On the Picard number of Fano 3-folds with terminal singularities

To memory of Boris Moishezon

By
Viacheslav V. Nikulin

Introduction

Here we continue investigations started in [N6], [N7].
Algebraic varieties we consider are defined over field \mathbf{C} of complex numbers.

In this paper, we get a final result on estimating the Picard number $\rho=$ $\operatorname{dim} N_{1}(X)$ of a Fano 3 -fold X with terminal \mathbf{Q}-factorial singularities if X does not have small extremal rays and its Mori polyhedron does not have faces with Kodaira dimension 1 or 2 . One can consider this class as a generalization of the class of Fano 3 -folds with Picard number 1. There are many non-singular Fano 3 -folds satisfying this condition and with Picard number 2 (see $[\mathrm{Mo}-\mathrm{Mu}]$ and also [Ma]). We also think that studying the Picard number of this calss may be important for studying Fano 3 -folds with Picard number 1 , too (see Corollary 2 below).

Let X be a Fano 3 -fold with \mathbf{Q}-factorial terminal singularities. Let R be an extremal ray of the Mori polyhedron $\overline{N E}(X)$ of X. We say that R has the type (I) (respectively (II)) if curves of R fill an irreducible divisor $D(R)$ of X and the contraction of the ray R contracts the divisor $D(R)$ to a point (respectively to a curve). An extremal ray R is called small if curves of this ray fill a curve on X.

A pair $\left\{R_{1}, R_{2}\right\}$ of extremal rays has the type \mathfrak{B}_{2} if extremal rays R_{1}, R_{2} are different, both have the type (II), and have the same divisor $D\left(R_{1}\right)=$ $D\left(R_{2}\right)$.

We recall that a face γ of Mori polyhedron $\overline{N E}(X)$ defines a contraction $f_{r}: X \rightarrow X^{\prime}$ (see [Ka1] and [Sh]) such that $f(C)$ is a point for an irreducible curve C if and only if C belongs to γ. The $\operatorname{dim} X^{\prime}$ is called the Kodaira dimension of the γ. A set \mathscr{E} of extremal rays is called extremal if it is contained in a face of Mori polyhedron.

Basic Theorem. Let X be a Fano 3-fold with terminal \mathbf{Q}-factorial sing.

[^0]ularities. Assume that X does not have a small extremal ray, and Mori polyhedron $\overline{N E}(X)$ does not have a face of Kodaira dimension 1 or 2.

Then the following statements for the X hold:
(1) The X does not have a pair of extremal rays of the type \mathfrak{B}_{2} and Mori polyhedron $\overline{N E}(X)$ is simplicial;
(2) The X does not have more than one extremal ray of the type (I).
(3) If \mathscr{E} is an extremal set of k extremal rays of X, then the \mathscr{E} has one of the types: $\mathfrak{A}_{1} \amalg(k-1) \mathfrak{C}_{1}, \mathfrak{D}_{2} \amalg(k-2) \mathfrak{C}_{1}, \mathfrak{C}_{2} \amalg(k-2) \mathfrak{C}_{1}, k \mathfrak{C}_{1} \quad$ (we use notation of Theorem 2.3.3).
(4) We have the inequality for the Picard number of the X : $\rho(X)=\operatorname{dim} N_{1}(X) \leq 7$.

Proof. See Theorem 2.5.8.
It follows from (4):
Corollary 1. Let X be a Fano 3-fold with terminal Q-factorial singularities and $\rho(X)>7$. Then X has either a small extremal ray or a face of Kodaira dimension 1 or 2 for Mori polyhedron.

We mention that non-singular Fano 3 -folds do not have a small extremal ray (by Mori [Mol]), and their maximal Picard number is equal to 10 according to their classification by Mori and Mukai $[\mathrm{Mo}-\mathrm{Mu}]$. Thus, all these statements already work for non-singular Fano 3-folds.

From the statement (2) of the Theorem, we also get the following application of Basic Theorem to geometry of Fano 3-folds.

Let us consider a Fano 3-fold X and its blow-up X_{p} at different non-singular points $\left\{x_{1}, \ldots, x_{p}\right\}$ of X. We say that this is a Fano blow-up if X_{p} is Fano. We have the following very simple

Proposition. Let X be a Fano 3-fold with terminal \mathbf{Q}-factorial singularities and without small extremal rays. Let X_{p} be a Fano blow-up of X. Then for any small extremal ray S on X_{p}, the S has a non-empty intersection with one of exceptional divisors E_{1}, \ldots, E_{p} of this blow up and does not belong to any of them. The divisors E_{1}, \ldots, E_{p} define pextremal rays of the type (I) on X_{p}.

Proof. See Proposition 2.2.14.
It is known that a contraction of a face of Kodaira dimension 1 or 2 of $\overline{N E}(X)$ of a Fano 3 -fold X has a general fiber which is a rational surface or curve respectively, because this contraction has relatively negative canonical class. See [Ka1], [Sh]. It is also known that a small extremal ray is rational [Mo2].

Then, using Basic Theorem and Proposition, we can divide Fano 3-folds of Basic Theorem on the following 3 classes:

Corollary 2. Let X be a Fano 3-fold with terminal \mathbf{Q}-factorial singular.
ities and without small extremal rays, and without faces of Kodaira dimension 1 or 2 for the Mori polyhedron. Let ε be the number of extremal rays of the type (I) on X (by Basic Theorem, the $\varepsilon \leq 1$).

Then there exists $p, 1 \leq p \leq 2-\varepsilon$, such that X belongs to one of calsses (A), (B) or (C) below:
(A) There exists a Fano blow-up X_{p} of X with a face of Kodaira dimension 1 or 2. Thus, birationally, X is a fibration on rational surfaces over a curve or rational curves over a surface.
(B) There exist Fano blow-ups X_{p} of X for general p points on X such that for all these blow-ups the X_{p} has a small extremal ray S. Then images of curves of S on X give a system of rational curves on X which cover a Zariski open subset of X.
(C) There do not exist Fano blow-ups X_{p} of X for general p points.

We remark that for Fano 3-folds with Picard number 1, the $\varepsilon=0$. Thus, 1 $\leq p \leq 2$.

Using statements (2), (3) and (4) of Basic Theorem, one can formulate similar results for Fano blow-ups along curves.

To prove Basic Theorem, we classify appropriate so called extremal sets and E-sets of extremal rays of the type (I) or (II). We use so called diagram method to deduce from this classification the statement (4) of the Basic Theorem.

A set \mathscr{E} of extremal rays is called extremal if it is contained in a face of Mori polyhedron. The \mathscr{E} has Kodaira dimension 3 if a contraction of this face gives a morphism on a 3 -fold. For Fano 3 -folds with \mathbf{Q}-factorial terminal singularities, we give a description of extremal sets \mathscr{E} of Kodaira dimension 3 which contain extremal rays of the types (I) or (II) only.

A set \mathscr{L} of extremal rays is called E-set if \mathscr{L} is not extremal, but any proper subset of \mathscr{L} is extremal. Thus, the \mathscr{L} is minimal non-extremal. For Fano 3 -folds with \mathbf{Q}-factorial terminal singularities, we give a description of E-set \mathscr{L} such that \mathscr{L} contains extremal rays of the types (I) or (II) only, and any proper subset of \mathscr{L} is extremal of Kodaira dimension 3 .

I am grateful to Profs. Sh. Ishii, M. Reid and J. Wiśniewski for useful discussions. I am grateful to referee for useful comments. I am grateful to Professors Masaki Maruyama and Igor R. Shafarevich for their interest in and support to these my studies.

This paper was prepared in Steklov Mathematical Institute, Moscow; Max-Planck Institut für Mathematik, Bonn, 1990; Kyoto University, 1992-1993 by the grant of Japan Society of Promotion of Science; Mathematical Sciences Research Institute, Berkeley, 1993. I thank these Institutes for their hospitality.

Preliminary variant of this paper was published as a preprint [N8]. Generalizations of results here one can find in a preprint [N9].

CHAPTER I. Diagram Method

Here we give the simplest variant of the diagram method for multi-dimensional algebraic varieties. We shall use this method in the next chapter. This part also contains some corrections and generalizations of the corresponding parts of our papers [N6] and [N7].

Let X be a projective algebraic variety with \mathbf{Q}-factorial singularities over an algebraically closed field. Let $\operatorname{dim} X \geq 2$. Let $N_{1}(X)$ be the \mathbf{R}-linear space generated by the numerical equivalence classes of all algebraic curves on X, and let $N^{1}(X)$ be the \mathbf{R}-linear space generated by the numerical equivalence classes of all Cartier (or Weil) divisors on X. Linear spaces $N_{1}(X)$ and $N^{1}(X)$ are dual to one another by the intersection pairing. Let $N E(X)$ be a convex cone in $N_{1}(X)$ generated by all effective curves on X. Let $\overline{N E}(X)$ be the closure of the cone $N E(X)$ in $N_{1}(X)$. It is called Mori cone (or polyhedron) of X. A non-zero element $x \in N^{1}(X)$ is called nef if $x \cdot \overline{N E}(X) \geq 0$. Let $N E F(X)$ be the set of all nef elements of X and the zero. It is the convex cone in $N^{1}(X)$ dual to Mori cone $\overline{N E}(X)$. A ray $R \subset \overline{N E}(X)$ with origin 0 is called extremal if from $C_{1} \in \overline{N E}(X), C_{2} \in \overline{N E}(X)$ and $C_{1}+C_{2} \in R$ it follows that $C_{1} \in R$ and $C_{2} \in R$.

We consider a condition (i) for a set \mathscr{R} of extremal rays on X.
(i) If $R \in \mathscr{R}$, then all curves $C \in R$ fill out an irreducible divisor $D(R)$ on X.

In this case, an oriented graph $G(\mathscr{R})$ corresponds to \mathscr{R} in the following way: Two different rays R_{1} and R_{2} are joined by an arrow $R_{1} R_{2}$ from R_{1} to R_{2} if $R_{1} \cdot D\left(R_{2}\right)>0$. Here and in what follows, for an extremal ray R and a divisor D we write $R \cdot D>0$ if $r \cdot D>0$ for $r \in R$ and $r \neq 0$. (The same convention is applied for the symbols \leq, \geq and $<$.)

A set \mathscr{E} of extremal rays is called extermal if it is contained in a face of $\overline{N E}(X)$. Equivalently, there exists a nef element $H \in N^{1}(X)$ such that $\mathscr{E} \cdot H=0$. Evidently, a subset of an extremal set is extremal, too.

We consider the following condition (ii) for extremal sets \mathscr{E} of extremal rays.
(ii) An extremal set $\mathscr{E}=\left\{R_{1}, \ldots, R_{n}\right\}$ satisfies the condition (i), and for any real numbers $m_{1} \geq 0, \ldots, m_{n} \geq 0$ which are not all equal to 0 , there exists a ray $R_{j} \in$ \mathscr{E} such that $R_{j} \cdot\left(m_{1} D\left(R_{1}\right)+m_{2} D\left(R_{2}\right)+\cdots+m_{n} D\left(R_{n}\right)\right)<0$. In particular, the effective divisor $m_{1} D\left(R_{1}\right)+m_{2} D\left(R_{2}\right)+\cdots+m_{n} D\left(R_{n}\right)$ is not nef.

A set \mathscr{L} of extremal rays is called E-set (extremal in a different sense) if the \mathscr{L} is not extremal but every proper subset of \mathscr{L} is extremal. Thus, \mathscr{L} is a minimal non-extremal set of extremal rays. Evidently, an E-set \mathscr{L} contains at least two elements.

We consider the following condition (iii) for E-sets \mathscr{L}.
(iii) Any proper subset of an E-set $\mathscr{L}=\left\{Q_{1}, \ldots, Q_{m}\right\}$ satisfies the condition (ii), and there exists a non-zero effective nef divisor $D(\mathscr{L})=a_{1} D\left(Q_{1}\right)+a_{2} D\left(Q_{2}\right)+$ $\cdots+a_{m} D\left(Q_{m}\right)$.

The following statement is very important.
Lemma 1.1. An E-set \mathscr{L} satisfying the condition (iii) is connected in the following sense: For any decomposition $\mathscr{L}=\mathscr{L}_{1} \amalg \mathscr{L}_{2}$, where \mathscr{L}_{1} and \mathscr{L}_{2} are non-empty, there exists an arrow $Q_{1} Q_{2}$ such that $Q_{1} \in \mathscr{L}_{1}$ and $Q_{2} \in \mathscr{L}_{2}$.

If \mathscr{L} and \mathcal{M} are two different E-sets satisfying the condition (iii), then there exists an arrow $L M$ where $L \in \mathscr{L}$ and $M \in \mathcal{M}$.

Proof. Let $\mathscr{L}=\left\{Q_{1}, \ldots, Q_{m}\right\}$. By (iii), there exists a nef divisor $D(\mathscr{L})=$ $a_{1} D\left(Q_{1}\right)+a_{2} D\left(Q_{2}\right)+\cdots+a_{m} D\left(Q_{m}\right)$. If one of the coefficients a_{1}, \ldots, a_{m} is equal to zero, we get a contradiction to the conditions (ii) and (iii). It follows that all the coefficients a_{1}, \ldots, a_{m} are positive. Let $\mathscr{L}=\mathscr{L}_{1} \amalg \mathscr{L}_{2}$ where $\mathscr{L}_{1}=\left\{Q_{1}, \ldots\right.$, $\left.Q_{k}\right\}$ and $\mathscr{L}_{2}=\left\{Q_{k+1}, \ldots, Q_{m}\right\}$. The divisors $D_{1}=a_{1} D\left(Q_{1}\right)+\cdots+a_{k} D\left(Q_{k}\right)$ and D_{2} $=a_{k+1} D\left(Q_{k+1}\right)+\cdots a_{m} D\left(Q_{m}\right)$ are non zero. By (ii), there exists a ray $Q_{i}, 1 \leq i$ $\leq k$, such that $Q_{i} \cdot D_{1}<0$. On the other hand, $Q_{i} \cdot D(\mathscr{)})=Q_{1} \cdot\left(D_{1}+D_{2}\right) \geq 0$. It follows that there exists $j, k+1 \leq j \leq m$, such that $Q_{i} \cdot D\left(Q_{j}\right)>0$. It means that $Q_{i} Q_{j}$ is an arrow.

Let us prove the second statement. By the condition (iii), for every ray $R \in \mathscr{L}$, we have the inequality $R \cdot D(\mathcal{M}) \geq 0$. If $R \cdot D(\mathcal{M})=0$ for any $R \in \mathscr{L}$, then the set \mathscr{L} is extremal, and we get the contradiction. It follows that there exists a ray $R \in \mathscr{L}$ such that $R \cdot D(\mathcal{M})>0$. It follows our assertion.

Let $N E F(X)=\overline{N E}(X)^{*} \subset N^{1}(X)$ be the cone of nef elements of X and $\mathcal{M}(X)=N E F(X) / \mathbf{R}^{+}$its projectivization. We use usual relations of orthogonality between subsets of $\mathcal{M}(X)$ and $\overline{N E}(X)$. So, for $U \subset \mathcal{M}(X)$ and $V \subset$ $\overline{N E}(X)$ we write $U \perp V$ if $x \cdot y=0$ for any $\mathbf{R}^{+} x \in U$ and any $y \in V$. Thus, for $U \subset \mathcal{M}(X), V \subset \overline{N E}(X)$ we denote

$$
U^{\perp}=\{y \in \overline{N E}(X) \mid U \perp y\}, \quad V^{\perp}=\{x \in \mathcal{M}(X) \mid x \perp V\} .
$$

A subset $\gamma \subset \mathcal{M}(X)$ is called a face of $\mathcal{M}(X)$ if there exists a non-zero element $r \in \overline{N E}(X)$ such that $\gamma=r^{\perp}$.

A convex set is called a closed polyhedron if it is a convex hull of a finite set of points. A convex closed polyhedron is called simplicial if all its proper faces are simplexes. A convex closed polyhedron is called simple (equivalently, it has simplicial angles) if it is dual to a simplicial one. In other words, any its face of codimension k is contained exactly in k faces of γ of the highest dimension. Similar names we use for convex cones and cones over polyhedra. For example, a convex cone is called simplex, simplicial and simple if it is a cone over a simplex, simplicial or simple polyhedron respectively.

We need some relative notions of the notions above.
We say that $\mathcal{M}(X)$ is a closed plyhedron in its face $\gamma \subset \mathcal{M}(X)$ if γ is a
closed polyhedron and $\mathcal{M}(X)$ is a closed polyhedron in a neighbourhood T of γ. Thus, there should exist a closed polyhedron \mathscr{M}^{\prime} such that $\mathcal{M}^{\prime} \cap T=\mathcal{M}(X) \cap T$.

