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Complex manifolds modeled on a
complex Minkowski space

By

Tadashi AIKOU

§ 0 .  Introduction

In  the  present paper, we investigate th e  differential geometry of complex
Finsler m anifo lds. T he m ain  purpose is to introduce a  connection on a  com-
plex F insler m anifold as the transversal connection constructed by the  same
method a s  used  in  [3 ] , a n d  to  d iscuss som e properties o f complex manifolds
modeled on a complex Minkowski space, which is a  complex version of the notion
due to Ichijy6 [8].

W e denote by C" the  complex vector space of n - tuples of complex num-
b e r s .  A  function f ( )  d e fined  on C" is  sa id  to  be  a  Finsler metric if  it satis-
fies the following properties:

f ( ) the equality holds if and only if 0

(ii) f ( )  is C -  o n  C - 101, and continuous on C",
(iii) f ( 2 ) = 1 /1 12f ( )  f o r  e  E C ,
(10  f ( ) is  stric tly  p lu risubharm onic  ou tside  o f  th e  o r ig in  0 , th a t is, the
Hermitian matrix (a 2f / 3 aa ,  8\)  is positive - definite.

T he condition  (iv) is equivalent to  the strict pseudoconvexity of the in-
dicatrix I =  I E C ;  f ( )  G 1 1  .  Conversely, if a  complete proper circular domain
I  in Cn with sm ooth boundary is strictly pseudoconvex, the Minkowski func-
tional of / defines a  F insler metric on Cn whose indicatrix becomes the given /
([13]). A ny H erm itian  m etric  on C" belongs to the  class of F insler metrics,
and is characterized by one of the following three equivalent conditions (see
Corollary 3.2 in [13] ):
(1) The indicatrix / is biholomorphic to the unit ball in C .
(2) The function f ( )  is C -  a t  the origin O.

n n

(3) The function f  ( )  is expressed as f (e) 7-- -
2

f o r  D (AO E

  

1=1 ni =1
GL (n, C) .
In the present paper, following to Ichijy6 [9], we call a  F insler metric f  on C n

a  complex Minkowski metric o n  C n , a n d  th e  p a ir  (C " , f )  a  complex Minkowski
space.
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In the similar way a Fins ler metric F of a complex vector bundle 7r: E — >M
is generally defined a s  a  function on  its  to ta l space E  (§ 1 ).  We find many
papers on the complex differential geometry of complex manifolds with a  Fins-
ler m etric ( [2], [6], [14], [16], [24], e t c . ) .  In the real case, Bao - Chern [4],
Chern [5] and Shen [18] have recently developed the theory of connections in
Finsler geom etry by using the projective bundle, and  obtained some results.
On the other hand, if a real Finsler metric F is given on a C-  manifold M, then
its tangent bundle TM admits a  natural Sasaki - type metric, and has the struc-
tu re  o f  foliated Riemannian m an ifo ld . Suggested by these facts, in  th e  pre-
vious paper [3] the  author has introduced a  connection on  a  real Finsler man-
ifo ld  (M, ,  a n d  given som e characterization o f  special Finsler manifolds.
The connection in  [3 ] was defined as the transversal Levi - Civita connection
which plays an im portant role in  differential geometry of foliated Riemannian
manifolds ([20]).

On a complex Finsler manifold (M, , that is, a  complex manifold M with
a  complex Finsler metric F, a  connection is introduced in  the  sam e w ay (§2).
Based on th is  connection, w e trea t a  complex manifold modeled on  a  complex
Minkowski space (§3, §4, §5)

T h e  a u th o r  w ish e s  to  ex p re ss  h is  s in c e re  g ra titude  to  P ro fe sso r  Dr.
Makoto Matsumoto a n d  P rofessor Dr. Yoshihiro Ichijyo f o r  th e  invaluable
suggestions and encouragement.

§1. Finsler metrics on complex vector bundles

Let M be a  connected C-  manifold, and E — >M a C-  complex vector bun-
dle o f  rank  E  = r. If  w e  fix  a  loca l fram e field s = isi, •.., sri of E  over a
neighborhood U of M, we have the identification 7-c- 1  (U ) U  x  C r .  If we put

Dasa, th e  component (V, V-) defines th e  complex fib re  coordinate of
a

7C- 1  (U) . We denote a point of 2t - 1 (U ) b y  (x , E ) , where x E U a n d  EC r .

Definition 1.1 . A  function F (x, on E  is  sa id  to  be  a  complex Finsler
metric if satisfies the following conditions:
(1) F (x, .CJ, the equality holds if and only if 0,
(2) F (x, E) is  C-  on E - izero sectionsi , and continuous on E,
(3) F  ( x , =-121 2 F (x, 0  for VA C,
( 4 )  the following Hermitian matrix ( F a t )  is positive - definite:

a2F
Fa iy (x, = a v a

If a complex Finsler metric F (x, is given on E , each fibre Ep is consi-
dered as a  complex Minkowski space  (C r , 1H1p) with the norm function
F (p, G iv e n  E (E) , the norm of E ( x )  is defined by IlVx)111=- F (x, E(x)),
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where C- (E ) denotes the linear space of all C-  sections of E.
F o r  la te r  discussions, w e  f ix  a n y  po in t p  E  Ad a n d  d en o te  b y  G  the

isometric group of the norm on Ep:

G= g  EGL(r, C); F (p . g ) =F (p, fo r  V

By using the condition (3 ) in  Definition 1.1 and  the  continuity of the norm,
we can prove the following lemma by the same method as W ang [22] o r Yano
[26]

Lemma 1.1. The isometric group G is a compact Lie group.

