I )

fo r som e i w hich  is no t equal to  zero , the  form ula  4 .6  defines a  continuous
transformation q (zi) on the Fock sp a c e . W e  put

J i= (z i)

fo r  n o n  z e ro  i .  W e (re)define J o to  b e  a  linear operator on  the  Fock  space
which gives the "charge", or the "index" ([4]). That is,

J o (z") = pza (if aE (Maya) p )

It is easy to calculate the following commutation relations. [4]

(4.12) —
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C ontrary to th e  finite dimensional case, to  lif t an  ac tion  o f a  L ie  algebra on
33IIzII by  m eans o f  4.6 w e  n e e d  a  c e n tra l e x te n s io n  o f  th e  L ie  algebra.
(This fact is called a n  anom aly). W e w ill define th e  U(1) -cuarrent algebra
(with the central charge. 1) to  be  the L ie  algebra u (1) w ith  a  b a s is  Iii e  z
with the commutation relation 4.12.

We sometimes denote each function z- ni by e'  to  express that w e regard
the function as a  vector in 17=J3 11.zI I and not as an operator on 1/.

Let II  b e  the dual basis of 1ei 1 in the topological dual 17* of V with

(d e ')  = 5 i •

W e may construct a Pock space F based on the vector space 17* instead of V.
F is a vector space with a  topological basis IFa  a E  (Maya)I . It is  the dual of
F with the follwing pairing.

(Fales ) = 5g,

Lemma 4.17. Let 10> denote the element z° A z - 1 A Z - 2  A ... in the Fock
space . Let <01 denote the element ... AF_ 2 AF_ I AFo in  the dual Fock space. T h e n
we have,

<0Iexp(Etj,)exp (Esji)10>
t<o 1>o

= (The coefficient of 10> in  exp (E t ij i )exp (E s ji)  I 0> )
i<0 1>o

= detw (exp(EsiF)exp(Etilli) .
1>o i<0

Proo f . W e  u s e  th e  Sato theory  o f  un iversa l Grassmann m anifold  (see
[ 4 ] ) .  By checking th e  Hirota bilinear re la tion  [4], w e see  th a t 1 IsI > = exp
(Z 1 0si,h)10> corresponds to  a  po in t of Sato 's universal Grassmann manifold
(UGM ). Observing the result of action of vertex operators on 1 IsI > as in the
argument of [4], we see that,

> = A „ (e xp (Es „ ) ,- - )  .
1>o

W e represent the linear operator exp(Esizi )  on V  b y  a block matrix form

Ut Mi
exp (E s,z 7) =

U

corresponding to the direct sum decomposition,

V=span IeI >oespan le'l ,,„ .
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Then we see that U is an element of Uo> (V ) and obtain,

A m, o (exp(Esj4)= A„,„(MU"(1)1)e - n i

;so

W e represent Eit iz' as

[ L '  0 I
N  L

and obtain,

<01exp(Etji)-= A., 0 (L'ATEB1) tc7_,n

where the dagger sign indicates the adjoint of operators. W e conclude there-
fore by definition, that,

<01exp (EtJi) exp (Es.d.i)1 0 >
i<o

= ( A _„,,
0

(L-1Nte1)F_..1A„, 0 (MU1(1)1)e-n)

L'AT
=detf  ( (MU-11))

(
1

= deti  (L - 1 /VMU- 1 -1- 1)

= detLu (NM - I- L

The commutatibity relation,

{ U ' M  [ L '  01F U ' M1

shows that NM - I-LU+UL, so we prove the lemma.

We deduce from the lemma that a  formal integration of the  U(1) -current
algebra is given by G .  L et us explain this more p re c ise ly . F o r  any topolo-
gical algebra gt) which satisfies the condition (B1) a n d  (B2) of section 4.1, we
define a formal integration of the U (1) -current algebra over 33 as follows.

I c E V, xi Egg, x i
— >0 as i— >—  0 0,

exp( cexp ( xj,);u(1)) = E there exists a topologically nilpotent ideal J of
1E Z such that xi EJ for all i <0.

O U N L N L

Note that each elem ent o f exp (u (1)) can be regarded a s  a n  operator on the
Fock s p a c e . The multiplication law  of exp (u (1)) is  g iven  by  the  following
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formula.

exp (E x ji)  exp (Eyib)

= exp [ E x t h ,  » L i ]  )exp (x i+ y

= e x p (— [E x iy _ i) )e x p

We can now state the following proposition.

Proposition 4.18. W e have an isomorphism,

G e x p  r au )  ,

given by the following formula.

(exp (E t -J - 9 ) exp ( t14 ) ,  a ) F - - -*ctexp (Et i,h) exp (E t i l i )
:>0 i<o i>o i<o

So we may regard G as a formal integration of  the U (1) -current algebra.

Proo f . T h e  o n ly  th in g  to  p ro v e  is  th e  fa c t th a t  th e  correspondence is
actually an homomorphism between the  g ro u p s . W e  n e e d  to  check th a t the
correspondence preserves the commutation relation of a lower half matrix and
an  u p p e r h a lf  m a trix . Let b-  b e  an  element o f Uo>  (V ) f l E and B  b e  an  ele-
ment of L <1) (

°
U) n E .  Let us denote as follows.

(4.13) B =E s  izi , ii= s;
1 1-  ̀, J (B) =E s  i f ;

(4.14) C =is k z k ,  C '=u k r k , j(c) = »k . k

First w e notice that

Ad (exp(J (B) ) j(c) = exp (adj (c) )  =  e x p  (c) +  (B ) ,  (c)] )
u (B), j(c)] is a  c o n sta n t. T h is  implies,

A d  (e x p  (B )) )  .e x p  (c) )  =  ex p  (c) + u (B ) ,  (c)] )
which in turn gives rise to

(expj (C) ) - 1 expj (B) expj (C) (expj (B) ) =  e x p  (  (B) , J(C)] )

The constant exp ( U(B), J(C )])  m ay be com puted by taking its vacuum
expectation value.

exp (E/ (B) , j  (C)])

since
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= <Olexp ([1 (B) , J (C)]10>

= <0IexPJ (0) - 1  exPJ (13) exPJ (C) (expJ (B)) - 1 10>

= <01expj (B) expj (B)10>

=detix (exp (b- )exp (fi)) (by Lemma 4.17)

= p (exp (0) , exp (B) )

This completes the proof.

