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Introduction and main results

T he universal Teichmiiller space T  (1) can be represented as a quotient
space o f Q S b y  the Möbius g ro u p  PSL  (2,R ) , w here Q S  i s  th e  group o f  all
quasi-symmetric homeomorphisms of a  circle. But QS contains another topo-
logical subgroup, which is much larger than PSL (2,R) , the subgroup S  of sym-
metric homeomorphisms. S  can be defined as the  closure w ith respect to  the
quasi-symmetric topology of the group of real analytic homeomorphisms of the
circle. Recently, G ardiner-Sullivan show ed that Q Sm odS also have a natural
complex Banach m anifold structure and a natural quotient metric d , which we
also call the Teichmfiller metric on QSmodS, coming from the Teichmfiller met-
ric d  on T (1) .

Since the manifold QSmodS is also universal in  a  sense  (cf. [3], and also
see  [4 ]) , it is  important to investigate where and how extent the quotient map
r  contracts the metrics.

W e recall some definitions. First, in  T (1) , the Teichm aller metric can be
described  by  using  ex trem al quasiconfo rm al m app ings. F ix  a  normalized
quasiconformal mapping f  of the unit disk D  onto itself. And denote by 111 the
complex dilatation of f .  S e t

kr=1411-= ess.sup Ifir(z)
Z ED

and

ko (f) = inf kg

w here g  m oves all quasiconform al m appings o f  D  w ith  th e  same boundary
value as f .

W e say that f  is ex trem al (in  T (1) -sense) if le f  k o R e c a l l  t h a t  the
Teichmfiller distance d (Li] , [g ])  ,  from  a  p o in t  [ g ]  to  an o th e r  p o in t [f ]  in
T (1) , is equal to
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1
l o g  

1 +ko (g ° ./.-1) 
2 1 — k o (gof - 1 )

Similarly, denote

kf  = inf ess.sup Ifif (z) I
U zeU

where U  moves all neighborhoods o f ap in D . ( T h u s  kf is called the bound-
ary dilatation of f.) A nd se t

ko (f) = inf k g

w here g  moves all quasiconformal mappings o f  D  w ith  th e  same boundary
value as f.

W e say that f  is extrem al in QSmodS-sense if ko  (f) =le f. Recall that the
Teichmilller distance d rf] , r [g ] )  from a point r  [ f]  to another point Tr[g] in
QSmodS, is equal to

1 1 +ko (g ° f -1 ) log
L,1  —  k o (g 0 f 1)

Now the  principle of Teichm tiller contraction ([2]) concerns a  curve C,
=  [ t ]  I  I t i < 1 i  o r  IrC ,=  irc[fq I ItI <11 , w here l i f t  =- 1111 011 11°. w ith a  given
Beltrami coefficient g. Such curves a re  called B eltram i lines. I t  i s  k n o w n
that such a  curve is a  geodesic if g  is ex trem al [11]. M oreover, for extremal
g  in  T (1) - or QSmodS-sense, the natural m apping I, from  the open interval
(-1 , 1 )  w ith  the Poincaré metric onto C, o r n- Cm w ith  the Teichmüller metric
is an isometry.

Teichmtiller contraction says that, if the  m apping I fails to preserve dis-
tance between two points, then  it is stric tly  contrac ting  a t a ll pairs of points
on  the  same Beltrami line and  w ithin a  specified distance from the  two given
p o in ts .  See th e  nex t s e c t io n . T h is  property  o f  th e  mapping hi  is  c a l le d  a
coiling property by Sullivan [17].

Relating to these phenomena, it is interesting to discuss the following

Problem. F or w hat kind o f po in ts [f ] E  T (1) , does the distance 0 to
[1] really contract under the projection z?

T his problem  has been investigated im plicitly by m any authors. A s Gar-
d in e r  and  S u llivan  poin ted  i n  [ 2 ]  a n d  [ 3 ]  that, S trebel's fram e m apping
theorem (Theorem A  below) implies the following

Proposition 1. L et [f] E T ( i )  and suppose that d (0,7r ( )  )  <d (0, [f]).
Then, [ f ]  contains a  TeichrniVler mapping of finite type.

