The adjoint action of the Dwyer-Wilkerson H -space on its loop space

Dedicated to Professor Seiya Sasao on his 60th birthday

By

Akira Kono and Kazumoto Kozima

1. Introduction

Let G be a compact, connected, simply connected Lie group and e its unit. Denote by ΛG the space of free loops on G and by ΩG the space of based loops on G the base point e. By the multiplication of G and compact open topology ΛG is a topological group and ΩG is a closed normal subgroup. We define a map. $A d: G \times \Omega G \rightarrow \Omega G$ by $A d(g, l)(t)=g l(t) g^{-1}$ for $g \in G, l \in \Omega G$. Then the following theorem holds:

Theorem (Kono-Kozima [10]). Let G be a compact, connected, simply connected Lie group and p a prime. Then the follwing three conditions are equivalent:
(1) $H^{*}(G ; \boldsymbol{Z})$ is p-torsion free,
(2) $H^{*}(A d ; \boldsymbol{Z} / p)=H^{*}\left(p_{2} ; \boldsymbol{Z} / p\right)$, where p_{2} is the second projection,
(3) $H^{*}(B \Lambda G ; \boldsymbol{Z} / p)$ is isomorphic to $H^{*}(B G ; \boldsymbol{Z} / p) \otimes H^{*}(G ; \boldsymbol{Z} / p)$ as an algebra.

The above Theorem is a good characterization of the triviality of the p-torsion part of $H^{*}(G, \boldsymbol{Z})$ for compact 1-connected Lie groups. In general, (1) implies (2) and (3) for a 1 -connected finite associative H -space G. The purpose of this paper is to show that $H^{*}(A d ; \boldsymbol{Z} / 2)$ is non-trivial for a finite H -space which was constructed by Dwyer and Wilkerson. Dwyer and Wilkerson proved:

Theorem (Duyer-Wilkerson [5]). There is a complex B such that
$H^{*}(B ; \boldsymbol{Z} / 2)=\boldsymbol{Z} / 2\left[y_{8}, y_{12}, y_{14}, y_{15}\right]$, where $\operatorname{deg} y_{j}$ is j.
Then, if we put $X=\Omega B$, one can obtain

$$
H^{*}(X ; \boldsymbol{Z} / 2)=\boldsymbol{Z} / 2\left[x_{7}\right] /\left(x_{7}^{4}\right) \otimes E\left(x_{11}, x_{13}\right) \text { where } \operatorname{deg} x_{j} \text { is } j \text {, }
$$

and

$$
H^{*}(\Omega X ; \boldsymbol{Z} / 2)=\boldsymbol{Z} / 2\left[a_{6}\right] \otimes E\left(a_{10}, a_{20}\right) * \leq 21 \text { where } \operatorname{deg} a_{\mathrm{j}} \text { is } j,
$$

using only the algebraic structure of $H^{*}(B ; \boldsymbol{Z} / 2)$. (See §2)
We can define $\operatorname{Ad}: X \times \Omega X \rightarrow \Omega X$, since ΩX has a homotopy inverse. Our result is the folltwing:

Theorem. $\quad A d^{*}\left(a_{20}\right)=x_{7}^{2} \otimes a_{6}+1 \otimes a_{20}$.
The non-triviality of the adjoint map $A d$ or the commutator map

$$
\Gamma: G \times \Omega G \rightarrow \Omega G
$$

defined by

$$
\Gamma(g, l)(t)=g l(t) g^{-1} l(t)^{-1}
$$

is a reflection of some geometrical properties of G and has connections with another invariants like Whitehead and Samelson products. In our case, the above formula for $A d^{*}\left(a_{20}\right)$ or, more directly, the formula $\Gamma^{*} a_{20}=x_{7}^{2} \otimes a_{6}$ (See §4) says that the commutator map

$$
\Gamma: X \times \Omega X \rightarrow \Omega X
$$

is not trivial. From this fact, one can easily conclude that the generalized Samelson product $\left\langle i_{X}, i_{\Omega X}\right\rangle$ can't vanish where i_{X} (resp. $i_{\Omega X}$) is the inclusion of X (resp. ΩX) to the free loop space ΛX.