W e denote by J the  given complex structure  on  E, th a t is, J is  a n  auto-
morphism of E  satisfying .12 = —1E. A  connection V: C -  ( E ®  TM*)
of E  is  sa id  to  be  complex if  it  sa tis f ie s  17 J= O. G e n e ra liz in g  th e  method in
[19] to our case, we have

Theorem 1.1. Let E  be a C" complex vector bundle over M w ith a complex
Finsler metric F (x, W e suppose that E adm its a complex connection V on  E
which preserves the norm invariant under the parallel displacem ent. T hen there
exists a Hermitian metric h on E such that V  is a metrical connection of (E, h).

Proof. Since M  is  connec ted , w e deno te  by  H  th e  holonomy group  of
V with reference point p E M . B y  h y p o th esis , H i s  a  subgroup of G .  Then
we define an inner product <,>p on E p by

q . 0>p= I, g o d g  ,

w h e re  (,) i s  a n  a rb itra ry  H erm itian  inne r p roduc t o n  Ep, a n d  d g  i s  the
bi - invariant Haar measure on G .  Then we have

Ab> P = (g g ( Jo ) ) d g =f ,  ( g ) ,  J (9' 0)) dg

f G (g g  d g  = (P> p ,

tha t is, <,>p i s  a  Hermitian inner product on E. B y  the construction, <,>p is
G - invariant, and furthermore, it is also H - invariant.

Using the parallel displacement with respect t o  V, w e can extend <,>p to
a  Hermitian metric h of E. Let x be an a rb itra ry  point of M, and c (t) (0

1) a C-  curve such that c (0)=p and c (1) =x. F o r  V  (P E E ', w e  de fine

(P):= <P . P ' 0 > ,

where Pe : Ep— >E x  is  the  parallel displacem ent with respect t o  17 along c (t) .
Since <,› p is  H - invariant, this definition is independent on  the  choice of c (t)
on M, and b y  17 J=0 the  metric h is  a  H erm itian  m etric . In  th is way, we can
define a  Hermitian metric h on E. By the construction of h, w e have easily

dh (I)) =h ( (P) h 0)
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fo r  V E (E ) . Hence, V is metrical with respect to h. Q.E.D.

Remark 1.1. In  Theorem 1 .1 , if M  is  a  complex manifold and V  i s  of
(1, 0) - type, then  V  is  the Hermitian connection o f  (E, h).

From the discussions in [26], it follows that if  a  suitable basis is chosen,
all elements o f G  a re  o rth o g o n a l. Hence, all elements of G  a re  contained in
U (r) = 0 (2r) fl G L  C ) .  In the proof above, we have constructed an  Hermi-
tian metric on E p  which is invariant under the action of G .  W e shall use this
fact in §4.

§2 . Complex Finsler manifolds and Finsler connections

Let M be a  connected complex manifold of dim.cM=n, and 7C: TM— *M its
holomorphic tangent b u n d le . T he  to ta l space  TM  i s  a  complex manifold of
dim.cTM = 2n. W e  d e n o te  b y  in- - 1 (U ) , (z i , ri') (1 i  n )  th e  canonical
covering of TM induced from a  covering by the system of complex coordinate
neighborhoods 1U , (z i )i o n  M . S u p p o s e  t h a t  a  com plex F in sle r metric
F (z, n) is given on  T M .  Then we call th e  p a ir  (M , F) a complex Finsler man-
ifold. By the condition (4 ) in  Definition 1.1 , the  following Hermitian matrix
(F ,i )  is positive - definite:

(2.1)
a 21,-.

.ar)ia7T1

In the following, we p u t  (F‘') = (Q - 1 .
Complex Finsler m etrics include th e  following im portant classes which

will be characterized in terms of a connection in the later:

(1) Hermitian metrics: F (z, n)=Xh d (z)

(2) locally Minkowski metrics: F = F nn) by taking a  suitable system of
complex coordinate neighborhoods 1U , (41 on M.

L et (M , F) be a  complex Finsler m anifo ld . F o r studying Finsler geomet-
ry, w e introduce a  connection which is a  natural generalization o f rea l case
( [ 3 ] ) .  W e denote  by VTM th e  holomorphic tangent bundle of the fibres of
T M .  Since VTM is  a  holomorphic sub - bundle of TTM, we have the following
exact sequence of holomorphic vector bundles:

<>
0  VTM TTM Q

where Q is  the quotient bundle TTM /VTM . Since Q is naturally identified
with n- - 1 TM, the natural fram e 1a/az'l of TM over U may be consi-
dered as a  loca l holomorphic frame field o f Q over n- - i ( u ) .  Then we intro-
duce a  Hermitian metric hQ on Q by
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(2.2) 141(
a a  ' 

) =F, (z , 77) .

A s a  connection o f  (Q, 4), it is  na tu ra l to  use  the  Hermitian connection, but
we use a transversal connection o f  (Q, hQ) which is defined as follows.