On the other hand, even in the case that the point corresponds to a Teich-
miiller mapping of finite type, whether the distance contracts o r  no t is  a  very
delicate problem, and rem ains unsettled . A t least, we know the following



Teichmfiller metrics 135

Reich's example (cf. [12], [14]). In  Q = = u + iv  I 0 <v <u", 0 <it
< A L  w here  a> 1, 0 <A  Goo . Suppose that w = h (z ) maps D  conformally
onto Q, and define tt on D, by

p(z )dz /dz =tdw /dw

w ith a  fixed positive t  < 1 .  Then f  w ith th e  complex dilatation tt is  a  Teich-
mfiller mapping of finite ty p e . O n  th e  other hand, d  (0  ( VD ) =d  (0,[f]).

In fact, set gn ( z )  = 0 + 1 e- nz on Q, and define (/),, by

On (2. )  d z2 = gn (w) dw2

T hen  w e can  see  tha t iÇonl is  a  degenerating Hamilton sequence for p. Hence
by Theorem B below, we conclude the assetion.

In this paper we will give a condition under which the projection is really
a  c o n t r a c t io n .  A n d  u s in g  G a rd in e r 's  re su lts  (P r in c ip le  o f  Teichmiiller
contraction), we also give an estimate of contraction.

For this purpose, let B  be the set of all functions 9 th a t a re  holomorphic
on D and satisfy that

11911,=fLkpididy<oe ,

and let C(B ) denote the infimum of the set of all C E  (0,00] such that

(1) f  f p koldxdy C. 1- 1 -
DiReyoldxdy

for every 9 EB  with Imgo (0) =0. Clearly, C (B )  1.

Remark. G. H. Hardy and J. E. Littlewood [6] proved that C(B) < 0 0 ,
and M. Ortel and W . Sm ith [13] gave a simple proof that C (B) < 2 0 4 .  The
better estimate due to S. Axler [1] is that C(B)

1 N ext f o r  e v e ry  0  s u c h  th a t  lc- < 0  < 7.` arcsin )  ( <7r),2 2 2C (B) —1

E0 denotes the  subset of T  (1) consisting of elem ents [f] which correspond
to Teichmtiller mappings of finite type whose complex dilatations ,a=p f  satisfy
the following condition:

There is a positive p <1 such that tt (z) = 0 or

p(z ) 
I ii (z ) E  le I It'

for every z with P < I z i  <1.

Theorem 1. For every element [f ] belonging to E with <rr2 2

a r c s i n
(1  

2C (B) — 1)' il follows that
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(o,7T ( [ f] )) (0, ) .

Corollary (on contraction) . U nder th e  sam e circum stance as  in
Theorem 1, we set 2 = (0 ( [f])) / d (0 , [f]) and k = l i t t f i l . . .  F i x  k' <1 and let f '
be the quasicanformal mapping of D onto itself  such that ttf t= (t/k) tt f  for every t
[0,0  .  T hen (Â <1 an d ) and there ex ists 2" <1 depending only on k, k', and  Â
such that

(0,71-  ( P p ) (0,t)

for every t w ith () t l?', where dp denotes the Poincaré metric on the unit disk.

Finally, it is very interesting to solve the following problem.

Problem. C an th e  equivalence class o f  a n  arbitrary extrem al quasi-
conformal mapping in QSmodS-sense contain an  extrem al mapping of Teich-
m ailer type? A nd if so, w hat kind of o rder condition does the  corresponding
quadratic differential satisfy? (Also, see [9].)

Acknowledgement. T h e  au tho rs w ou ld  like  to  thank  to  P ro fesso r
Hiromi Ohtaka for his invaluable comments.

1. Preliminaries and known results

W e  s ta r t  w ith  th e  following frame mapping theorem due  to  K. Strebel
[1 6 ] .  L e t  h  b e  a n  orientation-preserving homeomorphism o f  ap onto itself
w hich  adm its a quasiconform al extension h  in to  a n  interior neighborhood.
Such a  mapping h is  ca lled  a  frame mapping o r m ore  accurately a n  interior
frame mapping associated with h. The infirnum of the maximal dilatations of
all frame mappings associated with h  is called th e  (in terior) dilatation of the
homeomorphism h.

Theorem A  (Frame mapping theorem) . L et h  be an orientation pre-
serv ing homeomorphism of  ap onto itself  which adm its a  quasiconfonnal extension
in to  D . Suppose that the dilatation of  h is sm aller than the maximal dilatation Ko

of an extremal mapping f o for the boundary value h.
Then every Ham ilton sequence 19,i f or the complex dilatation fth  of  f o con-

verges in  L'-norm to a  uniquely determined holomorphic dif ferential 90 w ith  Ikpolli
= 1 .  Consequently, the complex dilatation g fo has the form  ko90/1901 w ith ko = (Ko
— 1)/(K 0+1).