The above formula is similar to those obtained in [10] for the exceptional Lie groups. This shows a similarity of ΩB and the exceptional Lie groups.

This paper is organized as follows: In section 2, we compute the cohomological structures of the spaces associated with B. We construct some spaces and a diagram to get more information in section 3. The main result is deduced from these computations and the formula for Γ^{*} in section 4.

The second author acknowledges his gratitude to the Minister of Education, Science and Culture for supporting him. in part with the Grant-in-Aid for Scientifie Reserch while this work was done.

2. Properties of Dwyer-Wilkerson complex

Let B be the Dwyer-Wilkerson complex and X the loop space of B. First, we recall the $\boldsymbol{Z} / 2$-cohomology of B and X. We abbreviate $H^{*}(; \boldsymbol{Z} / 2)$ to H^{*} () .

One can see easily that

$$
\operatorname{dim} H^{j}(B) \leq 1 \quad \text { for } \quad j \leq 23
$$

By the Adem relation $S q^{15}=S q^{7} S q^{8}$, we have $y_{15}^{2}=S q^{15} y_{15}=S q^{7} S q^{8} y_{15}$. Thus $S q^{8} y_{15}$ is non-zero and there is only one possible element $y_{8} y_{15}$ in H^{23}. So we have $S q^{8} y_{15}=y_{8} y_{15}$.

Since $S q^{7}=S q^{1} S q^{2} S q^{4}$ and $H^{21}(B)$ is a zero group, we obtain the equation

$$
y_{15}^{2}=S q^{7}\left(y_{8} y_{15}\right)=\left(S q^{7} y^{8}\right) y_{15}+y_{8} S q^{1} S q^{2} S q^{4} y_{15}=\left(S q^{7} y_{8}\right) y_{15}
$$

and conclude that

$$
S q^{7} y_{8}=y_{15}
$$

and

$$
y_{12}=S q^{4} y_{8}, y_{14}=S q^{2} y_{12}, y_{15}=S q^{1} y_{14}
$$

Then, by the Adem relation $S q^{8} S q^{1}=S q^{2} S q^{7}+S q^{9}=S q^{2} S q^{7}+S q^{1} S q^{8}$, we obtain

$$
S q^{8} y_{15}=S q^{8} y_{14}=S q^{2} S q^{7} y_{14}+S q^{1} S q^{8} y_{14}=S q^{1} S q^{8} y_{14}
$$

since $H^{21}(B)=0$. Thus $y_{8} y_{15}=S q^{1} S q^{8} y_{14}$ and $S q^{8} y_{14}$ must be $y_{8} y_{14}$ by dimensional reasons. Similary from the Adem relation $S q^{8} S q^{2}=S q^{10}+S q^{4} S q^{6}=S q^{2} S q^{8}$ $+S q^{4} S q^{6}$ and $H^{18}(B)=0$, we can deduce $y_{8} y_{14}=S q^{2} S q^{8} y_{12}$ and $S q^{8} y_{12}=y_{8} y_{12}$.

Thus we get a following lemma.
Lemma. 2.1. $S q^{8} y_{j}=y_{8} y_{j}$ for $j=8,12,14,15$.
By using Serre spectral sequence, we see

$$
H^{*}(X)=\Delta\left(\sigma\left(y_{8}\right), \sigma\left(y_{12}, \sigma\left(y_{14}\right), \sigma\left(y_{15}\right)\right)\right.
$$

and

$$
S q^{7} \sigma\left(y_{8}\right)=\sigma\left(S q^{7} y_{8}\right)=\sigma\left(y_{15}\right) .
$$