4.7. A lemma. W e  h a v e  u sed  exponentials w hich  w ould  cause a
problem  when we extend our theory to positive c h a ra c te r is tic s . In  this sub-
section we will show the following proposition, which enables u s  to avoid ex-
ponentials. The proposition is also used later in  the statement of the proposi-
tion on formal periodicity.

Lemma 4.19. Let A = L air,  b e  an element of E ( V ) .  Assume zo= ao
— 1 is topologically nilpotent.  Then, there exist a topologically nilpotent element c
of 33 such that

(4.15) A +CIE  (E n (0u)) (E n L <1> ( V ) )  .

Since triangular m atrices have their logarithm s w ell-defined, th e  right
hand side of 4.15 is equal to E <I>.

Corollary 4.20. Let A be an element of (E ) x  . Then there exists an in-
vertible element c of 59 such that cA  is an element of (E<D) x

The proof of this lem m a is fairly  long. It occupies the  re s t of this sub-
section.

Lemma 4.21. Let A be as in Lemma 4 .1 9 .  We put

.E(A)=0.+X(
i +z

) ri) ' = E 1—E (1 c_t,2zo ) ri)i k  .
i<0 ° k=01 <0

Let 1m  b e  the ideal of 59 generated by  laio...ctik; 0 ..... i  <0, i0  + .. . ik  01. Then,
1Im 1 m  is  a decreasing sequence of ideals converging to 0. W e have the following.

(1) Y  (A ) =1 + E i< ob iF i for some element b 1 (z0) o f  1_ [[z0]].
(2) ASP (A ) = Eici(z 0 )17; with some element ci(z o )  of Jg[[zo]].
(3) co (zo ) = 1 ±zo - Fdo (zo) for some element d 0 (z0) of I i [[z o ]].
(4) ci (so) i s  an element of I-i+i[[zo]] for all i < 0

By a successive use of the above lemma we obtain the following:

Corollary 4.22. Let A be as in Lemma 4 .2 1 .  Then we way express A
uniquely as
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A =  UL

w ith L an element of L ( 0 (
°
11) ,  U an element of U *(31 ). The diagonal

component of U is  of the form  1+ zo+f (zo), where f (zo) is  an element of 33[[zo]]
whose coefficients are all in the ideal generated by a - 2, — 1 .

The proof of the Lemma 4.19 is completed by the  following result of im-
plicit function theorem.

Lemma 4.23. Let f (zo) = z+ E k > iakziò be an element of 9 3 [[z o ]]. Let I

be a topologically nilpotent open ideal of 3a. Then there ex ists a sequence ick[ ic=o
such that,

(1) c0 =0.
(2) f  (E i

k =ock ) —bE (b 21 ) for all l
(3) ck  E (b 2 k  ' )  for all k>0.

Proof. Put

b — f (s 
Ck+i — ( s o

with S1= [=oCk.

Corollary 4.24. (implicit function theorem) Under the assumption of the
lemma, if we put c=Er =ock, then we have

f (c) =0

4 .8 .  Infinite Berezinians.W e  d e sc r ib e  h e re  a  th eo ry  o f  infinite
Berezinians (super d e te rm in a n t) . The definition of Berezinian involves a  di-
vision in  its  defin ition . S o  w e have to localize our function space. W e first
introduce such localization.

Definition 4.3. Let 33 be a  N-graded commutative ring which is com-
plete with respect to the topology given by th e  g ra d a tio n . L e t (93 [I]) A b e  the
completion of the polynomial ring 13 [I] with the grading determined by letting
the degree of I to be O . Then w e introduce the following set.

(1° ( 3) (F(I; .4); FE  ( 3W)", 4E93,d is not a sero divisor of 0  .

We let the monoid (r, x )  of non zero divisors in 33 act on Q° (93) as follows.

(F(I); 4) a (F  (a ) ;  a 4 )  (for any a  in  r )  .

We define the equivalence relation — as follows.

(F; (G; 4')<=> 3 a, b r  such that (F; a (G ; 4 ) b

W e denote the  se t o f equivalence class in  Q° (5g) a s  Q (33). T he equivalence
class o f  (F ; 4 ) is denoted a s  [F; ,4] . The set Q° (59) h as a  natural structure
of ring with the following addition and multiplication rules.
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(F; 4) (G; 01') (F (XI) +G (41) ;

(F; ,,64) X (G; 4 ') (F (XI) X G (4I) ;

The operations descend to Q (9) and make it also a ring.
W e ca ll Q (13) the  to ta l quo tien t ring  o f 1i'. (T h is  definition coincides

with the usual one if the ring 59 is discrete.)

Definition 4.4. L e t  5f) b e  a  su p e r  c o m m u ta tiv e  su p e r  topological
algebra, with its even part g30 satisfying the conditions (B 1) a n d  (B2) of sec-
tion 4 . 1 .  W e assume furthermore that  is  so  c h o se n  th a t  it  c o n ta in s  an  ele-
m en t I o f d eg ree  O . Let M  b e  a  ( —N I —N) -square  m atrix  of the standard
fo rm a t . That is, M is decomposed as

(Moo m 0 1  )

m 1 0  m 1 1

w ith  each  m atrices M "  hav ing  en tries (M " )  in d e x e d  b y  (— N) x (— N).
We assume that M  is even, that means, each entry o f  (M P ')  has its parity pl-q.
If furthermore M  satisfies the following three conditions,

(1) M i l  is  an element of N ,
(2) dek u (M 11 ) (certified to be defined by ( 1 ) )  is  a non zero divisor in

1)o•
(3) m oo_ i m oim i i . is an element of N,

then we define the LU-Berezinian Berix M  of M as an  element of Q(33o) (4.3)
corresponding to the following "pre LU-Berezinian" in Q

°
(/3o)•

preBer Lu (M) =-  detLU (0 °— m oi ); detw (M i l ) )

Proposition 4.25. (absence of anomaly) Suppose the index set — N  is
decomposed into a disjoint union,

-N=ain211...11ak ,
and assume that each .a.; is isomorphic to — N as an ordered set. We define sub-

spaces E', E'0 of E as follows.

>' (
) X ;  N (Co(a ) ; g3 0)) c ITC° (a 1; g) 0)

=  IX EE; X (Co (a ); 130)) c @Co( a i; o)1
l> 5

L et S  be the set of  ( — N  — N) -square m atrices of  the standard form at which
watisfy the following conditions.