First w e introduce a C-  splitting a: Q— TTM of the exact sequence above
by

where Arl, (1 j ri)  are C-  functions on 7z--1 U )  defined by

(2.3) N;(z, 77):= EF" °F ":' 771n .
az'

m,r

Then the tangent bundle T T M  has a  C-  decom position T T M  V T M G H T M ,
where we put H T M = (Q) . Putting X i:= a (a/ az i )  and Y i:= th e n  iXi i
a n d  iYi i  (l i n )  define a local frame field on 71- 1 (LI) of HTM  and V TM re-
sp ec tiv e ly . In  the  dual fram e f ie ld  idz i, Oq (1 o f  IX1, Y 1 , we intro-
duce a  Hermitian metric hTM on TM by

(2.4) h 'TA I=EFo. d Odt -F F.,0 ,

where we p u t 19i: =d ri '±E M n d e . T his is  a  natural m etric from  the  stand

point of the geometry of tangent b u n d le s  ( [1 7 1 ) . T h e n  (TM, hT M ) h a s  the
structure of foliated Hermitian manifold, and Q is the transversal distribution
in  TM.

We denote by
 17

T M
 th e  Hermitian connection o f  (TM , h rm ) .  F o r V  E

(Q) , there exists a  unique Xe EC ° (H TM ) such that <)(.> is the natural pro-
jection of X  to  the quotient bundle Q . Now we introduce a  connection o n  (Q,
hg) as follows:

Definition 2.1. T h e  (1, 0) - type connection 7 o n  (Q, h(1)  defined by

< [Z, > if Z E  (  VTM)
(2.5) z

<171mX> if Z E c  (H TM )

is called the Finsler connection o f  (M, .

Since the  complex structure of Q is given by .1 for .1 of TM , it is ob-
v io u s  th a t 7 sa tis f ie s  17 J =  0. Corresponding to th e  decomposition TTM  =
V T M GHT M , th e  differential operator d  on functions and  the  Finsler connec-
tio n  V  a re  decomposed a s  d -=d if +d v  a n d  V = V "+  V v respectively . W e
also decompose d x  and dv in to  (1, 0) - p a r t  a n d  (0, 1) - p a rt a s  dn = an + an ,
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dv= ay+ a v respectively, where we put

(Xmf)dzm , avf=E(Ymf)
nim

for a C -  function f (z, r i) on TM.
By the definition, it is obvious that V  is not always metrical with respect

to hQ, but we have

Proposition 2.1. The Finsler connection V  of (M , F ) satisfies

(2.6) difh(1(, 0 )=4 1 (V  H  0 )  4 - 141(, V  H O)

for 0GC 0 (Q).

Proof. F ro m  (2 .2 )  a n d  (2 .4 )  w e have hq 0) = hT M  (X , X 0). Since
T M  is  the Hermitian connection o f  (TM, hTm), we have

dhQ (, 0) =hTM( V TMx X 0) hTM (X ,  V "0( 0 )

whose restriction to the transversal part im plies (2.6). Q.E.D.

F o r  V  E C - (Q), we have V = <[Y1, X ] > a v (Y i )  ,  and since the con-
nection is (1, 0) - type, we have  V v = d v .  Furthermore, the connection form of

V is w ritten as 0.4=EF5 m dzm . So, b y  (2 .6) we get
rn

di,F=hQ(Ewri  az „„, az ,a a ) +hQ( a
a
z  E a )az-

in rn

which is written as a „Fi,=EFwr+EF0-)T. Hence we have

EF""a„F„ u .

The coefficients in a ;  a r e  given by E ijk  ( Z ,  7 1 )  = EF X k F  from which we get
In

N I; o f  (2 .3) as

(2.7) NI; =E r)

Defining a section sEC `'(Q ) by

a 
(Z, )7) = E77'n

aZ n i

in

w e have  F H E = 0 from  ( 2 .7 ) .  By using the property hQ (6 , 6 ) = F (z, r)), we
get from (2 .6) the identity:
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(2.8) dHF=0 .

Then we have

Theorem 2.1. (1) A  Finsler m etric F on M  is Herm itian if  and only  if
its Finsler connection V is metrical.
(2) A  Finsler m etric F on M  is locally  Minkowski if  and only if its Finsler con-
nection V is f lat.

Proof. Since F is H erm itian if and only if  avF6 = 0, the first statement is
o b v io u s  f ro m  (2 .6 ) . I t  is  s h o w n  f ro m  (2 .7 )  th a t  th e  m etric F  is locally
Minkowski if and only if OHF,=0 on a suitable coordinate system 1U, (z i ) i  on
M .  Hence the connection form o f  V vanishes identically on such a coordinate
system, and s o  l7 is flat. Thus the second statement has been proved. Q.E.D.

