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On the law of entropy increasing of a
one-dimensional infinite system II
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T. N IW A , S . TANAKA and M. MIZUTANI

1. Introduction

In the paper [1] we considered a  one dimensional hard-points infinite
system on Z  whose particles have several colors and velocities w ith unit
magnitude. W e showed there that Boltzmann type entropies increase for the
initial states which do not have any spatial correlation. However we had to
assume a condition which is of very technical character. The condition was
that they have initially constant density 1 on Z.

In this paper we consider the same system and show that the same result
holds without the above condition, namely, the total entropy increases for the
initial states which have initially no spatial correlation. It will be also shown
that in general Boltzmann type entropy of a single color can decrease.

In section 2, for the sake of reader's convenience, we describe the system
and the definitions of entropies (see [1] for details). In section 3, we state our
main results and prove them . In section 4 we derive master equations from
our particle model by taking various scaling limits.

2. Description of the dynamical system and the definition of entropy

Let Z be the set of all integers, and S be a "color" space with different k(k
2) colors :

S  { sb, C I ,  C 2, • •

Let X=Ico ;  co :  Z—>S X SI. W e w rite

oi(n)= (a)(n , — ), co(n , + ))E SxS (nE Z ).

X can be identified with the product space X = H Xn, where Xi, x S;t, S,7
n E Z

= S712- = - S .  The time evolution mapping T: X—>X in the phase space X  is
defined by T =CTo, where
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( Toco)(n, ±)=co(n-T1, ±),

and

{((co(n, +), co(n, —)), if co(n, —)*0 and
(( ao)(n, — ), (Cco)(n, +))= co(n, +)*q5

((co(n, —), co(n, +)), otherwise

The set of state space ./1// of the dynamical system (X ,  T )  consists of all
probability measures on X .  Let

X ={ PE N ; P= 2z (1.4 X 1-1,1)},

where /4  is a probability measure on Syt respectively. The elements of At are
called locally equilibrium states on X.

Hereafter we use following notations :  for //E A  ; cE  S; e = ±  ; n , m E

Pe(n, m)=13 (n, m ; p)=plco; (Tm co)(n, e)=0

de(n, m)---de(n, m; p)=
95

P:(n, m; 12)=1— PAn, m; p)

(Briefly

Pe(n , 0 )=P (n )=13 (n ; p )

de(n, 0)=de(n)=de(n; p).)

The Boltzmann type entropy H (p ) of p is defined by

H (p )=  lim 1 E  E  P an  ; ,u) log PA n ; p).
N  2N+1 ceS

e=

We also define H ( p )  of p by

1  Hc(p)= lim „ E n  ; p) log PA n  p).
N - , c o  L 1 V  1 - 117115N

Rem ark. In the paper [1] we defined H(p), He(p) and hc(p) in slightly
different manner in which we had to assume the existence of the limit.

3. Main results

Theorem ("Entropy increasing law"). Assume that p E A l .  Then we
have

H (T " lp ) H(Tmp) for nz 0.

For the proof of the theorem we need some concepts which were
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introduced in [ 1 ] .  Namely,
let 7r be a projection from X  to itt, 7r: ./1/1—vtl defined by

7rp)=Pf (n; p) for V c .E S ,  e = ± ,  n E Z .

W e also defined the K -S  type entropy h(p) of p E ill by

1h(p)— lim
2N +1.4

p(A ) log p(A ),
N eu,

where U N  is the partition of X on [—N, N ], i.e., 21N is the partition into the
sets A of a following form,

A ={ (v ; cu(n, e)=c(n, e ; A) for e = ±  and — N n N } ,

where c (n , e ; A )E  S.
Now in general let Pk be a probability measure on the finite set ..(2k, k =

1 ,  • • . ,  K . Let X (Pi, ••-, P K ) be the set of such probability measures P  on the
product set Q1 x •• • x S2K tha t 13 7rk- i= Pk, where 7rk is the natural projection from
the product set S21x••• x S2K onto S2k(k=1, •••, K).