We will use the following notation. Let $\mathscr{R}(X)$ be the set of all extremal rays of X. For a face $\gamma \subset \mathcal{M}(X)$,

$$
\mathscr{R}(\gamma)=\left\{R \in \mathscr{R}(X) \mid \exists \mathbf{R}^{+} H \in \gamma: R \cdot H=0\right\}
$$

and

$$
\mathscr{R}\left(\gamma^{\perp}\right)=\{R \in \mathscr{R}(X) \mid \gamma \perp R\} .
$$

Let us assume that $\mathcal{M}(X)$ is a closed polyhedron in its face γ. Then sets $\mathscr{R}\left(\gamma_{1}\right)$ and $\mathscr{R}\left(\gamma_{1}^{\perp}\right)$ are finite for any face $\gamma_{1} \subset \gamma$. Evidently, the face γ is simple if

$$
\begin{equation*}
\# \mathscr{R}\left(\gamma_{1}^{\perp}\right)-\# \mathscr{R}\left(\gamma^{\perp}\right)=\operatorname{codim}_{r} \gamma_{1} \tag{1}
\end{equation*}
$$

for any face γ_{1} of γ. Then we say that the polyhedron $\mathcal{M}(X)$ is simple in its face γ. Evidently, this condition is equivalent to the condition:

$$
\begin{equation*}
\operatorname{dim}[\mathscr{E}]-\operatorname{dim}\left[\mathscr{R}\left(\gamma^{\perp}\right)\right]=\# \mathscr{E}-\# \mathscr{R}\left(\gamma^{\perp}\right) \tag{2}
\end{equation*}
$$

for any extremal set \mathscr{E} such that $R\left(\gamma^{\perp}\right) \subset \mathscr{E}$. Here [•] denotes a linear hull. (In [N6], we required a more strong condition for a polyhedron $\mathcal{M}(X)$ to be simple in its face $\gamma: \# \mathscr{R}\left(\gamma_{1}^{\perp}\right)=\operatorname{dim} \mathscr{M}(X)-\operatorname{dim} \gamma_{1}$ for any face γ_{1} of $\gamma_{\text {. }}$)

Let A, B be two vertices of an oriented graph G. The distance $\rho(A, B)$ in G is a length (the number of links) of a shortest oriented path of the graph G from A to B. The distance is $+\infty$ if this path does not exist. The diameter diam G of an oriented graph G is the maximum distance between ordered pairs of its vertices. By the Lemma 1.1, the diameter of an E-set is a finite number if this set satisfies the condition (iii).

Theorem 1.2 below is an analog for algebraic varieties of arbitrary dimension of the Lemma 3.4 of [N 2] and the Lemma 1.4.1 of [N5], which were devoted to surfaces.

Theorem 1.2. Let X be a projective algebraic variety with \mathbf{Q}-factorial singularities and $\operatorname{dim} X \geq 2$. Let us suppose that $\mathcal{M}(X)$ is closed and simple in its face γ. Assume that the set $\mathscr{R}(\gamma)$ satisfies the condition (i) above. Assume that there are some constants d, C_{1}, C_{2} such that the conditions (a) and (b) below hold:
(a) For any E-set $\mathscr{L} \subset \mathscr{R}(\gamma)$ such that \mathscr{L} contains at least two elements which don't belong to $\mathscr{R}\left(\gamma^{\perp}\right)$ and for any proper subset $\mathscr{L}^{\prime} \subset \mathscr{L}$ the set $R\left(\gamma^{\perp}\right) \cup \mathscr{L}^{\prime}$ is extremal, the condition (iii) is valid and $\operatorname{diam} G(\mathscr{L}) \leq d$.
(b) For any extremal subset \mathscr{E} such that $\mathscr{R}\left(\gamma^{\perp}\right) \subset \mathscr{E} \subset \mathscr{R}(\gamma)$, we have: the \mathscr{E} satisfies the condition (ii) and for the distance in the oriented graph $G(\mathscr{E})$

$$
\#\left\{\left(R_{1}, R_{2}\right) \in\left(\mathscr{E}-\mathscr{R}\left(\gamma^{\perp}\right)\right) \times\left(\mathscr{E}-\mathscr{R}\left(\gamma^{\perp}\right)\right) \mid 1 \leq \rho\left(R_{1}, R_{2}\right) \leq d\right\} \leq C_{1} \#\left(\mathscr{E}-\mathscr{R}\left(\gamma^{\perp}\right)\right) ;
$$ and

$$
\begin{array}{r}
\#\left\{\left(R_{1}, R_{2}\right) \in\left(\mathscr{E}-\mathscr{R}\left(\gamma^{\perp}\right)\right) \times\left(\mathscr{E}-\mathscr{R}\left(\gamma^{\perp}\right)\right) \mid d+1 \leq \rho\left(R_{1}, R_{2}\right) \leq 2 d+1\right\} \\
\leq C_{2} \#\left(\mathscr{E}-\mathscr{R}\left(\gamma^{\perp}\right)\right) .
\end{array}
$$

Then $\operatorname{dim} \gamma<(16 / 3) C_{1}+4 C_{2}+6$.
Proof. We use the following Lemma 1.3 which was proved in [N1]. The lemma was used in [N1] to get a bound (≤ 9) of the dimension of a hyperbolic (Lobachevsky) space admitting an action of an arithmetic reflection group with a field of definition of the degree $>N$. Here N is some absolute constant.

Lemma 1.3. Let \mathcal{M} be a convex closed simple polyhedron of a dimension n, and $A_{n}^{i, k}$ the average number of i-dimensional faces of k-dimensional faces of \mathcal{M}. Then for $n \geq 2 k-1$

$$
A_{n}^{i, k}<\frac{\binom{n-i}{n-k} \cdot\left(\binom{[n / 2]}{i}+\binom{n-[n / 2]}{i}\right)}{\binom{[n / 2]}{k}+\binom{n-[n / 2]}{k}}
$$

In particular, if $n \geq 3$

$$
A_{n}^{0,2}< \begin{cases}\frac{4(n-1)}{n-2} & \text { if } n \text { is even } \\ \frac{4 n}{n-1} & \text { if } n \text { is odd }\end{cases}
$$

Proof. See [N1]. We mention that the right side of the inequality of the Lemma 1.3 decreases and tends to the number $2^{k-i}\binom{k}{i}$ of i-dimensional faces of k-dimensional cube if n increases.

From the estimate of $A_{n}^{0.2}$ of the Lemma, it follows the following analog of Vinberg's Lemma from [V]. Vinberg's Lemma was used by him to obtain an estimate ($\operatorname{dim}<30$) for the dimension of a hyperbolic space admitting an action of a discrete reflection group with a bounded fundamental polyhedron.

By definition, an angle of a polyhedron T is an angle of a 2 -dimensional face of T. Thus, the angle is defined by a vertex A of T, a plane containing A and a 2 -dimensional face γ_{2} of T, and two rays with the beginning at A which contain two corresponding sides of the γ_{2}. To define an oriented angle of T, one should in addition put in order two rays of the angle.

Lemma 1.4. Let \mathcal{M} be a convex simple polyhedron of a dimension n. Let C and D are some numbers. Suppose that oriented angles (2-dimensional, plane) of \mathcal{M} are supplied with weights and the following conditions (1) and (2) hold:
(1) The sum of weights of all oriented angles at any vertex of M is not greater than $C n+D$.
(2) The sum of weights of all oriented angles of any 2-dimensional face of \mathcal{M} is at least $5-k$ where k is the number of vertices of the 2-dimensional face.

Then

$$
n<8 C+5+ \begin{cases}1+8 D / n & \text { if } n \text { is even }, \\ (8 C+8 D) /(n-1) & \text { if } n \text { is odd }\end{cases}
$$

In particular, for $C \geq 0$ and $D=0$, we have

$$
n<8 C+6
$$

Proof. We correspond to a non-oriented plane angle of \mathcal{M} a weight which is equal to the sum of weights of two corresponding oriented angles. Evidently, the conditions of the Lemma hold for the weights of non-oriented angles too if we forget about the word "oriented". Then we obtain Vinberg's lemma from [V] which we formulate a little bit more precisely here. Since the proof is simple, we give the proof here.

Let \sum be the sum of weights of all (non-oriented) angles of the polyhedron \mathcal{M}. Let α_{0} be the number of vertices of \mathcal{M} and α_{2} the number of 2 -dimensional faces of \mathcal{M}. Since \mathcal{M} is simple,

$$
\alpha_{0} \frac{n(n-1)}{2}=\alpha_{2} A_{n}^{0,2}
$$

From this equality and conditions of the Lemma, we get inequalities

$$
\begin{aligned}
& (C n+D) \alpha_{0} \geq \sum \geq \sum \alpha_{2, k}(5-k)=5 \alpha_{2}-\alpha_{2} A_{n}^{0,2}= \\
& \quad=\alpha_{2}\left(5-A_{n}^{0,2}\right)=\alpha_{0}(n(n-1) / 2)\left(5 / A_{n}^{0.2}-1\right)
\end{aligned}
$$

Here $\alpha_{2, k}$ is the number of 2 -dimensional faces with k vertices of \mathcal{M}. Thus, from this inequality and Lemma 1.3, we get

$$
C n+D \geq(n(n-1) / 2)\left(5 / A_{n}^{0.2}-1\right)> \begin{cases}n(n-6) / 8 & \text { if } n \text { is even } \\ (n-1)(n-5) / 8 & \text { if } n \text { is odd }\end{cases}
$$

From this calculations, Lemma 1.4 follows.
The proof of Theorem 1.2. (Compare with [V].) Let \angle be an oriented angle of γ. Let $\mathscr{R}(\angle) \subset \mathscr{R}(\gamma)$ be the set of all extremal rays of $\mathcal{M}(X)$ which are orthogonal to the vertex of \angle. Since $\mathscr{M}(X)$ is simple in γ, the set $\mathscr{R}(\angle)$ is a disjoint union

$$
\mathscr{R}(\angle)=\mathscr{R}\left(\angle^{\perp}\right) \cup\left\{R_{1}(\angle)\right\} \cup\left\{R_{2}(\angle)\right\}
$$

where $\mathscr{R}\left(L^{\perp}\right)$ contains all rays orthogonal to the plane of the angle \angle, the rays $R_{1}(\angle)$ and $R_{2}(\angle)$ are orthogonal to the first and second side of the oriented angle \angle, respectively. Evidently, the set $\mathscr{R}(\angle)$ and the ordered pair of rays $\left(R_{1}(\angle), R_{2}(\angle)\right)$ define the oriented angle \angle uniquely. We define the weight $\sigma(\angle)$ by the formula:

$$
\sigma(\angle)= \begin{cases}2 / 3, & \text { if } 1 \leq \rho\left(R_{1}(\angle), R_{2}(\angle)\right) \leq d \\ 1 / 2, & \text { if } d+1 \leq \rho\left(R_{1}(\angle), R_{2}(\angle)\right) \leq 2 d+1 \\ 0, & \text { if } 2 d+2 \leq \rho\left(R_{1}(\angle), R_{2}(\angle)\right)\end{cases}
$$

Here we take the distance in the graph $G(\mathscr{R}(\angle))$. Let us prove conditions of the Lemma 1.4 with the constants $C=(2 / 3) C_{1}+C_{2} / 2$ and $D=0$.

The condition (1) follows from the condition (b) of the theorem. We remark that rays $R_{1}(\angle), R_{2}(\angle)$ do not belong to the set $R\left(\gamma^{\perp}\right)$.

Let us prove the condition (2).
Let γ_{3} be a 2 -dimensional triangle face (triangle) of γ. The set $\mathscr{R}\left(\gamma_{3}\right)$ of
all extremal rays orthogonal to points of γ_{3} is the union of the set $\mathscr{R}\left(\gamma_{3}^{\perp}\right)$ of extremal rays, which are orthogonal to the plane of the triangle γ_{3}, and rays R_{1}, R_{2}, R_{3}, which are orthogonal to the sides of the triangle γ_{3}. Union of the set $\mathscr{R}\left(\gamma_{3}^{1}\right)$ with any two rays of R_{1}, R_{2}, R_{3} is extremal, since it is orthogonal to a vertex of γ_{3}. On the other hand, the set $\mathscr{R}\left(\gamma_{3}\right)=\mathscr{R}\left(\gamma_{3}^{\perp}\right) \cup\left\{R_{1}, R_{2}, R_{3}\right\}$ is not extremal, since it is not orthogonal to a point of $\mathscr{M}(X)$. Indeed, the set of all points of $\mathscr{M}(X)$, which are orthogonal to the set $\mathscr{R}\left(\gamma_{3}^{1}\right) \cup\left\{R_{2}, R_{3}\right\}, \mathscr{R}\left(\gamma_{3}^{1}\right) \cup$ $\left\{R_{1}, R_{3}\right\}$, or $\mathscr{R}\left(\gamma_{3}^{1}\right) \cup\left\{R_{1}, R_{2}\right\}$ is the vertex A_{1}, A_{2}, or A_{3} respectively of the triangle γ_{3}, and the intersection of these sets of vertices is empty. Thus, there exists an E-set $\mathscr{L} \subset \mathscr{R}\left(\gamma_{3}\right)$, which contains the set of rays $\left\{R_{1}, R_{2}, R_{3}\right\}$. By the condition (a), the graph $G(\mathscr{L})$ contains a shortest oriented path s of the length $\leq d$ which connects the rays R_{1}, R_{3}. If this path does not contain the ray R_{2}, then the oriented angle of γ_{3} defined by the set $\mathscr{R}\left(\gamma_{3}^{\perp}\right) \cup\left\{R_{1}, R_{3}\right\}$ and the pair $\left(R_{1}, R_{3}\right)$ has the weight $2 / 3$. If this path contains the ray R_{2}, then the oriented angle of γ_{3} defined by the set $\mathscr{R}\left(\gamma_{3}^{1}\right) \cup\left\{R_{1}, R_{2}\right\}$ and the pair (R_{1}, R_{2}) has the weight $2 / 3$. Thus, we proved that the side $A_{2} A_{3}$ of the triangle γ_{3} defines an oriented angle of the triangle with the weight $2 / 3$ and the first side $A_{2} A_{3}$ of the oriented angle. The triangle has three sides. It follows the condition (2) of the Lemma 1.4 for the triangle.

Let γ_{4} be a 2-dimensional quadrangle face (quadrangle) of γ. In this case,

$$
\mathscr{R}\left(\gamma_{4}\right)=\mathscr{R}\left(\gamma_{4}^{1}\right) \cup\left\{R_{1}, R_{2}, R_{3}, R_{4}\right\}
$$

where $\mathscr{R}\left(\gamma_{4}^{\frac{1}{4}}\right)$ is the set of all extremal rays which are orthogonal to the plane of the quadrangle and the rays $R_{1}, R_{2}, R_{3}, R_{4}$ are orthogonal to the consecutive sides of the quadrangle. As above, one can see that the sets $\mathscr{R}\left(\gamma_{4}^{1}\right) \cup\left\{R_{1}, R_{3}\right\}$, $\mathscr{R}\left(\gamma_{4}^{1}\right) \cup\left\{R_{2}, R_{4}\right\}$ are not extremal, but the sets $\mathscr{R}\left(\gamma_{4}^{\frac{1}{4}}\right) \cup\left\{R_{1}, R_{2}\right\}, \mathscr{R}\left(\gamma_{4}^{1}\right) \cup\left\{R_{2}\right.$, $\left.R_{3}\right\}, \mathscr{R}\left(\gamma_{4}^{\perp}\right) \cup\left\{R_{3}, R_{4}\right\}$ and $\mathscr{R}\left(\gamma_{4}^{1}\right) \cup\left\{R_{4}, R_{1}\right\}$ are extremal. It follows that there are E-sets \mathscr{L}, \mathcal{N} such that $\left\{R_{1}, R_{3}\right\} \subset \mathscr{L} \subset \mathscr{R}\left(\gamma_{4}^{\perp}\right) \cup\left\{R_{1}, R_{3}\right\}$ and $\left\{R_{2}, R_{4}\right\} \subset \mathcal{N} \subset$ $\mathscr{R}\left(\gamma_{4}^{\perp}\right) \cup\left\{R_{2}, R_{4}\right\}$. By Lemma 1.1, there exist rays $R \in \mathscr{L}$ and $Q \in \mathcal{N}$ such that $R Q$ is an arrow. By the condition (a) of the theorem, one of the rays R_{1}, R_{3} is joined by an oriented path s_{1} of the length $\leq d$ with the ray R and this path does not contain another ray from R_{1}, R_{3} (here R is the terminal of the path s_{1}). We can suppose that this ray is R_{1} (otherwise, one should replace the ray R_{1} by the ray R_{3}). As above, we can suppose that the ray Q is connected by the oriented path s_{2} of the length $\leq d$ with the ray R_{2} and this path does not contain the ray R_{4}. The path $s_{1} R Q s_{2}$ is an oriented path of the length $\leq 2 d+$ 1 in the oriented graph $G\left(\mathscr{R}\left(\gamma_{4}^{\perp}\right) \cup\left\{R_{1}, R_{2}\right\}\right)$. It follows that the oriented angle of the quadrangle γ_{4}, such that consecutive sides of this angle are orthogonal to the rays R_{1} and R_{2} respectively, has the weight $\geq 1 / 2$. Thus, we proved that for a pair of opposite sides of γ_{4} there exists an oriented angle with weight $\geq 1 / 2$ such that the first side of this oriented angle is one of this
opposite sides of the quadrangle. A quadrangle has two pairs of opposite sides. It follows that the sum of weights of oriented angles of γ_{4} is ≥ 1. It proves the condition (2) of the Lemma 1.4 and the theorem.

In the sequel, we apply Theorem 1.2 to 3 -folds.

CHAPTER II. Threefolds

1. Contractible extremal rays

We consider normal projective 3 -folds X with \mathbf{Q}-factorial singularities. Let R be an extremal ray of Mori polyhedron $\overline{N E}(X)$ of X. A morphism f : $X \rightarrow Y$ onto a normal projective variety Y is called the contraction of the ray R if for an irreducible curve C of X the image $f(C)$ is a point if and only if $C \in$ R. The contraction f is defined by a linear system H on X (H give rise to a nef element of $N^{1}(X)$, which we also denote by H). It follows that an irreducible curve C is contracted if and only if $C \cdot H=0$. We assume that the contraction f has properties: $f \mathscr{O}_{X}=\mathscr{O}_{Y}$ and the sequence

$$
\begin{equation*}
0 \rightarrow \mathbf{R} R \rightarrow N_{1}(X) \rightarrow N_{1}(Y) \rightarrow 0 \tag{1.1}
\end{equation*}
$$

is exact where the arrow $N_{1}(X) \rightarrow N_{1}(Y)$ is f_{*}. An extremal ray R is called contractible if there exists its contraction f with these properties.