Since X is an associative H-space, one can easily show

$$
H^{*}(X)=\boldsymbol{Z} / 2\left[x_{7}\right] /\left(x_{7}^{4}\right) \otimes E\left(x_{11}, x_{13}\right)
$$

where $x_{j}=\sigma\left(y_{j+1}\right)$ and

$$
S q^{4} x_{7}=x_{11}, S q^{2} x_{11}=x_{13}
$$

Applying the Serre spectral sequence one more time, we obtain

$$
H^{*}(\Omega X)=\Delta\left(a_{6}, a_{10}, a_{12}, a_{20}\right) \text { for } * \leq 23
$$

where $a_{j}=\sigma\left(x_{j+1}\right)$ for $j=6,10,12$ and

$$
\begin{aligned}
& S q^{6} a_{6}=S q^{6} \sigma\left(x_{7}\right)=\sigma\left(S q^{6} x_{7}\right)=\sigma\left(x_{13}\right)=a_{12} \\
& S q^{10} a_{10}=S q^{10} \sigma\left(x_{11}\right)=\sigma\left(S q^{10} x_{11}\right)=0 .
\end{aligned}
$$

Since in the Eilenberg-Moore spectral sequence

$$
\operatorname{Cotor}^{H^{*}(\Omega \times \boldsymbol{Z} / 2)}(\boldsymbol{Z} / 2, \boldsymbol{Z} / 2) \Rightarrow H^{*}(X ; \boldsymbol{Z} / 2),
$$

a_{20} corresponds to the relation $x_{11}^{2}=0$, we see

$$
H^{*}(\Omega X)=\boldsymbol{Z} / 2\left[a_{6}\right] \otimes E\left(a_{10}, a_{20}\right) \quad \text { for } \quad * \leq 23
$$

and

$$
\bar{\phi}\left(a_{20}\right)=a_{10} \otimes_{a_{10}}
$$

where $\bar{\phi}$ is the reduced coproduct induced from the loop product λ : $\Omega X \times \Omega X$ $\rightarrow \Omega X$.

3. A construction

We assume that the all spaces are localized at 2 in the following sequel. Let $A=X^{(14)} \cong S^{7} \cup S^{11} \cup S^{13} \cup S^{14}$. We denote by

$$
f: \Sigma A \vee S^{8} \rightarrow B
$$

the composition of the wedge of following two maps

$$
\begin{aligned}
& \Sigma A \rightarrow \Sigma(\Omega B) \xrightarrow{\text { eval }} B \\
& S^{8} \rightarrow \Sigma(\Omega B) \xrightarrow{\text { eval }} B
\end{aligned}
$$

and the folding map $B \vee B \rightarrow B$. We denote also by j the inclusion

$$
j: \Sigma A \vee S^{8} \longrightarrow \Sigma A \times S^{8}
$$

Le M be the double mapping cylinder of f and j. Then, we have the following diagram:

$$
\begin{array}{rcccc}
K & \xrightarrow{h} & B & \xrightarrow{i_{f}} & M \tag{*}\\
\bar{f} \uparrow & & f \uparrow & & i_{j} \uparrow \\
L & \longrightarrow & h^{\prime} & \Sigma A \vee S^{8} & \xrightarrow{j} \\
\Sigma A \times S^{8}
\end{array}
$$

where K and L are the homotopy fibers of the inclusions and f the induced map from f on fibers.

Let

$$
\alpha_{j} \epsilon H^{j}(\Sigma A) \quad(j=8,12,14,15), \quad \beta_{k} \epsilon H^{k}\left(S^{k}\right) \quad(k=6,7,8)
$$

be the generators. Then $\sigma\left(\alpha_{j}\right)$ is the generator of $H^{j-1}(A)$ for $j=8,12,14$ and $\left(\sigma\left(\alpha_{7}\right)\right)^{2}$ the generator of $H^{14}(A)$. Then, clearly $H^{15}(L)$ is generated by h^{*} $\left(\alpha_{15}\right)$ and $H^{j}(L)=0$ for $j<15$.