In general w e define a s  usually  the en tropy  e (P )  of the probability
measure P  on a finite set S2={coi, •••, col} by

e(P)= — ±P{a),}  log P{a),}.t=i

Following lemma ("maximal entropy principle") is well known and can
be easily proven by using Jensen's inequality.

L em m a. For V  PE4(1(Pi, •-, PK), we have

e(F) e(Pix • • • x PK).

The equality  holds if  P=Pix ••• x  Pic.

From this lemma we obtain easily the following inequality :

h(7cp) h(p) for pEitt,

equality holds if (and essentially only if) pcit/.
Now from the definition we have ([1 ])

H(u)=h(7rp) for V p E X .

We proved in [1 ] th a t h(p) is T - in v a r ia n t , i.e.,

h(p)— h(Tp) for V p

W e also proved in [1 ] following
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Theorem. For p E k l ,  we have

R- ( Tm(71- ( Tm .,a)) )=Jr(T " ',a) fo r  V m,

Now we can prove our theorem by using these results. Let AE A/. Then
we have

H( T"' 11)= h(R - T " 1 ti) = h(7rT7rTm p)

h(T7L- Tmp)=h(7rTm,a)

=H (T m p) for

We can also prove the theorem by direct computation. For that sake we
need the following fundamental lemma which was proven in [1].

Fundamental lemma. L e t p E .4 4 .  T hen w e have following recursive
formulas :

fo r  rn l, c* (1 ,

Pf (n , m )=- (1—  d_(n+m ))Pf (n-1 , m -1)

+d+(n— m )Pf (n+1, m -1)

and

Pf (n , m )=d _ (n +m )Pf (n -1 , m -1 )

+ (1— d+(n—  m ))PA n+1, m -1).

Proof  of the T heorem . For the simplicity we set

d+=d+(n— m ), d_=d_(n+m )

Firstly we consider a case of ci.i.*0 and  d_ 0. L e t

Q+ (n , m )=Pgn, m )/ d + ,

then from the fundamental lemma we have

Q+ (n, m )=(1—  d_)Q+(n-1, m - 1)+d_Q _(n+1, m -1)

Q _(n, m )=d+Q +(n-1, m -1)+(1— d + )Q -(n +1 , m -1 )

From these relations we have

K (n, m) log Pf (n , m )+Pf (n , m ) log Pf(n, m )

=d + Q+(n, m )log d+Q + (n, m )+d_Q_(n, m ) log d_Q-(n, m )

=.13 (n, m ) log d++Pf (n, m ) log d_+d+Q+(n, m ) log Q+(n, m)
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+d_Q_(n, m ) log Q_(n, m)

By the convexity of the function x  log x =•f (x ) we have

Q+(n, m) log Q+(n, m )=f(Q + (n, m))

=f ((1-d_)Q +(n-1 , m -1)+d_Q _(n+1, m -1))

5(1- d_)f (Q + ( n - 1 ,  m - 1))+d_f (Q -(n+1, m -1)),

Q_(n, m) log Q_(n, m) d+ f (Q + (n -1 , m -1 ))

+(1 - d+)f (Q-(n+1, m - 1)).

Therefore we obtain

Pf(n, m) log Pf(n, m )+Pf(n, m ) log Pf(n,

m) log d++Pf (n, m) log d_

+ d+(1- d_)Q+(n-1, m -1) log Q +(n-1, m -1)

+d+d_Q_(n+1, m -1) log Q_(n+1, m -1)

+d-d+Q+(n- 1, m-1) log Q+(n-1, m-1)

+d_(1-d+)Q _(n+1, m -1) log Q_(n+1, m-1)

m) log d+ +Pf(n, m ) log d_

+ Pf (n -1 , m -1 ) log Pf (n -1 , m -1 )/d +

+ Pf (n+1, m -1) log Pf(n+1, m -1)/d_

= Pf (n -1 , m-1) log Pf(n-1, m-1)

