On the Picard number of Fano 3-folds with terminal singularities

To memory of Boris Moishezon

By

Viacheslav V. NIKULIN

Introduction

Here we continue investigations started in [N6], [N7].

Algebraic varieties we consider are defined over field ${\bf C}$ of complex numbers.

In this paper, we get a final result on estimating the Picard number $\rho = \dim N_1(X)$ of a Fano 3-fold X with terminal \mathbf{Q} -factorial singularities if X does not have small extremal rays and its Mori polyhedron does not have faces with Kodaira dimension 1 or 2. One can consider this class as a generalization of the class of Fano 3-folds with Picard number 1. There are many non-singular Fano 3-folds satisfying this condition and with Picard number 2 (see [Mo-Mu] and also [Ma]). We also think that studying the Picard number of this calss may be important for studying Fano 3-folds with Picard number 1, too (see Corollary 2 below).

Let X be a Fano 3-fold with \mathbf{Q} -factorial terminal singularities. Let R be an extremal ray of the Mori polyhedron $\overline{NE}(X)$ of X. We say that R has the type(I) (respectively (II)) if curves of R fill an irreducible divisor D(R) of X and the contraction of the ray R contracts the divisor D(R) to a point (respectively to a curve). An extremal ray R is called small if curves of this ray fill a curve on X.

A pair $\{R_1, R_2\}$ of extremal rays has the type \mathfrak{B}_2 if extremal rays R_1, R_2 are different, both have the type (II), and have the same divisor $D(R_1) = D(R_2)$.

We recall that a face γ of Mori polyhedron $\overline{NE}(X)$ defines a contraction $f_r: X \to X'$ (see [Ka1] and [Sh]) such that f(C) is a point for an irreducible curve C if and only if C belongs to γ . The dimX' is called the Kodaira dimension of the γ . A set $\mathscr E$ of extremal rays is called extremal if it is contained in a face of Mori polyhedron.

Basic Theorem. Let X be a Fano 3-fold with terminal \mathbb{Q} -factorial sing-

ularities. Assume that X does not have a small extremal ray, and Mori polyhedron $\overline{NE}(X)$ does not have a face of Kodaira dimension 1 or 2.

Then the following statements for the X hold:

- (1) The X does not have a pair of extremal rays of the type \mathfrak{B}_2 and Mori polyhedron $\overline{NE}(X)$ is simplicial;
 - (2) The X does not have more than one extremal ray of the type (I).
- (3) If & is an extremal set of k extremal rays of X, then the & has one of the types: $\mathfrak{A}_1 \coprod (k-1) \mathfrak{C}_1$, $\mathfrak{D}_2 \coprod (k-2) \mathfrak{C}_1$, $\mathfrak{C}_2 \coprod (k-2) \mathfrak{C}_1$, $k\mathfrak{C}_1$ (we use notation of Theorem 2.3.3).
 - (4) We have the inequality for the Picard number of the X: $\rho(X) = \dim N_1(X) \le 7$.

Proof. See Theorem 2.5.8.

It follows from (4):

Corollary 1. Let X be a Fano 3-fold with terminal \mathbf{Q} -factorial singularities and $\rho(X) > 7$. Then X has either a small extremal ray or a face of Kodaira dimension 1 or 2 for Mori polyhedron.

We mention that non-singular Fano 3-folds do not have a small extremal ray (by Mori [Mo1]), and their maximal Picard number is equal to 10 according to their classification by Mori and Mukai [Mo-Mu]. Thus, all these statements already work for non-singular Fano 3-folds.

From the statement (2) of the Theorem, we also get the following application of Basic Theorem to geometry of Fano 3-folds.

Let us consider a Fano 3-fold X and its blow-up X_p at different non-singular points $\{x_1, ..., x_p\}$ of X. We say that this is a Fano blow-up if X_p is Fano. We have the following very simple

Proposition. Let X be a Fano 3-fold with terminal \mathbb{Q} -factorial singularities and without small extremal rays. Let X_p be a Fano blow-up of X. Then for any small extremal ray S on X_p , the S has a non-empty intersection with one of exceptional divisors E_1 , ..., E_p of this blow up and does not belong to any of them. The divisors E_1 , ..., E_p define p extremal rays of the type (I) on X_p .

Proof. See Proposition 2.2.14.

It is known that a contraction of a face of Kodaira dimension 1 or 2 of $\overline{NE}(X)$ of a Fano 3-fold X has a general fiber which is a rational surface or curve respectively, because this contraction has relatively negative canonical class. See [Ka1], [Sh]. It is also known that a small extremal ray is rational [Mo2].

Then, using Basic Theorem and Proposition, we can divide Fano 3-folds of Basic Theorem on the following 3 classes:

Corollary 2. Let X be a Fano 3-fold with terminal \mathbf{Q} -factorial singular-

ities and without small extremal rays, and without faces of Kodaira dimension 1 or 2 for the Mori polyhedron. Let ε be the number of extremal rays of the type (I) on X (by Basic Theorem, the $\varepsilon \leq 1$).

Then there exists p, $1 \le p \le 2 - \varepsilon$, such that X belongs to one of calsses (A), (B) or (C) below:

- (A) There exists a Fano blow-up $X_{\mathfrak{p}}$ of X with a face of Kodaira dimension 1 or 2. Thus, birationally, X is a fibration on rational surfaces over a curve or rational curves over a surface.
- (B) There exist Fano blow-ups X_{\flat} of X for general p points on X such that for all these blow-ups the X_{\flat} has a small extremal ray S. Then images of curves of S on X give a system of rational curves on X which cover a Zariski open subset of X.
- (C) There do not exist Fano blow-ups X_p of X for general p points. We remark that for Fano 3-folds with Picard number 1, the $\varepsilon = 0$. Thus, $1 \le p \le 2$.

Using statements (2), (3) and (4) of Basic Theorem, one can formulate similar results for Fano blow-ups along curves.

To prove Basic Theorem, we classify appropriate so called extremal sets and E-sets of extremal rays of the type (I) or (II). We use so called diagram method to deduce from this classification the statement (4) of the Basic Theorem.

A set $\mathscr E$ of extremal rays is called *extremal* if it is contained in a face of Mori polyhedron. The $\mathscr E$ has *Kodaira dimension 3* if a contraction of this face gives a morphism on a 3-fold. For Fano 3-folds with $\mathbf Q$ -factorial terminal singularities, we give a description of extremal sets $\mathscr E$ of Kodaira dimension 3 which contain extremal rays of the types (I) or (II) only.

A set $\mathcal L$ of extremal rays is called E-set if $\mathcal L$ is not extremal, but any proper subset of $\mathcal L$ is extremal. Thus, the $\mathcal L$ is minimal non-extremal. For Fano 3-folds with $\mathbf Q$ -factorial terminal singularities, we give a description of E-set $\mathcal L$ such that $\mathcal L$ contains extremal rays of the types (I) or (II) only, and any proper subset of $\mathcal L$ is extremal of Kodaira dimension 3.

I am grateful to Profs. Sh. Ishii, M. Reid and J. Wiśniewski for useful discussions. I am grateful to referee for useful comments. I am grateful to Professors Masaki Maruyama and Igor R. Shafarevich for their interest in and support to these my studies.

This paper was prepared in Steklov Mathematical Institute, Moscow; Max-Planck Institut für Mathematik, Bonn, 1990; Kyoto University, 1992-1993 by the grant of Japan Society of Promotion of Science; Mathematical Sciences Research Institute, Berkeley, 1993. I thank these Institutes for their hospitality.

Preliminary variant of this paper was published as a preprint [N8]. Generalizations of results here one can find in a preprint [N9].

CHAPTER I. Diagram Method

Here we give the simplest variant of the diagram method for multi-dimensional algebraic varieties. We shall use this method in the next chapter. This part also contains some corrections and generalizations of the corresponding parts of our papers [N6] and [N7].

Let X be a projective algebraic variety with \mathbf{Q} -factorial singularities over an algebraically closed field. Let $\dim X \geq 2$. Let $N_1(X)$ be the \mathbf{R} -linear space generated by the numerical equivalence classes of all algebraic curves on X, and let $N^1(X)$ be the \mathbf{R} -linear space generated by the numerical equivalence classes of all Cartier (or Weil) divisors on X. Linear spaces $N_1(X)$ and $N^1(X)$ are dual to one another by the intersection pairing. Let NE(X) be a convex cone in $N_1(X)$ generated by all effective curves on X. Let $\overline{NE}(X)$ be the closure of the cone NE(X) in $N_1(X)$. It is called $Mori\ cone\ (or\ polyhedron)$ of X. A non-zero element $x \in N^1(X)$ is called $Mori\ cone\ (or\ polyhedron)$ of X. A non-zero element of X and the zero. It is the convex cone in $N^1(X)$ dual to Mori cone NE(X). A ray $R \subset NE(X)$ with origin 0 is called C dual to C dual to C and C and

We consider a condition (i) for a set \mathcal{R} of extremal rays on X.

(i) If $R \in \mathcal{R}$, then all curves $C \in R$ fill out an irreducible divisor D(R) on X.

In this case, an oriented graph $G(\mathcal{R})$ corresponds to \mathcal{R} in the following way: Two different rays R_1 and R_2 are joined by an arrow R_1R_2 from R_1 to R_2 if $R_1 \cdot D(R_2) > 0$. Here and in what follows, for an extremal ray R and a divisor D we write $R \cdot D > 0$ if $r \cdot D > 0$ for $r \in R$ and $r \neq 0$. (The same convention is applied for the symbols \leq , \geq and <.)

A set \mathscr{E} of extremal rays is called *external* if it is contained in a face of $\overline{NE}(X)$. Equivalently, there exists a nef element $H \in N^1(X)$ such that $\mathscr{E} \cdot H = 0$. Evidently, a subset of an extremal set is extremal, too.

We consider the following condition (ii) for extremal sets $\mathcal E$ of extremal rays.

(ii) An extremal set $\mathscr{E} = \{R_1, ..., R_n\}$ satisfies the condition (i), and for any real numbers $m_1 \ge 0$, ..., $m_n \ge 0$ which are not all equal to 0, there exists a ray $R_j \in \mathscr{E}$ such that $R_j \cdot (m_1 D(R_1) + m_2 D(R_2) + \cdots + m_n D(R_n)) < 0$. In particular, the effective divisor $m_1 D(R_1) + m_2 D(R_2) + \cdots + m_n D(R_n)$ is not nef.

A set $\mathscr L$ of extremal rays is called $\mathit{E-set}$ (extremal in a different sense) if the $\mathscr L$ is not extremal but every proper subset of $\mathscr L$ is extremal. Thus, $\mathscr L$ is a minimal non-extremal set of extremal rays. Evidently, an $\mathit{E-set}\,\mathscr L$ contains at least two elements.

We consider the following condition (iii) for E-sets \mathscr{L} .

(iii) Any proper subset of an E-set $\mathcal{L} = \{Q_1, ..., Q_m\}$ satisfies the condition (ii), and there exists a non-zero effective nef divisor $D(\mathcal{L}) = a_1 D(Q_1) + a_2 D(Q_2) + \cdots + a_m D(Q_m)$.

The following statement is very important.

Lemma 1.1. An E-set \mathcal{L} satisfying the condition (iii) is connected in the following sense: For any decomposition $\mathcal{L} = \mathcal{L}_1 \coprod \mathcal{L}_2$, where \mathcal{L}_1 and \mathcal{L}_2 are non-empty, there exists an arrow Q_1Q_2 such that $Q_1 \in \mathcal{L}_1$ and $Q_2 \in \mathcal{L}_2$.

If $\mathcal L$ and $\mathcal M$ are two different E-sets satisfying the condition (iii), then there exists an arrow LM where $L \in \mathcal L$ and $M \in \mathcal M$.

Proof. Let $\mathcal{L} = \{Q_1, ..., Q_m\}$. By (iii), there exists a nef divisor $D(\mathcal{L}) = a_1D(Q_1) + a_2D(Q_2) + \cdots + a_mD(Q_m)$. If one of the coefficients $a_1, ..., a_m$ is equal to zero, we get a contradiction to the conditions (ii) and (iii). It follows that all the coefficients $a_1, ..., a_m$ are positive. Let $\mathcal{L} = \mathcal{L}_1 \coprod \mathcal{L}_2$ where $\mathcal{L}_1 = \{Q_1, ..., Q_k\}$ and $\mathcal{L}_2 = \{Q_{k+1}, ..., Q_m\}$. The divisors $D_1 = a_1D(Q_1) + \cdots + a_kD(Q_k)$ and $D_2 = a_{k+1}D(Q_{k+1}) + \cdots + a_kD(Q_m)$ are non zero. By (ii), there exists a ray $Q_i, 1 \le i \le k$, such that $Q_i \cdot D_1 < 0$. On the other hand, $Q_i \cdot D(\mathcal{L}) = Q_1 \cdot (D_1 + D_2) \ge 0$. It follows that there exists $j, k+1 \le j \le m$, such that $Q_i \cdot D(Q_j) > 0$. It means that $Q_i Q_j$ is an arrow.

Let us prove the second statement. By the condition (iii), for every ray $R \in \mathcal{L}$, we have the inequality $R \cdot D(\mathcal{M}) \geq 0$. If $R \cdot D(\mathcal{M}) = 0$ for any $R \in \mathcal{L}$, then the set \mathcal{L} is extremal, and we get the contradiction. It follows that there exists a ray $R \in \mathcal{L}$ such that $R \cdot D(\mathcal{M}) > 0$. It follows our assertion.

Let $NEF(X) = \overline{NE}(X) * \subset N^1(X)$ be the cone of nef elements of X and $\mathcal{M}(X) = NEF(X)/\mathbf{R}^+$ its projectivization. We use usual relations of orthogonality between subsets of $\mathcal{M}(X)$ and $\overline{NE}(X)$. So, for $U \subset \mathcal{M}(X)$ and $V \subset \overline{NE}(X)$ we write $U \perp V$ if $x \cdot y = 0$ for any $\mathbf{R}^+ x \in U$ and any $y \in V$. Thus, for $U \subset \mathcal{M}(X)$, $V \subset \overline{NE}(X)$ we denote

$$U^{\perp} = \{ y \in \overline{NE}(X) | U \perp y \} \quad , \quad V^{\perp} = \{ x \in \mathcal{M}(X) | x \perp V \} \quad .$$

A subset $\gamma \subset \mathcal{M}(X)$ is called a *face* of $\mathcal{M}(X)$ if there exists a non-zero element $r \in \overline{NE}(X)$ such that $\gamma = r^{\perp}$.

A convex set is called a closed polyhedron if it is a convex hull of a finite set of points. A convex closed polyhedron is called simplicial if all its proper faces are simplexes. A convex closed polyhedron is called simple (equivalently, it has simplicial angles) if it is dual to a simplicial one. In other words, any its face of codimension k is contained exactly in k faces of γ of the highest dimension. Similar names we use for convex cones and cones over polyhedra. For example, a convex cone is called simplex, simplicial and simple if it is a cone over a simplex, simplicial or simple polyhedron respectively.

We need some relative notions of the notions above.

We say that $\mathcal{M}(X)$ is a closed plyhedron in its face $\gamma \subseteq \mathcal{M}(X)$ if γ is a

closed polyhedron and $\mathcal{M}(X)$ is a closed polyhedron in a neighbourhood T of γ . Thus, there should exist a closed polyhedron \mathcal{M}' such that $\mathcal{M}' \cap T = \mathcal{M}(X) \cap T$.

We will use the following notation. Let $\mathcal{R}(X)$ be the set of all extremal rays of X. For a face $\gamma \subset \mathcal{M}(X)$,

$$\mathcal{R}(\gamma) = \{R \in \mathcal{R}(X) \mid \exists \mathbf{R}^+ H \in \gamma: R \cdot H = 0\}$$

and

$$\mathcal{R}(\gamma^{\perp}) = \{ R \in \mathcal{R}(X) | \gamma \perp R \}$$
.