Since M is the double mapping cylinder, we obtain the following exact sequence

$$
\longrightarrow H^{*}(M) \xrightarrow{\xi} H^{*}(B) \oplus H^{*}\left(\Sigma A \times S^{8}\right) \xrightarrow{x} H^{*}\left(\Sigma A \vee S^{8}\right) \longrightarrow
$$

where $\xi(m)=\left(i_{f}^{*} m, i_{j}^{*} m\right)$ and $\pi(y, \alpha)=f^{*} y-j^{*} \alpha$. One can easily see that π
is epic, so the above exact sequence splits to the short exact sequences. Since $\left(y_{8}, \alpha_{8}+\beta_{8}\right),\left(y_{j}, \alpha_{\mathrm{j}}\right)$ for $j=12,14,15$ and $\left(0, \alpha_{j} \beta_{8}\right)$ for $j=8,12,14,15$ are in the kernel of the homomorphism π, there exist elements u_{j} and v_{j+8} for $j=$ $8,12,14,15$ such that

$$
\xi\left(u_{8}\right)=\left(y_{8}, \alpha_{8}+\beta_{8}\right), \xi\left(u_{\mathrm{j}}\right)=\left(y_{\mathrm{j}}, \alpha_{\mathrm{j}}\right) \text { for } j \neq 8
$$

and

$$
\xi\left(v_{j+8}\right)=\left(0, \alpha_{j} \beta_{8}\right) .
$$

Then, for $j=12,14,15$,

$$
\begin{aligned}
\xi\left(S q^{8} u_{j}+v_{j+8}\right) & =S q^{8} \xi\left(u_{j}\right)+\xi\left(v_{j+8}\right) \\
& =S q^{8}\left(y_{j}, \alpha_{j}\right)+\left(0, \alpha_{j} \beta_{8}\right)=\left(y_{8} y_{j}, 0\right)+\left(0, \alpha_{j} \beta_{8}\right) \\
& =\left(y_{8} y_{j}, \alpha_{j} \beta_{8}\right) .
\end{aligned}
$$

On the other hand, since $\alpha_{j} \alpha_{8}=0$ in $H^{*}(\Sigma A)$, we obtain

$$
\xi\left(u_{j} u_{8}\right)=\left(y_{j}, \alpha_{j}\right)\left(y_{8}, \alpha_{8}+\beta_{8}\right)=\left(y_{8} y_{j}, \alpha_{j} \beta_{8}\right) .
$$

By using the fact that ξ is monic, we can prove (1) of the folltwing lemma , and the rest of the lemma can be proved by a quite similar manner.

Lemma 3.1. (1) $\quad S q^{8} u_{\mathrm{j}}=v_{\mathrm{j}+8}+u_{\mathrm{j}} u_{8} \quad(j=12,14,15)$
(2) $\quad S q^{4} u_{8}=u_{12}, \quad S q^{2} u_{12}=u_{14}, \quad S q^{1} u_{14}=u_{15}$
(3) $\quad S q^{4} v_{16}=v_{20}, \quad S q^{2} v_{20}=v_{22}, \quad S q^{1} v_{22}=v_{23}$

Since $\xi\left(v_{16} u_{8}\right)=\left(0, \alpha_{8} \beta_{8}\right)\left(y_{8}, \alpha_{8}+\beta_{8}\right)=(0,0)$, we have also $v_{16} u_{8}=0$.
To get the imformation of cohomolgies of ΩM and $\Omega^{2} M$, we compute the cohomologies of K and ΩK up to some dimension.

By using the Serre spectral spectral sequence of the fibration

$$
K \xrightarrow{h} B \xrightarrow{i f} M
$$

and the above lemma, one can obtain elements $\gamma_{j} \in H^{j}(K)$ so as to satisfy $\tau\left(\gamma_{j}\right)$ $=v_{j+1}$ for $j=15,19,21,11$. Since $v_{16} u_{8}=0, u_{8} \otimes \gamma_{85}$ is a cycle in the spectral sequence and there is $\gamma^{\prime}{ }_{22} \in H^{22}(K)$ to kill this cycle. Then, we have easily

$$
\widetilde{H}^{*}(K)=\left\langle\gamma_{15}, \gamma_{19}, \gamma_{21}, \gamma_{22}, \gamma^{\prime}{ }_{22}\right\rangle \quad * \leq 25
$$

where $\langle S\rangle$ represents the $\boldsymbol{Z} / 2$-vector space with the basis S, and

$$
S q^{4} \gamma_{15}=\gamma_{19}, \quad S q^{2} \gamma_{19}=\gamma_{21}, \quad S q \gamma_{21}=\gamma_{22} .
$$

So

$$
\widetilde{H}^{*}(\Omega K)=\left\langle\mu_{14}, \mu_{18}, \mu_{20}, \mu_{21}, \mu_{21}\right\rangle \quad * \leq 24
$$

is turned out by the Serre spectral sequence of the path-loop fibration of K.