+Pf (n +1 , m -1 ) log Pf(n+1, m-1)

+log d+{ Pf (n, m )-Pf (n-1, m -1)}

+log d_f Pf (n, m )-Pf (n+1, m -1)}

=P_R n-1, m -1) log Pf (n -1 , m -1 )

+Pf (n +1 , m -1 ) log Pf(n+1, m-1)

+log d+{ -d_P+(n-1, m -1)+d+Pf (n+1, m -1)}

+log d_{d_Pf(n -1 , m -1 )-d + Pf(n+1, m-1))

=P (n -1 , m - l) lo g  P f (n -1 , m -1 )
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+Pf (n +1 , m—l)log Pf(n+1, m -1)

+(d+Pf (n+1, m -1)—  d_Pf (n-1, m-1))log d+/ d_.

Furthermore, for c * 0  we obtain

— { Pf(n, m)log Pf (n, m )+Pf (n, m)log Pf(n, m)}c*0

E {P f (n -1 , m—l)log Pf (n -1 . m -1 )C*0

+Pf (n +1 , m—l)log Pf(n+1, m-1)}— (d+d_ — d_d+)log c—Lc
i -/
-

= — No(Pf(n - 1, m—l)log Pf (n -1 . m -1 )

+Pf (n +1 , m—l)log Pf (n+1, m -1))

Note that Pg'(n , m )=Pr(n-1 , m -1), PA n, m )=P 92 (n +1 , m -1 ) . Hence we
have

- E {P ( n ,  m)log Pf (n, m )+Pf (n, m)log Pf(n, m ))
C ES

E {Pf(n —1, m— 1)log Pf(n-1. m -1)
C ES

+ Pf (n+1, m—l)log Pf(n+1, m-1)1

For the case of d+=d+(n—  m)=0 or d_=d-(n+m )=0  (say d+=0) we have

Pf (n , m )=Pf (n -1 , m -1 )= 0  (c *0 )

Hence from the fundamental lemma we have for any cE S

Pf (n , m )=Pf (n+1, m -1)

So we have in this case,

- E { Pf(n, m)log Pf (n, m )+Pf (n, m)log Pf(n, m)}
C ES

= - E {P f (n -1 , m—l)log Pf(n —1, m-1)
C ES

+ Pf (n+1, m—l)log Pf (n+1, m -1)}

Now it is easy to obtain the inequality

H(Tm 1.1) H(Tm - 1 ,a),

(q.e.d.)

R em ark . In the case '1E11, d+ ( n ) =d ( n ) =d  for a ll n E Z , we have
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Pf(n, m)log Pf (n , m )+Pf (n , m)log Pf (n, m )

131.f .(n-1, m —1)log P f (n -1 , m -1 )

+P f (n +1 , m—l)log Pf(n+1, m-1)

Hence we have, for a ll cE S ,

1-1,(T mp) Hc(T m - 1 1-1).

In general 1-/c( 7'1.0 does not need to increase. In this respect we have the
following.

Proposition. L et ,uE .N .  Moreover we assume
1. d+(n  ; p)=d+, d_(n  ; p )=d_ f o r all n E Z , and
2. PAn ; p)=p+, Pf (n ; 4 =p_ f o r all n E Z
then we have

(pq ,,,,)_ (1 —d d _  1 d+d ) ( Pa : -: ) ,

where pm=Pf(n, m ;  p), qm — Pf(n, m ;  p ) ,  )1/ 1:).

P ro o f  This is a direct consequence of the fundamental lemma.

C o ro lla ry . Under the same assumptions as in the proposition, if  d+*d_,
d++ d_*1 and p +  *p_, then I-Ic( Tm,u) can decrease in  time m.