Remark 2.1. Finsler geom etry is som etim es studied by using th e  pro-
jec tive  bundle  PM  in stead  o f  T M  ( [ 4 ] ,  [ 5 ] ,  [1O], [ 1 8 ] ) .  T h e  following
Hermitian form O u  o n  7E- 1 (U ) is  invariant by replacing 77 by 2)7 for V 2 E C -

101:

V  F,1F,07 177frn 

 /

o f-Ô . ;

Li F 2  
I,m

F urtherm ore , it is  easy  to  show  th a t  Ou =  0 v  on 2E - 1 (U ) n 7-c- 1 ( V ) .  Hence
IOLA defines a global fo rm  0  on P M . Then we define a  Hermitian metric hpm

by

h p m =E .Fc / 'eW i d-

instead o f  ( 2 .4 )  ( [ 2 1 ] ) .  Since th e  bundle PM  h a s  a lso  a  na tu ra l foliation
VPM and the exact sequence of holomorphic vector bundles 0--V PM-4TPM— >

w e can define a  Hermitian metric hQ on  the  quotien t bundle Q and a
connection V o n  (Q, h,Q) b y  ( 2 .5 ) .  In  th is  case, w e can  do the discussions
similar to the above.

T he section  e E  C (Q) defines a holom orphic line  bundle  L  over PM.
K obayashi [10] show ed that a  Hermitian metric on L  defines Finsler metric
on M , and vice-versa . Furthermore he showed that the negativity of L, which
is  e q u iv a le n t  to  t h e  negativ ity  o f  th e  t a n g e n t  b u n d le  T M , im p lie s  the
positive - definiteness o f  (F6). A s to  the existence of Finsler m anifolds with
negative tangent bundle, see [24].

§3. Kahler condition of a complex Finsler manifold

In th is  section, w e shall state som e rem arks on the KAhler condition of a
complex Finsler m anifold (M ,  1 1 .  F irs t w e  note tha t a round  V  P E  T M  we
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c a n  a lw a y s  ta k e  a  coordinate neighborhood irr i,  ( z ', )791 w hich is
semi - normal at P, tha t is, a neighborhood satisfying

(3.1) F.; k =

a t P. In  fact, for a  given complex coordinate system tu, (zOF on M, we de-
fine a new coordinate system ICJ, (1 ) 1 on M by

(P) (z ' - z )  (z k — 4)
,k

 

where we put P= (z Ô , n6). Then it is easily  seen that the  coordinate system
o n  T M  induced  from  ILT, (Z i )1  sa tisfies the  cond ition  (3 .1 ) a t  P .  Furth-
ermore, if a semi - normal coordinate system  in- - 1  ( u ) , ( 1 ,  ni ) i  a t P is said to
be normal if the following condition is satisfied:

F (P) = 5i ;  a n d  F k (13 )  = 0 .

If the Finsler connection V o f  (M, F )  is  the transversal Levi-C ivita con-
nection o f  (Q, 1,1(1) in  the  sense of T ondeur [20], w e  sa y  (M , F) satisfies the
Kahler condition. A  Finsler manifold (M , F) satisfies the  KAhler condition if
and only if the coefficients Fr i k satisfies the symmetry

(3.2)

If  w e  p u t  e= ,/ —1 i A d 4  it  is  d irec tly  sh o w n  th a t th is  condition is

equivalent to d11e = 0 .  Then, from  (3.1) a n d  (3.2) we have

Theorem 3.1 ( [2]). A  complex Finsler m anif old  (M , F )  satisf ies the
Kdhler condition if and only  if around any  point P of TM  there ex ists a complex
coordinate system which is normal at P.

The functions N i
;  (z, )  in  (2.3) a re  also found in  [1 4 ]. F rom  (2.7) we

get easily F i
j i , = aN,Y az k . Hence the  Finsler connection V coincides with the

one introduced in  [1 4 ]. The function N i
;  (z, 7)) are derived from the variation-

al problem as follows.
L et c ( t )  b e  a  C " cu rv e  o n  a  complex Finsler m anifo ld  (M ,  F )  The

Euler-Lagrange equation with respect to F  is given by

d (  5F  ) aF 
dt \ a,7 , ) az i

F o r  a n  a rb itra ry  p o in t  (z, i n  TM , th e re  e x is ts  a  holomorphic m ap  0:
A (r) -- . M  satisfying 0 (0) = z, 0* (0) : = ( (ô/ ) .) = where d (r ) is  the
disk in C  of radius r centered th e  o r ig in . W e give on A (r) the  Poincaré met-
ric gr:
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72  

g r =l i C d C  .

(1'2 —  CI') 2

Now we assume Royden's condition in [14]:

"for a n y  (z, e TM, there exists a  holomorphic map 0: d (r) --4M such

(3 . 3) tha t (/) (0) =z ,  0 * ( 0 )  = and the curve r(t)  =  (e . "1 8 t )  in  (M, F )  is  a
geodesic tangent to the common complex line C• e at z  for each OER",

that is, the disk 0 CA (r))  is the union of such  geodesics. Then, corresponding
to  (16) a n d  (K3 )  o f [14], we have from the Euler - Lagrange equation

1 i--P » 1 ',.(z, V =0

EF  (Fii k —F;0 ) V m  -=-0
7,,,m

where we pu t 0 =  (0 1 , •.., On ) ,  and V =  ago' / aC, i = a V OC for the  coordinate
C of d (r). The first equation is a  differential equation for geodesics, and the
second is  an  algebraic condition . T he second equation is satisfied i f  (M, F)
satisfies the Kahler condition.