Let us assume that $\mathcal{M}(X)$ is a closed polyhedron in its face γ . Then sets $\mathcal{R}(\gamma_1)$ and $\mathcal{R}(\gamma_1^{\perp})$ are finite for any face $\gamma_1 \subseteq \gamma$. Evidently, the face γ is simple if

(1)
$$\# \mathcal{R}(\gamma_1^{\perp}) - \# \mathcal{R}(\gamma^{\perp}) = \operatorname{codim}_{\gamma} \gamma_1$$

for any face γ_1 of γ . Then we say that the polyhedron $\mathcal{M}(X)$ is simple in its face γ . Evidently, this condition is equivalent to the condition:

(2)
$$\dim \left[\mathscr{E}\right] - \dim \left[\mathscr{R}(\gamma^{\perp})\right] = \#\mathscr{E} - \#\mathscr{R}(\gamma^{\perp})$$

for any extremal set $\mathscr E$ such that $R(\gamma^{\perp}) \subset \mathscr E$. Here $[\cdot]$ denotes a linear hull. (In [N6], we required a more strong condition for a polyhedron $\mathscr M(X)$ to be simple in its face γ : $\#\mathscr R(\gamma_1^{\perp}) = \dim \mathscr M(X) - \dim \gamma_1$ for any face γ_1 of γ .)

Let A, B be two vertices of an oriented graph G. The distance $\rho(A, B)$ in G is a length (the number of links) of a shortest oriented path of the graph G from A to B. The distance is $+\infty$ if this path does not exist. The diameter diam G of an oriented graph G is the maximum distance between ordered pairs of its vertices. By the Lemma 1.1, the diameter of an E-set is a finite number if this set satisfies the condition (iii).

Theorem 1.2 below is an analog for algebraic varieties of arbitrary dimension of the Lemma 3.4 of [N2] and the Lemma 1.4.1 of [N5], which were devoted to surfaces.

- **Theorem 1.2.** Let X be a projective algebraic variety with \mathbf{Q} -factorial singularities and $\dim X \geq 2$. Let us suppose that $\mathcal{M}(X)$ is closed and simple in its face γ . Assume that the set $\mathcal{R}(\gamma)$ satisfies the condition (i) above. Assume that there are some constants d, C_1 , C_2 such that the conditions (a) and (b) below hold:
- (a) For any E-set $\mathcal{L} \subseteq \mathcal{R}(\gamma)$ such that \mathcal{L} contains at least two elements which don't belong to $\mathcal{R}(\gamma^{\perp})$ and for any proper subset $\mathcal{L}' \subseteq \mathcal{L}$ the set $R(\gamma^{\perp}) \cup \mathcal{L}'$ is extremal, the condition (iii) is valid and

$$diamG(\mathcal{L}) \leq d$$
.

(b) For any extremal subset \mathscr{E} such that $\Re(\gamma^{\perp}) \subset \mathscr{E} \subset \Re(\gamma)$, we have: the \mathscr{E} satisfies the condition (ii) and for the distance in the oriented graph $G(\mathscr{E})$

$$\sharp \mid (R_1,\,R_2) \in (\mathscr{E} - \mathscr{R}(\gamma^\perp)) \times (\mathscr{E} - \mathscr{R}(\gamma^\perp)) \mid 1 \leq \rho \, (R_1,\,R_2) \leq d \mid \leq C_1 \, \sharp \, (\mathscr{E} - \mathscr{R}(\gamma^\perp)); \text{ and } \mid 1 \leq \rho \, (R_1,\,R_2) \leq d \mid 1 \leq C_1 \, \sharp \, (\mathscr{E} - \mathscr{R}(\gamma^\perp)); \quad \text{and} \quad \mid 1 \leq \rho \, (R_1,\,R_2) \leq d \mid 1 \leq C_1 \, \sharp \, (\mathscr{E} - \mathscr{R}(\gamma^\perp)); \quad \mid 1 \leq \rho \, (R_1,\,R_2) \leq d \mid 1 \leq C_1 \, \sharp \, (\mathscr{E} - \mathscr{R}(\gamma^\perp)); \quad \mid 1 \leq \rho \, (R_1,\,R_2) \leq d \mid 1 \leq C_1 \, \sharp \, (\mathscr{E} - \mathscr{R}(\gamma^\perp)); \quad \mid 1 \leq \rho \, (R_1,\,R_2) \leq d \mid 1 \leq C_1 \, \sharp \, (\mathscr{E} - \mathscr{R}(\gamma^\perp)); \quad \mid 1 \leq \rho \, (R_1,\,R_2) \leq d \mid 1 \leq C_1 \, \sharp \, (\mathscr{E} - \mathscr{R}(\gamma^\perp)); \quad \mid 1 \leq \rho \, (R_1,\,R_2) \leq d \mid 1 \leq C_1 \, \sharp \, (\mathscr{E} - \mathscr{R}(\gamma^\perp)); \quad \mid 1 \leq \rho \, (R_1,\,R_2) \leq d \mid 1 \leq C_1 \, \sharp \, (\mathscr{E} - \mathscr{R}(\gamma^\perp)); \quad \mid 1 \leq \rho \, (R_1,\,R_2) \leq d \mid 1 \leq C_1 \, \sharp \, (\mathscr{E} - \mathscr{R}(\gamma^\perp)); \quad \mid 1 \leq \rho \, (R_1,\,R_2) \leq d \mid 1 \leq C_1 \, \sharp \, (\mathscr{E} - \mathscr{R}(\gamma^\perp)); \quad \mid 1 \leq \rho \, (R_1,\,R_2) \leq d \mid 1 \leq C_1 \, \sharp \, (\mathscr{E} - \mathscr{R}(\gamma^\perp)); \quad \mid 1 \leq \rho \, (R_1,\,R_2) \leq d \mid 1 \leq C_1 \, \sharp \, (R_1,\,R_2) \leq d \mid 1 \leq C_1 \, \sharp \, (R_1,\,R_2) \leq d \mid 1 \leq C_1 \, \sharp \, (R_1,\,R_2) \leq d \mid 1 \leq C_1 \, \sharp \, (R_1,\,R_2) \leq d \mid 1 \leq C_1 \, \sharp \, (R_1,\,R_2) \leq d \mid 1 \leq C_1 \, \sharp \, (R_1,\,R_2) \leq d \mid 1 \leq C_1 \, \sharp \, (R_1,\,R_2) \leq d \mid 1 \leq C_1 \, \sharp \, (R_1,\,R_2) \leq d \mid 1 \leq C_1 \, \sharp \, (R_1,\,R_2) \leq d \mid 1 \leq C_1 \, (R_1,\,R_2) \leq d \mid 1 \leq C_2 \, (R_1,\,R_2)$$

$$\sharp \ \{ (R_1,\,R_2) \in (\mathscr{E} - \mathscr{R} \, (\gamma^\perp) \,) \times (\mathscr{E} - \mathscr{R} \, (\gamma^\perp) \,) \, \big| d + 1 \leq \rho \, (R_1,\,R_2) \leq 2d + 1 \}$$

$$\leq C_2 \, \sharp \, (\mathscr{E} - \mathscr{R} \, (\gamma^\perp) \,) \ .$$

Then $\dim \gamma < (16/3)C_1 + 4C_2 + 6$.

Proof. We use the following Lemma 1.3 which was proved in [N1]. The lemma was used in [N1] to get a bound (≤ 9) of the dimension of a hyperbolic (Lobachevsky) space admitting an action of an arithmetic reflection group with a field of definition of the degree > N. Here N is some absolute constant.

Lemma 1.3. Let \mathcal{M} be a convex closed simple polyhedron of a dimension n, and $A_n^{i,k}$ the average number of i-dimensional faces of k-dimensional faces of \mathcal{M} . Then for $n \geq 2k-1$

$$A_n^{i,k} < \frac{\binom{n-i}{n-k} \cdot \left(\binom{\lfloor n/2 \rfloor}{i} + \binom{n-\lfloor n/2 \rfloor}{i} \right)}{\binom{\lfloor n/2 \rfloor}{k} + \binom{n-\lfloor n/2 \rfloor}{k}}.$$

In particular, if $n \ge 3$

$$A_n^{0,2} < \begin{cases} \frac{4(n-1)}{n-2} & \text{if n is even,} \\ \frac{4n}{n-1} & \text{if n is odd.} \end{cases}$$

Proof. See [N1]. We mention that the right side of the inequality of the Lemma 1.3 decreases and tends to the number $2^{k-i} \binom{k}{i}$ of *i*-dimensional faces of *k*-dimensional cube if *n* increases.

From the estimate of $A_n^{0,2}$ of the Lemma, it follows the following analog of Vinberg's Lemma from [V]. Vinberg's Lemma was used by him to obtain an estimate (dim <30) for the dimension of a hyperbolic space admitting an action of a discrete reflection group with a bounded fundamental polyhedron.

By definition, an *angle* of a polyhedron T is an angle of a 2-dimensional face of T. Thus, the angle is defined by a vertex A of T, a plane containing A and a 2-dimensional face γ_2 of T, and two rays with the beginning at A which contain two corresponding sides of the γ_2 . To define an *oriented angle* of T, one should in addition put in order two rays of the angle.

- **Lemma 1.4.** Let \mathcal{M} be a convex simple polyhedron of a dimension n. Let C and D are some numbers. Suppose that oriented angles (2-dimensional, plane) of \mathcal{M} are supplied with weights and the following conditions (1) and (2) hold:
- (1) The sum of weights of all oriented angles at any vertex of M is not greater than Cn+D.
- (2) The sum of weights of all oriented angles of any 2-dimensional face of \mathcal{M} is at least 5-k where k is the number of vertices of the 2-dimensional face.

$$n < 8C + 5 +$$
 $\begin{cases} 1 + 8D/n & \text{if n is even,} \\ (8C + 8D)/(n - 1) & \text{if n is odd} \end{cases}$.

In particular, for $C \ge 0$ and D = 0, we have n < 8C + 6

Proof. We correspond to a non-oriented plane angle of \mathcal{M} a weight which is equal to the sum of weights of two corresponding oriented angles. Evidently, the conditions of the Lemma hold for the weights of non-oriented angles too if we forget about the word "oriented". Then we obtain Vinberg's lemma from [V] which we formulate a little bit more precisely here. Since the proof is simple, we give the proof here.

Let Σ be the sum of weights of all (non-oriented) angles of the polyhedron \mathcal{M} . Let α_0 be the number of vertices of \mathcal{M} and α_2 the number of 2-dimensional faces of \mathcal{M} . Since \mathcal{M} is simple,

$$\alpha_0 \frac{n(n-1)}{2} = \alpha_2 A_n^{0,2} .$$

From this equality and conditions of the Lemma, we get inequalities

$$(Cn+D)\alpha_0 \ge \sum \ge \sum \alpha_{2,k} (5-k) = 5\alpha_2 - \alpha_2 A_n^{0,2} =$$

$$= \alpha_2 (5-A_n^{0,2}) = \alpha_0 (n(n-1)/2) (5/A_n^{0,2}-1) .$$

Here $\alpha_{2,k}$ is the number of 2-dimensional faces with k vertices of \mathcal{M} . Thus, from this inequality and Lemma 1.3, we get

$$Cn+D \ge (n(n-1)/2) (5/A_n^{0.2}-1) > \begin{cases} n(n-6)/8 & \text{if } n \text{ is even,} \\ (n-1)(n-5)/8 & \text{if } n \text{ is odd.} \end{cases}$$

From this calculations, Lemma 1.4 follows.

The proof of Theorem 1.2. (Compare with [V].) Let \angle be an oriented angle of γ . Let $\mathcal{R}(\angle) \subset \mathcal{R}(\gamma)$ be the set of all extremal rays of $\mathcal{M}(X)$ which are orthogonal to the vertex of \angle . Since $\mathcal{M}(X)$ is simple in γ , the set $\mathcal{R}(\angle)$ is a disjoint union

$$\Re(\angle) = \Re(\angle^{\perp}) \cup \{R_1(\angle)\} \cup \{R_2(\angle)\}$$

where $\Re(\angle^{\perp})$ contains all rays orthogonal to the plane of the angle \angle , the rays $R_1(\angle)$ and $R_2(\angle)$ are orthogonal to the first and second side of the oriented angle \angle , respectively. Evidently, the set $\Re(\angle)$ and the ordered pair of rays $(R_1(\angle), R_2(\angle))$ define the oriented angle \angle uniquely. We define the weight $\sigma(\angle)$ by the formula:

$$\sigma(\angle) = \begin{cases} 2/3, & \text{if } 1 \le \rho(R_1(\angle), R_2(\angle)) \le d, \\ 1/2, & \text{if } d+1 \le \rho(R_1(\angle), R_2(\angle)) \le 2d+1, \\ 0, & \text{if } 2d+2 \le \rho(R_1(\angle), R_2(\angle)). \end{cases}$$

Here we take the distance in the graph $G(\Re(\angle))$. Let us prove conditions of the Lemma 1.4 with the constants $C = (2/3)C_1 + C_2/2$ and D = 0.

The condition (1) follows from the condition (b) of the theorem. We remark that rays $R_1(\angle)$, $R_2(\angle)$ do not belong to the set $R(\gamma^{\perp})$.

Let us prove the condition (2).

Let γ_3 be a 2-dimensional triangle face (triangle) of γ . The set $\Re\left(\gamma_3\right)$ of

all extremal rays orthogonal to points of γ_3 is the union of the set $\Re(\gamma_3^{\perp})$ of extremal rays, which are orthogonal to the plane of the triangle γ_3 , and rays R_1 , R_2 , R_3 , which are orthogonal to the sides of the triangle γ_3 . Union of the set $\mathcal{R}(\gamma_3^{\perp})$ with any two rays of R_1 , R_2 , R_3 is extremal, since it is orthogonal to a vertex of γ_3 . On the other hand, the set $\mathcal{R}(\gamma_3) = \mathcal{R}(\gamma_3^{\perp}) \cup \{R_1, R_2, R_3\}$ is not extremal, since it is not orthogonal to a point of $\mathcal{M}(X)$. Indeed, the set of all points of $\mathcal{M}(X)$, which are orthogonal to the set $\mathcal{R}(\gamma_3^{\perp}) \cup \{R_2, R_3\}$, $\mathcal{R}(\gamma_3^{\perp}) \cup$ $\{R_1, R_3\}$, or $\Re(\gamma_3^{\perp}) \cup \{R_1, R_2\}$ is the vertex A_1, A_2 , or A_3 respectively of the triangle γ_3 , and the intersection of these sets of vertices is empty. Thus, there exists an E-set $\mathcal{L} \subseteq \mathcal{R}(\gamma_3)$, which contains the set of rays $\{R_1, R_2, R_3\}$. By the condition (a), the graph $G(\mathcal{L})$ contains a shortest oriented path s of the length $\leq d$ which connects the rays R_1 , R_3 . If this path does not contain the ray R_2 , then the oriented angle of γ_3 defined by the set $\Re(\gamma_3^{\perp}) \cup \{R_1, R_3\}$ and the pair (R_1, R_3) has the weight 2/3. If this path contains the ray R_2 , then the oriented angle of γ_3 defined by the set $\Re(\gamma_3^\perp) \cup \{R_1, R_2\}$ and the pair (R_1, R_2) has the weight 2/3. Thus, we proved that the side A_2A_3 of the triangle γ_3 defines an oriented angle of the triangle with the weight 2/3 and the first side A_2A_3 of the oriented angle. The triangle has three sides. It follows the condition (2) of the Lemma 1.4 for the triangle.