(1) 0 ° ,11/111 C 2 H - E ' 0 -FX ,
(2) Mw  — M i l  E ,
(3) m oi , m io

M =



(B OO 0  )
(4.17) A: general, B

o  B°°
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Then we have the following.
(1) The LU-super Berezinian exists for any element of S.
(2) For any elements A, B of S, we have,

(4.16) (I; 1) preBerw (A B) =  (preBerLu (A) preBerLe (B )) (p An,Bin

Proo f . T he  f irs t c la im  is  a  consequence o f Lemma 4.13. T o prove  the
second claim, we essentially follow the  a rgum ent in  [8]. The cocycle condi-
tion 4.9 of p enables u s  to conclude that the  se t o f all B satisfying the condi-
tion 6.8 for all A  is closed under m ultip lication. The sam e is true in case the
roll of A  and B a re  in te rchanged . T h is fact reduces our claim  to the follow-
ing two special cases.

(  1  0 1
(4.18) A = B =

A m  1 ) ( 0  

B0

)1

The first case is handled by use of Lemmas 4.13 and 4.10. The Lemma 4.13
reduces the second case furtherm ore to the  case  w h e re  A ' and  13° '  a re  ele-
ments of X .  The claim in th is case is proved by taking the  limit of the finite
dimensional case.

5. Definition of super theta function

5.1. Definition. I n  t h i s  sec tion  w e  d e f in e  a  s u p e r  t a u  function
associated to a  family of Viraforo uniform ized super Riem ann surface (X , 7C,

(S, so), 9, (z, CN)) of dimension (1IN) (definition 3 .1 ). From the prop-
osition of absence of anom aly (Proposition 4.25), w e m ay in terpre t the tau
function as a (Taylor expansion of) super theta function.

W e first define the set of "super M aya diagrams", an analogue of the set
of M aya diagrams 4 .6 . It is divided into infinitely m any sectors labeled by
sets of 2N -tuple of in tegers IQ; IC  [1, Ar][

(M a y a )  =  U  (Maya)1,1 •
[i.m1

E ach sector consists o f  s e ts  a  =  {al } of 2 N - tu p le  o f  order preserving
maps a l : ( - 00, cl ) E Z - *Z with the following property.

(*) For all except finite x, we have al (x ) =x.

Each elem ent IcrÀ determines a  d irec t sum decomposition of I C =  I  iz}
CNi ,

(5.1) le — YalEB.Yer ,
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where the closed subspaces l a  and iG  of IC is spanned respectively by

i €ff Imageari
and

teCi; i Imagea/I

Lemma 5.1. For any fam ily  (X , 7r, (S, s o ) , 9, (z, i . .... N)) o f Virasoro
uniformized super Riemann surface, there exists an open neighborhood S o of s o in S
and a super Maya diagram  a o so  th at the natural inclusion m ap gives an direct
sum decomposition

(5.2) YeLEBox (71—' (so) nii .c.) =it° .

Proo f . This is  a direct consequence of the Proposition 3.9.

W e fix  a  super M aya diagram a o w ith  th e  above  p roperty . W e  sh rink  S  if
necessary and assum e th a t S = S o . W e note th a t the  d irec t sum decomposi-
tions 5.1 and  5.2 gives u s  a n  isomorphism 0 0 betw een A =  e x ( ) )  and
We denotedenote by t  the inclusion of e x (i ) — *.t, and b y  00: —1 Pao

— >le the  composi-
tion m ap 00 = e° 00. More generally, w e m ay take a  super M aya diagram  a
w ith  th e  sam e index  as  ao, that m eans, fo r  sufficiently la rge  integer M, we
have,

dim (A9/ (it7x0+99 [ [z]] [ CI, ..., zm )) = dim (A9/ (A9,7, [ [z]] ..... AT] zm )

W e denote by p the projection map pa: lt9- 2IG  given by 5.1 and we choose a
linear map 0: X',7,— qC with the following properties.

(1) The image of ç5 is equal to A
(2) The m atrix  (p.0) —1 is of finite rank.

Definition 5.1. Let our topological super algebra 93 of coefficient so
chosen that it contains formal variables ,Ezic [1 ,N ] such that

deg(x i,i) =m ax (—i, 1)

parity (x i, I) =1/1 mod2 .
Put

F , F ( r ) =  E
(i .1) *(0,0)

We call F a "formal function".
Then we define the  super tau  function associated to (X , 7E, (S, so) , 9, (z,

C )) and a  by.

(5.3) ra =  a (F) = BerkLLT (10  a ° M exp (F ) °  0 ) •

We have to check,

Theorem 5.2. The Berezinian in  th e  rig h t  h an d  s id e  o f  5.3 i s  a
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well-defined object, so we have our tau function well defined.

Proof. A ccording  to  th e  d ire c t  sum  decom position  5 .1 , w e  express p,
Mexp(F), 0 in a block matrix form in the following way.

/ 0  0
)

P =
0  1

M exp(F)—
( m+ +  m+1

, q 5 =
K 1  )

\M_ +  M )

where 1 denote an  identity matrix, and the matrix K2 is, by  the choice of 0, a
matrix of f in ite  ra n k . Then, we have

P °Mexp(F) ° = M -- + M - + Ki ±M__K2 .

The last two term s of the right hand side a re  elements of By taking mod-
ulo  "compact operators", th e  matrix p ° Mexp(F) ° q5 i s  congruent to  M _ _ . We
then represent M__ in a block matrix form by the even and odd decomposition
of Yea:

( M0 , m0 01

m 10 m l 1

When N = 1, we see that /14 °°_, Mu _  are m atrices of LU- (and UL-) type, and
that M °_1_, MP_ are  "com pact" m atrices. T h u s  in  th is  case the B erezinian is
w ell-defined. W hen  2 ,  t h e s e  f a c t s  do not hold in general so we have to be
more ca re fu l. S in ce  a  product by a  function will increase the  odd degree of
functions, we apply the  f ir s t  part o f the  P roposition  4 .25  and  conclude that
th e  L U -su p e r  determ inant in  t h e  definition o f  th e  s u p e r  t a u  function is
well-defined.