The discussions for geodesics in complex Finsler manifolds are also found
in  Abate - P atriz io  [1]. It is noted that the second condition above is equiva-
lent to the Kahler condition in the case where the m etric is a  Hermitian metric:

F (z, 77) = (z) nini.

§4 . Complex manifolds modeled on a complex Minkowski space

Another important class of Finsler m etrics is the one whose Finsler con-
nection V is  basic: Ff i k=Fi i k ( z ) .  T his property is, of course, independent on
the choice of complex coordinate system on M .  In  th is  case , V o f  (Q, hQ) is
considered as the pull - back o f an  (1, 0) - type connection of T M .  It is obvious
that any Hermitian metric and locally Minkowski metric belong to this class.

Now, assume th a t  V  is  basic, and w e consider V a s  a  connection on TM.
Let c ( t)  be a  C"' curve on M .  W e denote by e t th e  parallel displacement of e
E  T M  a lo n g  c (t) w ith  respect t o  V .  T h e  norm  ktilcm of i s  g i v e n  b y

Ila m = F ( c  (t) . Then we have

Proposition 4.1. I f  V  is basic, N e w  is  invariant under the parallel dis-
placement with respect to V , that is, dliV icuidt =O.

Proof. If we put et = » rn (a/az ?"), et satisfies
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dz (t)  ± V co , (dz ),,,, (1)0
dt ni\dtr"

Then we have

diltil(t)  _V   aF (c (D , dzm aF (I) , d m  
±  (c o n j.)dt az n , dt arim dt

= v(  of-  _v  OF  F u i ) ddzkt   ±  (c o n j.)
LA\ a z k  IO m

=E( aF ENT (c (I) , a
a
ri
F

m ) d
dztk ±  (conj.)aZ k

1,m

= a„F+a,.,F=d„F (0 , .

Hence, our assertion is derived from  (2.8). Q.E.D.

Proposition 4 .1  m eans that if  the  Finsler connection o f  (Q, hQ ) is  basic,
the re  ex is ts  a  (1, 0) - ty p e  connection V  o n  T M  w hich preserves th e  norm
krItcco invariant under the parallel displacem ent. Hence, by Theorem  1.1, we
have

Theorem 4.1. Let (M , F) be a complex Finsler manifold whose Finsler con-
nec tion  V  is basic. T hen there ex ists a  Herm itian m etric hm o n  M  such that

is the pull - back of the Hermitian connection of hm .

Since th e  parallel displacem ent gives a  complex linear isomorphism be-
tween tangent spaces, Proposition 4 .1  says that if the Finsler connection V is
basic, each tangent space  is  isom etric  to  a  fixed com plex Minkowski space
(C ', f )  with f  = F  (p, In  the  real case, such a  manifold belongs to the
class of manifolds modeled on a Minkowski space due to  Ichijy6 [8]. In  the fol-
lowing, we shall consider the notion in the case of complex manifolds.

W e sta te  som e term inology. Let G  be  a  L ie  g ro u p . W e  say  tha t a  C-

manifold M  adm its a  G - structure i f  th e re  e x is ts  a  c o v e r in g  W I w ith  local
fram e fields leu} s u c h  t h a t  the  transition  func tions 19 evl a re  all G - valued
function . Such  a  fram e  ieul is sa id  to  be ad ap te d . A  linear connection D  is
called a  G - connection of the G - structure if the connection form with respect to
an adapted fram e lee l  takes its values in the Lie algebra of G.

Let f ( )  b e  a  complex Minkowski metric on Cn , and G the  isometric group
of f ( )  ( c f .  Lemma 1 .1 ).  L e t ieil (1 n) be a  frame of TM, which we ex-

press as e, = A7 (a/ az'n), where A fi: U GL (n, C ) (1 j _. n )  are C° func-

tions. F o r  V  = V em _  7 ) " n  (a/ a z in ) ,  we define a  function F: 7r - 1(LT) — >R

ni

by
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(4.1) F (z, 77):=f (V ) =f ( B(z)72 m )

where B = (Bi) i s  the inverse of A  =  (A i,) . T he function F (z, 17) is defined
globally  o n  T M  a n d  becom es a  Finsler m etric , i f  a n d  o n ly  i f  M  h a s  a
G - structure and e 1  i s  an adapted frame of the G - structure.

Definition 4.1. A  complex Finsler manifold (M , F ) is sa id  to  be a  com-
plex  manifold modeled on a complex Minkowski space (Ca, f )  i f  M  adm its a
G - structure and the metric F is w ritten in the form o f  (4.1).

L et (M, F) be a complex manifold modeled on a complex Minkowski space
(C u , f ) .  So, in the following we always assume that M admits a G - structure,
a n d  le d  is  an  adapted frame of th is  G - s t r u c tu r e . W ith respect t o  le11 , each
tangent space  o f  (M , F ) m ay be considered a s  th e  g iven  Minkowski space
(C" , f).

L et D  b e  a  G - connection of the  G - s t r u c tu r e . W e  p u t De i -=E C ne m .
ni

Since the  m atrix  01 =  (0/) is  a  1 - form which values in  the  L ie  algebra of G,
we get

Proposition 4.2. Let (M , F ) be a complex manifold modeled on a complex
Minkowski space (Ca, f ) .  The Finsler connection V  o f (M , F ) is giv en by  the

(1, 0) - part of 0 =  ( J), and so  V is basic.