Here note that, for e v e ry  [f ] E  T (1), the dilatation of f l ap  is nothing but
-ko (f). Hence Theorem A  implies Proposition 1.

Next the  following Theorem is due to  F . P . G ard iner [2 ], w hich plays a
fundamental role in th is paper.
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Theorem B. (The Hamilton - Reich - Strebel condition for extremal-
ity in QSmodS). For every [f] E T (1), k k() (f)  if  and only if

sup lim sup R e f f  çon,ufdxdY =k f

where the supremum is taken over all degenerating sequences kpni for rtf  in  B1.

Here B 1 = iço E B  I 11(p Ili H  a n d  a  degenerating sequence means that it
converges to zero uniformly on compact subsets of D.

N ow  reca ll tha t, to  charac terize  th e  complex d ila ta tio n  o f  an  extremal
quasiconformal mapping, th e  following fundamental theorem due to R. Hamil-
to n  [5], E. Reich, and K. Strebel [15] is very useful.

Theorem C. A  Beltrami coefficient g is extremal if  and only if one of the
following statements holds:

1) There exist ço B i and kE  [0 ,1 )  such that ft=lego/kpl f or almost every-
where on D.

2) There is a degenerating sequence igo nl  in B1 such that

lim ffçûn,L dxdy =111.111.0
D

Finally w e cite  the following Principle of Teichmtiller contraction due F.
P. Gardiner [2], it gives the motivation of th is research.

Principle of Teichmiiller contraction. A ssum e 11P11- = 1 ,  0  < k i <k2
<1, and d (0, V I ] )  . 21dp(0,k1) or (0,7c ([1"1)) (0,k1) with some 21 <1,
where and in the sequel, fk is the quasiconformal mapping of D onto itself such that
I-tf=krt for every Positive k  < 1 . Then there exists a /12 < 1 depending only on k1,k2,
and 21 such that

d (0,[e]) 22d p (0 ,k) o r  c (0,7 (Lfk l ) ) 22d p (0,k)

respectively, for all k with 0 k k2.

2. Proofs of main results.

O ur proof o f Theorem  1 also give a  general criterion fo r extremality of
quasiconformal m appings. S uch  a  c rite rion  is  in te resting  in  itself, a n d  has
been investigated by many mathematicians. For example, see the works made
by M. Ortel an d  W . S m ith  [1 3 ], X. Z. H uang  [8 ] , K. S treb e l [16 ], Z. L i  [10],
etc.

To state the  result, we set

S' [O1,@2] = ire" I 0 01 1 02[

where 0 < k  co and 0 02 27r. Then we have the following
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Theorem 2. L et IC be a bounded measurable function on D with = k
71"<1  and —

2 
< 0 < -7c ±arcsin (

2C (B) 1 Suppose that there exists le' <k and 02 —

<p <1, such  that K (z) E  S k  [ - U S k '  [0,27C -  0] f o r almost every z E  D\
<p }. T h e n  K is an extremal dilatation if  and only if  there ex ists q9E131 such

that

for almost everywhere on D.

Theorem 2 can be shown by the same way a s  in  [8]. Namely, Theorem 2
follows by Theorem C and the following Lemma, which is also the key for the
proof of Theorem 1.

Lemma. Let K be a  bounded measurable function on D w ith 11K110=1, and

f ix  0 with <0< 7
2
1 -1-arcsin ( 2 c , (B

1
) 1 )

•
 S uppose  that there exists <1 and 0

<p <1 such  that If (z) E  5 [— 0,61]  U Sk' [0,27 — 0] f o r almost every z E  D\
Pl

Then for every degenerating sequence it follows that

limsup
n—co l I D

çonKdxdy <1

 

Proof of Lemma. We may assume that, for each n,

(p. (0) = 0  a n d  f  (pdcdxdy>0 .

Choose 01 so that

/2 <  0 < < 71-/2±arcsin ( 2 c , (B
1
) 1 )  .

Set

Q. =  iz E D  I tp . ( z ) [01,27c —

and

M  = IZ D  K (.4 E S i  [- .