The number $\kappa(R)=\operatorname{dim} Y$ is called Kodaira dimension of the contractible extremal ray R.

A face γ of $\overline{N E}(X)$ is called contractible if there exists a morphism $f: X \rightarrow Y$ onto a normal projective variety Y such that $f_{*} \gamma=0, f_{*} \mathscr{O}_{X}=\mathfrak{O}_{Y}$ and f contracts curves lying in γ only. The $\kappa(\gamma)=\operatorname{dim} Y$ is called Kodaira dimension of γ.

Let H be a general nef element orthogonal to a face γ of Mori polyhedron. Numerical Kodaira dimension of γ is defined by the formula

$$
\kappa_{n u m}(\gamma)= \begin{cases}3, & \text { if } H^{3}>0 \\ 2, & \text { if } H^{3}=0 \text { and } H^{2} \not \equiv 0 \\ 1, & \text { if } H^{2} \equiv 0\end{cases}
$$

It is obvious that for a contractible face γ we have $\kappa_{n u m}(\gamma) \geq \kappa(\gamma)$. In particular, $\kappa_{n u m}(\gamma)=\kappa(\gamma)$ for a contractible face γ of Kodaira dimension $\kappa(\gamma)=3$.

2. Paris of extremal rays of Kodaira dimension three lying in contractible faces of $\overline{\boldsymbol{N E}}(\boldsymbol{X})$ of Kodaira dimension three

We assume further that X is a projective normal threefold with Q-factorial singularities.

Lemma 2.2.1. Let R be a contractible extremal ray of Kodaira dimension

3 and $f: X \rightarrow Y$ its contraction.
Then there are three possibilities:
(I) All curves $C \in R$ fill an irreducible Weil divisor $D(R)$, the contraction f contracts $D(R)$ to a point and $R \cdot D(R)<0$.
(II) All curves $C \in R$ fill an irreducible Weil divisor $D(R)$, the contraction f contracts $D(R)$ to an irreducible curve and $R \cdot D(R)<0$.
(III) (small extremal ray) All curves $C \in R$ give a finite set of irreducible curves and the contraction f contracts these curves to points.

Proof. Assume that some curves of R fill an irreducible divisor D. Then $R \cdot D<0$ (this inequality follows from the Proposition 2.2.6 below). Suppose that $C \in R$ and D does not contain C. It follows that $R \cdot D \geq 0$. We get a contradiction. It follows the lemma.

According to Lemma 2.2.1, we say that an extremal ray R has the type (I), (II) or (III) (small) if it is contractible of Kodaira dimension 3 and the statement (I), (II) or (III) respectively holds.

Lemma 2.2.2. Let R_{1} and R_{2} are two different extremal rays of the type (I). Then divisors $D\left(R_{1}\right)$ and $D\left(R_{2}\right)$ do not intersect one another.

Proof. Otherwise, $D\left(R_{1}\right)$ and $D\left(R_{2}\right)$ have a common curve and the rays R_{1} and R_{2} are not different.

For an irreducible Weil divisor D on X let

$$
\overline{N E}(X, D)=(\operatorname{image} \overline{N E}(D)) \subset \overline{N E}(X) .
$$

Lemma 2.2.3. Let R be an extremal ray of the type (II), and f its contraction. Then $\overline{N E}(X, D(R))=R+\mathbf{R}^{+} S$, where $\mathbf{R}^{+} f_{*} S=\mathbf{R}^{+}(f(D))$.

Proof. This follows at once from the exact sequence (1.1).
Lemma 2.2.4. Let R_{1} and R_{2} are two different extremal rays of the type (II) such that the divisors $D\left(R_{1}\right), D\left(R_{2}\right)$ coincide. Then for $D=D\left(R_{1}\right)=D\left(R_{2}\right)$ we have: $\overline{N E}(X, D)=R_{1}+R_{2}$. In particular, do not exist three different extremal rays of the type (II) such that their divisors coincide one another.

Proof. This follows from the Lemma 2.2.3.
Lemma 2.2.5. Let R be an extremal ray of the type (II) and f its cotraction. Then there does not exist more than one extremal ray Q of the type (I) such that $D(R) \cap D(Q)$ is not empty. If Q is this ray, then $D(R) \cap D(Q)$ is a curve and any irreducible component of this curve is not contained in fibers of f.

Proof. The last assertion is obvious. Let us prove the first one. Suppose that Q_{1} and Q_{2} are two different extremal rays of the type (I) such that $D\left(Q_{1}\right) \cap D(R)$ and $D\left(Q_{2}\right) \cap D(R)$ are not empty. Then the plane angle $\overline{N E}(X$, $D(R)$) (see the Lemma 2.2.3) contains three different extremal rays: Q_{1}, Q_{2}
and R. It is impossible.
The following key proposition is very important.
Proposition 2.2.6. Let X be a projective 3-fold with \mathbf{Q}-factorial sing. ularities, D_{1}, \ldots, D_{m} irreducible divisors on X and $f: X \rightarrow Y$ a surjective morphism such that $\operatorname{dim} X=\operatorname{dim} Y$ and $\operatorname{dim} f\left(D_{i}\right)<\operatorname{dim} D_{i}$. Let $y \in f\left(D_{1}\right) \cap \ldots \cap f\left(D_{m}\right)$. Then there are $a_{1}>0, \ldots, a_{m}>0$ and an open $U, y \in U \subset f\left(D_{1}\right) \cup \ldots \cup f\left(D_{m}\right)$, such that

$$
C \cdot\left(a_{1} D_{1}+\ldots+a_{m} D_{m}\right)<0
$$

if a curve $C \subset D_{1} \cup \ldots \cup D_{m}$ belongs to a non-trivial algebraic family of curves on D_{1} $\cup \ldots \cup D_{m}$ and $f(C)=$ point $\in U$.

Proof. The proof is the same as the well-known case of surfaces (but, for surfaces, it is not necessary to suppose that C belong to a nontrivial algebraic family). Let H be an irreducible ample divisor on X and $H^{\prime}=f_{*} H$. Since $\operatorname{dim} f\left(D_{i}\right)<\operatorname{dim} D_{i}$, it follows that $f\left(D_{1}\right) \cup \ldots \cup f\left(D_{m}\right) \subset H^{\prime}$. Let ϕ be a non-zero rational function on Y which is regular in a neighbourhood U of y on Y and is equal to zero on the divisor H^{\prime}. In the open set $f^{-1}(U)$ the divisor ($f^{*} \phi$) can be written in a form

$$
\left(f^{*} \phi\right)=\sum_{i=1}^{m} a_{i} D_{i}+\sum_{j=1}^{n} b_{j} Z_{j}
$$

where all $a_{i}>0$ and all $b_{j}>0$. Here every divisor Z_{j} is different from any divisor D_{i}. We have

$$
0=C \cdot \sum_{i=1}^{m} a_{i} D_{i}+C \cdot \sum_{j=1}^{n} b_{j} Z_{j}
$$

Here $C \cdot\left(\sum_{j=1}^{n} b_{j} Z_{j}\right)>0$ since C belongs to a nontrivial algebraic family of curves on a surface $D_{1} \cup \ldots \cup D_{m}$ and one of the Z_{j} is the hyperplane section H.

Lemma 2.2.7. Let R_{1}, R_{2} are two extremal rays of the type (II), divisors $D\left(R_{1}\right), D\left(R_{2}\right)$ are different and $D\left(R_{1}\right) \cap D\left(R_{2}\right) \neq 0$. Assume that R_{1}, R_{2} belong to a contractible face of $\overline{N E}(X)$ of Kodaira dimension 3. Let $0 \neq F_{1} \in R_{1}$ and $0 \neq F_{2}$ $\in R_{2}$. Then

$$
\left(F_{1} \cdot D\left(R_{2}\right)\right)\left(F_{2} \cdot D\left(R_{1}\right)\right)<\left(F_{1} \cdot D\left(R_{1}\right)\right)\left(F_{2} \cdot D\left(R_{2}\right)\right) .
$$

Proof. Let f be the contraction of a face of Kodaira dimension 3, which contains both rays R_{1}, R_{2}. By Proposition 2.2.6, there are $a_{1}>0, a_{2}>0$ such that

$$
a_{1}\left(F_{1} \cdot D\left(R_{1}\right)\right)+a_{2}\left(F_{1} \cdot D\left(R_{2}\right)\right)<0 \quad \text { and } \quad a_{1}\left(F_{2} \cdot D\left(R_{1}\right)\right)+a_{2}\left(F_{2} \cdot D\left(R_{2}\right)\right)<0
$$

or

$$
-a_{1}\left(F_{1} \cdot D\left(R_{1}\right)\right)>a_{2}\left(F_{1} \cdot D\left(R_{2}\right)\right) \quad \text { and } \quad-a_{2}\left(F_{2} \cdot D\left(R_{2}\right)\right)>a_{1}\left(F_{2} \cdot D\left(R_{1}\right)\right)
$$

where $F_{1} \cdot D\left(R_{1}\right)<0$. $\quad F_{2} \cdot D\left(R_{2}\right)<0$ and $F_{1} \cdot D\left(R_{2}\right)>0, F_{2} \cdot D\left(R_{1}\right)>0$. Multiplying inequalities above, we obtain the lemma.

3. A classification of extremal sets of extremal rays which contain extremal rays of the type (I) and simple extremal rays of the type (II)

As above, we assume that X is a projective normal 3 -fold with Q-factorial singularities.

Definition 2.3.1. An extremal ray R of the type (II) is called simple if

$$
R \cdot(D(R)+D) \geq 0
$$

for any irreducible divisor D such that $R \cdot D>0$.
The following proposition gives a simple sufficient condition for an extremal ray to be simple.

Proposition 2.3.2. Let R be an extremal ray of the type (II) and $f: X \rightarrow$ Y the contraction of R. Suppose that the curve $f(D(R))$ is not contained in the set of singularities of Y. Then
(1) the ray R is simple;
(2) if X has only isolated singularities, then a general element C of the ray R (a general fiber of the morphism $f \mid D(R)$) is isomorphic to \mathbf{P}^{1} and the divisor $D(R)$ is non-singular along C. If additionally $R \cdot K_{X}<0$, then $C \cdot D(R)=C \cdot K_{X}=$ -1 .
(3) In particular, both statements (1) and (2) are true if X has terminal singularities and $R \cdot K_{X}<0$.

Proof. Let D be an irreducible divisor on X such that $R \cdot D>0$. Since $R \cdot D(R)<0$, the divisor D is different from $D(R)$ and the intersection $D \cap$ $D(R)$ is a curve which does not belong to R. Then $D^{\prime}=f_{*}(D)$ is an irreducible divisor on Y and $\Gamma=f(D(R))$ is a curve on D^{\prime}. Let $y \in \Gamma$ be a non-singular point of Y. Then the divisor D^{\prime} is defined by some local equation ϕ in a neighbourhood U of y. Evidently, in the open set $f^{-1}(U)$ we can write

$$
\left(f^{*} \phi\right)=D+m(D(R))
$$

where the integer $m \geq 1$. Let a curve $C \in R$ and $f(C)=y \in U \cap f(D(R))$. Then $0=C \cdot(D+m(D(R)))=C \cdot(D+D(R))+C \cdot(m-1)(D(R))$. Since $m \geq 1$ and $C \cdot D(R)<0$, it follows that $C \cdot(D+D(R)) \geq 0$.

Let us prove (2). Let us consider a linear system $|H|$ of hyperplane sections on Y and the corresponding linear systems on resolutions of singularities of Y and X. Let us apply Bertini's theorem (see, for example, [Ha, ch. III, Corollary 10.9 and the Exercise 11.3]) to these linear systems. Singularities of X and Y are isolated. Then by Bertini theorem, for a general element H of $|H|$ we obtain that (a) H and $H^{\prime}=f^{-1}(H)$ are irreducible and non-singular; (b) H intersects Γ transversely in non-singular points of Γ. Let us consider the corresponding birational morphism $f^{\prime}=f \mid H^{\prime}: H^{\prime} \rightarrow H$ of the non-singular irreducible surfaces. It is a composition of blowing ups at non-singular points. Thus, fibers of f^{\prime} over $H \cap \Gamma$ are trees of non-singular rational curves. The
exceptional curve of the first of these blowing ups is identified with the fiber of the projectivization of the normal bundle $\mathbf{P}\left(\mathcal{N}_{\Gamma / Y}\right)$. Thus, we obtain a rational map over the curve Γ

$$
\phi: \mathbf{P}\left(\mathcal{N}_{\Gamma / Y}\right) \rightarrow D(R)
$$

of the irreducible surfaces. Evidently, it is an injection at general points of $\mathbf{P}\left(\mathcal{N}_{\Gamma / Y}\right)$. It follows that ϕ is a birational isomorphism of the surfaces. Since ϕ is a birational map over the curve Γ, it follows that the general fibers of this maps are birationally isomorphic. It follows that a general fiber of f^{\prime} is $C \simeq \mathbf{P}^{\mathbf{1}}$. Since C is non-singular and is an intersection of the non-singular surface H^{\prime} with the surface $D(R)$, and since X has only isolated singularities, it follows that $D(R)$ is non-singular along the general curve C.

The X and $D(R)$ are non-singular along $C \simeq \mathbf{P}^{1}$ and the curve C is non-singular. Then the canonical class $K_{C}=\left(K_{X}+D(R)\right) \mid C$ where both divisors K_{X} and $D(R)$ are Cartier divisors on X along C. It follows that $-2=$ $\operatorname{deg} K_{C}=K_{X} \cdot C+D(R) \cdot C$, where the both numbers $K_{X} \cdot C$ and $D(R) \cdot C$ are negative integers. Then $D(R) \cdot C=K_{X} \cdot C=-1$.

If X has terminal singularities and $R \cdot K_{X}<0$, then Y has terminal sing. ularities too (see, for example, [Ka1]). Moreover, 3-dimensional terminal singularities are isolated. From (1), (2), the last statement of the Proposition follows.

In connection with Proposition 2.3.2, see also [Mo2, 1.3 and 2.3.2] and [I, Lemma 1].

Let R_{1}, R_{2} are two extremal rays of the type (I) or (II). They are joined if $D\left(R_{1}\right) \cap D\left(R_{2}\right) \neq 0$. It defines connected components of a set of extremal rays of the type (I) or (II).

We recall (see Chapter I) that a set \mathscr{E} of extremal rays is called extremal if it is contained in a face of $\overline{N E}(X)$. We say that \mathscr{E} is extremal of Kodaira dimension 3 if it is contained in a face of numerical Kodaira dimension 3 of $\overline{N E}(X)$.

We prove the following classification result.
Theorem 2.3.3. Let $\mathscr{E}=\left\{R_{1}, R_{2}, \ldots, R_{n}\right\}$ be an extremal set of extremal rays of the type (I) or (II). Suppose that every extremal ray of \mathscr{E} of the type (II) is simple. Assume that \mathscr{E} is contained in a contractible face with Kodaira dimension 3 of $\overline{N E}(X)$. (Thus, \mathscr{E} is extremal of Kodaira dimension 3.) Then every connected component of \mathscr{E} has a type $\mathfrak{A}_{1}, \mathfrak{B}_{2}, \mathfrak{C}_{m}$ or \mathfrak{D}_{2} below (see figure 1).
$\left(\mathfrak{A}_{1}\right) \quad$ One extremal ray of the type (I).
$\left(\mathfrak{B}_{2}\right)$ Two different extremal rays S_{1}, S_{2} of the type (II) such that their divisors $D\left(S_{1}\right)=D\left(S_{2}\right)$ coincided.
$\left(\mathfrak{C}_{m}\right) \quad m \geq 1$ extremal rays $S_{1}, S_{2}, \ldots, S_{m}$ of the type (II) such that their divisors $D\left(S_{2}\right), D\left(S_{3}\right), \ldots, D\left(S_{m}\right)$ do not intersect one another, and $S_{1} \cdot D\left(S_{i}\right)=0$ and $S_{i} \cdot D\left(S_{1}\right)>0$ for $i=2, \ldots, m$.
$\left(D_{2}\right)$ Two extremal rays S_{1}, S_{2}, where S_{1} is of the type (II) and S_{2} of the
type $(I), S_{1} \cdot D\left(S_{2}\right)>0$ and $S_{2} \cdot D\left(S_{1}\right)>0$. Either $S_{1} \cdot\left(b_{1} D\left(S_{1}\right)+b_{2} D\left(S_{2}\right)\right)<0$ or $S_{2} \cdot\left(b_{1} D\left(S_{1}\right)+b_{2} D\left(S_{2}\right)\right)<0$ for any b_{1}, b_{2} such that $b_{1} \geq 0, b_{2} \geq 0$ and one of b_{1}, b_{2} is not zero.

The following inverse statement is true: If $\mathscr{E}=\left\{R_{1}, R_{2}, \ldots, R_{n}\right\}$ is a connected set of extremal rays of the type (I) or (II) and \mathscr{E} has a type $\mathfrak{A}_{1}, \mathfrak{B}_{2}, \mathfrak{C}_{m}$ or \mathfrak{D}_{2} above, then \mathscr{E} generates a simplex face $R_{1}+\cdots+R_{n}$ of the dimension n and numerical Kodaira dimension 3 of $\overline{N E}(X)$. In particular, extremal rays of the set \mathscr{E} are linearly independent.