Proposition 3.2. As an $H^{*}(K)$-module,

$$
\begin{aligned}
H^{*}(\Omega M) & \simeq H^{*}(K) \otimes H^{*}(\Omega B) \\
& =\boldsymbol{Z} / 2\left[v_{7}, v_{11}, v_{13}, v_{15}, v_{19}, v_{21}, v_{22}\right]
\end{aligned}
$$

for degree ≤ 25.
The Serre spectral sequence of the fibration $\Omega B \rightarrow \Omega M \rightarrow K$ is trivial in this range of degree. So we have only to show $\left(\sigma\left(y_{12}\right)\right)^{2}=\gamma_{22}$ in this spectral sequence. Since we can obtain easily the following equations

$$
\sigma\left(u_{j}\right)=v_{j-1}, \quad \sigma\left(v_{j+8}\right)=v_{j+7} \quad(j=8,12 \text { and 14) }
$$

where $\sigma: H^{*}(M) \rightarrow H^{*-1}(\Omega M)$ is the cohomology suspension. So we have also

$$
\begin{aligned}
& \sigma\left(u_{15}\right)=\sigma\left(S q^{1} S q^{2} S q^{4} u_{8}\right)=S q^{7} \nu_{7}=\nu_{7}^{2} \\
& \sigma\left(v_{23}\right)=\sigma\left(S q^{1} S q^{2} S q^{4} S q^{8} u_{12}\right)=S q^{11} \nu_{11}=\nu_{11}^{2}
\end{aligned}
$$

and the last equation shows that $\left(\sigma\left(y_{12}\right)\right)^{2}=\gamma_{22}$ as required.
From (3.2), we have

$$
H^{*}(\Omega M)=\Delta\left(\rho_{6}, \rho_{10}, \rho_{12}, \rho_{14}, \rho_{18}, \rho_{20}, \rho_{21}\right) \quad * \leq 23
$$

as a module where $\rho_{j-1}=\sigma\left(v_{j}\right)$.
Since $\nu_{13}=S q^{2} S q^{4} \nu_{7}$ and $\nu_{21}=S q^{2} S q^{8} \nu_{11}=S q^{10} \nu_{11}$, we can deduce

$$
\rho_{12}=\rho_{6}^{2} \text { and } \rho_{20}=\rho_{10}^{2} .
$$

Thus, as a ring,

$$
H^{*}\left(\Omega^{2} M\right)=Z / 2\left[\rho_{6}, \rho_{10}, \rho_{14}, \rho_{18}, \rho_{21}\right] \quad * \leq 23
$$

and there are operations

$$
S q^{4} \rho_{6}=\rho_{10}, \quad S q^{2} \rho_{10}=\rho_{6}^{2}, \quad S q^{4} \rho_{14}=\rho_{18}, \quad \rho^{2} \rho_{18}=\rho_{10}^{2} .
$$

Now we turn to the Serre spectral sequence of the fibration

$$
\Omega^{2} K \xrightarrow{\Omega^{2 h}} \Omega^{2} B \xrightarrow{\Omega^{2} i_{f}} \Omega^{2} M .
$$

Clearly, we can show that the cohomology of the fiber and total space are following:

$$
\begin{aligned}
& \widetilde{H}^{*}\left(\Omega^{2} K\right)=\left\langle\zeta_{13}, \zeta_{17}, \zeta_{19}, \zeta_{20}, \zeta^{\prime}{ }_{20}\right\rangle \quad * \leq 23 \\
& H^{*}\left(\Omega^{2} B\right)=\boldsymbol{Z} / 2\left[a_{6}, a_{10}, a_{20}\right] /\left(a^{2} H_{1}\right) \quad * \leq 20 .
\end{aligned}
$$