Proof. If we denote by 0-= (01) th e  (1, 0) - part o f 0= (01), the  1- form 0
takes the value in the Lie algebra of G .  Thus the equality f  ((e x p  t0 ))= f ( )
holds fo r  V t ER. Differentiating this equation at t 0, we get

(4.2) E  af 6uni+E  af_6um=0
1"

W e express 0 b y  w =- (0 , )  w ith  respect to  th e  natura l fram e f ie ld  10/az t i

where we put co', = T I,n  ( z ) . Then we have 0= BdA BcoA  =B O A  BwA

B a A , where we used the m atrix n o ta tio n . Substitu ting th is in to  (4.2), we
get

(4.3) E Bi„,(OAr = :0 .
az

,n1r . 1 . 1 "

We define the function N i
i (z, n) i n  (2 .3 )  by Ai; (z, 7) >= P i ,  (z) 77- . Us-

ing 17 i =  A ( z ) " '  and V =  13 (z) )7m , w e can show  OHF= O. In fact, we
nim

have



96 Tadashi Aikou

X , F =  
aF 0F 
az= anm

=E( af  aV .+  a f  a t E N 7 J taz= o » an- av anni1,„„
V f  Of aB ik)  - -k m k  5 f  ( Y r  m)nnk

0
k \ r - - 1 /

k ,1

=  E  a f B■c
aA  + ( E r i c"' af a f- Bic

° A f'azi az.
k ,l,r

=  E  
 f  B i

n i ( a l  Iin
 L jv rA P )v  E   f- Bim aAT.

az , az=

w hich is equal to  zero from  (4 .3 ). Furtherm ore, from  02 (XkF) /07) =077- i = 0
we get 0.;-=E F — a„F, which shows tha t the connection V defined by V ei =

Oren, is the Finsler connection o f  (M, F). Q.E.D.

Therefore we have proved

Theorem 4.2. A  complex Finsler manifold (M , F) is modeled on a complex
Minskowski space if and only if the Finsler connection (M , F) is  basic.

L et (M , F) be a  complex manifold modeled on a complex Minkowski space
(r ,  f ) ,  a n d  jei [  a n  adapted frame of the G - s t r u c tu r e .  Since any element of
G is given by a  unitary m atrix with respect t o  ied , we can define a  Hermitian
metric hm  on M by

(4.4) hm(ei, e1) -= , O r km (
a

 . ,  

a
 . ) .  — h (z) =EB T (z) (z ) .

az i
ni

W e call hm the associated Hermitian metric t o  (M , F ) .  Since G  is  a  subgroup
of U (n), the connection form 0= (0)) of V  in Proposition 4.2 satisfies 0- 1-̀0
=0, and s o  V is  the  Hermitian connection of h m . Therefore the pull - back of
the Hermitian connection of hm defines the Finsler connection o f  (M , F ) .  The
associated H erm itian m etric hm i s  a  m etric  w hose existence is  a sse r te d  in
Theorem 4.1.

Proposition 4 .3 .  L e t (M , F) be a complex manifold modeled on a complex
Minkouski sp ac e . The Finsler connection o f (M. F )  is given by  the Hermitian con-
nection of the associated Hermitian metric hm.

Furtherm ore, from  this proposition and the K ahler condition (3.2), we
get
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Proposition 4 . 4 .  L e t (M , F) be a complex manifold modeled on a complex
Minkowski space. (M , F) satisfies the Kcïhler condition if  and only if  the associ-
ated Hermitian metric hm is a Kdhler metric on M.

L et (M , F) be a complex manifold modeled on a complex Minkowski space
f ) .  In  (C " , f ) ,  the indicatrix I = C; f ( )  < 1 1  is bounded and strict-

ly pseudoconvex, and there exists a unique Euclidian sphere S  centered at the
origin inscribed about the indicatrix I. We may assume S  is the unit sphere

>P=EIVI 2 = 1

w hich  is th e  boundary o f  th e  indicatrix in T M  o f  th e  associated Hermitian
metric hm . T he associated Hermitian metric hm  defines a  function fm o n  TM
by

(4.5) f m  (z, n ) (z) n t j  .

The definition (4 .4) yields the following inequality:

(4.6) fm (z, 72) (z, r))

Then we can show

Theorem 4 .3 .  L e t  (M , F)  be a  complex m anifold modeled o n  a complex
Minkowski space (C a , f ) .  F  is  a  Hermitian metric o n  M  i f  an d  only if  the
isometric group G acts transitively on the boundary al at each point.

Proof. L e t  be an element such that f = 1 =  q ,  p ,  and 0  another ele-
ment with unit norm: f (0 )  = 1. If the  isometric group G of f  acts on a/ tran-
sitively, there exists g EG  w ith 0= g (V  . Since the imner product <,>p is also
invariant under g GG, we get

f  (0) = 1 = > 15
=

 <g  ( )  g  ( ) >  P - - - -- P

Thus the point 0  lies on S , and the boundary al- coincides w ith S. The con-
verse is also true. Q.E.D.