Proof. Let us prove the first statement. We can suppose that \mathscr{E} is connected. We have to prove that \mathscr{E} has the type $\mathfrak{A}_{1}, \mathfrak{B}_{2}, \mathfrak{C}_{m}$ or \mathfrak{D}_{2}. If $n=1$, this is obvious.

Let $n=2$. From Lemma 2.2.2, it follows that one of the rays R_{1}, R_{2} has the type (II). Let R_{1} have the type (II) and R_{2} the type (I). Since $D\left(R_{1}\right) \cap$ $D\left(R_{2}\right) \neq \emptyset$, evidently $R_{2} \cdot D\left(R_{1}\right)>0$. If $R_{1} \cdot D\left(R_{2}\right)=0$, then the curve $D\left(R_{1}\right) \cap$ $D\left(R_{2}\right)$ belongs to the ray R_{1}. It follows that the rays R_{1} and R_{2} contain the same curve. We get a contradiction. Thus, $R_{1} \cdot D\left(R_{2}\right)>0$. The rays R_{1}, R_{2} belong to a contractible face of Kodaira dimension 3 of Mori polyhedron. Let f be a contraction of this face. By the Lemma 2.2.3, f contracts the divisors $D\left(R_{1}\right), D\left(R_{2}\right)$ to the same point. By Proposition 2.2.6, there exist positive a_{1}, a_{2} such that $R_{1} \cdot\left(a_{1} D\left(R_{1}\right)+a_{2} D\left(R_{2}\right)\right)<0$ and $R_{2} \cdot\left(a_{1} D\left(R_{1}\right)+a_{2} D\left(R_{2}\right)\right)<0$. Now suppose that for some $b_{1}>0$ and $b_{2}>0$ the inequalities $R_{1} \cdot\left(b_{1} D\left(R_{1}\right)+\right.$ $\left.b_{2} D\left(R_{2}\right)\right) \geq 0$ and $R_{2} \cdot\left(b_{1} D\left(R_{1}\right)+b_{2} D\left(R_{2}\right)\right) \geq 0$ hold. There exists $\lambda>0$ such that $\lambda b_{1} \leq a_{1}, \lambda b_{2} \leq a_{2}$ and one of these inequalities is an equality. For example, let $\lambda b_{1}=a_{1}$. Then

$$
R_{1} \cdot\left(a_{1} D\left(R_{1}\right)+a_{2} D\left(R_{2}\right)\right)=R_{1} \cdot \lambda\left(b_{1} D\left(R_{1}\right)+b_{2} D\left(R_{2}\right)\right)+R_{1} \cdot\left(a_{2}-\lambda b_{2}\right) D\left(R_{2}\right) \geq 0
$$

We get a contradiction. It proves that in this case \mathscr{E} has the type \mathscr{D}_{2}.

Figure 1.
Now assume that both rays R_{1}, R_{2} have the type (II). Since the rays R_{1}, R_{2} are simple, from Lemma 2.2.7, it follows that either $R_{1} \cdot D\left(R_{2}\right)=0$ or $R_{2} \cdot D\left(R_{1}\right)=0$. If both these equalities hold, the rays R_{1}, R_{2} have a common curve. We get a contradiction. Thus, in this case, \mathscr{E} has the type $\mathbb{\bigotimes}_{2}$.

Let $n=3$. Every proper subset of \mathscr{E} has connected components of types
$\mathfrak{A}_{1}, \mathfrak{B}_{2}, \mathfrak{C}_{m}$ or \mathfrak{D}_{2}. Using Lemmas $2.2 .2-2.2 .5$, one can see very easily that either \mathscr{E} has the type \mathfrak{C}_{3} or we have the following case:

The rays R_{1}, R_{2}, R_{3} have the type (II), every two elements subset of \mathscr{E} has the type \mathfrak{C}_{2} and we can find a numeration such that $R_{1} \cdot D\left(R_{2}\right)>0, R_{2} \cdot D\left(R_{3}\right)>$ $0, R_{3} \cdot D\left(R_{1}\right)>0$. Let f be a contraction of the face γ. By Lemma 2.2.3, f contracts the divisoras $D\left(R_{1}\right), D\left(R_{2}\right), D\left(R_{3}\right)$ to a one point. By Proposition 2.2.6, there are positive a_{1}, a_{2}, a_{3} such that

$$
R_{i} \cdot\left(a_{1} D\left(R_{1}\right)+a_{2} D\left(R_{2}\right)+a_{3} D\left(R_{3}\right)\right)<0
$$

for $i=1,2,3$. On the other hand, from simplicity of the rays R_{1}, R_{2}, R_{3}, it follows that

$$
R_{i} \cdot\left(D\left(R_{1}\right)+D\left(R_{2}\right)+D\left(R_{3}\right)\right) \geq 0
$$

Let $a_{1}=\min \left\{a_{1}, a_{2}, a_{3}\right\} . \quad$ From the last inequality,

$$
\begin{aligned}
& R_{1} \cdot\left(a_{1} D\left(R_{1}\right)+a_{2} D\left(R_{2}\right)+a_{3} D\left(R_{3}\right)\right)= \\
& \quad=R_{1} \cdot a_{1}\left(D\left(R_{1}\right)+D\left(R_{2}\right)+D\left(R_{3}\right)\right)+R_{1}\left(\left(a_{2}-a_{1}\right) D\left(R_{2}\right)+\left(a_{3}-a_{1}\right) D\left(R_{3}\right)\right) \geq 0 .
\end{aligned}
$$

We get a contradiction with the inequality above.
Let $n>3$. We have proven that every two or three elements subset of \mathscr{E} has connected components of types $\mathfrak{A}_{1}, \mathfrak{B}_{2}, \mathfrak{C}_{m}$ or \mathfrak{D}_{2}. It follows very easily that \mathscr{E} has the type \mathfrak{C}_{n} (we suppose that \mathscr{E} is connected).

Let us prove the inverse statement. For the type \mathfrak{A}_{1} this is obvious.
Let \mathscr{E} have the type \mathfrak{B}_{2}. Since the rays S_{1}, S_{2} are extremal of Kodaira dimension 3 , there are nef elements H_{1}, H_{2} such that $H_{1} \cdot S_{1}=H_{2} \cdot S_{2}=0, H_{1}^{3}>0$, $H_{2}^{3}>0$. Let $0 \neq C_{1} \in S_{1}$ and $0 \neq C_{2} \in S_{2}$. Let D be a divisor of the rays S_{1} and S_{2}. Let us consider a map

$$
\begin{align*}
\left(H_{1}, H_{2}\right) \rightarrow H= & \left(-D \cdot C_{2}\right)\left(H_{2} \cdot C_{1}\right) H_{1}+ \tag{3.1}\\
& +\left(-D \cdot C_{1}\right)\left(H_{1} \cdot C_{2}\right) H_{2}+\left(H_{2} \cdot C_{1}\right)\left(H_{1} \cdot C_{2}\right) D .
\end{align*}
$$

For a fixed H_{1}, we get a linear map $H_{2} \rightarrow H$ of the set of nef elements H_{2} orthogonal to S_{2} into the set of nef elements H orthogonal to S_{1} and S_{2}. This map has a one dimensional kernel generated by $\left(-D \cdot C_{2}\right) H_{1}+\left(H_{1} \cdot C_{2}\right) D$. It follows that $S_{1}+S_{2}$ is a 2-dimensional face of $\overline{N E}(X)$.

For a general nef element $H=a_{1} H_{1}+a_{2} H_{2}+b D$ orthogonal to this face, where $a_{1}, a_{2}, b>0$, we have $H^{3}=\left(a_{1} H_{1}+a_{2} H_{2}+b D\right)^{3} \geq\left(a_{1} H_{1}+a_{2} H_{2}+b D\right)^{2} \cdot\left(a_{1} H_{1}\right.$ $\left.+a_{2} H_{2}\right)=\left(a_{1} H_{1}+a_{2} H_{2}+b D\right) \cdot\left(a_{1} H_{1}+a_{2} H_{2}+b D\right) \cdot\left(a_{1} H_{1}+a_{2} H_{2}\right) \geq\left(a_{1} H_{1}+a_{2} H_{2}\right)^{2}$. $\left(a_{1} H_{1}+a_{2} H_{2}+b D\right) \geq\left(a_{1} H_{1}+a_{2} H_{2}\right)^{3}>0$, since $a_{1} H_{1}+a_{2} H_{2}+b D$ and $a_{1} H_{1}+a_{2} H_{2}$ are nef. It follows that the face $S_{1}+S_{2}$ is of the numerical Kodaira dimension 3.

Let \mathscr{E} have the type \mathfrak{C}_{m}. Let H be a nef element orthogonal to the ray S_{1}. Let $0 \neq C_{i} \in S_{i}$. Let us consider a map

$$
\begin{equation*}
H \rightarrow H^{\prime}=H+\sum_{i=2}^{m}\left(-\left(H \cdot C_{i}\right) /\left(C_{i} \cdot D\left(S_{i}\right)\right)\right) D\left(S_{i}\right) \tag{3.2}
\end{equation*}
$$

It is a linear map of the set of nef elements H orthogonal to S_{1} into the set of nef elements H^{\prime} orthogonal to the rays $S_{1}, S_{2}, \ldots, S_{m}$. The kernel of the map
has the dimension $m-1$. It follows that the rays $S_{1}, S_{2}, \ldots, S_{m}$ belong to face of $\overline{N E}(X)$ of a dimension $\leq m$. On the other hand, multiplying the divisors $D\left(S_{1}\right), \ldots, D\left(S_{m}\right)$ by rays S_{1}, \ldots, S_{m}, one can see very easily that the rays S_{1}, \ldots, S_{m} are linearly independent. Thus, they generate an m-dimensional face of $N E(X)$. Let us show that this face is $S_{1}+S_{2}+\cdots+S_{m}$. To prove this, we show that every $m-1$ subset of \mathscr{E} is contained in a face of $\overline{N E}(X)$ of a dimension $\leq m-1$.

If this subset contains the ray S_{1}, this subset has the type \mathfrak{C}_{m-1}. By induction, we can suppose that this subset belongs to a face of $\overline{N E}(X)$ of dimension $m-1$. Let us consider the subset $\left\{S_{2}, S_{3}, \ldots, S_{m}\right\}$. Let H be an ample element of X. For the element H, the map (3.2) gives an element H^{\prime} which is orthogonal to the rays S_{2}, \ldots, S_{m}, but is not orthogonal to the ray S_{1}. It follows that the set $\left\{S_{2}, \ldots, S_{m}\right\}$ belongs to a face of the Mori polyhedron of the dimension $<m$. Like the above, one can see that for a general H orthogonal to S_{1}, the element H^{\prime} has $\left(H^{\prime}\right)^{3} \geq H^{3}>0$.

Let \mathscr{E} have the type \mathfrak{D}_{2}. Let H be a nef element orthogonal to the ray S_{2}. Let $0 \neq C_{i} \in S_{i}$. Let us consider a map

$$
\begin{equation*}
H \rightarrow H^{\prime}=H+\frac{\left(H \cdot C_{1}\right)\left(\left(-D\left(S_{2}\right) \cdot C_{2}\right) D\left(S_{1}\right)+\left(D\left(S_{1}\right) \cdot C_{2}\right) D\left(S_{2}\right)\right)}{\left(D\left(S_{2}\right) \cdot C_{2}\right)\left(D\left(S_{1}\right) \cdot C_{1}\right)-\left(D\left(S_{1}\right) \cdot C_{2}\right)\left(D\left(S_{2}\right) \cdot C_{1}\right)} . \tag{3.3}
\end{equation*}
$$

Evidently, $C_{2} \cdot\left(\left(-D\left(S_{2}\right) \cdot C_{2}\right) D\left(S_{1}\right)+\left(D\left(S_{1}\right) \cdot C_{2}\right) D\left(S_{2}\right)\right)=0$. From this equality and the inequality of the definition of the system \mathscr{D}_{2}, it follows that C_{1}. $\left(\left(-D\left(S_{2}\right) \cdot C_{2}\right) D\left(S_{1}\right)+\left(D\left(S_{1}\right) \cdot C_{2}\right) D\left(S_{2}\right)\right)<0$. Thus, the denominator of the formula (3.3) is positive. Then (3.3) is a linear map of the set of nef elements H orthogonal to the ray S_{2} into the set of nef elements H^{\prime} orthogonal to the rays S_{1}, S_{2}. Evidently, the map has a one dimensional kernel. Thus, the rays S_{1} and S_{2} generate a two dimensional face $S_{1}+S_{2}$ of Mori polyhedron. As above, for a general element H orthogonal to S_{2} we have $\left(H^{\prime}\right)^{3} \geq H^{3}>0$.

Corollary 2.3.4. Let $\mathscr{E}=\left\{R_{1}, R_{2}, \ldots, R_{n}\right\}$ be an extremal set of extremal rays of the type (I) or (II) and every extremal ray of \mathscr{E} of the type (II) is simple. Assume that \mathscr{E} is contained in a contractible face with Kodaira dimension 3 of the $\overline{N E}(X)$. Let $m_{1} \geq 0, m_{2} \geq 0, \ldots, m_{n} \geq 0$ and at least one of m_{1}, \ldots, m_{n} is positive.

Then there exists $i, 1 \leq i \leq n$, such that

$$
R_{i} \cdot\left(m_{1} D\left(R_{1}\right)+\cdots+m_{n} D\left(R_{n}\right)\right)<0 .
$$

Thus, the condition (ii) of Chapter I is valid.
Proof. It is sufficient to prove this statement for the connected \mathscr{E}. For every type $\mathfrak{A}_{1}, \mathfrak{B}_{2}, \mathfrak{C}_{m}$ and \mathfrak{D}_{2} of the Theorem 2.3.3, one can prove it very easily.

Unfortunately, in general, the inverse statement of the Theorem 2.3.3 holds only for connected extremal sets \mathscr{E}. We will give two cases where it is true for a non-connected \mathscr{E}.

Definition 2.3.5. A threefold X is called strongly projective (respectively very strongly projective) if the following statement holds: a set $\left\{Q_{1}, \ldots, Q_{n}\right\}$ of extremal rays of the type (II) is extremal of Kodaira dimension 3 (respectively generates the simplex face $Q_{1}+\cdots+Q_{n}$ of $\overline{N E}(X)$ of dimension n and Kodaira dimension 3) if its divisors $D\left(Q_{1}\right), \ldots, D\left(Q_{n}\right)$ do not intersect one another.

Theorem 2.3.6. Let $\mathscr{E}=\left\{R_{1}, R_{2}, \ldots, R_{n}\right\}$ be a set of extremal rays of the type (I) or (II) such that every connected component of \mathscr{E} has the type $\mathfrak{A}_{1}, \mathfrak{B}_{2}, \mathfrak{C}_{m}$ or \mathfrak{D}_{2}. Then:
(1) \mathscr{E} is extremal of numerical Kodaira dimension 3 if and only if the same is true for any subset of \mathscr{E} containing only extremal rays of the type (II) whose divisors do not intersect one another. In particular, it holds if X is strongly projective.
(2) \mathscr{E} generates a simplex face $R_{1}+\cdots+R_{n}$ with numerical Kodaira dimen. sion 3 of the Mori polyhedron if and only if the same is true for any subset of \mathscr{E} containing only extremal rays of the type (II) whose divisors do not intersect one another. In particular, it is true if X is very strongly projective.

Proof. Let us prove (1). Only the inverse statement is non-trivial. We prove it by induction on n. For $n=1$, the statement is obviously true.

Assume that some connected component of \mathscr{E} has the type \mathfrak{A}_{1}. Suppose that this component contains the ray R_{1}. By our induction hypothesis, there exists a nef element H such that $H^{3}>0$ and $H \cdot R_{i}=0$ if $i>1$. Then there exists $k \geq 0$, such that $H^{\prime}=H+k D\left(R_{1}\right)$ is nef and $H^{\prime} \cdot \mathscr{E}=0$. As above, one can prove that $\left(H^{\prime}\right)^{3} \geq H^{3}>0$.

Assume that some connected component of \mathscr{E} has the type \mathfrak{B}_{2}. Suppose that this component contains the rays R_{1}, R_{2} and $D\left(R_{1}\right)=D\left(R_{2}\right)=D$. Then, by induction, there are nef elements H_{1} and H_{2} such that $H_{1}^{3}>0, H_{2}^{3}>0$ and $H_{1} \cdot\left\{R_{1}\right.$, $\left.R_{3}, \ldots, R_{n}\right\}=0, H_{2} \cdot\left\{R_{2}, R_{3}, \ldots, R_{n}\right\}=0$. As for the proof of the inverse statement of the Theorem 2.3.3 in the case \mathfrak{B}_{2}, there are $k_{1} \geq 0, k_{2} \geq 0, k_{3} \geq 0$ such that the element $H=k_{1} H_{1}+k_{2} H_{2}+k_{3} D$ is nef, $H \cdot \mathscr{E}=0$ and $H^{3}>0$.

Assume that some connected component of \mathscr{E} has the type $\mathfrak{๒}_{m}, m>1$. We use the notation of Theorem 2.3.3 for this connected component. Let this be $\left\{S_{1}, S_{2}, \ldots, S_{m}\right\}$. By induction, there exists a nef element H such that H is orthogonal to $\mathscr{E}-\left\{S_{2}, \ldots, S_{m}\right\}$ and $H^{3}>0$. As for the proof of the inverse statement of the Theorem 2.3.3 in the case \oint_{m}, there are $k_{2} \geq 0, \ldots, k_{m} \geq 0$ such that $H^{\prime}=H+k_{2} D\left(S_{2}\right)+\cdots+k_{m} D\left(S_{m}\right)$ is nef, $H^{\prime} \cdot \mathscr{E}=0$ and $\left(H^{\prime}\right)^{3} \geq H^{3}>0$.