Since $\tau\left(\zeta_{13}\right)=\rho_{14}$, we have

$$
\begin{aligned}
\tau\left(\zeta_{20}\right) & =\tau\left(S q^{1} S q^{2} S q^{4} \zeta_{13}\right) \\
& =S q^{1} S q^{2} S q^{4} \rho_{14} \\
& =S q^{1}\left(\rho^{2}{ }_{10}\right)=0 .
\end{aligned}
$$

Thus, $\zeta \in \operatorname{Im}\left(\Omega^{2} h\right)^{*}$ and the one possibility is
Lemma 3.3. $\quad \Omega^{2} h^{*} a_{20}=\zeta_{20}$.
By comparing the Serre spectral sequences of $\zeta^{2} K \rightarrow \zeta^{2} B \rightarrow \zeta^{2} M$ and $\zeta^{2} L$ $\rightarrow \zeta^{2}\left(\Sigma A \vee S^{8}\right) \rightarrow \zeta^{2}\left(\Sigma \mathrm{~A} \times S^{8}\right)$, we easily obtain the following lemma.

Lemma 3.4.

$$
\left(\zeta^{2} \bar{f}\right) *: H^{13}\left(\Omega^{2} K\right) \rightarrow H^{13}\left(\Omega^{2} L\right)
$$

is am isomorphism.

4. The main result

Let Y be an H -space with inverse. Then, we define two commutator maps $\Gamma_{Y}: Y \times Y \rightarrow Y$ and $\Gamma^{\prime}{ }_{Y}: Y \times \Omega Y \rightarrow \Omega Y$ by the following equations:

$$
\begin{aligned}
& \Gamma_{Y}(a, b)=a b a^{-1} b^{-1} \\
& \Gamma_{Y}(a, l)(t)=a l(t) a^{-1} l(t)^{-1} .
\end{aligned}
$$

Let D be the composiotion

$$
D: A \times S^{7} \xrightarrow{j_{1} \times j_{2}} \Omega\left(\Sigma A \vee S^{8}\right) \times \Omega\left(\Sigma A \vee S^{8}\right) \xrightarrow{\Gamma} \Omega\left(\Sigma A V S^{8}\right)
$$

and put $b_{7}=\sigma\left(\sigma_{8}\right), b_{7}^{\prime}=\sigma\left(\beta_{8}\right)$ in $H^{7}\left(\Omega\left(\Sigma A \vee S^{8}\right)\right)$.
Since $\alpha_{8} \beta_{8}=0$ in $H^{*}\left(\Sigma A \vee S^{8}\right)$, there is an element $b_{14} \in H^{14}\left(\Omega\left(\Sigma A \vee S^{8}\right)\right)$ satisfying $\bar{\phi}\left(b_{14}\right)=b_{7} \otimes b^{\prime}{ }_{7}$. We abuse the notation $\alpha_{7} \epsilon H^{*}(A)$ for $\sigma\left(\alpha_{8}\right)$ where α_{8} is the generator of $H^{8}(\Sigma A)$.

Lemma 4.1. $D^{*} b_{14}=\alpha_{7} \otimes \beta_{7}$.
Proof. First we show that $\Gamma^{*} b_{14}=b_{7} \otimes b^{\prime}{ }_{7}+b^{\prime}{ }_{7} \otimes b_{7}$. Since $\bar{\phi}\left(b_{14}\right)=b_{7} \otimes b^{\prime}{ }_{7}$ and $b_{7}, b^{\prime}{ }_{7}$ are primitive, one can easily obtain

$$
A d^{*} b_{14}=1 \otimes b_{14}+b_{7} \otimes b^{\prime}{ }_{7}+b_{7}^{\prime} \otimes b_{7} .
$$