Then, for every zES2n nm, we have

Re çp,N (z) (z) I cos (0i— 0) Içn  (z) cos (0 f-0 )

Hence, for each n, we obtain

f çonicdxdy
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= R e f fp \ a , c,on K'dxdy-PReff2 n n m yon ialxdy + R e f  f Q,,w 9n Kdxdy

f f p \ o )(Pnidxdy + co s (01—  f  f o n n m Içoniclxdy +1,z/ f  f r2.\ml(Pnidxdy

k p n o x d y + if f  k p n id x d y  ,D\Q,, Qn

where / =m ax icos (01—  0), <1.
Now suppose that

limsupff çontcdxdy=11/c11.= 1
D

Then since 119n111= 1, the  above inequality gives that

lim in fif  kon idxdy O ,
Dn

which in turn gives a contradiction.
In fact, set f = I zI pL

Pn = iz ED  I Reyon (z) <0

Qn= D\Pn, and Gn=Pn\(JU Qn). Then, s in c e  n (0) =0, we have

fL iReçonldxdy

= ff IReçOnldXdY +f 1:2 n 1Reçonld.rdy =- 2 f f 1RegonldxdyPn P n

= 2 f  fj n p n iRegonldxdy +2 f f IRupniclxdy 21kReço nld.rdyGn

2 f f i lyonldxdy ± 2ffIcoseiyonld x d y  2 f f  IReg9n1dXdYGn Qn

2ff konldxdy 21cosOilifpniçonidxdy + 2f IRego nidxdy

= 211: I yonic/xdy 21cosed [fIDIçonidxdy — f i n\p,, Içon idxdy]

± 2 f i r2n1Reçonidxdy .

Here since

fir,v ,)ÇonldxdY - ..f i s(2niReyonidxdy =1/ 2 f LIReçon idxdy

we have

(1 ± Icos011) fiDIReçonldxdy

2 f i j konic/xdy 2lcosOilfL çonldxdy ± 2 f fQ  n IReçon ldxdy

Now by recalling the definition of C (B) and th a t IcosOil = sin  (01—  n-/2) in
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this case, the above inequality implies that

11+  (1 -2C  (B) ) sin — 7/2)1 f f D IRegonldxdy

çonldxdy +2fio n lç9n lcixdy .

H ere  11+  (1-2C  (B) ) sin (el —  ir/2) 1 >0,

lim in f f  f  lyonldxdy = 0
n—co S2n

and, since 1 1 is degenerating, limn— f f konldxdy =O. Hence we have

liminff f IReyo n idxdy =0 .
D

So, by using inequality (1), we conclude that

f konldxdy = 0
D

which contradicts the assumption that (NEB '  fo r every n.
Thus we have

lim s u p f  f  yon tairdy <1
n—co D

which implies the assertion.

Proof of  Theorem 1. Suppose th a t  [f] E  E o .  Then by the above Lemma
and Theorem B, we conclude that h0 (f) <ko (f).

In fact, suppose tha t ko (f) = ko (f) . Then w e have 1111/ =  ko = b 0 (f ).
Hence Theorem B implies that

sup limsup
{on }

R e f  f o çonpfdxdy III 411—

w here  the suprem um  is  taken  over a ll degenera ting  sequences kon l in  B1 .
Then, b y  the diagonal argum ent, w e can  find  a  degenerating sequence in  B1

such that

lim R e f f  çonittic/xdY =111411— ,
D

which is impossible by the above Lemma.
Thus we conclude ko (f) <k , w hich is equivalent that d  (0,7r ( W )) <

d (0 ,L11)

Proof o f  Corollary. Suppose th a t  [f ] E  E t r .  Then Theorem  1  implies
that

(0,7 ( V1) <d VD =dp (o,k) ,
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namely, that 2<1.
Thus the assertion follows by Principle of Teichmtiller contraction.

3. Examples

Suppose that () DEBI has positive real part, namely, Recp (z) >0 for every z
E D . L e t  f  be the quasiconformal mapping of D onto itself such that pf= up/
koi with positive t< 1. Then by Theorem 1, we have

d (0,7r (M)) <d (0,[f]) =d i,(0,t).

Typical examples of such 0 are

e i a ± z

ei ° —z

with real a, and positive linear combinations of them. Another examples are

1+0/11011- a n d  exp (r(1)/211011.) ,

where 0 is  a  bounded holomorphic function on D.
Next fix O as in  Theorem 1, and set

(z) = (

e ' - k z r i n .

el°  — z

or

(z) = exp (Ozn)

with A s before, let f  be the quasiconformal mapping of D onto itself such
that ttf=t(P/1(pi w ith positive t  < 1 . T hen  [ f ]  E  E t ) , but belongs to no E8 ,  for
every O' w ith  (7/12<)0'< O.
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