W e note here that the choice of the isomorphism 0 in  the above definition
is not important, since we have

Ta (with 01) = (const.) X Ta (with 02)

Recall that a super manifold M  is said to be decom posable ([8]), if there
exists a  vector bundle E  on Mrd such that we have an isomorphism,

(M, Om) '=" (Mrd, S0 0 ( fI E ))

A decomposable super manifold with an isomorphism as above specified is cal-
le d  a  decomposed su p e r  m a n ifo ld . W e  no te  th a t  th e r e  is  a  distinguished
Z-grading on  the  s truc tu re  sheaf o n  a  decomposed super m anifold which is
compatible w ith the  above isom orphism . W e call a  family w: X S  of super
manifolds (that is, a  subm ersion) decomposable, if  there exist vector bundles
E  and F  on X rd and S rd, respectively such that there are isomorphisms:

(x, (xrd, s,„ r d lIEEDIlw*F))
(s, (srd, 4,„(11F)) .

W e can compute the  super tau  function fo r  a  decomposable family of su-

(5.4)
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per Riemann surfaces.

Proposition 5.3. L et (X , 2, (S, so), 9, (z, Ci, ..., C A T ) )  be a decomposable
fam ily  o f  Virasoro uniformized super Riemann surfaces satisf y ing the condition
5 .4 . Let a be a super M ay a diagram . For each non negative integer k, we denote
by a [k ] the set of  maps lai; k i  .  Then we have the following formula for the
super tau function.

r a
[id (a ' (X r d, C1 d z A k E, t))((X) = I r e v  p n r a r r even, 

1 1 ,:od d ra lk ] (a ; (Xrd, Qrd, Zeven, A k E ,  t ) )

where QT.,' is  the poin t of X rd  obtained by  the reduction of X , ze v e n  is  a formal coor-
dinate of X r d obtained by the reduction of z, and t-even and todd are form al trivializa-
tions of the C 0 a n d  ex i ,  respectively obtained by the form al coordinate (z, C).
(See the proof of  this proposition for the definition of  a tau function associated to
vector bundles.) If, furthermore, the vector bundle E is  a direct sum  of  line bun-
dles, say,

E ,

then, the tau function is discribed as a quotient of  pruducts of  the theta function of
the Riemann swiface Xrd,

{ L e v e n  ri i i , • • • < ik r (iv  L OL. ) 
n k :o d d  11j1<•••Kikra L j R — O L i k )

11 ii<...<ik 19 (X, / F + C  (L 1 1 )  + .. . +C.  ( L ik )  )  

rik:odd 11:71<—<>09 (X, IF +c (L 1 1 )  + .. .  +C. (Li,,))

Proo f . The structure sheaf Cx  of X  is decomposed as a  d irect sum of N +
1 subsheaves, w ith  respect to  the number of factors of odd coordinates. W e
decompose Ye, Ye- , ie+  accordingly and divide the matrices p, - -exp (F ), 0  into
block form with respect to this decom position. Since these matrices do not in-
crease the number of factors of odd coordinates, we may use Lemma 4.13 and
find that

Ber LU (19 °  M exp(F) ° 0) — fi Beri,u((P°Mexp(F)°0)I ye; )
i=0

,= (cla w  (pomexon .0) 1; \\ (-1).,,

where 1 ',, span 12C 1; pEEImag ear , •
The factors of the last line of the above equality may be taken a s  a  definition
of a  "tau function associated to vector bundles." T h is  proves the  f irs t part of
the proposition. The second part of the proposition may be proved in  a  simi-
lar manner, with the help of Theorem 2.3.
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It goes without saying that the theory of decomposable super schemes is essen-
t ia lly  e q u iv a le n t  to  t h e  th e o ry  o f  v e c to r  b u n d le s  on R iem ann surfaces.
(Although the former may shed new lights onto the latter.)

T he  above proposition  te lls us tw o  th in g s . F irs t , w e  notice th a t super
theta functions do not carry the full information of the original Virasoro uni-
form ized data. In fact, let us consider a super theta function corresponding to
an  N  = 1  decomposable super R iem ann surface w ith  trivial Ox i . T here  are
many such super Riemann surfaces, but the above proposition tells us that the
theta function in th is case is 1. On the other hand we have the following lem-
ma.

Lemma 5.4. If N =1  and if we restrict ourselves to the decomposable su-
per Riemann surfaces, the pair of super tau function r(X ) and the tau function of
the reduction 1- (X rd) recovers the original super Riemann surface.

Proo f . T his is  an  easy consequence of the fac t tha t the  line bundle on a
Riemann surface is determined by its tau finction [4].

T h is lemma applies in  particu lar to  a  fam ily w ith pu re  even base, th a t is, a
family with S  a usual scheme.

Second, w e see that the  tau  function thus defined is , in  the  decomposable
case, a section of a tensor product of determ inant line bundles over the orbit
of the Jacobian flow s (flow s made b y  th e  tensor product by elem ents of the
Jacobian) on the moduli space of vector bundles o f  rank N .  (Here we mean
by "determinant line bundles on the moduli space of vector bundle" the bondle
w hose fiber at each p o in t [E ] of moduli space th e  line detRzr* (A k E ) . )  In
order to obtain a  definition of a theta function which is related to the full mod-
uli space rather than the Jacobian flow s, it is better to consider a  determinant
of differential operators.

5.2. Formal periodicity.F o r  each m ulti index I  and for each inte-
g e r  i  c 1 ,  le t us dnote  by f i j  a n d  element g5 (oza( " ) ( / )  w hich  is a  L aurent ex-
pansion of an element o f  A .  Then we have the following.

Proposition 5.5. Assume 1. Let our topological super algebra 33 be
so chosen that it contains besides form al variables ixi,11 (needed to define super
tau function), other super v ariables ly i,i; Ic [1, 1\1] , i • cA  which satisfy

deg (y, 1 ) = m ax( — i, 1)

parity (y i,l) = II mod2

Let G be a form al function G = Ei,ly W e denote by MG the m atrix  on ie
which represents the effect of multiplication by  G . W e choose e e C [[
such that 1+ c +p omG 0  o is  an element of Z u> (L em m a 4 . 1 9 ) .  Then we have
the following identity.
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°Mexp (F ) '0° (1 +c +pa °Mc ° 0) )
=Ber t , ,Lu ( Pa ° - -exp(P ° q5 ° Ber ie; ,L u  (1+C +pa .MG .0 ))

where M-exp(F) is  the matrix of multiplication by exp (F). (This definion is valid
only when a  is a M aya diagram with which the denominator of  the above Berezi-
nian is not zero (for example, ao.)

Proof. This is a direct consequence of the Proposition 4.25.