Let γ_4 be a 2-dimensional quadrangle face (quadrangle) of γ . In this case,

$$\mathcal{R}(\gamma_4) = \mathcal{R}(\gamma_4^{\perp}) \cup \{R_1, R_2, R_3, R_4\}$$

where $\Re(\gamma_4^{\perp})$ is the set of all extremal rays which are orthogonal to the plane of the quadrangle and the rays R_1 , R_2 , R_3 , R_4 are orthogonal to the consecutive sides of the quadrangle. As above, one can see that the sets $\Re(\gamma_4^{\perp}) \cup \{R_1, R_3\}$, $\mathcal{R}(\gamma_4^{\perp}) \cup \{R_2, R_4\}$ are not extremal, but the sets $\mathcal{R}(\gamma_4^{\perp}) \cup \{R_1, R_2\}$, $\mathcal{R}(\gamma_4^{\perp}) \cup \{R_2, R_4\}$ R_3 , $\Re(\gamma_4^{\perp}) \cup \{R_3, R_4\}$ and $\Re(\gamma_4^{\perp}) \cup \{R_4, R_1\}$ are extremal. It follows that there are E-sets \mathcal{L} , \mathcal{N} such that $|R_1, R_3| \subset \mathcal{L} \subset \mathcal{R}(\gamma_4^{\perp}) \cup |R_1, R_3|$ and $|R_2, R_4| \subset \mathcal{N} \subset \mathcal{N}$ $\Re(\gamma_4^\perp) \cup \{R_2, R_4\}$. By Lemma 1.1, there exist rays $R \in \mathcal{L}$ and $Q \in \mathcal{N}$ such that RQ is an arrow. By the condition (a) of the theorem, one of the rays R_1 , R_3 is joined by an oriented path s_1 of the length $\leq d$ with the ray R and this path does not contain another ray from R_1 , R_3 (here R is the terminal of the path s_1). We can suppose that this ray is R_1 (otherwise, one should replace the ray R_1 by the ray R_3). As above, we can suppose that the ray Q is connected by the oriented path s_2 of the length $\leq d$ with the ray R_2 and this path does not contain the ray R_4 . The path $s_1 RQ s_2$ is an oriented path of the length $\leq 2d +$ 1 in the oriented graph $G(\Re(\gamma_4^{\perp}) \cup \{R_1, R_2\})$. It follows that the oriented angle of the quadrangle γ_4 , such that consecutive sides of this angle are orthogonal to the rays R_1 and R_2 respectively, has the weight $\geq 1/2$. Thus, we proved that for a pair of opposite sides of γ_4 there exists an oriented angle with weight $\geq 1/2$ such that the first side of this oriented angle is one of this opposite sides of the quadrangle. A quadrangle has two pairs of opposite sides. It follows that the sum of weights of oriented angles of γ_4 is ≥ 1 . It proves the condition (2) of the Lemma 1.4 and the theorem.

In the sequel, we apply Theorem 1.2 to 3-folds.

CHAPTER II. Threefolds

1. Contractible extremal rays

We consider normal projective 3-folds X with \mathbf{Q} -factorial singularities. Let R be an extremal ray of Mori polyhedron $\overline{NE}(X)$ of X. A morphism $f: X \rightarrow Y$ onto a normal projective variety Y is called the *contraction* of the ray R if for an irreducible curve C of X the image f(C) is a point if and only if $C \subseteq R$. The contraction f is defined by a linear system H on X (H give rise to a nef element of $N^1(X)$, which we also denote by H). It follows that an irreducible curve C is contracted if and only if $C \cdot H = 0$. We assume that the contraction f has properties: $f\mathcal{O}_X = \mathcal{O}_Y$ and the sequence

$$(1.1) 0 \rightarrow \mathbf{R} R \rightarrow N_1(X) \rightarrow N_1(Y) \rightarrow 0$$

is exact where the arrow $N_1(X) \rightarrow N_1(Y)$ is f_* . An extremal ray R is called *contractible* if there exists its contraction f with these properties.

The number $\kappa(R) = \dim Y$ is called *Kodaira dimension* of the contractible extremal ray R.

A face γ of NE(X) is called *contractible* if there exists a morphism $f: X \longrightarrow Y$ onto a normal projective variety Y such that $f_*\gamma = 0$, $f_*\mathcal{O}_X = \mathcal{O}_Y$ and f contracts curves lying in γ only. The $\kappa(\gamma) = \dim Y$ is called *Kodaira dimension of* γ .

Let H be a general nef element orthogonal to a face γ of Mori polyhedron. Numerical Kodaira dimension of γ is defined by the formula

$$\kappa_{num}(\gamma) = \begin{cases} 3, & \text{if } H^3 > 0; \\ 2, & \text{if } H^3 = 0 \text{ and } H^2 \neq 0; \\ 1, & \text{if } H^2 \equiv 0 \end{cases}$$

It is obvious that for a contractible face γ we have $\kappa_{num}(\gamma) \ge \kappa(\gamma)$. In particular, $\kappa_{num}(\gamma) = \kappa(\gamma)$ for a contractible face γ of Kodaira dimension $\kappa(\gamma) = 3$.

2. Paris of extremal rays of Kodaira dimension three lying in contractible faces of $\overline{NE}(X)$ of Kodaira dimension three

We assume further that X is a projective normal threefold with ${f Q}$ -factorial singularities.

Lemma 2.2.1. Let R be a contractible extremal ray of Kodaira dimension

3 and $f: X \rightarrow Y$ its contraction.

Then there are three possibilities:

- (I) All curves $C \subseteq R$ fill an irreducible Weil divisor D(R), the contraction f contracts D(R) to a point and $R \cdot D(R) < 0$.
- (II) All curves $C \subseteq R$ fill an irreducible Weil divisor D(R), the contraction f contracts D(R) to an irreducible curve and $R \cdot D(R) < 0$.
- (III) (small extremal ray) All curves $C \subseteq R$ give a finite set of irreducible curves and the contraction f contracts these curves to points.

Proof. Assume that some curves of R fill an irreducible divisor D. Then $R \cdot D < 0$ (this inequality follows from the Proposition 2.2.6 below). Suppose that $C \in R$ and D does not contain C. It follows that $R \cdot D \ge 0$. We get a contradiction. It follows the lemma.

According to Lemma 2.2.1, we say that an extremal ray R has the type (I), (II) or (III) (small) if it is contractible of Kodaira dimension 3 and the statement (I), (II) or (III) respectively holds.

Lemma 2.2.2. Let R_1 and R_2 are two different extremal rays of the type (I). Then divisors $D(R_1)$ and $D(R_2)$ do not intersect one another.

Proof. Otherwise, $D(R_1)$ and $D(R_2)$ have a common curve and the rays R_1 and R_2 are not different.

For an irreducible Weil divisor *D* on *X* let

$$\overline{NE}(X, D) = (image \overline{NE}(D)) \subset \overline{NE}(X)$$
.

Lemma 2.2.3. Let R be an extremal ray of the type (II), and f its contraction. Then $\overline{NE}(X, D(R)) = R + \mathbf{R}^+ S$, where $\mathbf{R}^+ f_* S = \mathbf{R}^+ (f(D))$.

Proof. This follows at once from the exact sequence (1.1).

Lemma 2.2.4. Let R_1 and R_2 are two different extremal rays of the type (II) such that the divisors $D(R_1)$, $D(R_2)$ coincide. Then for $D = D(R_1) = D(R_2)$ we have: $\overline{NE}(X, D) = R_1 + R_2$. In particular, do not exist three different extremal rays of the type (II) such that their divisors coincide one another.

Proof. This follows from the Lemma 2.2.3.

Lemma 2.2.5. Let R be an extremal ray of the type (II) and f its cotraction. Then there does not exist more than one extremal ray Q of the type (I) such that $D(R) \cap D(Q)$ is not empty. If Q is this ray, then $D(R) \cap D(Q)$ is a curve and any irreducible component of this curve is not contained in fibers of f.

Proof. The last assertion is obvious. Let us prove the first one. Suppose that Q_1 and Q_2 are two different extremal rays of the type (I) such that $D(Q_1) \cap D(R)$ and $D(Q_2) \cap D(R)$ are not empty. Then the plane angle $\overline{NE}(X, D(R))$ (see the Lemma 2.2.3) contains three different extremal rays: Q_1 , Q_2

and R. It is impossible.

The following key proposition is very important.

Proposition 2.2.6. Let X be a projective 3-fold with \mathbf{Q} -factorial singularities, D_1 , ..., D_m irreducible divisors on X and $f: X \rightarrow Y$ a surjective morphism such that $\dim X = \dim Y$ and $\dim f(D_i) < \dim D_i$. Let $y \in f(D_1) \cap ... \cap f(D_m)$. Then there are $a_1 > 0$, ..., $a_m > 0$ and an open $U, y \in U \subset f(D_1) \cup ... \cup f(D_m)$, such that

$$C \cdot (a_1D_1 + ... + a_mD_m) < 0$$

if a curve $C \subseteq D_1 \cup ... \cup D_m$ belongs to a non-trivial algebraic family of curves on $D_1 \cup ... \cup D_m$ and $f(C) = point \in U$.

Proof. The proof is the same as the well-known case of surfaces (but, for surfaces, it is not necessary to suppose that C belong to a nontrivial algebraic family). Let H be an irreducible ample divisor on X and $H'=f_*H$. Since $\dim f(D_i) < \dim D_i$, it follows that $f(D_1) \cup ... \cup f(D_m) \subset H'$. Let ϕ be a non-zero rational function on Y which is regular in a neighbourhood U of Y on Y and is equal to zero on the divisor Y. In the open set Y the divisor Y can be written in a form

$$(f^*\phi) = \sum_{i=1}^m a_i D_i + \sum_{j=1}^n b_j Z_j$$
.

where all $a_i > 0$ and all $b_j > 0$. Here every divisor Z_j is different from any divisor D_i . We have

$$0 = C \cdot \sum_{i=1}^{m} a_i D_i + C \cdot \sum_{j=1}^{n} b_j Z_j .$$

Here $C \cdot (\sum_{j=1}^{n} b_j Z_j) > 0$ since C belongs to a nontrivial algebraic family of curves on a surface $D_1 \cup ... \cup D_m$ and one of the Z_j is the hyperplane section H.

Lemma 2.2.7. Let R_1 , R_2 are two extremal rays of the type (II), divisors $D(R_1)$, $D(R_2)$ are different and $D(R_1) \cap D(R_2) \neq 0$. Assume that R_1 , R_2 belong to a contractible face of $\overline{NE}(X)$ of Kodaira dimension 3. Let $0 \neq F_1 \in R_1$ and $0 \neq F_2 \in R_2$. Then

$$\left(F_1 \boldsymbol{\cdot} D\left(R_2\right)\right) \left(F_2 \boldsymbol{\cdot} D\left(R_1\right)\right) < \left(F_1 \boldsymbol{\cdot} D\left(R_1\right)\right) \left(F_2 \boldsymbol{\cdot} D\left(R_2\right)\right) \ .$$

Proof. Let f be the contraction of a face of Kodaira dimension 3, which contains both rays R_1 , R_2 . By Proposition 2.2.6, there are $a_1 > 0$, $a_2 > 0$ such that

$$a_1(F_1 \cdot D(R_1)) + a_2(F_1 \cdot D(R_2)) < 0 \quad \text{and} \quad a_1(F_2 \cdot D(R_1)) + a_2(F_2 \cdot D(R_2)) < 0$$
 or

 $-a_1(F_1 \cdot D(R_1)) > a_2(F_1 \cdot D(R_2))$ and $-a_2(F_2 \cdot D(R_2)) > a_1(F_2 \cdot D(R_1))$ where $F_1 \cdot D(R_1) < 0$. $F_2 \cdot D(R_2) < 0$ and $F_1 \cdot D(R_2) > 0$, $F_2 \cdot D(R_1) > 0$. Multiplying inequalities above, we obtain the lemma.

3. A classification of extremal sets of extremal rays which contain extremal rays of the type (I) and simple extremal rays of the type (II)

As above, we assume that X is a projective normal 3-fold with ${f Q}$ -factorial singularities.

Definition 2.3.1. An extremal ray R of the type (II) is called *simple* if

$$R \cdot (D(R) + D) \ge 0$$

for any irreducible divisor D such that $R \cdot D > 0$.

The following proposition gives a simple sufficient condition for an extremal ray to be simple.

Proposition 2.3.2. Let R be an extremal ray of the type (II) and $f: X \rightarrow Y$ the contraction of R. Suppose that the curve f(D(R)) is not contained in the set of singularities of Y. Then

- (1) the ray R is simple;
- (2) if X has only isolated singularities, then a general element C of the ray R (a general fiber of the morphism f|D(R)) is isomorphic to \mathbf{P}^1 and the divisor D(R) is non-singular along C. If additionally $R \cdot K_X < 0$, then $C \cdot D(R) = C \cdot K_X = -1$
- (3) In particular, both statements (1) and (2) are true if X has terminal singularities and $R \cdot K_X < 0$.

Proof. Let D be an irreducible divisor on X such that $R \cdot D > 0$. Since $R \cdot D(R) < 0$, the divisor D is different from D(R) and the intersection $D \cap D(R)$ is a curve which does not belong to R. Then $D' = f_*(D)$ is an irreducible divisor on Y and $\Gamma = f(D(R))$ is a curve on D'. Let $y \in \Gamma$ be a non-singular point of Y. Then the divisor D' is defined by some local equation ϕ in a neighbourhood U of Y. Evidently, in the open set $f^{-1}(U)$ we can write

$$(f^*\phi) = D + m (D(R))$$

where the integer $m \ge 1$. Let a curve $C \in R$ and $f(C) = y \in U \cap f(D(R))$. Then $0 = C \cdot (D + m(D(R))) = C \cdot (D + D(R)) + C \cdot (m - 1)(D(R))$. Since $m \ge 1$ and $C \cdot D(R) < 0$, it follows that $C \cdot (D + D(R)) \ge 0$.

Let us prove (2). Let us consider a linear system |H| of hyperplane sections on Y and the corresponding linear systems on resolutions of singularities of Y and X. Let us apply Bertini's theorem (see, for example, [Ha, ch. III, Corollary 10.9 and the Exercise 11.3]) to these linear systems. Singularities of X and Y are isolated. Then by Bertini theorem, for a general element H of |H| we obtain that (a) H and $H'=f^{-1}(H)$ are irreducible and non-singular; (b) H intersects Γ transversely in non-singular points of Γ . Let us consider the corresponding birational morphism $f'=f|H':H'\to H$ of the non-singular irreducible surfaces. It is a composition of blowing ups at non-singular points. Thus, fibers of f' over $H\cap \Gamma$ are trees of non-singular rational curves. The

exceptional curve of the first of these blowing ups is identified with the fiber of the projectivization of the normal bundle $\mathbf{P}(\mathcal{N}_{\Gamma/Y})$. Thus, we obtain a rational map over the curve Γ

$$\phi: \mathbf{P}(\mathcal{N}_{\Gamma/Y}) \rightarrow D(R)$$

of the irreducible surfaces. Evidently, it is an injection at general points of $\mathbf{P}(\mathcal{N}_{\Gamma/Y})$. It follows that ϕ is a birational isomorphism of the surfaces. Since ϕ is a birational map over the curve Γ , it follows that the general fibers of this maps are birationally isomorphic. It follows that a general fiber of f' is $C \cong \mathbf{P}^1$. Since C is non-singular and is an intersection of the non-singular surface H' with the surface D(R), and since X has only isolated singularities, it follows that D(R) is non-singular along the general curve C.

The X and D(R) are non-singular along $C \cong \mathbf{P}^1$ and the curve C is non-singular. Then the canonical class $K_C = (K_X + D(R)) | C$ where both divisors K_X and D(R) are Cartier divisors on X along C. It follows that $-2 = \deg K_C = K_X \cdot C + D(R) \cdot C$, where the both numbers $K_X \cdot C$ and $D(R) \cdot C$ are negative integers. Then $D(R) \cdot C = K_X \cdot C = -1$.

If X has terminal singularities and $R \cdot K_X < 0$, then Y has terminal singularities too (see, for example, [Ka1]). Moreover, 3-dimensional terminal singularities are isolated. From (1), (2), the last statement of the Proposition follows.