Assume that some connected component of \mathscr{E} has the type \mathfrak{D}_{2}. We use the notation of Theorem 2.3.3 for this connected component. Let this be $\left\{S_{1}\right.$, $\left.S_{2}\right\}$. By induction, there exists a nef element H such that $H^{3}>0$ and H is orthogonal to $\mathscr{E}-\left\{S_{1}\right\}$. As for Theorem 2.3.3, there are $k_{1} \geq 0, k_{2} \geq 0$ such that $H^{\prime}=H+k_{1} D\left(S_{1}\right)+k_{2} D\left(S_{2}\right)$ is nef, $H^{\prime} \cdot \mathscr{E}=0$ and $\left(H^{\prime}\right)^{3} \geq H^{3}>0$.

If every connected component of \mathscr{E} has the type \mathfrak{C}_{1}, then the statement
holds by the condition of the theorem.
Let us prove (2). Only the inverse statement is non-trivial. We prove it by induction on n. For $n=1$ the statement is true. It is sufficient to prove that \mathscr{E} is contained in a face of a dimension $\leq n$ of Mori polyhedron because, by our induction hypothesis, any its $n-1$ elements subset generates a simplex face of the dimension $n-1$ of Mori polyhedron.

Assume that some connected component of \mathscr{E} has the type \mathfrak{A}_{1}. Suppose that the ray R_{1} belongs to this component and $0 \neq C_{1} \in R_{1}$. Let us consider the map

$$
H \rightarrow H^{\prime}=H^{\prime}+\left(\left(H \cdot C_{1}\right) /\left(-D\left(R_{1}\right) \cdot C_{1}\right)\right) D\left(R_{1}\right) .
$$

of the set of nef elements H orthogonal to the set $\left\{R_{2}, \ldots, R_{n}\right\}$ into the set of nef elements H^{\prime} orthogonal to the \mathscr{E}. It is the linear map with one dimensional kernel. Since, by the induction, the set $\left\{R_{2}, \ldots, R_{n}\right\}$ is contained in a face of Mori polyhedron of the dimension $n-1$, it follows that \mathscr{E} is contained in a face of the dimension n.

If \mathscr{E} has a connected component of the type $\mathfrak{B}_{2}, \mathfrak{C}_{m}, m>1$, or \mathfrak{D}_{2}, the proof is the same if one uses the maps (3.1), (3.2) and (3.3) above.

If all connected components of \mathscr{E} have the type \mathfrak{C}_{1}, the statement holds by the condition.

Remark 2.3.7. Like the statement (1) of Theorem 2.3.6, one can prove that a set \mathscr{E} of extremal rays with connected components of the type \mathfrak{A}_{1}, $\mathfrak{B}_{2}, \mathfrak{C}_{m}$ or \mathfrak{D}_{2} is extremal if and only if the same is true for any subset of \mathscr{E} containing only extremal rays of the type (II) whose divisors do not intersect one another.

The next proposition is simple but important. To simplify the notation, we say that for a fixed a_{1}, \ldots, a_{n}, we have a linear dependence condition

$$
a_{1} R_{1}+\cdots+a_{n} R_{n}=0
$$

between extremal rays R_{1}, \ldots, R_{n} if there exist non-zero $C_{i} \in R_{i}$ such that

$$
a_{1} C_{1}+\cdots+a_{n} C_{n}=0 .
$$

Proposition 2.3.8. Assume that a set $\mathscr{E}=\left\{R_{1}, R_{2}, \ldots, R_{m}\right\}$ of extremal rays has connected components of the type $\mathfrak{A}_{1}, \mathfrak{B}_{2}, \mathfrak{\bigvee}_{m}$ or \mathfrak{D}_{2} and there exists a linear dependence condition $a_{1} R_{1}+a_{2} R_{2}+\cdots+a_{m} R_{m}=0$ with all $a_{i} \neq 0$. Then all connected components of \mathscr{E} have the type \mathfrak{B}_{2}. Let these components be $\mathfrak{B}^{1}, \ldots, \mathfrak{B}^{t}$. Then $t \geq 2$, and we can choose a numeration such that $\mathfrak{B}^{i}=\left\{R_{i 1}, R_{i 2}\right\}$ and the linear dependence has a form

$$
a_{11} R_{11}+a_{21} R_{21}+\cdots+a_{t 1} R_{t 1}=a_{12} R_{12}+a_{22} R_{22}+\cdots+a_{t 2} R_{t 2} .
$$

where all $a_{i j}>0$.
Proof. Let us multiply the divisors $D\left(R_{1}\right), \ldots, D\left(R_{m}\right)$ by the equality $a_{1} R_{1}$ $+a_{2} R_{2}+\cdots+a_{m} R_{m}=0$. Then we get that $a_{k}=0$ if the ray R_{k} belongs to a connected component of the type $\mathfrak{A}_{1}, \bigotimes_{m}$ or \mathfrak{D}_{2}. Thus, all connected components of \mathscr{E} have the type \mathfrak{B}_{2}. Let these components be

$$
\mathfrak{B}^{1}=\left\{R_{11}, R_{12}\right\}, \mathfrak{B}^{2}=\left\{R_{21}, R_{22}\right\}, \ldots, \mathfrak{B}^{t}=\left\{R_{t 1}, R_{t 2}\right\} .
$$

Obviously, $t \geq 2$, and we can rewrite the linear dependence as

$$
a_{11} R_{11}+a_{12} R_{12}+a_{21} R_{21}+a_{22} R_{22}+\cdots+a_{t 1} R_{t 1}+a_{t 2} R_{t 2}=0,
$$

where all $a_{i j} \neq 0$. Multiplying all divisors $D\left(R_{i j}\right)$ by this equation and using inequalities $R_{i j} \cdot D\left(R_{i j}\right)<0$, we get the last statement of the proposition.

4. A classification of E-sets of extremal rays of type (I) or (II)

As in the above, we suppose that X is a projective normal 3 -fold with Q-factorial singularities.

We recall that a set \mathscr{L} of extremal rays is called an E-set if it is not extremal but any proper subset of \mathscr{L} is extremal (it is contained in a face of $\overline{N E}(X))$. Thus, an E-set is a minimal non-extremal set of extremal rays.

Theorem 2.4.1. Let \mathscr{L} be an E-set of extremal rays of the type (I) or (II). Suppose that every ray of the type (II) of \mathscr{L} is simple and every proper subset of \mathscr{L} is contained in a contractible face of Kodaira dimension 3 of Mori polyhedron. Then we have one of the following cases:
(a) \mathscr{L} is connected and $\mathscr{L}=\left\{R_{1}, R_{2}, R_{3}\right\}$, where any R_{i} has the type (II) and each of 2-element subsets $\left\{R_{1}, R_{2}\right\},\left\{R_{2}, R_{3}\right\},\left\{R_{3}, R_{1}\right\}$ of \mathscr{L} has the type \mathfrak{C}_{2}. Here $R_{1} \cdot D\left(R_{2}\right)>0, R_{2} \cdot D\left(R_{3}\right)>0, R_{3} \cdot D\left(R_{1}\right)>0$ but $R_{2} \cdot D\left(R_{1}\right)=R_{3} \cdot D\left(R_{2}\right)=R_{1} \cdot D\left(R_{3}\right)$ $=0$. The divisor $D(\mathscr{L})=D\left(R_{1}\right)+D\left(R_{2}\right)+D\left(R_{3}\right)$ is nef.
(b) \mathscr{L} is connected and $\mathscr{L}=\left\{R_{1}, R_{2}\right\}$, where at least one of the rays R_{1}, R_{2} has the type (II). There are positive m_{1}, m_{2} such that $R \cdot\left(m_{1} D\left(R_{1}\right)+\right.$ $\left.m_{2} D\left(R_{2}\right)\right) \geq 0$ for any extremal ray R of the type (I) or simple extremal ray of type (II) on X. If the divisor $m_{1} D\left(R_{1}\right)+m_{2} D\left(R_{2}\right)$ is not nef, both the extremal rays R_{1}, R_{2} have the type (II).
(c) \mathscr{L} is connected and $\mathscr{L}=\left\{R_{1}, R_{2}\right\}$ where both R_{1}, and R_{2} have the type (II) and there exists a simple extremal ray S_{1} of the type (II) such that the rays R_{1}, S_{1} define the extremal set of the type \mathfrak{B}_{2} (it means that $S_{1} \neq R_{1}$ but the divisors $\left.D\left(S_{1}\right)=D\left(R_{1}\right)\right)$ and the rays S_{1}, R_{2} define the extremal set of the type \mathfrak{C}_{2}, where $S_{1} \cdot D\left(R_{2}\right)=0$ but $R_{2} \cdot D\left(S_{1}\right)>0$. Here there do not exist positive m_{1}, m_{2} such that the divisor $m_{1} D\left(R_{1}\right)+m_{2} D\left(R_{2}\right)$ is nef, since evidently $S_{1} \cdot\left(m_{1} D\left(R_{1}\right)+m_{2} D\left(R_{2}\right)\right)$ <0. See figure 2 below.
(d) $\mathscr{L}=\left\{R_{1}, \ldots, R_{k}\right\}$ where $k \geq 2$, all rays R_{1}, \ldots, R_{k} have the type (II) and the divisors $D\left(R_{1}\right), \ldots, D\left(R_{k}\right)$ do not intersect one another. Any proper subset of \mathscr{L} is contained in a contractible face of Kodaira dimension 3 of Mori polyhedron but \mathscr{L} is not contained in a face of Mori polyhedron.

Figure 2.

Proof. Let $\mathscr{L}=\left\{R_{1}, \ldots, R_{n}\right\}$ be an E-set of extremal rays satisfying the conditions of the theorem. Let us consider two cases.

The case 1 . Let \mathscr{L} is not connected. Then every connected component of \mathscr{L} is extremal and, by Theorem 2.3.3, it has the type $\mathfrak{A}_{1}, \mathfrak{B}_{2}, \mathfrak{C}_{m}$ or \mathfrak{D}_{2}. If some of these components does not have the type \mathfrak{C}_{1}, then, by the statement (1) of Theorem 2.3.6, \mathscr{L} is extremal and we get a contradiction. Thus, we get the case (d) of the theorem.

The case 2. Let $\mathscr{L}=\left\{R_{1}, \ldots, R_{n}\right\}$ is connected. Let $n \geq 4$. By Theorem 2.3.3, any proper subset of \mathscr{L} has connected components of the type $\mathfrak{A}_{1}, \mathfrak{B}_{2}$, \mathfrak{C}_{m} or \mathfrak{D}_{2}. Like for the proof of Theorem 2.3.3, it follows that \mathscr{L} has the type $\mathfrak{๒}_{n}$. By Theorem 2.3.3, then \mathscr{L} is extremal. We get a contradiciton.

Let $n=3$. Then, like for the proof of Theorem 2.3.3, we get that \mathscr{L} has the type (a).

Let $n=2$ and $\mathscr{L}=\left\{R_{1}, R_{2}\right\}$. If both rays R_{1}, R_{2} have the type (I), then, by Lemma 2.2.2, \mathscr{L} is not connected and we get a contradiction.

Let R_{1} has the type (I) and R_{2} has the type (II). Since the set \mathscr{L} is not extremal, by Theorem 2.3.3, there are positive m_{1}, m_{2} such that $R_{1} \cdot\left(m_{1} D\left(R_{1}\right)\right.$ $\left.+m_{2} D\left(R_{2}\right)\right) \geq 0$ and $R_{2} \cdot\left(m_{1} D\left(R_{1}\right)+m_{2} D\left(R_{2}\right)\right) \geq 0$. By Lemma 2.2.3, it follows that $C \cdot\left(m_{1} D\left(R_{1}\right)+m_{2} D\left(R_{2}\right)\right) \geq 0$ if the curve C is contained in the $D\left(R_{1}\right)$ $\cup D\left(R_{2}\right)$. If C is not contained in $D\left(R_{1}\right) \cup D\left(R_{2}\right)$, then obviously $C \cdot\left(m_{1} D\left(R_{1}\right)\right.$ $\left.+m_{2} D\left(R_{2}\right)\right) \geq 0$. It follows, that the divisor $m_{1} D\left(R_{1}\right)+m_{2} D\left(R_{2}\right)$ is nef. Thus, we get the case (b).

Let both rays R_{1}, R_{2} have the type (II). If $D\left(R_{1}\right)=D\left(R_{2}\right)$, then we get an extremal set $\left\{R_{1}, R_{2}\right\}$ by Theorem 2.3.3. Thus, the divisors $D\left(R_{1}\right)$ and $D\left(R_{2}\right)$ are different. By Lemma 2.2.1, the curve $D\left(R_{1}\right) \cap D\left(R_{2}\right)$ does not have an irreducible component which belongs to both rays R_{1} and R_{2}. Since rays R_{1}, R_{2} are simple, it follows that $R_{1} \cdot\left(D\left(R_{1}\right)+D\left(R_{2}\right)\right) \geq 0$ and $R_{2} \cdot\left(D\left(R_{1}\right)\right.$ $\left.+D\left(R_{2}\right)\right) \geq 0$. Let R be an extremal ray of type (I) or simple extremal ray of the type (II). If the divisor $D(R)$ does not coincide with the divisor $D\left(R_{\mathbf{1}}\right)$ or $D\left(R_{2}\right)$, then obviously $R \cdot\left(D\left(R_{1}\right)+D\left(R_{2}\right)\right) \geq 0$. Thus, if there does not exist an extremal ray R which has the same divisor as the ray R_{1} or R_{2}, we get the case (b).

Assume that $D(R)=D\left(R_{1}\right)$. Then, by Lemma 2.2.5, the ray R has the type (II), too. If $R \cdot D\left(R_{2}\right)=0$, we get the case (c) of the theorem where $S_{1}=$ R. If $R \cdot D\left(R_{2}\right)>0$, then $R \cdot\left(D\left(R_{1}\right)+D\left(R_{2}\right)\right) \geq 0$ since the ray R is simple. Then we get the case (b) of the theorem.

5. An application of the diagram method to Fano 3 -folds with terminal singularities

We restrict ourselves to considering Fano 3 -folds with \mathbf{Q}-factorial terminal singularities, but it is possible to formulate and prove corresponding results for a negative part of Mori cone of 3-dimensional variety with \mathbf{Q}-factorial terminal singularities like in [N7].

We recall that an algebraic 3 -fold X over \mathbf{C} with \mathbf{Q}-factorial singularities is called Fano if the anticanonical class $-K_{X}$ is ample. By results of Kawamata [Ka1] and Shokurov [Sh], any face of $\overline{N E}(X)$ is contractible and $\overline{N E}(X)$ is generated by a finite set of extremal rays if X is a Fano 3 -fold with terminal \mathbf{Q}-factorial singularities.
5.1. Preliminary results. We need the following

Lemma 2.5.1 Let X be a Fano 3-fold with \mathbf{Q}-factorial terminal sing. ularities. Let $\mathscr{E}=\left\{R_{1}, \ldots, R_{n}\right\}$ be a set of n extremal rays of the type (II) and with disjoint divisors $D\left(R_{1}\right), \ldots, D\left(R_{n}\right)$ on X. (Thus, \mathscr{E} has the type $\left.n \mathfrak{C}_{1}\right)$.

If we suppose that the set \mathscr{E} is not extremal, then there exists a small extremal ray S and $i, 1 \leq i \leq n$, such that $S \cdot\left(-K_{X}+D\left(R_{i}\right)\right)<0$ and $S \cdot D\left(R_{j}\right)=0$ if $j \neq i$.

It follows that any curve of the ray S belongs to the divisor $D\left(R_{i}\right)$.
Proof. By Proposition 2.3.2, the divisor $H=-K_{X}+D\left(R_{1}\right)+\cdots+D\left(R_{n}\right)$ is orthogonal to \mathscr{E}. Besides, H is nef and $H^{3}>0$ if there does not exist a small extremal ray S with the property above. Then, \mathscr{E} is extremal of Kodaira dimension 3.

Definition 2.5.2. A set $\{R, S\}$ of extremal rays has the type $\mathfrak{\bigotimes}_{2}$ if the ray R has type (II), the extremal ray S is small and $S \cdot D(R)<0$. (See Figure 3.)

Thus, by Lemma 2.5.1, the set R_{1}, \ldots, R_{n}, S of extremal rays contains a subset of the type \mathfrak{C}_{2}.

By Proposition 2.3.2, any extremal ray of X of the type (II) is simple, and by results of Sections 3 and 4 we get a classification of extremal sets and E-sets of extremal rays of the type (I) and (II) on X.

We have the following general theorem.