6. Super Jacobians

In  th is  section, w e  s tudy  th e  m oduli space o f  line  bundles on  a  super
R iem ann surface. The space m ay be called as a super Jacobian of the super
R iem ann surface . W e encounter severa l unpleasant behavior o f the  super
J a c o b ia n . (W e should note tha t the  nam e "(super) Jacobian" should be pre-
served fo r  a n  object w hich behaves better than th e  m oduli space as Manin
states in  [ 9 ] .  F o r  example, Jacobian of an elliptic curve may be defined to be
th e  elliptic  curve itself, b u t  i t  is  n o t  t r u e  in  our definition (see subsection
6 . 1 ) .  In  th is  paper, how ever, w e tem porary u se  this term inology.) In  this
section we fully use the fact that our ground field is C.

We may begin with the cohomological interpretation of the super Jacobian.
F or any super manifold M, line bundles on M  is param etrized by the cohomol-
ogy group

(M; en`f,o)

th e  se t o f  tran sitio n  functions modulo equ iva lence . The "tangent space" of
this cohomology group is given by,

(6.1) (M; m,o)

T he  first p rob lem  is tha t the dim ension of th is  tangent space is not in-
variant under deform ations o f the  space M .  Consider fo r  example a  decom-
posable family 7r: X— >S of super Riemann surfaces w ith odd dimension N = 1 ,
where the structure sheaf ex  is decomposed as follows:

(e x rd e s  L) 0 0 s  .

A relative counterpart Ri  TC * (N o) of the cohomology group 6.1 is expressed in
terms of the usual highter direct image sheaves as

(R1 7r*(X r d; exrd) 00s,o)ED HR' it* (X rd; L) O es,i)

which is not necessarily flat, To overcome this difficulty, we may consider the
moduli space of line bundles with "trivializations of jets".

Definition 6.1. L e t  n  b e  a  n o n  n eg a tiv e  in teg e r . An n-trivialized
line bundle (L , t) on a Virasoro uniformized super Riemann surface (X , 7r, S,
q, z) is a  line bundle L on X with isomorphism

(5. 5)
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t: L/L ( (n +  i ) p )  es [[.z]] [CT-- CN] /Vs Hzi] [CI, . . . ,  CN ]zn + 1  ,

where the divisor D  is determined by the equation z=0.

W e again express the moduli of n-trivialized line bundles in  cohomologic-
a l te rm s . The objects are parametrized by the sheaf of groups

Ri z* (X ; (1+0x( —  (n -{- 1)D))ô)

and the tangent space of this sheaf at the origin is expressed as

lid 7C*(X; Cx( — (n + 1)D) ) o)

Lemmas 3 .7  and  3 .10  assu re  u s  that locally  on  S there  ex ists a n  integer n o

such that the sheaf is flat for all n no.
Let us use analytic  geom etry. The exponential sequence

0- 4 Z 0x,an (— (n +1)D) ne x P : • )  (1 ± ex,an (n+1)D))(i — >1

gives rise to an exact sequence of cohomologies

(6 . 3)
0- 4 R1 71-*  Z r* (0 x.an( —  (n +1) D)

— qer*(1+Cx, a n ( —  (n+1 )D )n — *R2 74 (Z „ ),
where

z,=z n rex,an (n + 1 )D )0 = j! (Z Î ) ,  j :  — >X: the inclusion.

We deduce on the other hand from Proposition 3 .5  that

(6.4) R17*(0X,an(— (n+1)D)0=-  (R i z* ( X ;  X ( — n +1) D) 0)) an

(6 .5 ) R1 n-*((1+0x,an( — (n+1 )D ))(i) -=" (leir*(X; (1+0x( — (n±1)D ))n )an .

We have the follosing

Lemma 6.1. A ssum e that R i rc*(0x( —  (n + 1 )D ) is locally free. T h e n ,
there exists an  analytic variety Jacn (X/S) a n  such that the sheaf  of sections to J ac n

(X/S) a n  is isomorphic to

(R1 r * (e x ( — (n+1)D)o))an/R i 7r*(Z„) .

Proof. Put E=Specan(S((R'74(ex,an( —  (n+1)D ) v ) ) .  Since the image of
the composition of maps

R1 r * (Z ) — >R1 r*(ex,an( —  (n±1)D ) — *Ier*(ex,rd,an( —  (n +1) Drd))

gives a  sheaf of discrete subgroups, w e see that the local system L on S cor-
responding to R17-c* (Z ) form s a  discrete subgroups o f  E  along each fibers.
We put Jae n (X/S) =E/L.

Under th e  assumption of the  preceding lemma, sheaves R i z* (Ox (— (n +



684 Yoshifumi Tsuchimoto

1)D) 0) and R
°
7c*(coxis(± (n+1)D)o) are the dual to each other under the re-

sidue pairing at Q .  Namely, we may represent each section of R i  7r* (0 X  ( —  (n
+1)D) 0 b y  an element f o f  x  +1) D ) (U ) 0. Then the dual pairing is de-
fined by

(6.6) (1, =  ressci (f(0) ((DE (oxis (± (n +1)D) .

The residue theorem  im plies that this pairing is in  fact well defined and  per-
fect. T h is  d u a lity  e x te n d s  n a tu ra lly  to  t h e  ana ly tic  coun te rpart v ia  the
GAGA relations 6 .4  and 6 . 5 .  Lemma 3 .7  is va lid  and duality between R 1 7T*

(0 x ( (n + 1 )D ) 0) a n  and R
°
7r*(04/.s(+ (n +1)D) an) is defined by 6 .6 , where

we replace C x ( )  b y  X ,a n (X ) and Cx(
—

 (n+ 1)D ) (0 0 by

td ,an (  (n+ 1)D ) (0 )0=  lim  (0 x•an(N \ (1) o) + x (U) o .
U.nbd of Q

W e shrink S if  necessary and fix a  free  basis 01, •••, Op of R
°
7r*

(wx/s(± (n +1)D) 0) .