In connection with Proposition 2.3.2, see also [Mo2, 1.3 and 2.3.2] and [I, Lemma 1].

Let R_1 , R_2 are two extremal rays of the type (I) or (II). They are joined if $D(R_1) \cap D(R_2) \neq 0$. It defines *connected components* of a set of extremal rays of the type (I) or (II).

We recall (see Chapter I) that a set $\mathscr E$ of extremal rays is called *extremal* if it is contained in a face of $\overline{NE}(X)$. We say that $\mathscr E$ is *extremal of Kodaira dimension 3* if it is contained in a face of numerical Kodaira dimension 3 of $\overline{NE}(X)$.

We prove the following classification result.

Theorem 2.3.3. Let $\mathscr{E} = \{R_1, R_2, ..., R_n\}$ be an extremal set of extremal rays of the type (I) or (II). Suppose that every extremal ray of \mathscr{E} of the type (II) is simple. Assume that \mathscr{E} is contained in a contractible face with Kodaira dimension 3 of $\overline{NE}(X)$. (Thus, \mathscr{E} is extremal of Kodaira dimension 3.) Then every connected component of \mathscr{E} has a type \mathfrak{A}_1 , \mathfrak{B}_2 , \mathfrak{C}_m or \mathfrak{D}_2 below (see figure 1).

- (\mathfrak{A}_1) One extremal ray of the type (I).
- (\mathfrak{B}_2) Two different extremal rays S_1 , S_2 of the type (II) such that their divisors $D(S_1) = D(S_2)$ coincided.
- (\mathfrak{G}_m) $m \ge 1$ extremal rays S_1 , S_2 , ..., S_m of the type (II) such that their divisors $D(S_2)$, $D(S_3)$, ..., $D(S_m)$ do not intersect one another, and $S_1 \cdot D(S_i) = 0$ and $S_i \cdot D(S_1) > 0$ for i = 2, ..., m.
 - (\mathfrak{D}_2) Two extremal rays S_1 , S_2 , where S_1 is of the type (II) and S_2 of the

type (I), $S_1 \cdot D(S_2) > 0$ and $S_2 \cdot D(S_1) > 0$. Either $S_1 \cdot (b_1 D(S_1) + b_2 D(S_2)) < 0$ or $S_2 \cdot (b_1 D(S_1) + b_2 D(S_2)) < 0$ for any b_1 , b_2 such that $b_1 \ge 0$, $b_2 \ge 0$ and one of b_1 , b_2 is not zero.

The following inverse statement is true: If $\mathscr{E} = \{R_1, R_2, ..., R_n\}$ is a connected set of extremal rays of the type (I) or (II) and \mathscr{E} has a type $\mathfrak{U}_1, \mathfrak{V}_2, \mathfrak{C}_m$ or \mathfrak{D}_2 above, then \mathscr{E} generates a simplex face $R_1 + \cdots + R_n$ of the dimension n and numerical Kodaira dimension 3 of $\overline{NE}(X)$. In particular, extremal rays of the set \mathscr{E} are linearly independent.

Proof. Let us prove the first statement. We can suppose that \mathscr{E} is connected. We have to prove that \mathscr{E} has the type \mathfrak{U}_1 , \mathfrak{V}_2 , \mathfrak{C}_m or \mathfrak{D}_2 . If n=1, this is obvious.

Let n=2. From Lemma 2.2.2, it follows that one of the rays R_1 , R_2 has the type (II). Let R_1 have the type (II) and R_2 the type (I). Since $D(R_1) \cap D(R_2) \neq \emptyset$, evidently $R_2 \cdot D(R_1) > 0$. If $R_1 \cdot D(R_2) = 0$, then the curve $D(R_1) \cap D(R_2)$ belongs to the ray R_1 . It follows that the rays R_1 and R_2 contain the same curve. We get a contradiction. Thus, $R_1 \cdot D(R_2) > 0$. The rays R_1 , R_2 belong to a contractible face of Kodaira dimension 3 of Mori polyhedron. Let f be a contraction of this face. By the Lemma 2.2.3, f contracts the divisors $D(R_1)$, $D(R_2)$ to the same point. By Proposition 2.2.6, there exist positive a_1 , a_2 such that $R_1 \cdot (a_1D(R_1) + a_2D(R_2)) < 0$ and $R_2 \cdot (a_1D(R_1) + a_2D(R_2)) < 0$. Now suppose that for some $b_1 > 0$ and $b_2 > 0$ the inequalities $R_1 \cdot (b_1D(R_1) + b_2D(R_2)) \ge 0$ and $R_2 \cdot (b_1D(R_1) + b_2D(R_2)) \ge 0$ hold. There exists $\lambda > 0$ such that $\lambda b_1 \le a_1$, $\lambda b_2 \le a_2$ and one of these inequalities is an equality. For example, let $\lambda b_1 = a_1$. Then

 $R_1 \cdot (a_1 D(R_1) + a_2 D(R_2)) = R_1 \cdot \lambda (b_1 D(R_1) + b_2 D(R_2)) + R_1 \cdot (a_2 - \lambda b_2) D(R_2) \ge 0$. We get a contradiction. It proves that in this case & has the type \mathfrak{D}_2 .

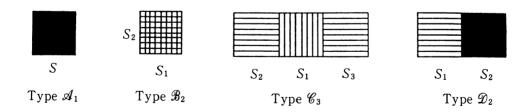


Figure 1.

Now assume that both rays R_1 , R_2 have the type (II). Since the rays R_1 , R_2 are simple, from Lemma 2.2.7, it follows that either $R_1 \cdot D(R_2) = 0$ or $R_2 \cdot D(R_1) = 0$. If both these equalities hold, the rays R_1 , R_2 have a common curve. We get a contradiction. Thus, in this case, $\mathscr E$ has the type $\mathfrak C_2$.

Let n=3. Every proper subset of \mathscr{E} has connected components of types

 \mathfrak{A}_1 , \mathfrak{B}_2 , \mathfrak{C}_m or \mathfrak{D}_2 . Using Lemmas 2.2.2-2.2.5, one can see very easily that either \mathscr{E} has the type \mathfrak{C}_3 or we have the following case:

The rays R_1 , R_2 , R_3 have the type (II), every two elements subset of $\mathscr E$ has the type $\mathfrak E_2$ and we can find a numeration such that $R_1 \cdot D(R_2) > 0$, $R_2 \cdot D(R_3) > 0$, $R_3 \cdot D(R_1) > 0$. Let f be a contraction of the face γ . By Lemma 2.2.3, f contracts the divisoras $D(R_1)$, $D(R_2)$, $D(R_3)$ to a one point. By Proposition 2.2.6, there are positive a_1 , a_2 , a_3 such that

$$R_i \cdot (a_1 D(R_1) + a_2 D(R_2) + a_3 D(R_3)) < 0$$

for i=1, 2, 3. On the other hand, from simplicity of the rays R_1 , R_2 , R_3 , it follows that

$$R_{i} \cdot (D(R_{1}) + D(R_{2}) + D(R_{3})) \ge 0$$
.

Let $a_1 = \min \{a_1, a_2, a_3\}$. From the last inequality,

$$R_1 \cdot (a_1 D(R_1) + a_2 D(R_2) + a_3 D(R_3)) =$$

$$= R_1 \cdot a_1 (D(R_1) + D(R_2) + D(R_3)) + R_1 ((a_2 - a_1) D(R_2) + (a_3 - a_1) D(R_3)) \ge 0.$$

We get a contradiction with the inequality above.

Let n>3. We have proven that every two or three elements subset of \mathscr{E} has connected components of types \mathfrak{U}_1 , \mathfrak{B}_2 , \mathfrak{C}_m or \mathfrak{D}_2 . It follows very easily that \mathscr{E} has the type \mathfrak{C}_n (we suppose that \mathscr{E} is connected).

Let us prove the inverse statement. For the type \mathfrak{A}_1 this is obvious.

Let & have the type \mathfrak{B}_2 . Since the rays S_1 , S_2 are extremal of Kodaira dimension 3, there are *nef* elements H_1 , H_2 such that $H_1 \cdot S_1 = H_2 \cdot S_2 = 0$, $H_1^3 > 0$, $H_2^3 > 0$. Let $0 \neq C_1 \subseteq S_1$ and $0 \neq C_2 \subseteq S_2$. Let D be a divisor of the rays S_1 and S_2 . Let us consider a map

(3.1)
$$(H_1, H_2) \rightarrow H = (-D \cdot C_2) (H_2 \cdot C_1) H_1 + + (-D \cdot C_1) (H_1 \cdot C_2) H_2 + (H_2 \cdot C_1) (H_1 \cdot C_2) D .$$

For a fixed H_1 , we get a linear map $H_2 \rightarrow H$ of the set of *nef* elements H_2 orthogonal to S_2 into the set of *nef* elements H orthogonal to S_1 and S_2 . This map has a one dimensional kernel generated by $(-D \cdot C_2) H_1 + (H_1 \cdot C_2) D$. It follows that $S_1 + S_2$ is a 2-dimensional face of $\overline{NE}(X)$.

For a general *nef* element $H = a_1H_1 + a_2H_2 + bD$ orthogonal to this face, where a_1 , a_2 , b > 0, we have $H^3 = (a_1H_1 + a_2H_2 + bD)^3 \ge (a_1H_1 + a_2H_2 + bD)^2 \cdot (a_1H_1 + a_2H_2) = (a_1H_1 + a_2H_2 + bD) \cdot (a_1H_1 + a_2H_2 + bD) \cdot (a_1H_1 + a_2H_2) \ge (a_1H_1 + a_2H_2)^2 \cdot (a_1H_1 + a_2H_2 + bD) \ge (a_1H_1 + a_2H_2)^3 > 0$, since $a_1H_1 + a_2H_2 + bD$ and $a_1H_1 + a_2H_2$ are *nef*. It follows that the face $S_1 + S_2$ is of the numerical Kodaira dimension 3.

Let \mathscr{E} have the type \mathfrak{C}_m . Let H be a *nef* element orthogonal to the ray S_1 . Let $0 \neq C_i \subseteq S_i$. Let us consider a map

$$(3.2) H \rightarrow H' = H + \sum_{i=2}^{m} \left(-\left(H \cdot C_{i}\right) / \left(C_{i} \cdot D\left(S_{i}\right)\right)\right) D\left(S_{i}\right) .$$

It is a linear map of the set of *nef* elements H orthogonal to S_1 into the set of *nef* elements H' orthogonal to the rays S_1 , S_2 , ..., S_m . The kernel of the map

has the dimension m-1. It follows that the rays S_1 , S_2 , ..., S_m belong to face of $\overline{NE}(X)$ of a dimension $\leq m$. On the other hand, multiplying the divisors $D(S_1)$, ..., $D(S_m)$ by rays S_1 , ..., S_m , one can see very easily that the rays S_1 , ..., S_m are linearly independent. Thus, they generate an m-dimensional face of $\overline{NE}(X)$. Let us show that this face is $S_1 + S_2 + \cdots + S_m$. To prove this, we show that every m-1 subset of $\mathscr E$ is contained in a face of $\overline{NE}(X)$ of a dimension $\leq m-1$.

If this subset contains the ray S_1 , this subset has the type \mathfrak{C}_{m-1} . By induction, we can suppose that this subset belongs to a face of $\overline{NE}(X)$ of dimension m-1. Let us consider the subset $\{S_2, S_3, ..., S_m\}$. Let H be an ample element of X. For the element H, the map (3.2) gives an element H' which is orthogonal to the rays S_2 , ..., S_m , but is not orthogonal to the ray S_1 . It follows that the set $\{S_2, ..., S_m\}$ belongs to a face of the Mori polyhedron of the dimension m. Like the above, one can see that for a general m orthogonal to m, the element m has m has m or m defined as m defined

Let \mathscr{E} have the type \mathfrak{D}_2 . Let H be a *nef* element orthogonal to the ray S_2 . Let $0 \neq C_i \in S_i$. Let us consider a map

$$(3.3) H \rightarrow H' = H + \frac{(H \cdot C_1) ((-D(S_2) \cdot C_2) D(S_1) + (D(S_1) \cdot C_2) D(S_2))}{(D(S_2) \cdot C_2) (D(S_1) \cdot C_1) - (D(S_1) \cdot C_2) (D(S_2) \cdot C_1)}.$$

Evidently, $C_2 \cdot ((-D(S_2) \cdot C_2)D(S_1) + (D(S_1) \cdot C_2)D(S_2)) = 0$. From this equality and the inequality of the definition of the system \mathfrak{D}_2 , it follows that $C_1 \cdot ((-D(S_2) \cdot C_2)D(S_1) + (D(S_1) \cdot C_2)D(S_2)) < 0$. Thus, the denominator of the formula (3.3) is positive. Then (3.3) is a linear map of the set of *nef* elements H orthogonal to the ray S_2 into the set of *nef* elements H' orthogonal to the rays S_1 , S_2 . Evidently, the map has a one dimensional kernel. Thus, the rays S_1 and S_2 generate a two dimensional face $S_1 + S_2$ of Mori polyhedron. As above, for a general element H orthogonal to S_2 we have $(H')^3 \ge H^3 > 0$.

Corollary 2.3.4. Let $\mathscr{E} = \{R_1, R_2, ..., R_n\}$ be an extremal set of extremal rays of the type (I) or (II) and every extremal ray of \mathscr{E} of the type (II) is simple. Assume that \mathscr{E} is contained in a contractible face with Kodaira dimension 3 of the $\overline{NE}(X)$. Let $m_1 \ge 0$, $m_2 \ge 0$, ..., $m_n \ge 0$ and at least one of m_1 , ..., m_n is positive.

Then there exists i, $1 \le i \le n$, such that

$$R_i \cdot (m_1 D(R_1) + \cdots + m_n D(R_n)) < 0$$
.

Thus, the condition (ii) of Chapter I is valid.

Proof. It is sufficient to prove this statement for the connected \mathscr{E} . For every type \mathfrak{U}_1 , \mathfrak{V}_2 , \mathfrak{C}_m and \mathfrak{D}_2 of the Theorem 2.3.3, one can prove it very easily.

Unfortunately, in general, the inverse statement of the Theorem 2.3.3 holds only for connected extremal sets \mathcal{E} . We will give two cases where it is true for a non-connected \mathcal{E} .

Definition 2.3.5. A threefold X is called *strongly projective* (respectively *very strongly projective*) if the following statement holds: a set $\{Q_1, ..., Q_n\}$ of extremal rays of the type (II) is extremal of Kodaira dimension 3 (respectively generates the simplex face $Q_1 + \cdots + Q_n$ of $\overline{NE}(X)$ of dimension n and Kodaira dimension 3) if its divisors $D(Q_1)$, ..., $D(Q_n)$ do not intersect one another.

Theorem 2.3.6. Let $\mathscr{E} = \{R_1, R_2, ..., R_n\}$ be a set of extremal rays of the type (I) or (II) such that every connected component of \mathscr{E} has the type \mathfrak{U}_1 , \mathfrak{V}_2 , \mathfrak{C}_m or \mathfrak{D}_2 . Then:

- (1) \mathscr{E} is extremal of numerical Kodaira dimension 3 if and only if the same is true for any subset of \mathscr{E} containing only extremal rays of the type (II) whose divisors do not intersect one another. In particular, it holds if X is strongly projective.
- (2) & generates a simplex face $R_1 + \cdots + R_n$ with numerical Kodaira dimension 3 of the Mori polyhedron if and only if the same is true for any subset of & containing only extremal rays of the type (II) whose divisors do not intersect one another. In particular, it is true if X is very strongly projective.

Proof. Let us prove (1). Only the inverse statement is non-trivial. We prove it by induction on n. For n=1, the statement is obviously true.