Figure 3.
Theorem 2.5.3. Let X be a Fano 3-fold with \mathbf{Q}-factorial terminal sing. ularities. Let α be a face of $\overline{N E}(X)$. Then we have the following possibilities:
(1) There exists a small extremal ray S such that $\alpha+S$ is contained in a face of $\overline{N E}(X)$ of Kodaira dimension 3.
(2) There are extremal rays R_{1}, R_{2} of the type (II) and small extremal ray S such that $\alpha+R_{1}$ and $\alpha+R_{2}$ are contained in faces of $\overline{N E}(X)$ of Kodaira dimension

3, the ray R_{2} does not belong to α, and one of the sets $\left\{R_{1}, S\right\}$ or $\left\{R_{2}, S\right\}$ has the type \mathfrak{C}_{2}.
(3) The face α is contained in a face of $\overline{N E}(X)$ of Kodaira dimension 1 or 2.
(4) There exists an E-set $\mathscr{L}=\left\{R_{1}, R_{2}\right\}$ such that $R_{1} \mp \alpha, R_{2} \mp \alpha$, but $\alpha+R_{1}$ and $\alpha+R_{1}$ are contained in faces of $\overline{N E}(X)$ of Kodaira dimension 3. The \mathscr{L} satisfies the condition (c) of Theorem 2.4.1: Thus, both extremal rays R_{1}, R_{2} have the type (II) $R_{1} \cdot D\left(R_{2}\right)>0$ and $R_{2} \cdot D\left(R_{1}\right)>0$ and there exists an extremal ray R_{1}^{\prime} of the type (II) such that $D\left(R_{1}\right)=D\left(R_{1}^{\prime}\right)$ and $R_{1}^{\prime} \cdot D .\left(R_{2}\right)=0$.
(5) There are extremal rays R_{1}, \ldots, R_{n} of the type (II) such that any of them does not belong to $\alpha, \alpha+R_{1}+\cdots+R_{n}$ is contained in face of $\overline{N E}(X)$ of Kodaira dimension 3 and

$$
\operatorname{dim} \alpha+R_{1}+\cdots+R_{n}<\operatorname{dim} \alpha+n
$$

(6) $\operatorname{dim} N_{1}(X)-\operatorname{dim} \alpha \leq 12$.

Proof. Let us consider the face $\gamma=\alpha^{\perp}$ of $\mathcal{M}(X)$ and apply Theorem 1.2 to this face γ. We have $\operatorname{dim} \gamma=\operatorname{dim} N_{1}(X)-1-\operatorname{dim} \alpha$.

Assume that α does not satisfy the conditions (1), (3) and (5). Then $\mathscr{R}(\gamma)$ contains extremal rays of the type (I) or (II) only and $\mathcal{M}(X)$ is closed and simple in the face γ. By Proposition 2.3.2 and Theorem 2.3.3, any extremal subset \mathscr{E} of $\mathscr{R}(\gamma)$ has connected components of the types $\mathfrak{A}_{1}, \mathfrak{B}_{2}, \mathfrak{C}_{n}$ or \mathfrak{D}_{2}. By Corollary 2.3.4, the condition (ii) is valid for extremal subsets of $R(\gamma)$. Let $\mathscr{L} \subset \mathscr{R}(\gamma)$ be a E-set. Assume that at least two elements $R_{1}, R_{2} \in$ \mathscr{L} don't belong to $\mathscr{R}\left(\gamma^{\perp}\right)$ and for any proper subset $\mathscr{L}^{\prime} \subset \mathscr{L}$ we have that $\mathscr{L}^{\prime} \cup$ $\mathscr{R}\left(\gamma^{\perp}\right)$ is extremal. Let us apply Theorem 2.4 .1 to \mathscr{L}.

Assume that \mathscr{L} has the type (d). By Lemma 2.5.1, one of extremal rays R_{1} of \mathscr{L} together with some small extremal ray S define a set of the type \mathscr{C}_{2}. Since $\left\{R_{1}\right\} \subset \mathscr{L}$ is a proper subset of \mathscr{L}, the $\mathscr{R}\left(\gamma^{\perp}\right) \cup\left\{R_{1}\right\}$ is extremal. Or $\alpha+$ R_{1} is contained in a face of $\overline{N E}(X)$. Since \mathscr{L} has at least 2 elements which do not belong to $\mathscr{R}\left(\gamma^{\perp}\right)$, there exists another extremal ray R_{2} of \mathscr{L} which does not belong to $\mathscr{R}\left(\gamma^{\perp}\right)$. Like the above, $\alpha+R_{2}$ is contained in a face of $\overline{N E}(X)$ of Kodaira dimension 3. By definition of the case (d), both extremal rays R_{1}, R_{2} have the type (II). Thus, we get the case (2) of the theorem.

Assume that \mathscr{L} has the type (c). Then we get the case (4) of the theorem.

Assume that $\mathscr{L}=\left\{R_{1}, R_{2}\right\}$ has the type (b). Suppose that the divisor $m_{1} D\left(R_{1}\right)+m_{2} D\left(R_{2}\right)$ is not nef (see the case (b) of Theorem 2.4.1). Then there exists a small extremal ray S such that $S \cdot\left(m_{1} D\left(R_{1}\right)+m_{2} D\left(R_{2}\right)\right)<0$. It follows that one of the sets $\left\{R_{1}, S\right\}$ or $\left\{R_{2}, S\right\}$ has the type \mathfrak{C}_{2}. Thus, we get the case (2).

Assume that $\mathscr{L}=\left\{R_{1}, R_{2}, R_{3}\right\}$ has the type (a). Then the divisor $D\left(R_{1}\right)+$ $D\left(R_{2}\right)+D\left(R_{3}\right)$ is nef.

Thus, if we additionally exclude the cases (2) and (4), then all conditions
of Theorem 1.2 are satisfied. By Theorems 2.4.1 and 2.3.3, we can take d $=2, C_{1}=1$ and $C_{2}=0$. (See Figure 4 for graphs $G(\mathscr{E})$ corresponding to extremal sets \mathscr{E} of the types $\mathfrak{A}_{1}, \mathfrak{B}_{2}, \mathfrak{C}_{m}$ and \mathfrak{D}_{2}.) Thus, by Theorem $1.2, \operatorname{dim} \gamma$ $<34 / 3$. It follows that $\operatorname{dim} N_{1}(X)-\operatorname{dim} \alpha \leq 12$.

Figure 4.
5.2. General properties of configurations of extremal rays of the type \mathfrak{B}_{2}. Let $\left\{R_{11}, R_{12}\right\}$ be a set of extremal rays of the type \mathfrak{B}_{2}. By Theorem 2.3.3, they define a 2 -dimensional face $R_{11}+R_{12}$ of $\overline{N E}(X)$. Let $\left\{R_{21}, R_{22}\right\}$ be another set of extremal rays of the type \mathfrak{B}_{2}. Sinse two different 2-dimensional faces of $\overline{N E}(X)$ may have only a common extremal ray, the divisors $D\left(R_{11}\right)=D\left(R_{12}\right)$ and $D\left(R_{21}\right)=D\left(R_{22}\right)$ don't have a common point. There exists the maximal set $\left\{R_{11}, R_{12}\right\},\left\{R_{21}, R_{22}\right\}, \ldots,\left\{R_{n 1}, R_{n 2}\right\}$ of pairs of extremal rays of the type \mathfrak{B}_{2}.

Lemma 2.5.4. Any t pairs $\left\{R_{11}, R_{12}\right\},\left\{R_{21}, R_{22}\right\}, \ldots,\left\{R_{t 1}, R_{t 2}\right\}$ of extremal rays of the type \mathfrak{B}_{2} generate a face

$$
\sum_{i=1}^{t} \sum_{j=1}^{2} R_{i j} \subset \overline{N E}(X) \subset N_{1}(X)
$$

of the Kodaira dimension 3 of $\overline{N E}(X)$.
Proof. This face is orthogonal to the nef divisor $H=-K_{X}+D\left(R_{11}\right)+\cdots+$ $D\left(R_{t 1}\right)$ with $H^{3} \geq\left(-K_{X}\right)^{3}>0$.

Lemma 2.5.5. Under the above notation, there exists a changing of order of pairs of extremal rays $R_{i 1}, R_{i 2}$ such that $R_{11}+\cdots+R_{t 1}$ is a simplex face of $\overline{N E}(X)$.

Proof. For $t=1$, it is obvious. Let us suppose that $\theta=R_{11}+\cdots+R_{(t-1) 1}$ is a simplex face of the face

$$
\alpha_{t-1}=\sum_{i=1}^{t-1} \sum_{j=1}^{2} R_{i j}
$$

The face

$$
\alpha_{t}=\sum_{i=1}^{t} \sum_{j=1}^{2} R_{i j}
$$

has α_{t-1} as its face and does not coincide with the face α_{t-1}. It follows that there exists a face β of α_{t} of the dimension t such that $\beta \not \subset \alpha_{t-1}$ but $\theta \subset \beta$ is a face of β. It follows that all extremal rays of β are the extremal rays R_{11}, \ldots, $R_{(t-1) 1}$ and some of extremal rays $R_{t 1}, R_{t 2}$. Assume that both extremal rays $R_{t 1}, R_{t 2}$ belong to β. Then the extremal rays $R_{11}, \ldots, R_{(t-1) 1}, R_{t 1}, R_{t 2}$ are linearly dependent, since $\operatorname{dim} \beta=t$. By Proposition 2.3.8, it is impossible. Thus, only one of extremal rays $R_{t 1}, R_{t 2}$ belongs to the face β. Suppose that this is $R_{t 1}$. Then $\beta=R_{11}+\cdots+R_{(t-1) 1}+R_{t 1}$ will be the face we were looking for.

We divide the maximal set $\left\{R_{11}, R_{12}\right\},\left\{R_{21}, R_{22}\right\}, \ldots,\left\{R_{n 1}, R_{n 2}\right\}$ of pairs of extremal rays of the type \mathfrak{B}_{2} into two parts:

$$
\left\{R_{11}, R_{12}\right\}, \quad\left\{R_{21}, R_{22}\right\}, \quad \ldots, \quad\left\{R_{m 1}, R_{m 2}\right\}
$$

and

$$
\left\{R_{(m+1) 1}, R_{(m+1) 2}\right\}, \quad\left\{R_{(m+2) 1}, R_{(m+2) 2}\right\}, \quad \ldots, \quad\left\{R_{(m+k) 1}, R_{(m+k) 2}\right\}
$$

where $n=m+k$. By definition, here the extremal rays $R_{i 1}, R_{i 2}$ belong to the first part if and only if they are linearly independent of other extremal rays from the set $\left\{R_{11}, R_{12}\right\},\left\{R_{21}, R_{22}\right\}, \ldots,\left\{R_{n 1}, R_{n 2}\right\}$. Thus, extremal rays $R_{j 1}, R_{j 2}$ belong to the second part if they are linearly dependent of other extremal rays from the set $\left\{R_{11}, R_{12}\right\},\left\{R_{21}, R_{22}\right\}, \ldots,\left\{R_{n 1}, R_{n 2}\right\}$.

Lemma 2.5.6. Let S be an extremal ray of the type (II) such that $\left\{R_{i 1}\right.$, $S\}$ define a configulation (c) of the Theorem 2.4.1. Thus: $R_{i 1} \cdot D(S)>0$, $S \cdot D\left(R_{i 1}\right)>0$ and $R_{i 2} \cdot D(S)=0$. Then the extremal ray $R_{i 1}, R_{i 2}$ are linearly independent from all other extremal rays in $\left\{R_{11}, R_{12}\right\},\left\{R_{21}, R_{22}\right\}, \ldots,\left\{R_{n 1}, R_{n 2}\right\}$. Thus, $1 \leq i \leq m$. There does not exist a configulation of this type with the ray $R_{i 2}$. Thus, there does not exist an extremal ray S^{\prime} of the type (II) such that $R_{i 2} \cdot D\left(S^{\prime}\right)>0, S^{\prime} \cdot D\left(R_{i 2}\right)>0$ and $R_{i 1} \cdot D\left(S^{\prime}\right)=0$.

Proof. The $R_{i 1}+R_{i 2}$ and $R_{i 2}+S$ are 2-dimensional faces of $\overline{N E}(X)$ with intersection by the extremal ray $R_{i 2}$. It follows that any curve of $D(S)$ belongs to the face $R_{i 2}+S$ (by Lemma 2.2.3). It follows that the divisor $D(S)$ has no common point with the divisor $D\left(R_{j 1}\right)$ for any other pair $R_{j 1}, R_{j 2}$ for $j \neq$ i. Multiplying $D(S)$ by a linear relation of extremal rays $R_{i 2}, R_{i 2}$ with other extremal rays $\left\{R_{11}, R_{12}\right\},\left\{R_{21}, R_{22}\right\}, \ldots,\left\{R_{n 1}, R_{n 2}\right\}$ and using Proposition 2.3.8, we get that this linear relation does not exist.

Let us suppose that there exists an extremal ray S^{\prime} (see formulation of the lemma). Then $R_{i 1}+S^{\prime}$ is another 2-dimensional face of $\overline{N E}(X)$. Evidently, divisors $D(S)$ and $D\left(S^{\prime}\right)$ have a non-empty intersection. Thus, faces $R_{i 2}$ $+S$ and $R_{i 1}+S^{\prime}$ have a common ray. But it is possible only if $S=S^{\prime}$. Thus, we get a contradiction, because $R_{i 1} \cdot D(S)>0$ but $R_{i 1} \cdot D\left(S^{\prime}\right)=0$.

Using this Lemma 2.5.6, we can subdivide the first set

$$
\left\{R_{11}, R_{12}\right\},\left\{R_{21}, R_{22}\right\}, \ldots,\left\{R_{m 1}, R_{m 2}\right\} .
$$

into sets

$$
\left\{R_{11}, R_{12}\right\},\left\{R_{21}, R_{22}\right\}, \ldots,\left\{R_{m_{11}}, R_{m_{12}}\right\}
$$

and

$$
\left\{R_{\left(m_{1}+1\right) 1}, R_{\left(m_{1}+1\right) 2}\right\}, \ldots,\left\{R_{\left(m_{1}+m_{2}\right) 1}, R_{\left(m_{1}+m_{2}\right) 2}\right\}
$$

where $m_{1}+m_{2}=m$. Here $R_{i 1}, R_{i 2}$ belong to the first part if and only if there exists an extremal ray S such that $R_{i 1}, S$ satisfy the condition of Lemma 2.5.6. By Lemma 2.5.6, the order between extremal rays $R_{i 1}$, and $R_{i 2}$ is then canonical.

Let us consider the second set

$$
\left\{R_{(m+1) 1}, R_{(m+1) 2}\right\},\left\{R_{(m+2) 1}, R_{(m+2)}\right\}, \ldots,\left\{R_{(m+k) 1}, R_{(m+k) 2}\right\}
$$

We introduce an invariant

$$
\delta=\operatorname{dim} \sum_{i=m+1}^{m+k} \sum_{j=1}^{2} R_{i j}-k
$$

of X. Evidently,

$$
\text { either } \quad k=\delta=0 \quad \text { or } \quad k \geq 2 \quad \text { and } \quad 1 \leq \delta<k
$$

Thus,

$$
\operatorname{dim} \sum_{i=m+1}^{m+k} \sum_{j=1}^{2} R_{i j}=k+\delta
$$

Let

$$
\rho_{0}(X)=\operatorname{dim} N_{\mathbf{1}}(X)-\operatorname{dim} \sum_{i=1}^{n=m+k} \sum_{j=1}^{2} R_{i j}
$$

Then

$$
\rho(X)=\operatorname{dim} N_{1}(X)=\rho_{0}(X)+2 m+k+\delta
$$

The invariants: $\rho_{0}(X), n, m, k, \delta, m_{1}, m_{2}$ are important invariants of a Fano 3 -fold X.

The following lemma will be very useful:
Lemma 2.5.7. Let X be a Fano 3-fold with \mathbf{Q}-factorial terminal singularities. Let \mathscr{E} be the set of all extremal rays of a proper face [$\mathbb{E}]$ of $\overline{N E}(X)$. Let

$$
\left\{R_{11}, R_{12}\right\} \cup \ldots \cup\left\{R_{t 1}, R_{t 2}\right\}
$$

be a set of different pairs of extremal rays of the type \mathfrak{B}_{2}. Assume that $R \cdot D\left(R_{i 1}\right)$ $=0$ for any $R \in \mathscr{E}$ and any $i, 1 \leq i \leq t$. Then there are extremal rays Q_{1}, \ldots, Q_{r} such that the following statements hold:
(a) $r \leq t$;
(b) For any $i, 1 \leq i \leq r$, there exists $j, 1 \leq j \leq t$, such that $Q_{i} \cdot D\left(R_{j 1}\right)>0$ (in particular, Q_{i} is different from extremal rays of pairs of extremal rays $\left\{R_{u 1}, R_{u 2}\right\}$ of the type \mathfrak{B}_{2});
(c) For any $j, 1 \leq j \leq r$, there exists an extremal ray $Q_{i}, 1 \leq i \leq r$, such that $Q_{i} \cdot D\left(R_{j 1}\right)>0$;
(d) The set $\mathscr{E} \cup\left\{Q_{1}, \ldots, Q_{r}\right\}$ is extremal, and extremal rays $\left\{Q_{1}, \ldots, Q_{r}\right\}$ are linearly independent.

Proof. If $t=0$, we can take $r=0$. Thus, we assume that $t \geq 1$.
Since $R_{i j} \cdot D\left(R_{i j}\right)<0,1 \leq i \leq t, 1 \leq j \leq 2$, the set \mathscr{E} does not contain the rays $R_{i j}$. Let H be a general nef element orthogonal to [$\left.\mathscr{E}\right]$. Since $t \geq 1$, there exists $a>0$ such that $H^{\prime}=H+a D\left(R_{11}\right)$ is nef and H^{\prime} is orthogonal to \mathscr{E} and one of the rays R_{11}, R_{12}. Let this ray be R_{11}. Then the set $\mathscr{E} U\left\{R_{11}\right\}$ is extremal and is contained in a (proper) face of $\overline{N E}(X)$. It follows, $\operatorname{dim}[\mathscr{E}]<\operatorname{dim}\left[\mathscr{E} \subset\left\{R_{11}\right\}\right]$ $<\operatorname{dim} \overline{N E}(X)$, and $\operatorname{dim}[\mathscr{E}]<\operatorname{dim} \overline{N E}(X)-1$. Let us consider a linear subspace $V(\mathscr{E}) \subset N_{1}(X)$ generated by all extremal rays \mathscr{E}. By our condition, $V(\mathscr{E})$ is a linear envelope of the face [\mathscr{E}] of $\overline{N E}(X)$.