Lemma 6.2. L et (ai . .... a 9 ,$ g )  be embedded smooth super paths
on X whose reduction consists of  a symplectic homology bass of Xrd,an on each fiber,
Then the n-super Jacobi an Jacn (X/S) is expressed as,

A (r 1P) / Fg, F1, , Fg)

where the period vectors bi • • • ,  p r ,  qi• qp are defined as follows.

cf f
al 

f r , f
a l . . fai

 op) ,
•

Fg=cf f fn  f Lop) ,
a g (Xg a g

(f. • . ,  f  f r, f  0 1 , • • • •  f  0 g )
$1

•

qg— (f f 1, • ••, f  f  r , f  0 1 ,  • • • ,  f  0 P )  •
13.7 So Bg

Proo f . F irst w e  notice that the  residue theorem implies that for any  co E
Wxis ( ±  (n+1) D ) we have

fc c o -0  (C : closed super curve on X such that Crd is  a  circle around Q.)

and that for any closed super curve y on the  va lue  f r o) is determined only
b y  th e  homotopy c la ss  o f  Trd. T h e  o n ly  p ro b lem  h e re  is  to  ca lcu la te  the
p e r io d s . T h is problem is local on S a n , so we may assume that Sa n  i s  a  polyd-
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isc. T his enables u s  to identify higher direct images Ri 7r* and cohomologies
H i in  a n  obvious s e n s e .  We deduce from the exact sequence 6.3 the following
description of H i  (Ox an (n+1)D)).

(6.7) Hi (exan( —  (n+1)D))o
"=" exan (0) o/  I (10exan x )  n O x an  (0)0i +ex. (—(n+ 1)D) ( ET) o]

W e  n e e d  to  e x p la in  " lo g "  in  th e  above  fo rm u la . 2 r i f  i s  a n  elem ent of
i(logexan x) 0 n CX an (

0
)  ( )  if  and  only if  i t  is  a  logarithm (defined on an

open neighbourhood o f Q ) o f  a n  analytic function h  satisfying th e  following
condition.

(1) h is  an even analytic function on X  whose reduction has no zeros on

(2) log(h rd)  is well defined in a small neighbourhood of Q.
Let .kan b e  the covering of IXanl w hich is universal along each fibers. By

pulling back the structure  sheaf we may introduce on X an a  natural structure
of smooth analytic super space over S an . f  = log h  m ay be interpreted as a
univalent analytic function on .kan.

I t  is  w e ll k n o w n  th a t IXa n I is  ob ta ined  by  g lu ing  appropria te  pairs of
"wedges" of a "polygon" P  (a  fundamental region of X )  in  IXanl. Namely, we
have

gOP= [1 ( I a M )  (ISM)
1= 1

where laP-'1, 10'1 (respectively , are  tw o lifts of lad (respectively,
ISil) t o

 11 (1 . I t  is  e a sy  to  v e r ify  th a t  th e se  p a th s  lift to sm ooth super paths
a p) ,  a p) , sp) , n (2 )p i  on such that

(1) their projections to X  are closed;
(2) the super path

c ,  n
1=1

is also closed.
We may assume tha t Q is  in the interior of the polygon P so that the super re-
sidue along Q is equal to the integral along the super path C .  Thus, we have

(w[f) = ress Q (wf) = 2
1
m .f c (wlogh)

= L 4V1
2

1
7(7. G ra i n  wlogh— f cologh + f wlogh — cologh)

al2) f i i 2 )
1=1

To calculate th e  la s t  line, we m ay m ove th e  su p e r  pa ths ce -1 '(21 and assum e



686 Yoshifumi Tsuchimoto

th a t the projections of these paths to  X  coincide with a : . T he  sam e is true
for be ta  pa th s. T hen  the difference of logh betw een (1) and  (2 ) paths a re  in-
tegers and we obtain

(w o (nif  +m i l  w)
at I31

i=1

where we have

(6.8) f=i — la;2)) , ( lo g y —  logy le i2 ) fl=i •

The only problem now is that elements 6 . 8  for various h  span the  whole Z2g.
But this is equivalent to the  same claim for the  reduced family, which is well
known.

W e call the  variety Jac. (X/S) an the n-super Jacobian of X  over S. We
give an example in the next subsection.

6 .1 .  An example of super Jacobian. In this subsection we compute
the n-super Jacobian of the odd fam ily o f N  =  1  super elliptic curves intro-
duced i n  [ 7 ] .  S e e  a lso  [9 ] . Put

Sa n = r); T C, 91(T) <(), T octal

x a n = 1(z,C; T, 2 ) ; zEC, C: odd, (T, r) sl /—

where the equivalence relation " — " is generated by the following relation.

(z, C; T, T) (z+27ri, C, T, ,

(z, C; T, (z ± T ± C r , c, T, r) .
We define q to  be th e  (equivalence class o f  th e )  o r ig in . T h e n  (X a n , S a n , 7r, q,
(z , C )) fo rm s  (a n  analytic) fam ily of Virasoro uniform ized super Riem ann
surfaces.

Lemma 6.3. The affine coordinate ring A == lim k it
°
 (Xan; OXan ( ± k ( ) ) )

of is generated by the following functions.

p (z, T, = p (z; T) + a
a
T p (z; T) cr ,

ap (z, C; T, r) = T p  (z , C; T, r)

(z, c; T, r) = c+ (3(z, T) 2
1
76 n (T) z) T ,

w here p, 3 , respectiv ely  is the Weierstrass p - and zeta functions respectively.
Namely,



Super theta functions 687

1 1z
3 (z; T ) , _

z
+  E  ( +  + -2 )

w e (27riZ+TZ)
w * 0

p (z; T) : z 6  (z ; T ) .

P roo f. It is easy to verify that p, p', 6 are elements of A and that

A /T A 'e s (S )  [p, p', 3]/I'V5(s) [P, p', 3] •

This implies the lemma.

Corollary 6.4. R17r* (ex ( —  (n +1)D )) is locally free for n  O.

Thus, we have n-super Jacobian for any non negative integer n.
There is a non vanishing section Ber (dz , dC ) of the dualizing sheaf (oxis

Berx/s . S o  the dualizing sheaf is tr iv ia l in  th is  c a s e .  A  basis of colu s (±
D) (X )  is given as follows.

(6. 9) f=B er (dz, dC)

(6.10) 0= B er (dz , d )w .

The periods of X  are as follows.

(6.11) fi = (0, 27t-i)

(6.12)

7. Analytic theory of super theta function

L e t  (X ,  S, i t , q, ( z , ..., C A T ) )  b e  a  V iraso ro  un ifo rm ized  family
(definition 3.1) w ith an affine base schems S=SpecB.