Assume that some connected component of $\mathscr E$ has the type $\mathfrak A_1$. Suppose that this component contains the ray R_1 . By our induction hypothesis, there exists a nef element H such that $H^3 > 0$ and $H \cdot R_i = 0$ if i > 1. Then there exists $k \ge 0$, such that $H' = H + kD(R_1)$ is nef and $H' \cdot \mathscr E = 0$. As above, one can prove that $(H')^3 \ge H^3 > 0$.

Assume that some connected component of $\mathscr E$ has the type $\mathfrak B_2$. Suppose that this component contains the rays R_1 , R_2 and $D(R_1) = D(R_2) = D$. Then, by induction, there are nef elements H_1 and H_2 such that $H_1^3 > 0$, $H_2^3 > 0$ and $H_1 \cdot \{R_1, R_3, ..., R_n\} = 0$, $H_2 \cdot \{R_2, R_3, ..., R_n\} = 0$. As for the proof of the inverse statement of the Theorem 2.3.3 in the case $\mathfrak B_2$, there are $k_1 \ge 0$, $k_2 \ge 0$, $k_3 \ge 0$ such that the element $H = k_1 H_1 + k_2 H_2 + k_3 D$ is nef, $H \cdot \mathscr E = 0$ and $H^3 > 0$.

Assume that some connected component of $\mathscr E$ has the type $\mathfrak E_m$, m>1. We use the notation of Theorem 2.3.3 for this connected component. Let this be $|S_1, S_2, ..., S_m|$. By induction, there exists a nef element H such that H is orthogonal to $\mathscr E-|S_2, ..., S_m|$ and $H^3>0$. As for the proof of the inverse statement of the Theorem 2.3.3 in the case $\mathfrak E_m$, there are $k_2\geq 0$, ..., $k_m\geq 0$ such that $H'=H+k_2D(S_2)+\cdots+k_mD(S_m)$ is nef, $H'\cdot \mathscr E=0$ and $(H')^3\geq H^3>0$.

Assume that some connected component of $\mathscr E$ has the type $\mathfrak D_2$. We use the notation of Theorem 2.3.3 for this connected component. Let this be $\{S_1, S_2\}$. By induction, there exists a nef element H such that $H^3 > 0$ and H is orthogonal to $\mathscr E - \{S_1\}$. As for Theorem 2.3.3, there are $k_1 \ge 0$, $k_2 \ge 0$ such that $H' = H + k_1 D(S_1) + k_2 D(S_2)$ is nef, $H' \cdot \mathscr E = 0$ and $(H')^3 \ge H^3 > 0$.

If every connected component of $\mathscr E$ has the type $\mathfrak C_1$, then the statement

holds by the condition of the theorem.

Let us prove (2). Only the inverse statement is non-trivial. We prove it by induction on n. For n=1 the statement is true. It is sufficient to prove that $\mathscr E$ is contained in a face of a dimension $\le n$ of Mori polyhedron because, by our induction hypothesis, any its n-1 elements subset generates a simplex face of the dimension n-1 of Mori polyhedron.

Assume that some connected component of \mathscr{E} has the type \mathfrak{A}_1 . Suppose that the ray R_1 belongs to this component and $0 \neq C_1 \subseteq R_1$. Let us consider the map

$$H \rightarrow H' = H' + \left(\left(H \cdot C_1 \right) / \left(-D \left(R_1 \right) \cdot C_1 \right) \right) D \left(R_1 \right)$$
.

of the set of nef elements H orthogonal to the set $\{R_2, ..., R_n\}$ into the set of nef elements H' orthogonal to the \mathscr{E} . It is the linear map with one dimensional kernel. Since, by the induction, the set $\{R_2, ..., R_n\}$ is contained in a face of Mori polyhedron of the dimension n-1, it follows that \mathscr{E} is contained in a face of the dimension n.

If \mathscr{E} has a connected component of the type \mathfrak{B}_2 , \mathfrak{C}_m , m > 1, or \mathfrak{D}_2 , the proof is the same if one uses the maps (3.1), (3.2) and (3.3) above.

If all connected components of \mathscr{E} have the type \mathfrak{C}_1 , the statement holds by the condition.

Remark 2.3.7. Like the statement (1) of Theorem 2.3.6, one can prove that a set \mathscr{E} of extremal rays with connected components of the type \mathfrak{U}_1 , \mathfrak{V}_2 , \mathfrak{C}_m or \mathfrak{D}_2 is extremal if and only if the same is true for any subset of \mathscr{E} containing only extremal rays of the type (II) whose divisors do not intersect one another.

The next proposition is simple but important. To simplify the notation, we say that for a fixed $a_1, ..., a_n$, we have a linear dependence condition

$$a_1R_1+\cdots+a_nR_n=0$$

between extremal rays R_1 , ..., R_n if there exist non-zero $C_i \subseteq R_i$ such that $a_1C_1 + \cdots + a_nC_n = 0$.

Proposition 2.3.8. Assume that a set $\mathscr{E} = \{R_1, R_2, ..., R_m\}$ of extremal rays has connected components of the type \mathfrak{U}_1 , \mathfrak{B}_2 , \mathfrak{C}_m or \mathfrak{D}_2 and there exists a linear dependence condition $a_1R_1 + a_2R_2 + \cdots + a_mR_m = 0$ with all $a_i \neq 0$. Then all connected components of \mathscr{E} have the type \mathfrak{B}_2 . Let these components be \mathfrak{B}^1 , ..., \mathfrak{B}^t . Then $t \geq 2$, and we can choose a numeration such that $\mathfrak{B}^i = \{R_{i1}, R_{i2}\}$ and the linear dependence has a form

$$a_{11}R_{11} + a_{21}R_{21} + \dots + a_{t1}R_{t1} = a_{12}R_{12} + a_{22}R_{22} + \dots + a_{t2}R_{t2} \ .$$
 where all $a_{ij} > 0$.

Proof. Let us multiply the divisors $D(R_1)$, ..., $D(R_m)$ by the equality $a_1R_1 + a_2R_2 + \cdots + a_mR_m = 0$. Then we get that $a_k = 0$ if the ray R_k belongs to a connected component of the type \mathfrak{U}_1 , \mathfrak{C}_m or \mathfrak{D}_2 . Thus, all connected components of \mathscr{E} have the type \mathfrak{V}_2 . Let these components be

$$\mathfrak{B}^1 = \{R_{11}, R_{12}\}, \ \mathfrak{B}^2 = \{R_{21}, R_{22}\}, ..., \ \mathfrak{B}^t = \{R_{t1}, R_{t2}\}.$$

Obviously, $t \ge 2$, and we can rewrite the linear dependence as

 $a_{11}R_{11} + a_{12}R_{12} + a_{21}R_{21} + a_{22}R_{22} + \dots + a_{t1}R_{t1} + a_{t2}R_{t2} = 0$,

where all $a_{ij} \neq 0$. Multiplying all divisors $D(R_{ij})$ by this equation and using inequalities $R_{ij} \cdot D(R_{ij}) < 0$, we get the last statement of the proposition.

4. A classification of E-sets of extremal rays of type (I) or (II)

As in the above, we suppose that X is a projective normal 3-fold with \mathbf{Q} -factorial singularities.

We recall that a set \mathscr{L} of extremal rays is called an E-set if it is not extremal but any proper subset of \mathscr{L} is extremal (it is contained in a face of $\overline{NE}(X)$). Thus, an E-set is a minimal non-extremal set of extremal rays.

- **Theorem 2.4.1.** Let \mathcal{L} be an E-set of extremal rays of the type (I) or (II). Suppose that every ray of the type (II) of \mathcal{L} is simple and every proper subset of \mathcal{L} is contained in a contractible face of Kodaira dimension 3 of Mori polyhedron. Then we have one of the following cases:
- (a) \mathcal{L} is connected and $\mathcal{L} = \{R_1, R_2, R_3\}$, where any R_i has the type (II) and each of 2-element subsets $\{R_1, R_2\}$, $\{R_2, R_3\}$, $\{R_3, R_1\}$ of \mathcal{L} has the type \mathfrak{C}_2 . Here $R_1 \cdot D(R_2) > 0$, $R_2 \cdot D(R_3) > 0$, $R_3 \cdot D(R_1) > 0$ but $R_2 \cdot D(R_1) = R_3 \cdot D(R_2) = R_1 \cdot D(R_3) = 0$. The divisor $D(\mathcal{L}) = D(R_1) + D(R_2) + D(R_3)$ is nef.
- (b) \mathcal{L} is connected and $\mathcal{L} = \{R_1, R_2\}$, where at least one of the rays R_1, R_2 has the type (II). There are positive m_1 , m_2 such that $R \cdot (m_1D(R_1) + m_2D(R_2)) \geq 0$ for any extremal ray R of the type (I) or simple extremal ray of type (II) on X. If the divisor $m_1D(R_1) + m_2D(R_2)$ is not nef, both the extremal rays R_1 , R_2 have the type (II).
- (c) \mathcal{L} is connected and $\mathcal{L} = \{R_1, R_2\}$ where both R_1 , and R_2 have the type (II) and there exists a simple extremal ray S_1 of the type (II) such that the rays R_1 , S_1 define the extremal set of the type \mathfrak{B}_2 (it means that $S_1 \neq R_1$ but the divisors $D(S_1) = D(R_1)$) and the rays S_1 , R_2 define the extremal set of the type \mathfrak{C}_2 , where $S_1 \cdot D(R_2) = 0$ but $R_2 \cdot D(S_1) > 0$. Here there do not exist positive m_1 , m_2 such that the divisor $m_1D(R_1) + m_2D(R_2)$ is nef, since evidently $S_1 \cdot (m_1D(R_1) + m_2D(R_2)) < 0$. See figure 2 below.
- (d) $\mathcal{L} = \{R_1, ..., R_k\}$ where $k \geq 2$, all rays $R_1, ..., R_k$ have the type (II) and the divisors $D(R_1), ..., D(R_k)$ do not intersect one another. Any proper subset of \mathcal{L} is contained in a contractible face of Kodaira dimension 3 of Mori polyhedron but \mathcal{L} is not contained in a face of Mori polyhedron.

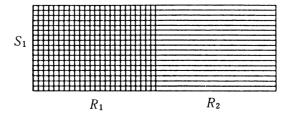


Figure 2.

Proof. Let $\mathcal{L} = \{R_1, ..., R_n\}$ be an *E*-set of extremal rays satisfying the conditions of the theorem. Let us consider two cases.

The case 1. Let \mathcal{L} is not connected. Then every connected component of \mathcal{L} is extremal and, by Theorem 2.3.3, it has the type \mathfrak{U}_1 , \mathfrak{V}_2 , \mathfrak{C}_m or \mathfrak{D}_2 . If some of these components does not have the type \mathfrak{C}_1 , then, by the statement (1) of Theorem 2.3.6, \mathcal{L} is extremal and we get a contradiction. Thus, we get the case (d) of the theorem.

The case 2. Let $\mathcal{L} = \{R_1, ..., R_n\}$ is connected. Let $n \geq 4$. By Theorem 2.3.3, any proper subset of \mathcal{L} has connected components of the type \mathfrak{U}_1 , \mathfrak{B}_2 , \mathfrak{C}_m or \mathfrak{D}_2 . Like for the proof of Theorem 2.3.3, it follows that \mathcal{L} has the type \mathfrak{C}_n . By Theorem 2.3.3, then \mathcal{L} is extremal. We get a contradiction.

Let n=3. Then, like for the proof of Theorem 2.3.3, we get that \mathcal{L} has the type (a).

Let n=2 and $\mathcal{L}=\{R_1, R_2\}$. If both rays R_1 , R_2 have the type (I), then, by Lemma 2.2.2, \mathcal{L} is not connected and we get a contradiction.

Let R_1 has the type (I) and R_2 has the type (II). Since the set \mathcal{L} is not extremal, by Theorem 2.3.3, there are positive m_1 , m_2 such that $R_1 \cdot (m_1 D(R_1) + m_2 D(R_2)) \ge 0$ and $R_2 \cdot (m_1 D(R_1) + m_2 D(R_2)) \ge 0$. By Lemma 2.2.3, it follows that $C \cdot (m_1 D(R_1) + m_2 D(R_2)) \ge 0$ if the curve C is contained in the $D(R_1) \cup D(R_2)$. If C is not contained in $D(R_1) \cup D(R_2)$, then obviously $C \cdot (m_1 D(R_1) + m_2 D(R_2)) \ge 0$. It follows, that the divisor $m_1 D(R_1) + m_2 D(R_2)$ is nef. Thus, we get the case (b).

Let both rays R_1 , R_2 have the type (II). If $D(R_1) = D(R_2)$, then we get an extremal set $\{R_1, R_2\}$ by Theorem 2.3.3. Thus, the divisors $D(R_1)$ and $D(R_2)$ are different. By Lemma 2.2.1, the curve $D(R_1) \cap D(R_2)$ does not have an irreducible component which belongs to both rays R_1 and R_2 . Since rays R_1 , R_2 are simple, it follows that $R_1 \cdot (D(R_1) + D(R_2)) \ge 0$ and $R_2 \cdot (D(R_1) + D(R_2)) \ge 0$. Let R be an extremal ray of type (I) or simple extremal ray of the type (II). If the divisor D(R) does not coincide with the divisor $D(R_1)$ or $D(R_2)$, then obviously $R \cdot (D(R_1) + D(R_2)) \ge 0$. Thus, if there does not exist an extremal ray R which has the same divisor as the ray R_1 or R_2 , we get the case (b).

Assume that $D(R) = D(R_1)$. Then, by Lemma 2.2.5, the ray R has the type (II), too. If $R \cdot D(R_2) = 0$, we get the case (c) of the theorem where $S_1 = R$. If $R \cdot D(R_2) > 0$, then $R \cdot (D(R_1) + D(R_2)) \ge 0$ since the ray R is simple. Then we get the case (b) of the theorem.

5. An application of the diagram method to Fano 3-folds with terminal singularities

We restrict ourselves to considering Fano 3-folds with \mathbf{Q} -factorial terminal singularities, but it is possible to formulate and prove corresponding results for a negative part of Mori cone of 3-dimensional variety with \mathbf{Q} -factorial terminal singularities like in [N7].

We recall that an algebraic 3-fold X over \mathbf{C} with \mathbf{Q} -factorial singularities is called Fano if the anticanonical class $-K_X$ is ample. By results of Kawamata [Ka1] and Shokurov [Sh], any face of $\overline{NE}(X)$ is contractible and $\overline{NE}(X)$ is generated by a finite set of extremal rays if X is a Fano 3-fold with terminal \mathbf{Q} -factorial singularities.

5.1. Preliminary results. We need the following

Lemma 2.5.1 Let X be a Fano 3-fold with \mathbb{Q} -factorial terminal singularities. Let $\mathscr{E} = \{R_1, ..., R_n\}$ be a set of n extremal rays of the type (II) and with disjoint divisors $D(R_1)$, ..., $D(R_n)$ on X. (Thus, \mathscr{E} has the type $n\mathfrak{E}_1$).

If we suppose that the set $\mathscr E$ is not extremal, then there exists a small extremal ray S and i, $1 \le i \le n$, such that $S \cdot (-K_X + D(R_i)) < 0$ and $S \cdot D(R_j) = 0$ if $j \ne i$.

It follows that any curve of the ray S belongs to the divisor $D(R_i)$.

Proof. By Proposition 2.3.2, the divisor $H = -K_X + D(R_1) + \cdots + D(R_n)$ is orthogonal to \mathscr{E} . Besides, H is *nef* and $H^3 > 0$ if there does not exist a small extremal ray S with the property above. Then, \mathscr{E} is extremal of Kodaira dimension 3.

Definition 2.5.2. A set $\{R, S\}$ of extremal rays has the type \mathfrak{C}_2 if the ray R has type (II), the extremal ray S is small and $S \cdot D(R) < 0$. (See Figure 3.)

Thus, by Lemma 2.5.1, the set R_1 , ..., R_n , S of extremal rays contains a subset of the type \mathfrak{C}_2 .