(See [10], Lemma 3.2.) We can put

$$
\Gamma^{*} b_{14}=A \cdot b_{14} \otimes 1+B \cdot b_{7} \otimes b^{\prime}{ }_{7}+C \cdot b_{7}^{\prime} \otimes b_{7}+D \cdot 1 \otimes b_{14}
$$

by the dimensional reasons. Since $A d=\lambda(\Gamma \times i d)(i d \times \Delta)$, we get

$$
\begin{aligned}
A d^{*} b_{14} & =(i d \times \Delta)^{*}(\Gamma \times i d)^{*} \lambda^{*} b_{14} \\
& =\left(i d \otimes \Delta^{*}\right)\left(\Gamma^{*} \otimes i d\right) \phi b_{14} \\
& =\left(i d \otimes \Delta^{*}\right)\left(\Gamma^{*} \otimes i d\right)\left(1 \otimes b_{14}+b_{7} \otimes b^{\prime}{ }_{7}+b_{14} \otimes 1\right) \\
& =1 \otimes b_{14}+\left(i d \otimes \Delta^{*}\right)\left(\Gamma^{*} b_{7} \otimes b_{7}^{\prime}\right)+\Gamma^{*} b_{14} .
\end{aligned}
$$

On the other hand, since $A d^{*} b_{7}=1 \otimes b_{7}$ and

$$
A d^{*} b_{7}=\left(i d \otimes \Delta^{*}\right)\left(\Gamma^{*} \otimes i d\right) \phi b_{7}=\Gamma^{*} b_{7}+1 \otimes b_{7},
$$

We have $\Gamma^{*} b_{7}=0$. Thus it follows that $A=D=0$ and $B=C=1$. So, we have

$$
\begin{aligned}
D^{*} b_{14} & =\left(j_{1}^{*} \otimes j_{2}^{*}\right) \Gamma^{*} b_{14} \\
& =\left(j_{1}^{*} \otimes j_{2}^{*}\right)\left(b_{7} \otimes b^{\prime}{ }_{7}+b_{7}^{\prime} \otimes b_{7}\right) \\
& =\alpha_{7} \otimes \beta_{7} .
\end{aligned}
$$

Now, since the composition

$$
A \vee S^{7} \subset A \times S^{8} \rightarrow \Omega\left(\Sigma \vee S^{8}\right)
$$

is homotopic to the constant map, D induces the map from $A \wedge S^{7}$. Let us denote this map by \bar{D}. We denote also the composition of $j_{1} \times \sigma\left(j_{2}\right)$ and Γ^{\prime} by

$$
D^{\prime}: A \times S^{6} \rightarrow \Omega^{2}\left(\Sigma A \vee S^{8}\right)
$$

Since D^{\prime} is homotopic to the constant map on $A \vee S^{6}$, we get an induced map

$$
\overline{D^{\prime}}: A \wedge S^{6} \rightarrow \Omega^{2}\left(\Sigma A \vee S^{8}\right)
$$

whose adjoint map is \bar{D}.
Proposition 4.2. $\quad \Omega_{j} \circ D \simeq$ constant map.
Proof. By the definition of D, we obtain the equation

$$
\begin{aligned}
\left.\left(\Omega_{j} \circ D\right)(a, s)\right)(t) & =j[(a, t) \vee *, * \vee(s, t)] \\
& =[((a, t), *),(*,(s, t))]
\end{aligned}
$$

where $a \in A, s \in S^{7}$ and $t \in I$. Since $\Omega_{j} \circ D$ can be deformed to the map \hat{D} defined by the formula

$$
(\widehat{D}(a, s))(t)=[((a, t),(s, t)),((a, t),(s, t))]
$$

in $\Omega\left(\Sigma A \times S^{8}\right)$ which is clearly homotopic to the constant map, the result follows.