W e already know  that a  su p e r  ta u  function r  is defined in  a n  algebraic
way by using the theory of infin ite  determ inants (defin ition  5 .1). In this sec-
tion we use analytic methods to show that the formal super tau  function so de-
fined is regarded as a holomorphic section of a line bundle on a Zariski open
se t (in  the  sense of analytic geometry) of the "super Jacobian" of the original
fam ily o f  su p e r R iem an n  su rfaces . T h is  fa c t a n d  calculations o f  examples
given in  the  preceding section suggest that w e m ay call it a  super theta func-
tion.

O ur w ork in  th is  section m ay be regarded a s  a  comparison between the
formal topology introduced inthis paper and uniform topology on each compact
set.

7 .1 .  Additional conditions we need in this section. W e  f ix  in
th is section a Virasoro normalized family of super Riem ann surfaces (X , S , 7E,

C A I ) ) ,  N  1 .  W e assume S  to be a ffine , S = S pecB . In  this section
w e assume tha t the  coordinate system  (z, Ci, ..., C A T )  is  an "actual" coordinate
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system on an open neighbourhood of Q = q (S) . W e fix a compact neighbour-
hood K of the base point so in San such that its interior Ko is  S te in .  We equip
B with a supremum norm on K. (A supremum norm is given a s  follow s. W e
first cover K with finite coordinate open sets (Vu; (s rn, ..., 0:n)) in
S. O n Vn , any function f  may be written in  coordinate terms as

f =  E f  
( V

4 )s r )  O ,

J c [ i , p ]

where each "component" iyn) • s an analytic function of r -v a r iab le s . Put

HK=  max sup Lf (v n ) (Si ..... sr) I
n j ,s,) e(v „CiK )rd

T h e  definition o f  th e  norm  obviously depends o n  th e  choice o f  a  coodinate
covering, b u t th e  topology given by th e  n o rm  is  in tr in s ica lly  d e fin ed .)  Let
Ba n  b e  the completion of B .  It forms a  Banach algebra . E very  elem ent of the
algebra gives an  analytic function on  the  interior of K .  W e take an positive
number RK such  tha t (z, C A T )  are actual coodinates for AwiN)

X K.

7 .2 .  Capability o f  substitution: announcement o f  theorems.
The main purpose of th is  section is  to  see  existence of a representative (t (F
(x );  I ) ;  ( x ) ) )  o f the  tau  function so that w e m ay substitute the  formal
v a riab le s  I.T1 in  t  (F  (x ); I) , 4 ( x )  by any  sequence W I of coefficients of a
convergent power series. W e first define  the space of "substitutes".

Definition 7.1. L e t th e  space V  of convergent pow er series be de-
fined as follows

=  la=E auz i CI ; for all EE (0, RK] , we have al, (a )  = E l lad  I i < œ l
i,1

W e a re  also interested in the convergent power series w ith  no constant term.
We define

Wnct= = Eauz i CI a o , 0 = 0 1

We will estimate the coefficients of the tau function and show that the tau
function is an element of the following class of functionals on W.

Definition 7.2. We define a space of functionals on V as follows.

Ban< <X» = IC = E cw.x.; for all a E V, we have
we W

Here the index set W is defined as



such that mb }

for all E>0, there exit M,>0, A,>0
E .= { (b  ;so.; so;

ulia<AEcliimien
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W= 1w: A N; E w  I) <001

and the symbols xw, a ' denote respectively the monomials Flu xi,Vm,
We also define the following space of functionals on WX Ban.

B a n «x , dc= E cw,kxwp;
w E W,k E N

for all aeW, and for any M>0,

we have liclia,m: =11cw,killlaw 1Mk < 0 0  } •

W e now state the following main theorems of the present paper.

Theorem 7.1. There exists a representative (f; A ) of the super tau func-
tion such that A  is  an element of Ban<<x>> and th at f is  an element of Ba n <<x,
I>>.

So the  super tau  function is a  holomorphic function o n  la C n c t; 4(a)*
0 1 . By the consideration in the preceding section we see immediately that the
n-super Jacobian is a quotient of W.

Theorem 7.2. The super tau function r has periods such that the super
tau function is regarded as a holom,orphic section of a line bundle L on a Zariski
open subset (in the sense of analytic geometry) of the super n-super Jacobian for
some n.

We shall give proofs of the above two theorems in the rest of this section.

7 .3 .  Analytic theory of infinite determinants. W e f irs t note that
our space of functionals Ban<<x>> is  an intersection of Banach spaces

Ba n <<x» a=1c = E c,.rw; IIcIIa: IcwIIIawI<œ 1 .
WE W

where a  is an element of W . Therefore, to show tha t an element d of B an  [Iii]]
belongs to the  algebra Ba n <<x>> is equivalent to proving that d E  Ba n < <X>> a
for all a E W . So w e fix  such a  in  th e  rest of th is  section and w ill show that
our elements have finite a-norm s. Several objects defined in the following de-
pend on the choice of a, but we will not mention it explicitly.

W e first define the following algebras of operators.

Definition 7.3.

there exists M>0
Ka n { 11=  (ki i ) ; ,, i , o ; such that for all (>0, th e r e  e x i t s  ,>0

such that Ilk ii11”a <A cE lilm lil



. , 0

=c0E
m ,0

=CoE

=coE
. , 0

Jc [0, —n1 E ([0. — u]V)
1.11=m

aes([0,—, ]V)
I/1=m

1-111(P),(,)j ,) ,11
EE1

Hi lE c
Ir(d(r))1

1, t1

E c ht(r(1))mht(1)

cleS (1)

(I = [0 , — n]V)

/c [0,—n1
l/l=m

E 1/1m !A Eht TVJht([

efEem
(I = [0, — n]V)
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It is easy  to  see  that the set E .  forms an  algebra and th a t set K a n  forms
an ideal of the algebra Ean. The following lemma is fundamental.

Lemma 7.3. Let K  be an  element of  K a n ,  i0 ,  i l  be non positive integers
w ith lio1 -11:11 and  le t cro be the transposition of io and j 1 , an perrnulation of  ( — N) .
Let D be a matrix such that

(D) :1=0 unless i = ao(j)

(D)a(i),j= 0 or 1 for all j  .

Then, for any positive number c there exist constants C1, C2, independent of  io,
such that we have

Wet (pn  (D+K) (n)
 <  + c 2 E  1 io 1m l  I

for any positive integer n.