Example 4 .1  (Complex parallelisable m anifolds). Let M  be a  complex pa-
rallelisable manifold, e.g., M is  a  complex multi - t o r u s .  Then, its  holomorphic
tangent bundle adm its a  globally defined holomorphic fram e field (1
' n ) ,  th a t  is , M  adm its a  111 - s tru c tu re  ( [ 7 ] ) .  I n  th is  c a se , th e  function

U—  GL (n, C) a r e  holomorphic. Since th e  cu rv a tu re  is  g iv en  b y  QI =

ch—ah , th e  Hermitian connection of the  associated Hermitian metric hm

o f  (4 .4 )  is  o f zero - curvature, and  so  the  Finsler connection o f  (M , F) con-
structed in Proposition 4 .3  is  flat. Such a  complex Finsler manifold (M,
is  loca lly  M inkowski. T herefore  it is possib le  to  in troduce a  locally Mink-
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owski metric on any complex parallelisable manifold.

§5. Holomorphic sectional curvature

In  th is section, w e shall treat a  complex Finsler manifold (M, F ) and its
holom orphic sectional curvature. W e denote by D the  curvature form  of the
Finsler connection I7 o f  (M , F ) . D  is  a C -  (Q 0Q * ) - valued 2 - form o n  TM,
and by direct calculations we have

,Q= aco+ avw

Therefore the holomorphic sectional curvature H (z, a t  (z, e TM  defined
in  [10] is w ritten as

H ( =  2 
4, (S2 (X . , X 

F (z, ) 2•

Then, by direct calculations, we get a local expression of H (z, as follows:

(5.1) H (z
(

, = 2 E ars,,, ap, a2 F,  ) p T V cV
F z, 2 a z k a z k a f l

k,1,s,1 i,m

F ( z
2
,j \-1 ( LJV F , , N i aza2 ) k 1aFz  k I k

k,I

w h e re  w e  u se d  (2 .3 ) . I t  is  n o te d  th a t if  the  given m etric F  is  a  Hermitian
metric on M, H (z, is  ju st the holomorphic sectional curvature in  the  usual
sence ([25]).

On the other hand, for an arb itrary  po in t (z, E TM  there exists a holo-
morphic map 9: A(r) — ql// satisfying

(5.2) 9 (0) =z, 9 * (0) =

Then, for the given Finsler metric F (z, i ) ,  a  Hermitian metric 9 * F on d (r)  is
introduced by

9* F =E (C)dCOd ,

w here w e put E ( )  = F  (9 (C) , 0 *  ( ) ). The G auss curvature o f 9* F  is de-
fined by

ô2  l o g E )l o ç o * F )= (
E aCaC c-0

and , according to  W ong [23], th e  holomorphic sectional curvature K (z, of
(M, F) a t  (z, is defined by

K (z, sup IK (9 *F)1

where 9 ranges over all holornorphic maps satisfying (5.2).
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In  the  following, we assume that II I F (z, =  1, fo r sim plicity . Then
we may always choose a  coordinate system on d  (r) satisfying (aE/I9C)c=0 =0
a n d  (aE/aC)c= 0 = 0 .  Hence, in such a  coordinate system on d (r), K (z, can
be written as

K (z, =2 s u p [ ( _  a 2 E  
acacic=oi •

By direct calculations, using (2.3) a n d  (5.1) we get

(

a 2 E _) = 1 a 2 F  x v +p ,m E (Iv )  +F,j (EN'ne) <610+ F 6 ç:6W01acac c=0

= E F  (ei66- FEN im m ) (<61)+ E N Im n i ) — H (z, ,

from which we have

  

H (z, =  K  (9 * F ) +2 X (‘',g +» Pn e ) a
azi

2

z

 

w h e re  w e  put , (a2 9 1/K2) c_o. T h is  y ie ld s  t h e  inequality  H  (z,
sup 1K (9 *F) I . Royden [14] show ed that sup 1K (9* F)1 a tta ins to  the  max-
im um  w hen ç is a  complex line in the semi - normal coordinate system at P =
(z, .  The equality above shows that the maximum is given by the previous
H (z, •  In  fact, in  a  sem i - norm al coordinate system  at P = (z, ,  we get
from  (2.3) a n d  (3.1)

(z, Vn =0 .
I,m

Therefore we have proved

Proposition 5.1. T he holomorphic sectional curvature K (z, coincides
w ith the one H  (z, constructed from the curvature Q of  the Finsler connection
V of  (M, F) .

In the case of Hermitian metric on M, this fact is well - know n ([25]).
Now, w e suppose tha t H (z, is bounded above by a  negative constant

—k (k> 0 ).  Proposition 5.1 im plies that K —k f o r  a n  a rb itra ry  cp.
Then we have the following Schwartz-type lemma ([15]).