Let us consider the factorization map $\pi: N_{1}(X) \rightarrow N_{1}(X) / V(\mathscr{E})$. Since the cone $\overline{N E}(X)$ is polyhedral, the cone $\pi(\overline{N E}(X))$ is generated by images of extremal rays T such that the set $\mathscr{E} \cup\{T\}$ is contained in a face $[\mathscr{E} \subset\{T\}]$ of $\overline{N E}(X)$ of the dimension $\operatorname{dim}[\mathscr{E}]+1$. In particular, since $\operatorname{dim}[\mathscr{E}]<\operatorname{dim} N_{1}(X)$ -1 , the face $[\mathscr{E} \cup\{T\}]$ is proper, and the set $\mathscr{E} \cup\{T\}$ is extremal.

There exists a curve C on X such that $C \cdot D\left(R_{11}\right)>0$. This curve C (as any element $x \in \overline{N E}(X)$) is a linear combination of extremal rays T with non-negative coefficients and extremal rays from \mathscr{E} with real coefficients. We have $R \cdot D\left(R_{11}\right)=0$ for any extremal ray $R \in \mathscr{E}$. Thus, there exists an extremal ray T above such that $T \cdot D\left(R_{11}\right)>0$. It follows that T is different from extremal rays of pairs of the type \mathfrak{B}_{2}. We take $Q_{1}=T$. By our construction, the set $\mathscr{E} \cup\left\{Q_{1}\right\}$ is extremal. If $Q_{1} \cdot D\left(R_{j 1}\right)>0$ for any j such that $1 \leq j \leq t$, then $r=1$, and the set $\left\{Q_{1}\right\}$ gives the set we were looking for. Otherwise, there exists a minimal j such that $2 \leq j \leq t$ and $Q_{1} \cdot D\left(R_{j_{1}}\right)=0$. Then we replace \mathscr{E} by the set \mathscr{E}_{1} of all extremal rays in the face $\left[\mathscr{E} \cup\left\{Q_{1}\right\}\right]$ of the dimension $\operatorname{dim}\left[\mathscr{E}_{1}\right]=\operatorname{dim}[\mathscr{E}]+1$, and the set

$$
\left\{R_{11}, R_{12}\right\} \cup \ldots \cup\left\{R_{t 1}, R_{t 2}\right\}
$$

by

$$
\left\{R_{j 1}, R_{j 2} \mid 1 \leq j \leq t, Q_{1} \cdot D\left(R_{j 1}\right)=0\right\}
$$

and repeat this procedure.
5.3. Basic Theorems We want to prove the following basic theorem.

Basic Theorem 2.5.8. Let X be a Fano 3-fold with terminal \mathbf{Q}-factorial singularities. Assume that X does not have a small extremal ray, and Mori polyhedron $\overline{N E}(X)$ does not have a face of Kodaira dimension 1 or 2 .

Then we have the following for the X :
(1) The X does not have a pair of extremal rays of the type \mathfrak{B}_{2} (thus, in notation above, the invariant $n=0$) and Mori polyhedron $\overline{N E}(X)$ is simplicial.
(2) The X does not have more than one extremal ray of the type (I).
(3) If \mathscr{E} is an extremal set of k extremal rays of X, then the \mathscr{E} has one of the types: $\mathfrak{\Re}_{1} \amalg(k-1) \mathfrak{C}_{1}, \mathfrak{D}_{2} \amalg(k-2) \mathfrak{C}_{1}, \mathfrak{C}_{2} \amalg(k-2) \mathfrak{C}_{1}, k \mathfrak{C}_{1}$ (we use notation of

Theorem 2.3.3).
(4) We have the inequality for the Picard number of X :

$$
\rho(X)=\operatorname{dim} N_{1}(X) \leq 7
$$

Proof. We use notations introduced in the Section 5.2. We divide the proof into several steps.

Let us consider extremal rays

$$
\mathscr{E}_{0}=\left\{R_{11}, R_{12}\right\} \cup\left\{R_{21}, R_{22}\right\} \cup \ldots \cup\left\{R_{n 1}, R_{n 2}\right\} .
$$

Let

$$
\mathscr{E}_{0}^{\text {ind }}=\left\{R_{11}, R_{12}\right\} \cup\left\{R_{21}, R_{22}\right\} \cup \ldots \cup\left\{R_{m 1}, R_{m 2}\right\},
$$

and

$$
\mathscr{E}_{0}^{d e p}=\left\{R_{(m+1) 1}, R_{(m+1) 2}\right\} \cup\left\{R_{(m+2) 1}, R_{(m+2) 2}\right\} \cup \ldots \cup\left\{R_{n 1}, R_{n 2}\right\} .
$$

By Lemma 2.5.4, the set \mathscr{E}_{0} is extremal. Let \mathscr{E} be a maximal extremal set of extremal rays which contains \mathscr{E}_{0}. Let $\mathscr{E}_{1}=\mathscr{E}-\mathscr{E}_{0} . \quad$ By Proposition 2.3.8, \# \mathscr{E}_{1} $=\rho(X)-1-\operatorname{dim}\left[\mathscr{E}_{0}\right]$. By Theorem 2.3.3, for $S \in \mathscr{E}_{1}$, the divisor $D(S)$ has no a common point with divisors $D\left(R_{i 1}\right), 1 \leq i \leq n$.

Lemma 2.5.9. Assume that X satisfies the conditions of Theorem 2.5.8. Let Q be an extremal ray such that Q is different from extremal rays $R_{i j}, 1 \leq i \leq n$, $1 \leq j \leq 2$, and the set $\mathscr{E}_{1} \cup\{Q\}$ is extremal. Then the Q has the type (II) and there exists exactly one i such that $1 \leq i \leq n$ and $Q \cdot D\left(R_{i 1}\right)>0$ and $D(Q) \cap D\left(R_{j 1}\right)$ $=\emptyset$ if $j \neq i$.

Proof. Assume that Q has the type (I). Then the divisor $D(Q)$ has no common point with the divisors $D\left(R_{i 1}\right), 1 \leq i \leq n$. By Theorems 2.3.3, 2.3.6 and Lemma 2.5.1, the set $\{Q\} \cup \mathscr{E}_{1} \cup \mathscr{E}_{0}$ is extremal. We then get a contradiction with the condition that $\mathscr{E}_{1} \cup \mathscr{E}_{0}$ is a maximal extremal set. Thus, the extremal ray Q has the type (II).

If $D(Q)$ has no common point with the divisors $D\left(R_{i 1}\right), 1 \leq i \leq n$, we get a contradiction by the same way. Thus, there exists i such that $1 \leq i \leq n$ and $D(Q) \cap D\left(R_{i 1}\right) \neq \emptyset$. Let us consider a projectivization $P \overline{N E}(X)$. By Lemma 2.2.2, $\overline{P N E}(X, D(Q))$ is an interval with two ends. Its first end is the vertex $P Q$ and its second end is a point of the edge $P\left(R_{i 1}+R_{i 2}\right)$ of the convex polyhedron $P \overline{N E}(X)$. Thus, the i is defined by the extremal ray Q. Evidently, $Q \cdot D\left(R_{i 1}\right)>0$.

Lemma 2.5.10. With the conditions of Lemma 2.5.9 above, assume that $m+1 \leq i \leq n$. Then there exists exactly one extremal ray $Q=Q_{i}$ with the conditions of Lemma 2.5.9: thus, the set $\mathscr{E}_{1} \cup\left\{Q_{i}\right\}$ is extremal and $Q_{i} \cdot D\left(R_{i 1}\right)>0$, and $D\left(Q_{i}\right) \cap D\left(R_{j_{1}}\right)=\emptyset$ if $j \neq i$.

Proof. The

$$
\beta=\sum_{S \in \mathcal{S}_{1}} S+\sum_{R \in \mathcal{S}_{1}} R
$$

is a face of $\overline{N E}(X)$ of highest dimension $\rho(X)-1$, and

$$
\beta_{i}=\sum_{S \in \mathcal{B}_{1}} S+\sum_{R \in \mathcal{B}_{0}-\left|R_{n}, R_{2}\right|} R
$$

is a face $\beta_{i} \subset \beta \subset \overline{N E}(X)$ of dimension $\rho(X)-2$ and of the codimension one in β (Here we use that $m+1 \leq i \leq m+k$). It follows that there exists exactly one face $\beta^{\prime}{ }_{i}$ of $\overline{N E}(X)$ such that $\beta^{\prime}{ }_{i}$ contains $\beta_{i}, \operatorname{dim} \beta^{\prime}{ }_{i}=\rho(X)-1$, and $\beta^{\prime}{ }_{i} \neq \beta$. By Theorems 2.3.3 and 2.3.6, and Lemma 2.5.9, $\beta^{\prime}{ }_{i}=\beta_{i}+Q_{i}$ where Q_{i} is an extremal ray such that the set $\mathscr{E}_{1} \cup\left\{Q_{i}\right\} \cup\left(\mathscr{E}_{0}-\left\{R_{i 1}, R_{i 2}\right\}\right)$ is extremal, and the ray Q_{i} has the properties of Lemma 2.5.10. It follows that the Q_{i} is unique and does exist.

Lemma 2.5.11. Under the above notation, the set $\mathscr{E}_{1} \cup \mathscr{E}_{0}^{\text {ind }} \cup\left\{Q_{m+1}, \ldots\right.$, $\left.Q_{n}\right\}$ is extremal.

Proof. By Theorems 2.3.3, 2.3.6, Proposition 2.3.8 and Lemma 2.5.1, the set $\mathscr{E}=\mathscr{E}_{1} \cup \mathscr{E}_{0}^{\text {ind }}$ is extremal and generates a face of $\overline{N E}(X)$. We apply Lemma 2.5.7 to this \mathscr{E} and $\mathscr{E}_{0}^{\text {dep }}$. By Lemma 2.5.7, there are extremal rays $Q^{\prime}{ }_{m+1}, \ldots, Q^{\prime}{ }_{m+r}$ such that the set $\mathscr{E}_{1} \cup \mathscr{E}_{0}^{i n d} \cup\left\{Q^{\prime}{ }_{m+1}, \ldots, Q^{\prime}{ }_{m+r}\right\}$ is extremal and for any $i, m+1 \leq i \leq m+r$, there exists $j, m+1 \leq j \leq n$, such that $Q_{i}^{\prime} \cdot D\left(R_{j 1}\right)>0$. Moreover, for any $j, m+1 \leq j \leq n$, there exists an extremal ray $Q_{i}, m+1 \leq i \leq m$ $+r$, such that

$$
Q_{i}^{\prime} \cdot D\left(R_{j 1}\right)>0 .
$$

By Lemmas 2.5.9 and 2.5.10, $r=k$ and $\mathscr{E}_{1} \cup \mathscr{E}_{0}^{\text {ind }} \cup\left\{Q_{m+1}^{\prime}, \ldots, Q_{m+r}^{\prime}\right\}=\mathscr{E}_{1} \cup$ $\mathscr{E}_{0}^{\text {ind }} \cup\left\{Q_{m+1}, \ldots, Q_{n}\right\}$.

Lemma 2.5.12. The set $\mathscr{E}_{0}^{\text {dep }}$ is empty.

Proof. By Lemmas 2.5.9, 2.5.10 and 2.5.11, the set of extremal rays U $=\mathscr{E}_{1} \cup \mathscr{E}_{0}^{\text {ind }} \cup\left\{Q_{m+1}, \ldots, Q_{n}\right\}$ is a maximal extremal set which contains $\mathscr{E}_{1} \cup \mathscr{E}_{0}^{\text {ind }}$ and does not contain extremal rays from $\mathscr{E}_{0}^{d e p}$. Assume that $k=n-m \neq 0$. Then $k \geq 2$ and $\operatorname{dim} U=\rho_{0}(X)-1+2 m+k$. But the dimension of a face of $\overline{N E}(X)$ of highest dimension is equal to $\rho(X)-1=\rho_{0}(X)-1+2 m+k+\delta$ where $\delta \geq 1$. Thus, the extremal set U is not maximal, and there exists another extremal ray S such that $U \cup\{S\}$ is extremal. By definition of U, the $S \in \mathscr{E}_{0}^{d e p}$. Let $S=R_{i 1}$ where $m+1 \leq i \leq n$. Since $Q_{i} \cdot D\left(R_{i 1}\right)>0$, by Theorem 2.3.3, the extremal set $\left\{Q_{i}, R_{i 1}\right\}$ has the type \mathfrak{C}_{2}. Thus, $R_{i 1} \cdot D\left(Q_{i}\right)=0$. By definition of the set $\mathscr{E}_{0}^{d e p}$, there exists a linear dependence $\sum_{l=m+1}^{l=n} a_{l 1} R_{l 1}+a_{l 2} R_{l 2}$ $=0$ where $a_{i 1} \neq 0$ and $a_{i 2} \neq 0$. Multiplying $D\left(Q_{i}\right)$ by the equality above, we get $a_{i 2}=0$. Thus, we get a contradiction. (Compare with Lemma 2.5.6.)

Lemma 2.5.13 The set $\mathscr{E}_{0}^{\text {ind }}$ is empty.

Proof. Since $\mathscr{E}_{0}^{d e p}=\emptyset$, the set $U=\mathscr{E}_{1} \cup \mathscr{E}_{0}^{\text {ind }}=\mathscr{E}_{1} \cup\left\{R_{11}, R_{12}\right\} \cup \ldots \cup\left\{R_{m 1}\right.$, $\left.R_{m 2}\right\}$ is a maximal extremal set. It follows that U generates a simplex face of $\overline{N E}(X)$ of codimension 1 . Thus, $U_{1}=\mathscr{E}_{1} \cup \mathscr{E}_{0}^{\text {ind }}-\left\{R_{m 2}\right\}=\mathscr{E}_{1} \cup\left\{R_{11}, R_{12}\right\} \cup \ldots \cup$ $\left\{R_{(m-1) 1}, R_{(m-1) 2}\right\} \cup\left\{R_{m 1}\right\}$ generates a simplex face of $\overline{N E}(X)$ of codimension 2 . It follows that there exists an extremal ray $Q_{m 2}$ such that $U_{1}^{\prime}=\mathscr{E}_{1} \cup\left\{R_{11}, R_{12}\right\}$ $\cup \ldots \cup\left\{R_{(m-1) 1}, R_{(m-1) 2}\right\} \cup\left\{R_{m 1}\right\} \cup\left\{Q_{m 2}\right\}$ generates a simplex face of $\overline{N E}(X)$ of codimension 1 , and $Q_{m 2}$ is different from $R_{m 2}$. By Lemma 2.5.9, $Q_{m 2} \cdot D\left(R_{m 1}\right)>0$. Thus, by Theorem 2.3.3, $\left\{Q_{m 2}, R_{m 1}\right\}$ is an extremal set of the type \mathfrak{C}_{2} where $R_{m 1} \cdot D\left(Q_{m 2}\right)=0$.

Similarly, we can find an extremal ray $Q_{m 1}$ such that the set $\left\{Q_{m 1}, R_{m 2}\right\}$ is extremal of the type $⿷_{2}$ where $R_{m 2} \cdot D\left(Q_{m 1}\right)=0$. Then we get a contradiction to Lemma 2.5.6. Thus, $m=0$, and the set $\mathscr{E}_{0}^{\text {ind }}=\emptyset$.

Thus, we proved that X does not have a pair of extremal rays of the type \mathfrak{B}_{2}. By Theorem 2.3.3 and Proposition 2.3.8, the Mori polyhedron $\overline{N E}(X)$ is then simplicial. Thus, we have proven the statement (1).

Now let us prove (2): X does not have more than one extremal ray of the type (I).

By Lemma 2.2.2, divisors of different extremal rays of the type (I) do not have a common point. By Theorem 2.3.6, any set of extremal rays of the type (I) generates a simplex face of $\overline{N E}(X)$ of Kodaira dimension 3. It followas that the set of extremal rays of the type (I) is finite. Let

$$
\left\{R_{1}, \ldots, R_{s}\right\}
$$

be the whole set of extremal rays of the type (I) on X. We should prove that $s \leq 1$.

Let \mathscr{E} be a maximal extremal set of extremal rays on X containing the set $\left\{R_{1}, \ldots, R_{s}\right\}$ and such that each connected component of \mathscr{E} contains one of extremal rays R_{1}, \ldots, R_{s} (see the definition of connected components before Theorem 2.3.3). By Theorem 2.3.3, then \mathscr{E} has exactly s connected components T_{1}, \ldots, T_{s} such that T_{i} contains the extremal ray R_{i}. The T_{i} has either the type \mathfrak{A}_{1} (thus, $T_{i}=\left\{R_{i}\right\}$) or \mathfrak{D}_{2} (thus, T_{i} contains two extremal rays: the R_{i} and another extremal ray which has the type (II)). Evidently, the maximal \mathscr{E} does exist.