We can prove also $\Omega^{2} j \circ D^{\prime} \simeq$ constant map by the very similar way. So there exists a lift $\widetilde{D^{\prime}}: A \times S^{6} \rightarrow \Omega^{2} L$ satisfying $\left(\Omega^{2} h^{\prime}\right) \widetilde{D^{\prime}} \simeq D^{\prime}$. Then we get the following homotopy commutative diagram:

We denote the composition

$$
A \times S^{6} \longrightarrow \Omega B \times \Omega^{2} B \xrightarrow{\Gamma_{Q B}} \Omega^{2} B
$$

by $D^{\prime \prime}$ where the first map is the product of the inclusion $A \subset \Omega B$ and the adjoint of the inclusion $S^{7} \subset \Omega B$. Then

$$
D^{\prime \prime} \simeq \Omega^{2} f \circ D^{\prime} \simeq \Omega^{2} f \circ \Omega^{2} \bar{f} \circ \widetilde{D^{\prime}},
$$

and we obtain the equation

$$
\begin{aligned}
D^{\prime \prime *} a_{20} & =\widetilde{D}^{\prime} \Omega^{2} \tilde{f}^{*} S q^{7} \tau_{13} \\
& =S q^{7} \widetilde{D^{\prime} *} \Omega^{2} \tilde{f}^{*} \tau_{13} \\
& =S q^{7} \widetilde{D}^{\prime *} b_{13} .
\end{aligned}
$$

Since $\Gamma^{\prime *} \sigma=(i d \otimes \sigma) \Gamma^{*}$ and $b_{13}=\sigma\left(b_{14}\right)$, we conclude that

$$
\widetilde{D^{\prime} *} b_{13}=\alpha_{7} \otimes \beta_{6}
$$

by Lemma 4.1. So we have

$$
D^{\prime \prime *} a_{20}=S q^{7} \alpha_{7} \otimes \beta_{6}=\alpha_{7}^{2} \otimes \beta_{6} .
$$

which implies

$$
\Gamma_{\Omega B}^{\prime *} a_{20}=x_{7}^{2} \otimes a_{6} .
$$

Thus the result follows.

Department of Mathematics
Kyoto University
Department of Information Sciences
Faculty of Science
Kanagawa University

References

[1] S. Araki, Cohomology modulo 2 of the compact exceptional groups. E_{6} and E_{7}, J. Math. Osaka City Univ., 12 (1961), 43-65.
[2] M. F. Atiyah and R. Bott, The Yang-Mills equations over Riemann surfaces, Philos. Trans. R. Soc. Lond., 308A (1982). 523-615.
[3] A. Borel and J. P. Serre, Groupes de Lie et puissances reduites de Steenrod, Amer. J. Math., 73 (1953), 409-448.
[4] R. Bott. The space of loops on a Lie group. Michigan Math. J., 5 (1958). 35-61.
[5] W. G. Dwyer and C. W. Wilkerson, A new finite loop space at the prime two, preprint.
[6] P. Hilton, G. Mislin and J. Roitberg, Localization of nilpotent groups and spaces, North-Holland, 1975
[7] K. Ishitoya, A. Kono and H. Toda, Hopf algebra structure of mod 2 cohomology of simple Lie group, Publ. R. I. M. S. Kyoto Univ., 12 (1976), 141-167.
[8] A. Kono, Hopf algebra structure of simple Lie groups, J. Math. Kyoto Univ., 17 (1977), 259-298.
[9] A. Kono and K. Kozima, The mod 2 homology of the space of loops on the exceptional Lie group.

Proc. Roy. Soc. Edinburgh 112A (1989), 187-202.
[10] A. Kono and K. Kozima, The adjoint action of a Lie group on the space of loops, J. Math. Soc. Japan., 45-3(1993), 495-510.
[11] A. Kono and M. Mimura, Cohomology mod 2 of the classifying space of the compact connected Lie group of type E_{6}, J. Pure appl. Algebra, 6 (1975), 61-81.
[12] A. Kono and M. Mimura, Cohomology operations and Hopf algebra structure of the compact, exceptional Lie group E_{7} and E_{8}, Proc. London Math. Soc., III 35 (1977), 345-358
[13] J. Milnor and J. Moore, On the structure of Hopf algebra, Ann. Math., 81 (1953), 211-264.
[14] J. P. Serre, Groupes d'homotopie et classes de groupes abéliens, Ann. Math., 58 (1953), 258-294.