By Proposition 2.3.2, any extremal ray of X of the type (II) is simple, and by results of Sections 3 and 4 we get a classification of extremal sets and E-sets of extremal rays of the type (I) and (II) on X.

We have the following general theorem.

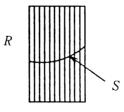


Figure 3.

Theorem 2.5.3. Let X be a Fano 3-fold with \mathbb{Q} -factorial terminal singularities. Let α be a face of $\overline{NE}(X)$. Then we have the following possibilities:

- (1) There exists a small extremal ray S such that $\alpha + S$ is contained in a face of $\overline{NE}(X)$ of Kodaira dimension 3.
- (2) There are extremal rays R_1 , R_2 of the type (II) and small extremal ray S such that $\alpha + R_1$ and $\alpha + R_2$ are contained in faces of $\overline{NE}(X)$ of Kodaira dimension

3, the ray R_2 does not belong to α , and one of the sets $\{R_1, S\}$ or $\{R_2, S\}$ has the type \mathfrak{C}_2 .

- (3) The face α is contained in a face of NE(X) of Kodaira dimension 1 or 2.
- (4) There exists an E-set $\mathcal{L} = \{R_1, R_2\}$ such that $R_1 \subset \alpha$, $R_2 \subset \alpha$, but $\alpha + R_1$ and $\alpha + R_1$ are contained in faces of $\overline{NE}(X)$ of Kodaira dimension 3. The \mathcal{L} satisfies the condition (c) of Theorem 2.4.1: Thus, both extremal rays R_1 , R_2 have the type (II) $R_1 \cdot D(R_2) > 0$ and $R_2 \cdot D(R_1) > 0$ and there exists an extremal ray R'_1 of the type (II) such that $D(R_1) = D(R'_1)$ and $R'_1 \cdot D(R_2) = 0$.
- (5) There are extremal rays R_1 , ..., R_n of the type (II) such that any of them does not belong to α , $\alpha + R_1 + \cdots + R_n$ is contained in face of $\overline{NE}(X)$ of Kodaira dimension 3 and

 $\dim \alpha + R_1 + \cdots + R_n < \dim \alpha + n$.

(6) $\dim N_1(X) - \dim \alpha \leq 12$.

Proof. Let us consider the face $\gamma = \alpha^{\perp}$ of $\mathcal{M}(X)$ and apply Theorem 1.2 to this face γ . We have $\dim \gamma = \dim N_1(X) - 1 - \dim \alpha$.

Assume that α does not satisfy the conditions (1), (3) and (5). Then $\Re(\gamma)$ contains extremal rays of the type (I) or (II) only and $\mathscr{M}(X)$ is closed and simple in the face γ . By Proposition 2.3.2 and Theorem 2.3.3, any extremal subset \mathscr{E} of $\Re(\gamma)$ has connected components of the types \mathfrak{U}_1 , \mathfrak{V}_2 , \mathfrak{C}_n or \mathfrak{D}_2 . By Corollary 2.3.4, the condition (ii) is valid for extremal subsets of $R(\gamma)$. Let $\mathscr{L} \subseteq \Re(\gamma)$ be a E-set. Assume that at least two elements R_1 , $R_2 \subseteq \mathscr{L}$ don't belong to $\Re(\gamma^1)$ and for any proper subset $\mathscr{L}' \subseteq \mathscr{L}$ we have that $\mathscr{L}' \cup \Re(\gamma^1)$ is extremal. Let us apply Theorem 2.4.1 to \mathscr{L} .

Assume that \mathscr{L} has the type (d). By Lemma 2.5.1, one of extremal rays R_1 of \mathscr{L} together with some small extremal ray S define a set of the type \mathfrak{C}_2 . Since $|R_1| \subset \mathscr{L}$ is a proper subset of \mathscr{L} , the $\mathscr{R}(\gamma^\perp) \cup |R_1|$ is extremal. Or $\alpha + R_1$ is contained in a face of $\overline{NE}(X)$. Since \mathscr{L} has at least 2 elements which do not belong to $\mathscr{R}(\gamma^\perp)$, there exists another extremal ray R_2 of \mathscr{L} which does not belong to $\mathscr{R}(\gamma^\perp)$. Like the above, $\alpha + R_2$ is contained in a face of $\overline{NE}(X)$ of Kodaira dimension 3. By definition of the case (d), both extremal rays R_1 , R_2 have the type (II). Thus, we get the case (2) of the theorem.

Assume that $\mathcal L$ has the type (c). Then we get the case (4) of the theorem.

Assume that $\mathcal{L} = \{R_1, R_2\}$ has the type (b). Suppose that the divisor $m_1D(R_1) + m_2D(R_2)$ is not nef (see the case (b) of Theorem 2.4.1). Then there exists a small extremal ray S such that $S \cdot (m_1D(R_1) + m_2D(R_2)) < 0$. It follows that one of the sets $\{R_1, S\}$ or $\{R_2, S\}$ has the type \mathfrak{C}_2 . Thus, we get the case (2).

Assume that $\mathcal{L} = \{R_1, R_2, R_3\}$ has the type (a). Then the divisor $D(R_1) + D(R_2) + D(R_3)$ is *nef*.

Thus, if we additionally exclude the cases (2) and (4), then all conditions

of Theorem 1.2 are satisfied. By Theorems 2.4.1 and 2.3.3, we can take d=2, $C_1=1$ and $C_2=0$. (See Figure 4 for graphs $G(\mathscr{E})$ corresponding to extremal sets \mathscr{E} of the types \mathfrak{U}_1 , \mathfrak{V}_2 , \mathfrak{C}_m and \mathfrak{D}_2 .) Thus, by Theorem 1.2, $\dim \gamma < 34/3$. It follows that $\dim N_1(X) - \dim \alpha \leq 12$.

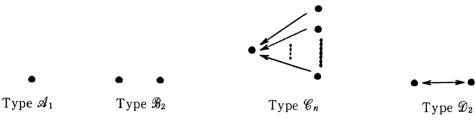


Figure 4.

5.2. General properties of configurations of extremal rays of the type \mathfrak{B}_2 . Let $\{R_{11}, R_{12}\}$ be a set of extremal rays of the type \mathfrak{B}_2 . By Theorem 2.3.3, they define a 2-dimensional face $R_{11} + R_{12}$ of $\overline{NE}(X)$. Let $\{R_{21}, R_{22}\}$ be another set of extremal rays of the type \mathfrak{B}_2 . Sinse two different 2-dimensional faces of $\overline{NE}(X)$ may have only a common extremal ray, the divisors $D(R_{11}) = D(R_{12})$ and $D(R_{21}) = D(R_{22})$ don't have a common point. There exists the maximal set $\{R_{11}, R_{12}\}$, $\{R_{21}, R_{22}\}$, ..., $\{R_{n1}, R_{n2}\}$ of pairs of extremal rays of the type \mathfrak{B}_2 .

Lemma 2.5.4. Any t pairs $\{R_{11}, R_{12}\}$, $\{R_{21}, R_{22}\}$, ..., $\{R_{t1}, R_{t2}\}$ of extremal rays of the type \mathfrak{B}_2 generate a face

$$\sum_{i=1}^{t} \sum_{i=1}^{2} R_{ij} \subset \overline{NE}(X) \subset N_1(X)$$

of the Kodaira dimension 3 of NE(X).

Proof. This face is orthogonal to the nef divisor $H = -K_X + D(R_{11}) + \cdots + D(R_{11})$ with $H^3 \ge (-K_X)^3 > 0$.

Lemma 2.5.5. Under the above notation, there exists a changing of order of pairs of extremal rays R_{i1} , R_{i2} such that $R_{11} + \cdots + R_{t1}$ is a simplex face of $\overline{NE}(X)$.

Proof. For t=1, it is obvious. Let us suppose that $\theta=R_{11}+\cdots+R_{(t-1)1}$ is a simplex face of the face

$$\alpha_{t-1} = \sum_{i=1}^{t-1} \sum_{j=1}^{2} R_{ij} .$$

The face

$$\alpha_t = \sum_{i=1}^t \sum_{j=1}^2 R_{ij}$$

has α_{t-1} as its face and does not coincide with the face α_{t-1} . It follows that there exists a face β of α_t of the dimension t such that $\beta \subset \alpha_{t-1}$ but $\theta \subset \beta$ is a face of β . It follows that all extremal rays of β are the extremal rays R_{11} , ..., $R_{(t-1)1}$ and some of extremal rays R_{t1} , R_{t2} . Assume that both extremal rays R_{t1} , R_{t2} belong to β . Then the extremal rays R_{11} , ..., $R_{(t-1)1}$, R_{t1} , R_{t2} are linearly dependent, since dim $\beta = t$. By Proposition 2.3.8, it is impossible. Thus, only one of extremal rays R_{t1} , R_{t2} belongs to the face β . Suppose that this is R_{t1} . Then $\beta = R_{11} + \cdots + R_{(t-1)1} + R_{t1}$ will be the face we were looking for.

We divide the maximal set $\{R_{11}, R_{12}\}$, $\{R_{21}, R_{22}\}$, ..., $\{R_{n1}, R_{n2}\}$ of pairs of extremal rays of the type \mathfrak{B}_2 into two parts:

$$\{R_{11},\,R_{12}\}$$
 , $\{R_{21},\,R_{22}\}$, ..., $\{R_{m1},\,R_{m2}\}$ and

 $\{R_{(m+1)1}, R_{(m+1)2}\}, \{R_{(m+2)1}, R_{(m+2)2}\}, \dots, \{R_{(m+k)1}, R_{(m+k)2}\}$

where n=m+k. By definition, here the extremal rays R_{i1} , R_{i2} belong to the first part if and only if they are linearly independent of other extremal rays from the set $\{R_{11}, R_{12}\}$, $\{R_{21}, R_{22}\}$, ..., $\{R_{n1}, R_{n2}\}$. Thus, extremal rays R_{i1} , R_{i2} belong to the second part if they are linearly dependent of other extremal rays from the set $\{R_{11}, R_{12}\}$, $\{R_{21}, R_{22}\}$, ..., $\{R_{n1}, R_{n2}\}$.

Lemma 2.5.6. Let S be an extremal ray of the type (II) such that $\{R_{i1}, S\}$ define a configulation (c) of the Theorem 2.4.1. Thus: $R_{i1} \cdot D(S) > 0$, $S \cdot D(R_{i1}) > 0$ and $R_{i2} \cdot D(S) = 0$. Then the extremal ray R_{i1} , R_{i2} are linearly independent from all other extremal rays in $\{R_{11}, R_{12}\}$, $\{R_{21}, R_{22}\}$, ..., $\{R_{n1}, R_{n2}\}$. Thus, $1 \le i \le m$. There does not exist a configulation of this type with the ray R_{i2} . Thus, there does not exist an extremal ray S' of the type (II) such that $R_{i2} \cdot D(S') > 0$, $S' \cdot D(R_{i2}) > 0$ and $R_{i1} \cdot D(S') = 0$.

Proof. The $R_{i1}+R_{i2}$ and $R_{i2}+S$ are 2-dimensional faces of $\overline{NE}(X)$ with intersection by the extremal ray R_{i2} . It follows that any curve of D(S) belongs to the face $R_{i2}+S$ (by Lemma 2.2.3). It follows that the divisor D(S) has no common point with the divisor $D(R_{j1})$ for any other pair R_{j1} , R_{j2} for $j \neq i$. Multiplying D(S) by a linear relation of extremal rays R_{i2} , R_{i2} with other extremal rays $\{R_{11}, R_{12}\}$, $\{R_{21}, R_{22}\}$, ..., $\{R_{n1}, R_{n2}\}$ and using Proposition 2.3.8, we get that this linear relation does not exist.

Let us suppose that there exists an extremal ray S' (see formulation of the lemma). Then $R_{i1}+S'$ is another 2-dimensional face of $\overline{NE}(X)$. Evidently, divisors D(S) and D(S') have a non-empty intersection. Thus, faces $R_{i2}+S$ and $R_{i1}+S'$ have a common ray. But it is possible only if S=S'. Thus, we get a contradiction, because $R_{i1} \cdot D(S) > 0$ but $R_{i1} \cdot D(S') = 0$.

Using this Lemma 2.5.6, we can subdivide the first set

$$\{R_{11}, R_{12}\}, \{R_{21}, R_{22}\}, ..., \{R_{m1}, R_{m2}\}$$
.

into sets

 $\{R_{11}, R_{12}\}, \{R_{21}, R_{22}\}, ..., \{R_{m11}, R_{m12}\}$

and

 ${R_{(m_1+1)1}, R_{(m_1+1)2}}, ..., {R_{(m_1+m_2)1}, R_{(m_1+m_2)2}}$

where $m_1 + m_2 = m$. Here R_{i1} , R_{i2} belong to the first part if and only if there exists an extremal ray S such that R_{i1} , S satisfy the condition of Lemma 2.5.6. By Lemma 2.5.6, the order between extremal rays R_{i1} , and R_{i2} is then canonical

Let us consider the second set

$${R_{(m+1)1}, R_{(m+1)2}}, {R_{(m+2)1}, R_{(m+2)2}}, ..., {R_{(m+k)1}, R_{(m+k)2}}$$
.

We introduce an invariant

$$\delta \! = \! \dim \sum_{i=m+1}^{m+k} \! \sum_{j=1}^{2} \! R_{ij} \! - \! k$$

of X. Evidently,

either $k = \delta = 0$ or $k \ge 2$ and $1 \le \delta < k$.

Thus,

$$\dim \sum_{i=m+1}^{m+k} \sum_{j=1}^{2} R_{ij} = k + \delta$$

Let

$$\rho_0(X) = \dim N_1(X) - \dim \sum_{i=1}^{n=m+k} \sum_{j=1}^{2} R_{ij}.$$

Then

$$\rho(X) = \dim N_1(X) = \rho_0(X) + 2m + k + \delta$$

The invariants: $\rho_0(X)$, n, m, k, δ , m_1 , m_2 are important invariants of a Fano 3-fold X.

The following lemma will be very useful:

Lemma 2.5.7. Let X be a Fano 3-fold with \mathbf{Q} -factorial terminal singularities. Let $\mathscr E$ be the set of all extremal rays of a proper face $[\mathscr E]$ of $\overline{NE}(X)$. Let

$$\{R_{11}, R_{12}\} \cup ... \cup \{R_{t1}, R_{t2}\}$$

be a set of different pairs of extremal rays of the type \mathfrak{V}_2 . Assume that $R \cdot D(R_{i1}) = 0$ for any $R \in \mathcal{E}$ and any $i, 1 \leq i \leq t$. Then there are extremal rays $Q_1, ..., Q_r$ such that the following statements hold:

- (a) $r \leq t$;
- (b) For any i, $1 \le i \le r$, there exists j, $1 \le j \le t$, such that $Q_i \cdot D(R_{j1}) > 0$ (in particular, Q_i is different from extremal rays of pairs of extremal rays $\{R_{u1}, R_{u2}\}$ of the type \mathfrak{B}_2);
 - (c) For any j, $1 \le j \le r$, there exists an extremal ray Q_i , $1 \le i \le r$, such that $Q_i \cdot D(R_{i1}) > 0$;
- (d) The set $\mathcal{E} \cup \{Q_1, ..., Q_r\}$ is extremal, and extremal rays $\{Q_1, ..., Q_r\}$ are linearly independent.

Proof. If t=0, we can take r=0. Thus, we assume that $t \ge 1$.