Proposition 5 .2 . L et go: J (r ) - - * M  be a  holomorphic m ap o f  a sm all disk
into a complex Finsler m anifold w ith holomorphic sectional curvature at m ost — k.
Then we have

a(5.3) 4(r ) 21d2( y o  ( C )  ço* (v))  f o r  v—v( ac ) c To6 (r)
r2-1C12
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F o r  a n  a rb itra ry  (z, E  T M , w e take  a  holomorphic m ap go: r ) — A
satisfying ( 5 . 2 ) .  Then, by Proposition 5.2  we have

1-2 44 = (go (0), ça*(0)) = kF (z, ,
6, 2 -1019 2 r 2

from which we get the following inequality:

4Fm (z, 2: = 4 (inf 1-1» ) 2 k F (z , ,

where Fm  is  the Kobayashi metric on M:

Fm (z, inf I-1r ; cp: d (r) — >M is  a  holomorphic map satisfying go (0)=z,

g 0*(0)

Hence we have

Theorem 5.1. L et (M , F) be a complex manifold whose holomorphic section-
al curvature H(z, is bounded above by a negative constant — k . Then we have

4F2
m kF

L et (M, F )  be a complex manifold modeled on a complex Minkowski space
(C , f ) .  By Proposition 4.3 , the  holomorphic sectional curvature H (z, of

F )  is given by the one of the associated Hermitian metric hm . If H (z,
is  b o u n d e d  a b o v e  b y  a  negative constan t — k ,  th e  following inequality is
well - know n ([25]):

(5.4) 4F2n4 kfm .

Thus Theorem 5 .1  is  a  generalization of th is estim ate . T hen , from  (4 .6 ) and
(5 .4) we get

Theorem 5.2. L e t (M , F) be a  complex manifold modled on a Minkowski
space (C a , f ) . If  its holomorphic sectional curvature H (z, is bounded above by
a negative constant — k, we have

4F2
m kfm k F .

Next, we a re  interested in  the  class of complex Finsler manifolds whose
holomorphic sectional curvature H (z, is  c o n s ta n t . In  Hermitian geometry,
the following result is well - known (Chapter IX o f  [11]):

A  simply connected and  complete K ahler m anifold of constant holomor-
phic sectional curvature c  is  holomorphically isom etric to the  following three
classes according to  ( i)  c< 0 , ( ii)  c= 0  o r  (iii) c> 0:
(i) the  open unit ball D„ in C n w ith  the  metric



4(5.7) ds2=
(1 +EZ I V) 2

(1 H - E z k z k
) (E d z kd k) _  (E .e d z k) (E z kd k)
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(5 .5) d s 2 —  4

(1 — z )  ( Edz k ci k) + ( z4 dzk ) ( zkdz4 c)

E z kk) 2

(ii) the space C n w ith  the metric

(5.6) ds2=D z k dZ k

(iii) the complex projective space Pn (C) with the metric

On the other hand, Pang [12] has shown the following proposition.

Proposition 5 .3 . If  a complete complex Finsler manifold (M , F) of  constant
holomorphic sectional curvature H  ( z ,  )= —4 satisf ies the property (3 .3 ), then the
Finsler metric F coincides with the Kobayashi metric Fm .

Now, w e shall consider a n  application o f these  re su lts  to  a  simply con-
nected and complete complex manifold (M, F) modeled on a complex Minkows-
ki space  (C' n  , f ) . Suppose th a t  (M, F )  sa tisf ie s  (3 .2 )  a n d  (3 .3 ) . T h e n , by
Proposition 4.4, the associated Hermitian m anifold (M, hm) is  a  simply con-
nected a n d  com plete K ahler m anifold. M oreover, i f  (M ,  F )  i s  of constant
holomorphic sectional curvature c , (M , hm) is  a lso  of constant holomorphic
sectional curvature c.

First w e consider the case of c < 0 .  Then Proposition 5.3 and Theorem
5 .2  show  th a t the  given Finsler m etric  F , th e  function f m  defined by (4 .5)
from hm and Kobayashi metric F m  on  M  coincide with each other, that is ,  (M,
F )  is  a  simply connected and  complete Kahler manifold of negative constant
holomorphic sectional curvature . H ence (M , F) is holomorphically isometric
to the unit open ball ll n in  Cn with the m etric (5.5).

In the case of c = 0 ,  (M, hm ) is holomorphically isometric to C n w ith  the
m e t r ic  ( 5 .6 ) .  S o  t h e  cu rva tu re  o f  th e  F in s le r  connec tion  V o f  (M , F)
van ishes iden tica lly . T hus (M , F) is locally Minkowski, and holomorphically
isometric to the complex Minkowski space (C ',  f ) .

As to the case of c> 0, the associated Hermitian manifold (M, h m )  is holo-
morphically isometric to the  complex projective space Pn  (C ) w ith  the  metric
(5.7). C onsequently w e get

Theorem 5 .3 . L et (M , F) be a simply connected and complete complex man-
ifold modeled on a complex Mikowski space (Cn, f  ). Suppose that (M . F) satisf ies
the K ahler condition (3 .2 )  and the property (3 .3 ), and furtherm ore, (M , I') is of
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constant holomorphic sectional curvature c.
(i) I f  c <0, (M, F) is a  Kcïhler manifold which is holornorphically isometric to
the open unit ball Dn in  C" with the metric (5. 5) :

(1 — E Z Y ) 2

(ii) i f  c 0 ,  (M , F ) is  a  locally Minkowski space which is holomorphically
isometric to the complex Minkowski space (C", f) with the metric

F (z ,  )= f ( )I l 2 ,

(iii) if  c>0, the following inequality holds:

(1 +E zY ) ( kV ) — (Ez4 V ) (Ezk

(1 +Ezi Y )  2
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