Proof . W e note first that the product Co= Ilso (1 +11 (P)iill) converges.
F o r any element M  of E . ,  we denote the  matrix p n  mo en  b y  On ) . Then

we have

Ildet (D±P) (n ) 11

l l  (P),,,,il
Jc [0, — n1 (rEe ([O,—, ]) jeEJ

111=m J= [i;r(j)=6(.01

111( P )  o n  i ll ( a
=

 T - 1 0 )
jc  [0,—n] eleE( [0, )

1.11=m 1= )/•j (j)

E-FE E)
lil =m 0  i1 ,o=
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= C o  m!./(l'En ( e M )
m ( m - 1 ) / 2 ( i  E m ) m

+coE (71+1) c( Emy.„-E ,

where we have used the notation "ht" to mean "the height of a set I" defined as
ht (I) =- E i Ej [il. This completes the proof.

The lemma leads to the following proposition.

Proposition 7.4. Let K be the same as in  Lemma 7 . 3 .  T hen the sequ-
ence

Idet (1+K) c.)
converges as n tends to infinity.

Proo f . W e need to show th a t Id a  (1 +K) (n ) i „, 0 form s a Cauchy sequence.
This is  an easy exercise of application of the above lemma.

Corollary 7.5. Let K be an  element of K a n n  . T hen the finite deter-
m inant of K  (as an element of X ) belongs to Ban<<X>> la.

7 .4 .  Existence of a family of normalized function with good esti-
mate. To define the formal super tau function, we have used a  normalized
family of functions in A = ex( ) ) . A change of choice of such a  family differs
r  b y  a  constan t m ultip lica tion . In  this subsection, w e show  tha t w e  have a
nice choice of such a family suitable for estimations.

Proposition 7.6. There ex ist a fam ily  of  normalized functions f i ,i E  A
such that

(1)
j.I

(2) There exist positive numbers C>0, M>0 such that

For the proof, we need the following lemma.

Lemma 7.7. There exists a section f  of p ( +  d )  on X  x X with
the following property.

For all local coordinate system (z(v),V ) J) ))  defined on an open se t V
on X , we have,

Ber ( d i w ) , d da ) ) N
(7.1) f= ( C i— C i )  +homolomorphic terms

around d, w here (z ( v ) ,iv ) , Ckv ) , 7( v ) , Civ ) , C P ) i s  a local coordinate system
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of X  defined on V x V.

Proof. E ither by  using  th e  su p e r residue theorem  o r  by  doing  a direct
computation, we see that the condition 7.1 is independent of the choice of local
coordinate system s. The lemma is then clear because .zi x.k is affine.

Proof of the Proposition 7.6. We set

fi,r—  ( -1 ) i ± li lressQ (f(z ,  i . .... N, F, •••, CN)z i CI )

or sufficiently large i. (See super residue theorem  (Proposition 3.13) for the
definition o f  su p e r  re s id u e  (ress).) T hen  th e  su p e r  residue above m ay be
w ritten  in  term s o f  a  co n to u r in te g ra l. The estim ation follows easily from
that.

7.5. Proof of the main theorems.

Definition 7.4.
del

(33 1 14 1 [ C , •••■ ) = (33 i 1.4 1 [ ..., CA ) x (33 1 14 1 [CI, CN] )
where

(J9 I iz1 ..., C A ) = ; ao,o=OF
i

1 14 1 [CI, ...
'  
CA )  = 11+  a i,g 1 CI E33 izi 

i<0

Lemma 7.8. Let K  be an element of an. Let us denote by (1+ K)[ido]
the matrix obtained by omitting i 0 -th row and j o-th column from the matrix (1+
K). Then we have the following estimate.

IEGIc ht(c)m ht(G)Elioim lioiildetw (1+ K) E (IGI+1) !A
GC —N
IC-U n t ie

The proof is quite similar to that of Lemma 7 .3 . and is omitted.

Definition 7.5. We define the following algebras of operators on ïe,;,o

s u p e r , a n  =  IV;
3f = a (M ) E/I I 121 [ , Cy] (necessarily unique) }
such  tha t (M — P0Mf095)E

im E E s u p e r ;  a (m )  is an element o f  (331141 [CI, ..., CA)P1

Proof of Theorem 7.1. F irs t of all, we recall we have to choose a  basis

ifi,A of A =- e x 4 .)  to define the pre super tau function. W e fix them  to satis-
fy the condition stated in Theorem 7.6 . W e then let

P°MexpF° 0 —  (



Super theta functions 693

be the even-odd decom position. It is easy to see that both r ° and are the

element of the set Esuper,an. The Lemma 7.8 shows tha t T i l  is  a lso  an element

o f th e  se t an d  so  the re fo re  is  r ° — So th e  LU-determinants of
them are well defined.

Proof of  Theorem 7 . 2 . W e apply  th e  form al periodicity  (Proposition
5 .5 ) .  W e see that both hand sides of the equation 5.5 a re  continuous func-
tionals o n  (x, y ) E  X W . The equation means that Taylor expansion of both
hand sides co incides term  by  term  so  that it is a lso  valid  a s  a n  equation of
functionals. This computes an effect of multiplications by A . ,  the completion

of A =Vx O.( )  in W . B y  the maximum principle, the algebra Aan coincides with

the algebra of analytic functions on (1 ( K ) .  W e conclude that the super
tau function may be thus considered as an function on the following space.

wnct/i0g(A axn,<1>) (11 axn,(1) E A an ; Berix (pomf° )  is well defined and is equal
to  it ).
The Lemma 4 .1 9 . shows us that

A ,̀1Arl,* —"-=B :n  (A :n ,*=  if EA.; BerLu (P°Mf°0) is well define d )

and the homomorphism theorem shows that Aaxn,*/A a <I> i s  a  subset o f  (Baxn) .

We thus see that is  "large enough".
W e prove in a simlar way that there exists an integer n such that,

ra (Fx  log (G)) =ra(F)

for any element G of

C F ,n = If EW ;f =1± Ea• .
■2,1

This shows that the super tau function descends furthermore to the space,

Wnct/log (CF,n X A an.(1>)

This space is a  subset of a line bundle of over the following space.

Vact/log (V± ,„ x A an,*)

But the above space is n-Jacobian. W e state it in  a  form of lemma.

Lemma 7.9.

W nct/lOg (C -,n  X A an,*) =- Jac n (VS) a n  •

Proof of  Theorem 7 . 3 . Analogous to the proof of equation 6.7 in  Lem-
ma 6 .2 .  This completes the proof of the theorem.
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