Since $R_{ij} \cdot D(R_{ij}) < 0$, $1 \le i \le t$, $1 \le j \le 2$, the set $\mathscr E$ does not contain the rays R_{ij} . Let H be a general nef element orthogonal to $[\mathscr E]$. Since $t \ge 1$, there exists a > 0 such that $H' = H + aD(R_{11})$ is nef and H' is orthogonal to $\mathscr E$ and one of the rays R_{11} , R_{12} . Let this ray be R_{11} . Then the set $\mathscr E \cup \{R_{11}\}$ is extremal and is contained in a (proper) face of $\overline{NE}(X)$. It follows, $\dim[\mathscr E] < \dim[\mathscr E \subseteq \{R_{11}\}] < \dim \overline{NE}(X)$, and $\dim[\mathscr E] < \dim \overline{NE}(X) - 1$. Let us consider a linear subspace $V(\mathscr E) \subseteq N_1(X)$ generated by all extremal rays $\mathscr E$. By our condition, $V(\mathscr E)$ is a linear envelope of the face $[\mathscr E]$ of $\overline{NE}(X)$.

Let us consider the factorization map $\pi\colon N_1(X)\to N_1(X)/V(\mathscr E)$. Since the cone $\overline{NE}(X)$ is polyhedral, the cone $\pi(\overline{NE}(X))$ is generated by images of extremal rays T such that the set $\mathscr E\cup\{T\}$ is contained in a face $[\mathscr E\subset\{T\}]$ of $\overline{NE}(X)$ of the dimension $\dim[\mathscr E]+1$. In particular, since $\dim[\mathscr E]<\dim N_1(X)-1$, the face $[\mathscr E\cup\{T\}]$ is proper, and the set $\mathscr E\cup\{T\}$ is extremal.

There exists a curve C on X such that $C \cdot D(R_{11}) > 0$. This curve C (as any element $x \in \overline{NE}(X)$) is a linear combination of extremal rays T with non-negative coefficients and extremal rays from $\mathscr E$ with real coefficients. We have $R \cdot D(R_{11}) = 0$ for any extremal ray $R \in \mathscr E$. Thus, there exists an extremal ray T above such that $T \cdot D(R_{11}) > 0$. It follows that T is different from extremal rays of pairs of the type \mathfrak{B}_2 . We take $Q_1 = T$. By our construction, the set $\mathscr E \cup \{Q_1\}$ is extremal. If $Q_1 \cdot D(R_{j1}) > 0$ for any j such that $1 \le j \le t$, then r = 1, and the set $\{Q_1\}$ gives the set we were looking for. Otherwise, there exists a minimal j such that $2 \le j \le t$ and $Q_1 \cdot D(R_{j1}) = 0$. Then we replace $\mathscr E$ by the set $\mathscr E_1$ of all extremal rays in the face $[\mathscr E \cup \{Q_1\}]$ of the dimension $\dim [\mathscr E_1] = \dim [\mathscr E] + 1$, and the set

$$\{R_{11}, R_{12}\} \cup ... \cup \{R_{t1}, R_{t2}\}$$

by

$$|R_{j1}, R_{j2}| 1 \le j \le t, Q_1 \cdot D(R_{j1}) = 0|$$
,

and repeat this procedure.

5.3. Basic Theorems We want to prove the following basic theorem.

Basic Theorem 2.5.8. Let X be a Fano 3-fold with terminal \mathbf{Q} -factorial singularities. Assume that X does not have a small extremal ray, and Mori polyhedron $\overline{NE}(X)$ does not have a face of Kodaira dimension 1 or 2.

Then we have the following for the X:

- (1) The X does not have a pair of extremal rays of the type \mathfrak{B}_2 (thus, in notation above, the invariant n=0) and Mori polyhedron $\overline{NE}(X)$ is simplicial.
 - (2) The X does not have more than one extremal ray of the type (I).
- (3) If & is an extremal set of k extremal rays of X, then the & has one of the types: $\mathfrak{A}_1 \coprod (k-1) \mathfrak{C}_1$, $\mathfrak{D}_2 \coprod (k-2) \mathfrak{C}_1$, $\mathfrak{C}_2 \coprod (k-2) \mathfrak{C}_1$, $\mathfrak{C}_2 \coprod (k-2) \mathfrak{C}_1$, we use notation of

Theorem 2.3.3).

(4) We have the inequality for the Picard number of X:

$$\rho(X) = \dim N_1(X) \le 7.$$

Proof. We use notations introduced in the Section 5.2. We divide the proof into several steps.

Let us consider extremal rays

$$\mathcal{E}_0 = \{R_{11}, R_{12}\} \cup \{R_{21}, R_{22}\} \cup ... \cup \{R_{n1}, R_{n2}\} ...$$

Let

$$\mathcal{E}_0^{ind} = \{R_{11}, R_{12}\} \cup \{R_{21}, R_{22}\} \cup ... \cup \{R_{m1}, R_{m2}\} ,$$

and

$$\mathcal{E}_0^{dep} = \{ R_{(m+1)1}, R_{(m+1)2} \} \cup \{ R_{(m+2)1}, R_{(m+2)2} \} \cup ... \cup \{ R_{n1}, R_{n2} \} ...$$

By Lemma 2.5.4, the set \mathscr{E}_0 is extremal. Let \mathscr{E} be a maximal extremal set of extremal rays which contains \mathscr{E}_0 . Let $\mathscr{E}_1 = \mathscr{E} - \mathscr{E}_0$. By Proposition 2.3.8, $\#\mathscr{E}_1 = \rho(X) - 1 - \dim[\mathscr{E}_0]$. By Theorem 2.3.3, for $S \in \mathscr{E}_1$, the divisor D(S) has no a common point with divisors $D(R_{i1})$, $1 \le i \le n$.

Lemma 2.5.9. Assume that X satisfies the conditions of Theorem 2.5.8. Let Q be an extremal ray such that Q is different from extremal rays R_{ij} , $1 \le i \le n$, $1 \le j \le 2$, and the set $\mathcal{E}_1 \cup \{Q\}$ is extremal. Then the Q has the type (II) and there exists exactly one i such that $1 \le i \le n$ and $Q \cdot D(R_{i1}) > 0$ and $D(Q) \cap D(R_{j1}) = \emptyset$ if $j \ne i$.

Proof. Assume that Q has the type (I). Then the divisor D(Q) has no common point with the divisors $D(R_{i1})$, $1 \le i \le n$. By Theorems 2.3.3, 2.3.6 and Lemma 2.5.1, the set $|Q| \cup \mathcal{E}_1 \cup \mathcal{E}_0$ is extremal. We then get a contradiction with the condition that $\mathcal{E}_1 \cup \mathcal{E}_0$ is a maximal extremal set. Thus, the extremal ray Q has the type (II).

If D(Q) has no common point with the divisors $D(R_{i1})$, $1 \le i \le n$, we get a contradiction by the same way. Thus, there exists i such that $1 \le i \le n$ and $D(Q) \cap D(R_{i1}) \ne \emptyset$. Let us consider a projectivization $\overline{PNE}(X)$. By Lemma 2.2.2, $\overline{PNE}(X,D(Q))$ is an interval with two ends. Its first end is the vertex PQ and its second end is a point of the edge $P(R_{i1} + R_{i2})$ of the convex polyhedron $\overline{PNE}(X)$. Thus, the i is defined by the extremal ray Q. Evidently, $Q \cdot D(R_{i1}) > 0$.

Lemma 2.5.10. With the conditions of Lemma 2.5.9 above, assume that $m+1 \le i \le n$. Then there exists exactly one extremal ray $Q=Q_i$ with the conditions of Lemma 2.5.9: thus, the set $\mathscr{E}_1 \cup \{Q_i\}$ is extremal and $Q_i \cdot D(R_{i1}) > 0$, and $D(Q_i) \cap D(R_{j1}) = \emptyset$ if $j \ne i$.

Proof. The

$$\beta = \sum_{S \in \mathcal{E}_1} S + \sum_{R \in \mathcal{E}_1} R$$

is a face of $\overline{NE}(X)$ of highest dimension $\rho(X) - 1$, and

$$\beta_i = \sum_{S \in \mathcal{S}_1} S + \sum_{R \in \mathcal{S}_0 - |R_0, R_{is}|} R$$

is a face $\beta_i \subset \beta \subset \overline{NE}(X)$ of dimension $\rho(X)-2$ and of the codimension one in β (Here we use that $m+1 \leq i \leq m+k$). It follows that there exists exactly one face β'_i of $\overline{NE}(X)$ such that β'_i contains β_i , $\dim \beta'_i = \rho(X)-1$, and $\beta'_i \neq \beta$. By Theorems 2.3.3 and 2.3.6, and Lemma 2.5.9, $\beta'_i = \beta_i + Q_i$ where Q_i is an extremal ray such that the set $\mathscr{E}_1 \cup \{Q_i\} \cup (\mathscr{E}_0 - \{R_{i1}, R_{i2}\})$ is extremal, and the ray Q_i has the properties of Lemma 2.5.10. It follows that the Q_i is unique and does exist.

Lemma 2.5.11. Under the above notation, the set $\mathscr{E}_1 \cup \mathscr{E}_0^{ind} \cup \{Q_{m+1}, ..., Q_n\}$ is extremal.

Proof. By Theorems 2.3.3, 2.3.6, Proposition 2.3.8 and Lemma 2.5.1, the set $\mathscr{E} = \mathscr{E}_1 \cup \mathscr{E}_0^{ind}$ is extremal and generates a face of $\overline{NE}(X)$. We apply Lemma 2.5.7 to this \mathscr{E} and \mathscr{E}_0^{dep} . By Lemma 2.5.7, there are extremal rays $Q'_{m+1}, ..., Q'_{m+r}$ such that the set $\mathscr{E}_1 \cup \mathscr{E}_0^{ind} \cup \{Q'_{m+1}, ..., Q'_{m+r}\}$ is extremal and for any $i, m+1 \le i \le m+r$, there exists $j, m+1 \le j \le n$, such that $Q'_i \cdot D(R_{j1}) > 0$. Moreover, for any $j, m+1 \le j \le n$, there exists an extremal ray $Q_i, m+1 \le i \le m+r$, such that

$$Q'_i \cdot D(R_{j1}) > 0$$
.

By Lemmas 2.5.9 and 2.5.10, r = k and $\mathcal{E}_1 \cup \mathcal{E}_0^{ind} \cup \{Q'_{m+1}, ..., Q'_{m+r}\} = \mathcal{E}_1 \cup \mathcal{E}_0^{ind} \cup \{Q_{m+1}, ..., Q_n\}$.

Lemma 2.5.12. The set \mathcal{E}_0^{dep} is empty.

Proof. By Lemmas 2.5.9, 2.5.10 and 2.5.11, the set of extremal rays $U=\mathscr{E}_1\cup\mathscr{E}_0^{ind}\cup\{Q_{m+1},...,Q_n\}$ is a maximal extremal set which contains $\mathscr{E}_1\cup\mathscr{E}_0^{ind}$ and does not contain extremal rays from \mathscr{E}_0^{dep} . Assume that $k=n-m\neq 0$. Then $k\geq 2$ and $\dim U=\rho_0(X)-1+2m+k$. But the dimension of a face of $\overline{NE}(X)$ of highest dimension is equal to $\rho(X)-1=\rho_0(X)-1+2m+k+\delta$ where $\delta\geq 1$. Thus, the extremal set U is not maximal, and there exists another extremal ray S such that $U\cup\{S\}$ is extremal. By definition of U, the $S\in\mathscr{E}_0^{dep}$. Let $S=R_{i1}$ where $m+1\leq i\leq n$. Since $Q_i\cdot D(R_{i1})>0$, by Theorem 2.3.3, the extremal set $\{Q_i,R_{i1}\}$ has the type \mathfrak{C}_2 . Thus, $R_{i1}\cdot D(Q_i)=0$. By definition of the set \mathscr{E}_0^{dep} , there exists a linear dependence $\sum_{l=m+1}^{l=m}a_{l1}R_{l1}+a_{l2}R_{l2}=0$ where $a_{i1}\neq 0$ and $a_{i2}\neq 0$. Multiplying $D(Q_i)$ by the equality above, we get $a_{i2}=0$. Thus, we get a contradiction. (Compare with Lemma 2.5.6.)

Lemma 2.5.13 The set \mathcal{E}_0^{ind} is empty.

Proof. Since $\mathcal{E}_0^{dep} = \emptyset$, the set $U = \mathcal{E}_1 \cup \mathcal{E}_0^{ind} = \mathcal{E}_1 \cup \{R_{11}, R_{12}\} \cup ... \cup \{R_{m1}, R_{m2}\}$ is a maximal extremal set. It follows that U generates a simplex face of $\overline{NE}(X)$ of codimension 1. Thus, $U_1 = \mathcal{E}_1 \cup \mathcal{E}_0^{ind} - \{R_{m2}\} = \mathcal{E}_1 \cup \{R_{11}, R_{12}\} \cup ... \cup \{R_{(m-1)1}, R_{(m-1)2}\} \cup \{R_{m1}\}$ generates a simplex face of $\overline{NE}(X)$ of codimension 2. It follows that there exists an extremal ray Q_{m2} such that $U'_1 = \mathcal{E}_1 \cup \{R_{11}, R_{12}\} \cup ... \cup \{R_{(m-1)1}, R_{(m-1)2}\} \cup \{R_{m1}\} \cup \{Q_{m2}\}$ generates a simplex face of $\overline{NE}(X)$ of codimension 1, and Q_{m2} is different from R_{m2} . By Lemma 2.5.9, $Q_{m2} \cdot D(R_{m1}) > 0$. Thus, by Theorem 2.3.3, $|Q_{m2}, R_{m1}|$ is an extremal set of the type \mathfrak{C}_2 where $R_{m1} \cdot D(Q_{m2}) = 0$.

Similarly, we can find an extremal ray Q_{m1} such that the set $\{Q_{m1}, R_{m2}\}$ is extremal of the type \mathfrak{C}_2 where $R_{m2} \cdot D(Q_{m1}) = 0$. Then we get a contradiction to Lemma 2.5.6. Thus, m = 0, and the set $\mathcal{E}_0^{ind} = \emptyset$.

Thus, we proved that X does not have a pair of extremal rays of the type \mathfrak{B}_2 . By Theorem 2.3.3 and Proposition 2.3.8, the Mori polyhedron $\overline{NE}(X)$ is then simplicial. Thus, we have proven the statement (1).

Now let us prove (2): X does not have more than one extremal ray of the type (I).

By Lemma 2.2.2, divisors of different extremal rays of the type (I) do not have a common point. By Theorem 2.3.6, any set of extremal rays of the type (I) generates a simplex face of $\overline{NE}(X)$ of Kodaira dimension 3. It followas that the set of extremal rays of the type (I) is finite. Let

$$\{R_1, ..., R_s\}$$

be the whole set of extremal rays of the type (I) on X. We should prove that $s \le 1$.

Let $\mathscr E$ be a maximal extremal set of extremal rays on X containing the set $\{R_1, ..., R_s\}$ and such that each connected component of $\mathscr E$ contains one of extremal rays $R_1, ..., R_s$ (see the definition of connected components before Theorem 2.3.3). By Theorem 2.3.3, then $\mathscr E$ has exactly s connected components $T_1, ..., T_s$ such that T_i contains the extremal ray R_i . The T_i has either the type $\mathfrak A_1$ (thus, $T_i = \{R_i\}$) or $\mathfrak D_2$ (thus, T_i contains two extremal rays: the R_i and another extremal ray which has the type (II)). Evidently, the maximal $\mathscr E$ does exist.

By [Ka1] and [Sh], any face of NE(X) is contractible, and by our conditions, it has Kodaira dimension 3. By Proposition 2.2.6, for any $1 \le i \le s$, there exists an effective divisor $D(T_i)$ which is a linear combination of divisors of rays from T_i with positive coefficients and $R \cdot D(T_i) < 0$ for any $R \in T_i$. Since T_i has the type \mathfrak{A}_1 or \mathfrak{D}_2 , one can see easily by Lemma 2.2.3, that the same it true for each curve of divisors of rays of T_i because this curve belongs to the sum of extremal rays of T_i with positive coefficients.