Fro o f . From the proposition, we can easily obtain

d+  P . =  (p++p_)+ _d p +  d+p-  0. z i y ,
zi zi

d_ ( P + + P )  d_p+ d+p_ i i  J r ,q m = j - J

where 4= d++ d_, and

l i c (  T m p )=  —Pm log Pm— arm log qm.

Note that 0< Li< 2, ZI*1, hence the trajectory (p., q,,,), m 0 moves on the line

p+q=p++p_ and converges to the point ((P++P-) dz j ,  (P+ +p_ ). Note

that the function h(P, q)= —p log p—q log q  takes its maximum at (p, q)=
(P++P- P P )  on the line p+q=p++p_.\ 2 ' 2

Hence, for instance, if p+>p_, d-> d+, 4 < 1  then H(T m p) increases
(d -- d+ )(P++P -) log 2(d-P+ —  d + P -) m o n o to n ic a lly  u p  to  m ‹ M  = a n d  decreaseslog(1-4)
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monotonically for m >M. (q.e.d)

4 .  Derivation of Master equations

We want to remark that from our model it can be driven some interesting
master equations by taking various hydrodynamic limits. Namely, we could
consider our model as a diffusion process of the components in a fluid, and can
derive heuristically master equations from our particle model by taking
hydrodynamic limits. Firstly we assume the fluid has the constant density 1
and a velocity 2k, so we set

d+ (n )=d+=  +

d_(n)=d_=4— kdx.

Pc(nZlx, nilit)=Pf(n, m)+13 f(n, m)

uc(nZlx, mdt)Z1x=P+(n, m)-13 5(n, m),

where u t =(4x) 2 . t oc(x, t) may be interpreted as the density of particles with
the color c in the fluid and uc(x, t) as its momentum of the fluid.

Let

(nZlx, mJt)=(x, t),

then we obtain

Plc-(n±1, m )=4{ 10c((n±1).1x, m4t)+Jxuc((n±- 1)4x, mZit)}

t)+J.ruc(x, t)± - -(x, t),dx+ 1
2  2 2c (4x) 2

Zlx)2 +o((4x) 2)}.

Similarly we have

1P f (n ± 1 , m )- -
2

tpc(x, t)-4xuc(x, t)± 
a p c  

 Jx+
1  3 2 p

2
c   ( Ix)2

aX 2  ar

and

Let

and
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dc   z i x ,2 0 ( ( 4 x ) 2) ) 9

ax

and

a au P (n , m + 1 )= -
2

f loc(x, 0+.%Ixuc(x, 0+—P c Zit +Zix 
a t

c zit + o(L10},at

1Pf(n, rn+l)=
2
 fp (x

'
 t)—Z1xuc(x, t 4t—L1xau Lit+ o(40}.c a

Hence from the fundamental lemma we obtain

uc=2kpc(1) IaPc —  2k aPc +  P cat ax a x 2

This is the well known diffusion equation with drift term.
We could also consider our models as a dilute gas with constant density

D and velocity V . In this case we may set

1 1d+ =  R A x = -
2

( d_=.LAx=(D—  V)A.r.

Let

Pc(nAx, mA0=13f(n, m)+Pf(n,

uc(nAx, mA0=PAn, m)—PAn,

and A x = A t. Similarly as above, we can get

apc  _ a
at —  ax

auc apc  +Vpc—Ducat ax

This can be seen as a wave equation with friction. We can easily solve this
equation under a periodic boundary condition.

Let

Pc(x, E pn(t)e"
neZ

and

uc(x, t)-= E u n (t)e ',
neZ

then (2) can be writen as follows :

(2)
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inun
nE Z ,

inPn+ VPn —  Dun

dt
d U n

dt

i.e.,

0 —  inV p yt
ddt ( uP n) = (V  — in —  D A un) .

This equation can be easily solved, so that we can see the properties of its
solutions.

As we have verified for our simple particle model, we note that there can
exist several macroscopic descriptions for a microscopic molecular system,
depending on the scaling laws, namely the hierarchy of observations.
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