By [Kal] and [Sh], any face of $\overline{N E}(X)$ is contractible, and by our conditions, it has Kodaira dimension 3. By Proposition 2.2.6, for any $1 \leq i \leq s$, there exists an effective divisor $D\left(T_{i}\right)$ which is a linear combination of divisors of rays from T_{i} with positive coefficients and $R \cdot D\left(T_{i}\right)<0$ for any $R \in$ T_{i}. Since T_{i} has the type \mathfrak{A}_{1} or \mathfrak{D}_{2}, one can see easily by Lemma 2.2.3, that the same it true for each curve of divisors of rays of T_{i} because this curve belongs to the sum of extremal rays of T_{i} with positive coefficients.

Using the divisors $D\left(T_{i}\right)$, similarly to Lemma 2.5.7, we can find extremal rays
$\left\{Q_{1}, \ldots, Q_{r}\right\}$
with properties:
(a) $r \leq s$;
(b) For any $i, 1 \leq i \leq r$, there exists $j, 1 \leq j \leq t$, such that $Q_{i} \cdot D\left(T_{j}\right)>0$ (in particular, Q_{i} is different from extremal rays of \mathscr{E} and does not have the type (I));
(c) For any $j, 1 \leq j \leq s$, there exists an extremal ray $Q_{i}, 1 \leq i \leq r$, such that

$$
Q_{i} \cdot D\left(T_{j}\right)>0 ;
$$

(d) The set $\left\{Q_{1}, \ldots, Q_{r}\right\}$ of extremal rays is extremal.

By our conditions, all extremal rays on X are divisorial. Thus, by (b), the extremal rays Q_{1}, \ldots, Q_{r} have the type (II).

Let us take the ray Q_{i}, and let $Q_{i} \cdot D\left(T_{j}\right)>0$. By Theorem 2.3.3, the set T_{j} generates a simplex face γ_{j} of $\overline{N E}(X)$. We have mentioned above that each curve of divisors of rays from T_{j} belongs to this face. It follows that $\overline{N E}(X$, $D\left(Q_{i}\right)$) is a 2-dimensional angle bounded by the ray Q_{i} and a ray from the face γ_{j} since the divisor $D\left(Q_{i}\right)$ evidently has a common curve with one of divisors $D(R), R \in T_{j}$. Since any two sets of T_{1}, \ldots, T_{s} do not have a common extremal ray, the faces $\gamma_{1}, \ldots, \gamma_{s}$ do not have a common ray (not necessarily extremal). It follows that the angle $\overline{N E}\left(X, D\left(Q_{i}\right)\right)$ does not have a common ray with the face γ_{k} for $k \neq j$. Thus, the divisor $D\left(Q_{i}\right)$ does not have a common point with divisors of rays T_{k}. It follows that $r=s$ and we can choose an order Q_{1}, \ldots, Q_{s} such that $Q_{i} \cdot D\left(T_{i}\right)>0$ but $D\left(Q_{i}\right)$ do not have a common point with divisors of extremal rays T_{j} if $j \neq i$.

Let us fix $i, 1 \leq i \leq s$. By our construction, the set $\mathscr{E} \cup\left\{Q_{i}\right\}$ has connected components
$T_{1}, \ldots, T_{i-1}, T_{i} \cup\left\{Q_{i}\right\}, T_{i+1}, T_{s}$.
By definition of \mathscr{E}, then the $\mathscr{E} \cup\left\{Q_{i}\right\}$ is not extremal. Thus, it contains an E-set (minimal non-extremal) \mathscr{L}_{i} which contains Q_{i}. By Theorem 2.4.1 and Lemma 1.1, the \mathscr{L}_{i} is connected. Thus, $\left\{Q_{i}\right\} \subset \mathscr{L}_{i} \subset T_{i} \cup\left\{Q_{i}\right\}$. Let us consider the sets $\mathscr{L}_{1}, \ldots, \mathscr{L}_{s}$. By Lemma 1.1 , the $\mathscr{L}_{i}, \mathscr{L}_{j}$ are joint by arrows. By our construction, it follows that Q_{i}, Q_{j} are joint by arrows $Q_{i} Q_{j}$ and $Q_{j} Q_{i}$ for any 1 $\leq i<j \leq s$. By Theorem 2.3.3, for the extremal set $\left\{Q_{1}, \ldots, Q_{s}\right\}$ of extremal rays of the type (II), this is possible only if $s \leq 1$. This proves the statement (2).

To prove (3) we use the following.
Statement. The contraction of a ray R of the type (II) on X gives a Fano 3 -fold X^{\prime} with terminal Q-factorial singularities and without small extremal rays and without faces of Kodaira dimension 1 or 2 for $\overline{N E}\left(X^{\prime}\right)$. Extremal sets \mathscr{E}^{\prime} on X^{\prime} are in one to one correspodence with extremal sets \mathscr{E} on X which contain the ray R.

Proof. Let $\sigma: X \rightarrow X^{\prime}$ be a contraction of R. The X^{\prime} has terminal Q-factorial singularities by [Ka1] and [Sh]. We have, $K_{X}=\sigma^{*}\left(K_{X^{\prime}}\right)+$
$d D(R)$. Multiplying this equality by R and using Proposition 2.3.2, we get that $d=1$. By the statement (1), it follows that $\sigma^{*}\left(-K_{X^{\prime}}\right)=-K_{X}+D(R)$ is nef and only contracts the extremal ray R. Then $-K_{X^{\prime}}$ is ample on X^{\prime} and X^{\prime} is a Fano 3-fold with terminal \mathbf{Q}-factorial singularities. Faces of $\overline{N E}\left(X^{\prime}\right)$ are in one to one correspondence with faces of $\overline{N E}(X)$ which contain the R. Contractions of faces of $\overline{N E}\left(X^{\prime}\right)$ are dominated by these of the corresponding faces of $\overline{N E}(X)$. This proves the last statement.

Let $\mathscr{E}=\left\{R_{1}, \ldots, R_{k}\right\}$ be an extremal set on X. By Theorem 2.3.3, it has connected components of the type $\mathfrak{A}_{1}, \mathfrak{B}_{2}, \mathfrak{C}_{m}$ or \mathfrak{D}_{2}. Moreover, by (1) and (2), it does not have a connected component of the type \mathfrak{B}_{2} and does not have more than one connected component of the type \mathfrak{A}_{1}. By Statement above, the same should be true for the extremal set \mathscr{E}^{\prime} which one gets by the contraction of any extremal ray R_{i} of the type (II) of \mathscr{E}. This shows the statement (3).

Now we prove (4): $\rho(X) \leq 7$.
First, we show how to prove $\rho(X) \leq 8$ applying Theorem 1.2 to the face γ $=\mathcal{M}(X)$ of $\operatorname{dim} \mathcal{M}(X)=m=\rho(X)-1$. By the statement (1) of Theorem 2.5.8 and Theorems 2.3.3 and 2.4.1, the $\mathcal{M}(X)$ is simple and all conditions of Theorem 1.2 are valid for some constants d, C_{1}, C_{2}. By Theorem 2.4.1, we can take $d=2$. By the proof of Theorem 1.2 , we should find the constants C_{1}, and C_{2} for maximal extremal sets \mathscr{E} only (only this sets we really use). Thus, $\# \mathscr{E}=m$. By the statement (3), then the constants $C_{1} \leq 2 / m$ and $C_{2}=0$. Thus, we get $m<(16 / 3) 2 / m+6$. Then, $m=\rho(X)-1 \leq 7$, and $\rho(X) \leq 8$.

To prove the better inequality $\rho(X) \leq 7$, we should analyze the proof of Theorem 1.2 for our case more carefully. We will show that the conditions of Lemma 1.4 hold for the $\mathcal{M}(X)$ with the constants $C=0$ and $D=2 / 3$. By Lemma 1.4, we then get the inequality $\rho(X) \leq 7$ we want to prove.

Like for the proof of Theorem 1.2, we introduce a weight of an oriented angle, but using a new formula: $\sigma(\angle)=2 / 3$ if $\rho\left(R_{1}(\angle), R_{2}(\angle)\right)=1$, and $\sigma(\angle)=0$ otherwise.

By (3) of Theorem 2.5.8, the condition (1) of Lemma 1.4 holds with constants $C=0$ and $D=2 / 3$.

Let us prove the condition (2) of Lemma 1.4. For $k=3$ (triangle) it is true since an E-set which has at least 3 elements has the type (a) of Theorem 2.4.1 (see the proof of Theorem 1.2). Thus, the triangle has at least three oriented angles with the weight $2 / 3$. For $k=4$ (quadrangle), we proved (when we were proving Theorem 1.2) that one can find at least two oriented angles of the quadrangle such that any of them has finite $\rho\left(R_{1}(\angle), R_{2}(\angle)\right)$. By (3) of Theorem 2.5.8, then $\rho\left(R_{1}(\angle), R_{2}(\angle)\right)=1$. Thus, the quadrangle has at least two oriented angles of the weight $2 / 3$. This finishes the proof of Theorem 2.5.8.

Now, we give an application of (2) of Theorem 2.5.8 to the geometry of Fano 3-folds.

Let us consider a Fano 3-fold X and blow-ups X_{p} at different non-singular points $\left\{x_{1}, \ldots, x_{p}\right\}$ of X. We say that this is a Fano blow-up if X_{p} is Fano. We have the following very simple

Proposition 2.5.14. Let X be a Fano 3-fold with terminal Q-factorial singularities and without small extremal rays. Let X_{p} be a Fano blow up of X. Then for any small extremal ray S on X_{p}, the S has a non-empty intersection with one of exceptional divisors E_{1}, \ldots, E_{p} of this blow up and does not belong to any of them. Moreover, the exceptional divisors E_{1}, \ldots, E_{p} define p extremal rays Q_{1}, \ldots, Q_{p} of the type (I) on X_{p} such that $E_{i}=D\left(Q_{i}\right)$.

Proof. The last statement is clear. Let S be a small extremal ray on X_{p} which does not intersect divisors E_{1}, \ldots, E_{p}. Let H be a general nef element orthogonal to S. Let l_{1}, \ldots, l_{n} be lines which generate extremal rays Q_{1}, \ldots, Q_{p}. Then the divisor $H^{\prime}=H+\left(l_{1} \cdot H\right) /\left(-l_{1} \cdot E_{1}\right) E_{1}+\cdots+\left(l_{p} \cdot H\right) /\left(-l_{p} \cdot E_{p}\right) E_{p}$ is a nef divisor on X_{p} orthogonal to all extremal rays Q_{1}, \ldots, Q_{p}, S, and $\left(H^{\prime}\right)^{3}>H^{3}>$ 0 . This proves that the extremal rays Q_{1}, \ldots, Q_{p}, S generate a face of $\overline{N E}\left(X_{p}\right)$ of Kodaira dimension 3. Then, by the contraction of the extremal rays Q_{1}, \ldots, Q_{p}, the image of S gives a small extremal ray on X. This gives a contradiction.

It is known that a contraction of a face of Kodaira dimension 1 or 2 of $\overline{N E}(Y)$ of a Fano 3 -fold Y has a general fiber which is rational surface or curve respectively, because this contraction has relatively negative canonical class. See [Ka1], [Sh]. It is known that a small extremal ray is rational [Mo2].

Then, using the statement (2) of Theorem 2.5.8 and Proposition 2.5.14, we can divide Fano 3 -folds of Theorem 2.5.8 into the following 3 classes:

Corollary 2.5.15. Let X be a Fano 3-fold with terminal Q-factorial singularities and without small extremal rays, and without faces of Kodaira dimension 1 or 2 for Mori polyhedron. Let ε be the number of extremal rays of the type (I) on X (by Theorem 2.5.8, the $\varepsilon \leq 1$).

Then there exists $p, 1 \leq p \leq 2-\varepsilon$, such that X belongs to one of classes (A), (B) or (C) below:
(A) There exists a Fano blow-up X_{p} of X with a face of Kodaira dimension 1 or 2. Thus, birationally, X is a fibration of rational surfaces over a curve or of rational curves over a surface.
(B) There exist Fano blow-ups X_{p} of X for general p points on X such that for all these blow-ups the X_{p} has a small extremal ray S. Then images of curves of S on X give a system of rational curves on X which cover a Zariski open subset of X.
(C) There do not exist Fano blow-ups X_{p} of X for general p points.

We remark that for Fano 3-folds with Picard number 1 the $\varepsilon=0$. Thus, 1 $\leq p \leq 2$.

We mention that that statements (3) and (4) of Theorem 2.5 .8 give similar information for blow ups of X along curves. Of course, it is more difficult to formulate these statements.

Steklov Mathematical Institute Ul. Vavilova 42, Moscow 117966, GSP-1, Russia
E-mail address: slava@nikulin.mian.su

References

[A] V.A. Alekseev, Fractional indices of log del Pezzo surfaces, Izv. Akad. Nauk SSSR Ser. Mat., 52-6 (1988), 1288-1304; English transl. in Math. USSR Izv., 33 (1989).
[A-N1] V.A. Alekseev and V. V. Nikulin, The classification of Del Pezzo surfaces with log-terminal singularities of the index ≤ 2, involutions of K3 surfaces and reflection groups in Lobachevsky spaces, Russian, Doklady po matematike i prilogeniyam, MIAN, 2-2 (1988), 51-151.
[A-N2] V.A. Alekseev and V. V. Nikulin, The classification of Del Pezzo surfaces with log-terminal singularities of the index ≤ 2 and involutions of K3 surfaces, Dokl. AN SSSR, 306-3 (1989), 525-528; English transl. in Soviet Math. Dokl., 39 (1989).
[G-H] P. Griffiths and J. Harris, Principles of algebraic geometry, A. Wiley Interscience, New York, 1978.
[Ha] R. Hartshorne, Algebraic geometry, Springer, 1977.
[I] Sh. Ishii, Quasi-Gorenstein Fano 3-folds with isolated non-rational loci, Compositio Math., 77 (1991), 335-341.
[Kal] Yu. Kawamata, The cone of curves of algebraic varieties, Ann. of Math., 119-2 (1984), 603-633.
[Ka2] Yu. Kawamata, Boundedness of Q-Fano threefolds, Preprint (1989).
[Kh] A. G. Khovanskii, Hyperplane sections of polyhedra, toric varieties and discrete groups in Lobachevsky space, Functional Anal. i Prilozhen, 20-1 (1986), 50-61; English transl. in Functional Anal. Appl., 20-1 (1986).
[Ma] K. Matsuki, Weyl groups and birational transformations among minimal models, Preprint (1993).
[Mo1] S. Mori, Threefolds whose canonical bundles are not numerically effective, Ann. of Math., 116-2 (1982), 133-176.
[Mo2] S. Mori, Flip theorem and the existence of minimal models for 3-folds, Journal of Amer. Math. Society, 1-1 (1988), 117-253.
[$\mathrm{Mo}-\mathrm{Mu}$] S. Mori and S. Mukai, On Fano 3-folds with $\mathrm{B}_{2} \geq 2$, Algebraic varieties and Analytic varieties (Tokyo, 1981), Studies in Pure and Math., vol. 1, Kinokuniya, Tokyo, 1983, pp.101-129.
[N1] V.V. Nikulin, On the classification of arithmetic groups generated by reflections in Lobachevsky spaces, Izv. Akad. Nauk SSSR Ser. Mat., 45-1 (1981), 113-142; English transl. in Math. USSR Izv., 18 (1982).
[N2] V. V. Nikulin, Del Pezzo surfaces with log-terminal singularities, Mat. Sbor., 180-2 (1989), 226-243; English transl. in Math. USSR Sb., 66 (1990).
[N3] V. V. Nikulin, Del Pezzo surfaces with log-terminal singularities. II, Izv. Akad. Nauk SSSR Ser. Mat., 52-5 (1988), 1032-1050; English transl. in 'Math. USSR Izv., 33 (1989).
[N4] V.V. Nikulin, Del Pezzo surfaces with log-terminal singularities. III, Izv. Akad. Nauk SSSR Ser. Mat., 53-6 (1989), 1316-1334; English transl. in Math. USSR Izv., 35 (1990).
[N5] V. V. Nikulin, Del Pezzo surfaces with log-terminal singularities and nef anticanonical class and reflection groups in Lobachevsky spaces, Preprint Max-Planck-Institut fur Mathematik Bonn 89-28 (1988).
[N6] V. V. Nikulin, Algebraic 3-folds and diagram method, Math. USSR Izv., 37-1 (1991). 157-189.
[N7] V. V. Nikulin, Algebraic 3-folds and diagram method. II, Preprint Max-Planck-Institut für Mathematik Bonn 90-104 (1990).
[N8] V.V. Nikulin, On the Picard number of Fano 3-folds with terminal singularities, Preprint Math. Sci. Res. Institute Berkeley 057-93 (1993).
[N9] V.V. Nikulin, Diagram method for 3-folds and its application to Kähler cone and Picard number of Calabi-Yau 3-folds. I, Preprint of Duke alg-geom 9401010 (1994).
[P] M.N. Prokhorov. The absence of discrete reflection groups with non-compact fundamental polyhedron of finite volume in Lobachevsky spaces of large dimension, Izv. Akad. Nauk SSSR Ser. Mat., 50-2 (1986), 413-424; English transl. in Math. USSR Izv., 28 (1987).
[Sh] V. V. Shokurov, The nonvanishing theorem, Izv. Akad. Nauk SSSR Ser. Mat., 49-3 (1985), 635-651; English transl. in Math. USSR Izv., 26 (1986).
[V] E. B. Vinberg. The absence of crystallographic reflection groups in Lobachevsky spaces of large dimension, Trudy Moscow. Mat Obshch., 47 (1984), 68-102; English transl. in Trans. Moscow Math. Soc., 47 (1985).

[^0]: Communicated by Prof. M. Maruyama, March 8, 1993, Revised March 20, 1994