Using the divisors $D(T_i)$, similarly to Lemma 2.5.7, we can find extremal rays

 $\{Q_1, ..., Q_r\}$ with properties:

- (a) $r \leq s$;
- (b) For any i, $1 \le i \le r$, there exists j, $1 \le j \le t$, such that $Q_i \cdot D(T_j) > 0$ (in particular, Q_i is different from extremal rays of $\mathscr E$ and does not have the type (I));
- (c) For any j, $1 \le j \le s$, there exists an extremal ray Q_i , $1 \le i \le r$, such that

$$Q_i \cdot D(T_j) > 0$$
;

(d) The set $\{Q_1, ..., Q_r\}$ of extremal rays is extremal.

By our conditions, all extremal rays on X are divisorial. Thus, by (b), the extremal rays $Q_1, ..., Q_r$ have the type (II).

Let us take the ray Q_i , and let $Q_i \cdot D(T_j) > 0$. By Theorem 2.3.3, the set T_j generates a simplex face γ_j of $\overline{NE}(X)$. We have mentioned above that each curve of divisors of rays from T_j belongs to this face. It follows that $\overline{NE}(X,D(Q_i))$ is a 2-dimensional angle bounded by the ray Q_i and a ray from the face γ_j since the divisor $D(Q_i)$ evidently has a common curve with one of divisors D(R), $R \in T_j$. Since any two sets of T_1 , ..., T_s do not have a common extremal ray, the faces γ_1 , ..., γ_s do not have a common ray (not necessarily extremal). It follows that the angle $\overline{NE}(X,D(Q_i))$ does not have a common ray with the face γ_k for $k \neq j$. Thus, the divisor $D(Q_i)$ does not have a common point with divisors of rays T_k . It follows that r=s and we can choose an order Q_1 , ..., Q_s such that $Q_i \cdot D(T_i) > 0$ but $D(Q_i)$ do not have a common point with divisors of extremal rays T_j if $j \neq i$.

Let us fix i, $1 \le i \le s$. By our construction, the set $\mathscr{E} \cup \{Q_i\}$ has connected components

 $T_1, ..., T_{i-1}, T_i \cup |Q_i|$, T_{i+1}, T_s . By definition of $\mathscr E$, then the $\mathscr E \cup |Q_i|$ is not extremal. Thus, it contains an E-set (minimal non-extremal) $\mathscr L_i$ which contains Q_i . By Theorem 2.4.1 and Lemma 1.1, the $\mathscr L_i$ is connected. Thus, $|Q_i| \subset \mathscr L_i \subset T_i \cup |Q_i|$. Let us consider the sets $\mathscr L_1, ..., \mathscr L_s$. By Lemma 1.1, the $\mathscr L_i, \mathscr L_j$ are joint by arrows. By our construction, it follows that Q_i, Q_j are joint by arrows Q_iQ_j and Q_jQ_i for any $1 \le i < j \le s$. By Theorem 2.3.3, for the extremal set $|Q_1, ..., Q_s|$ of extremal rays of the type (II), this is possible only if $s \le 1$. This proves the statement (2).

To prove (3) we use the following.

Statement. The contraction of a ray R of the type (II) on X gives a Fano 3-fold X' with terminal \mathbf{Q} -factorial singularities and without small extremal rays and without faces of Kodaira dimension 1 or 2 for $\overline{NE}(X')$. Extremal sets \mathscr{E}' on X' are in one to one correspondence with extremal sets \mathscr{E} on X which contain the ray R.

Proof. Let $\sigma: X \to X'$ be a contraction of R. The X' has terminal **Q**-factorial singularities by [Ka1] and [Sh]. We have, $K_X = \sigma^*(K_{X'}) + \sigma^*(K_{X'})$

dD(R). Multiplying this equality by R and using Proposition 2.3.2, we get that d=1. By the statement (1), it follows that $\sigma^*(-K_{X'})=-K_X+D(R)$ is nef and only contracts the extremal ray R. Then $-K_{X'}$ is ample on X' and X' is a Fano 3-fold with terminal \mathbf{Q} -factorial singularities. Faces of $\overline{NE}(X')$ are in one to one correspondence with faces of $\overline{NE}(X)$ which contain the R. Contractions of faces of $\overline{NE}(X')$ are dominated by these of the corresponding faces of $\overline{NE}(X)$. This proves the last statement.

Let $\mathscr{E} = \{R_1, ..., R_k\}$ be an extremal set on X. By Theorem 2.3.3, it has connected components of the type \mathfrak{U}_1 , \mathfrak{B}_2 , \mathfrak{C}_m or \mathfrak{D}_2 . Moreover, by (1) and (2), it does not have a connected component of the type \mathfrak{V}_2 and does not have more than one connected component of the type \mathfrak{U}_1 . By Statement above, the same should be true for the extremal set \mathscr{E}' which one gets by the contraction of any extremal ray R_i of the type (II) of \mathscr{E} . This shows the statement (3).

Now we prove (4): $\rho(X) \le 7$.

First, we show how to prove $\rho(X) \leq 8$ applying Theorem 1.2 to the face $\gamma = \mathcal{M}(X)$ of $\dim \mathcal{M}(X) = m = \rho(X) - 1$. By the statement (1) of Theorem 2.5.8 and Theorems 2.3.3 and 2.4.1, the $\mathcal{M}(X)$ is simple and all conditions of Theorem 1.2 are valid for some constants d, C_1 , C_2 . By Theorem 2.4.1, we can take d=2. By the proof of Theorem 1.2, we should find the constants C_1 , and C_2 for maximal extremal sets $\mathscr E$ only (only this sets we really use). Thus, $\#\mathscr E=m$. By the statement (3), then the constants $C_1\leq 2/m$ and $C_2=0$. Thus, we get m<(16/3)2/m+6. Then, $m=\rho(X)-1\leq 7$, and $\rho(X)\leq 8$.

To prove the better inequality $\rho(X) \le 7$, we should analyze the proof of Theorem 1.2 for our case more carefully. We will show that the conditions of Lemma 1.4 hold for the $\mathcal{M}(X)$ with the constants C=0 and D=2/3. By Lemma 1.4, we then get the inequality $\rho(X) \le 7$ we want to prove.

Like for the proof of Theorem 1.2, we introduce a weight of an oriented angle, but using a new formula: $\sigma(\angle) = 2/3$ if $\rho(R_1(\angle), R_2(\angle)) = 1$, and $\sigma(\angle) = 0$ otherwise.

By (3) of Theorem 2.5.8, the condition (1) of Lemma 1.4 holds with constants C=0 and D=2/3.

Let us prove the condition (2) of Lemma 1.4. For k=3 (triangle) it is true since an E-set which has at least 3 elements has the type (a) of Theorem 2.4.1 (see the proof of Theorem 1.2). Thus, the triangle has at least three oriented angles with the weight 2/3. For k=4 (quadrangle), we proved (when we were proving Theorem 1.2) that one can find at least two oriented angles of the quadrangle such that any of them has finite $\rho(R_1(\angle), R_2(\angle))$. By (3) of Theorem 2.5.8, then $\rho(R_1(\angle), R_2(\angle)) = 1$. Thus, the quadrangle has at least two oriented angles of the weight 2/3. This finishes the proof of Theorem 2.5.8.

Now, we give an application of (2) of Theorem 2.5.8 to the geometry of Fano 3-folds.

Let us consider a Fano 3-fold X and blow-ups X_p at different non-singular points $\{x_1, ..., x_p\}$ of X. We say that this is a Fano blow-up if X_p is Fano. We have the following very simple

Proposition 2.5.14. Let X be a Fano 3-fold with terminal \mathbf{Q} -factorial singularities and without small extremal rays. Let $X_{\mathfrak{p}}$ be a Fano blow up of X. Then for any small extremal ray S on $X_{\mathfrak{p}}$, the S has a non-empty intersection with one of exceptional divisors E_1 , ..., $E_{\mathfrak{p}}$ of this blow up and does not belong to any of them. Moreover, the exceptional divisors E_1 , ..., $E_{\mathfrak{p}}$ define \mathfrak{p} extremal rays Q_1 , ..., $Q_{\mathfrak{p}}$ of the type (I) on $X_{\mathfrak{p}}$ such that $E_i = D(Q_i)$.

Proof. The last statement is clear. Let S be a small extremal ray on X_p which does not intersect divisors E_1 , ..., E_p . Let H be a general *nef* element orthogonal to S. Let l_1 , ..., l_n be lines which generate extremal rays Q_1 , ..., Q_p . Then the divisor $H' = H + (l_1 \cdot H) / (-l_1 \cdot E_1) E_1 + \cdots + (l_p \cdot H) / (-l_p \cdot E_p) E_p$ is a nef divisor on X_p orthogonal to all extremal rays Q_1 , ..., Q_p , S, and $(H')^3 > H^3 > 0$. This proves that the extremal rays Q_1 , ..., Q_p , S generate a face of $\overline{NE}(X_p)$ of Kodaira dimension 3. Then, by the contraction of the extremal rays Q_1 , ..., Q_p , the image of S gives a small extremal ray on X. This gives a contradiction.

It is known that a contraction of a face of Kodaira dimension 1 or 2 of $\overline{NE}(Y)$ of a Fano 3-fold Y has a general fiber which is rational surface or curve respectively, because this contraction has relatively negative canonical class. See [Ka1], [Sh]. It is known that a small extremal ray is rational [Mo2].

Then, using the statement (2) of Theorem 2.5.8 and Proposition 2.5.14, we can divide Fano 3-folds of Theorem 2.5.8 into the following 3 classes:

Corollary 2.5.15. Let X be a Fano 3-fold with terminal \mathbf{Q} -factorial singularities and without small extremal rays, and without faces of Kodaira dimension 1 or 2 for Mori polyhedron. Let ε be the number of extremal rays of the type (I) on X (by Theorem 2.5.8, the $\varepsilon \leq 1$).

Then there exists p, $1 \le p \le 2 - \varepsilon$, such that X belongs to one of classes (A), (B) or (C) below:

- (A) There exists a Fano blow-up $X_{\mathfrak{p}}$ of X with a face of Kodaira dimension 1 or 2. Thus, birationally, X is a fibration of rational surfaces over a curve or of rational curves over a surface.
- (B) There exist Fano blow-ups X_{\flat} of X for general p points on X such that for all these blow-ups the X_{\flat} has a small extremal ray S. Then images of curves of S on X give a system of rational curves on X which cover a Zariski open subset of X.
- (C) There do not exist Fano blow-ups X_p of X for general p points. We remark that for Fano 3-folds with Picard number 1 the $\varepsilon = 0$. Thus, $1 \le p \le 2$.

We mention that that statements (3) and (4) of Theorem 2.5.8 give similar information for blow ups of X along curves. Of course, it is more difficult to formulate these statements.

STEKLOV MATHEMATICAL INSTITUTE
UL. VAVILOVA 42,
MOSCOW 117966, GSP-1,
RUSSIA
E-mail address: slava@nikulin.mian.su

References

- [A] V. A. Alekseev, Fractional indices of log del Pezzo surfaces, Izv. Akad. Nauk SSSR Ser. Mat., 52-6 (1988), 1288-1304; English transl. in Math. USSR Izv., 33 (1989).
- [A-N1] V. A. Alekseev and V. V. Nikulin, The classification of Del Pezzo surfaces with log-terminal singularities of the index ≤2, involutions of K3 surfaces and reflection groups in Lobachevsky spaces, Russian, Doklady po matematike i prilogeniyam, MIAN, 2-2 (1988), 51-151.
- [A-N2] V. A. Alekseev and V. V. Nikulin, The classification of Del Pezzo surfaces with log-terminal singularities of the index ≤2 and involutions of K3 surfaces, Dokl. AN SSSR, **306**-3 (1989), 525-528; English transl. in Soviet Math. Dokl., **39** (1989).
- [G-H] P. Griffiths and J. Harris, Principles of algebraic geometry, A. Wiley Interscience, New York, 1978.
- [Ha] R. Hartshorne, Algebraic geometry, Springer, 1977.
- [I] Sh. Ishii, Quasi-Gorenstein Fano 3-folds with isolated non-rational loci, Compositio Math., 77 (1991), 335-341.
- [Ka1] Yu. Kawamata, The cone of curves of algebraic varieties, Ann. of Math., 119-2 (1984), 603-633
- [Ka2] Yu. Kawamata, Boundedness of Q-Fano threefolds, Preprint (1989).
- [Kh] A. G. Khovanskii, Hyperplane sections of polyhedra, toric varieties and discrete groups in Lobachevsky space, Functional Anal. i Prilozhen, **20**-1 (1986), 50-61; English transl. in Functional Anal. Appl., **20**-1 (1986).
- [Ma] K. Matsuki, Weyl groups and birational transformations among minimal models, Preprint (1993).
- [Mo1] S. Mori, Threefolds whose canonical bundles are not numerically effective, Ann. of Math., 116-2 (1982), 133-176.
- [Mo2] S. Mori, Flip theorem and the existence of minimal models for 3-folds, Journal of Amer. Math. Society, 1-1 (1988), 117-253.
- [Mo-Mu] S. Mori and S. Mukai, On Fano 3-folds with B₂≥ 2, Algebraic varieties and Analytic varieties (Tokyo, 1981), Studies in Pure and Math., vol. 1, Kinokuniya, Tokyo, 1983, pp.101-129.
- [N1] V. V. Nikulin, On the classification of arithmetic groups generated by reflections in Lobachevsky spaces, Izv. Akad. Nauk SSSR Ser. Mat., 45-1 (1981), 113-142; English transl. in Math. USSR Izv., 18 (1982).
- [N2] V. V. Nikulin, Del Pezzo surfaces with log-terminal singularities, Mat. Sbor., 180-2 (1989), 226-243; English transl. in Math. USSR Sb., 66 (1990).
- [N3] V. V. Nikulin, Del Pezzo surfaces with log-terminal singularities. II, Izv. Akad. Nauk SSSR Ser. Mat., 52-5 (1988), 1032-1050; English transl. in 'Math. USSR Izv., 33 (1989).
- [N4] V. V. Nikulin, Del Pezzo surfaces with log-terminal singularities. III, Izv. Akad. Nauk SSSR Ser. Mat., 53-6 (1989), 1316-1334; English transl. in Math. USSR Izv., 35 (1990).

- [N5] V. V. Nikulin, Del Pezzo surfaces with log-terminal singularities and nef anticanonical class and reflection groups in Lobachevsky spaces, Preprint Max-Planck-Institut für Mathematik Bonn 89-28 (1988).
- [N6] V. V. Nikulin, Algebraic 3-folds and diagram method, Math. USSR Izv., 37-1 (1991), 157-189.
- [N7] V. V. Nikulin, Algebraic 3-folds and diagram method. II, Preprint Max-Planck-Institut für Mathematik Bonn 90-104 (1990).
- [N8] V. V. Nikulin, On the Picard number of Fano 3-folds with terminal singularities, Preprint Math. Sci. Res. Institute Berkeley 057-93 (1993).
- [N9] V. V. Nikulin, Diagram method for 3-folds and its application to Kähler cone and Picard number of Calabi-Yau 3-folds. I, Preprint of Duke **alg-geom 9401010** (1994).
- [P] M. N. Prokhorov, The absence of discrete reflection groups with non-compact fundamental polyhedron of finite volume in Lobachevsky spaces of large dimension, Izv. Akad. Nauk SSSR Ser. Mat., 50-2 (1986), 413-424; English transl. in Math. USSR Izv., 28 (1987).
- [Sh] V. V. Shokurov, The nonvanishing theorem, Izv. Akad. Nauk SSSR Ser. Mat., 49-3 (1985), 635-651; English transl. in Math. USSR Izv., 26 (1986).
- [V] E. B. Vinberg, The absence of crystallographic reflection groups in Lobachevsky spaces of large dimension, Trudy Moscow. Mat Obshch., 47 (1984), 68-102; English transl. in Trans. Moscow Math. Soc., 47 (1985).