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1. Introduction

Let G be a compact, connected, simply connected Lie group and ¢ its unit.
Denote by AG the space of free loops on G and by £G the space of based
loops on G the base point e. By the multiplication of ¢ and compact open
topology AG is a topological group and £G is a closed normal subgroup. We
define a map. Ad: GX QG — QG by Ad (9]) (t) =g1(t) 97! for g €G, | € G.
Then the following theorem holds:

Theorem (Kono-Kozima [10]). Let G be a compact, connected, simply
connected Lie group and p a prime. Then the follwing three conditions are equiva-
lent:

(1) H*(G ; Z) is p-torsion free,

(2) H*(Ad; Z/p) =H* (py; Z/p), wheve p, is the second projection,

(3) H* (BAG; Z/p) is isomorphic to H* (BG; Z/p) ® H* (G; Z/p) as an

algebra.

The above Theorem is a good characterization of the triviality of the
p-torsion part of H* (G, Z) for compact 1-connected Lie groups. In general,
(1) implies (2) and (3) for a 1-connected finite associative H-space G. The
purpose of this paper is to show that H* (Ad; Z/2) is non-trivial for a finite
H-space which was constructed by Dwyer and Wilkerson. Dwyer and Wilker-
son proved:

Theorem (Dwyer-Wilkerson [5]). There is a complex B such that
H*(B; Z/2) =Z/2[ys, y12. Y14, y15], where deg y; isj .

Then, if we put X =£B, one can obtain
H* (X; Z/2)=Z/2[x;]/ (x%) ®F (x11, x13) where deg xjisj ,

and
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H*(QX: Z/2) =Z/2[as] ®F (ar, az) * <21 where dega;isj ,

using only the algebraic structure of H*(B; Z/2). (See §2)
We can define Ad: X X 2X — £X, since £2X has a homotopy inverse. Our
result is the folltwing:

Theorem.  Ad*(az) =x}®as+1®asz.
The non-triviality of the adjoint map Ad or the commutator map
I' GX QG — G
defined by

g, ) @)=g1(t) g1 (t)7}

is a reflection of some geometrical properties of G and has connections with
another invariants like Whitehead and Samelson products. In our case, the
above formula for Ad* (as) or, more directly, the formula I *az =x% ®ae (See
§4) says that the commutator map

' XX QX — QX

is not trivial. From this fact, one can easily conclude that the generalized
Samelson product <y, igx> can't vanish where ix (resp. igx) is the inclusion of
X (resp. 2X) to the free loop space AX.

The above formula is similar to those obtained in [10] for the exceptional
Lie groups. This shows a similarity of £B and the exceptional Lie groups.

This paper is organized as follows: In section 2, we compute the cohomo-
logical structures of the spaces associated with B. We construct some spaces
and a diagram to get more information in section 3. The main result is de-
duced from these computations and the formula for I'* in section 4.

The second author acknowledges his gratitude to the Minister of Educa-
tion, Science and Culture for supporting him.in part with the Grant-in-Aid for
Scientifie Reserch while this work was done.

2. Properties of Dwyer-Wilkerson complex

Let B be the Dwyer-Wilkerson complex and X the loop space of B. First,
we recall the Z/2-cohomology of B and X. We abbreviate H* (; Z/2) to H*
().

One can see easily that
dim H(B) £1 for j<23 .
By the Adem relation Sg'°® = Sq’S¢®, we have yis = Sq"°y1s = Sq"Sqy1s.

Thus S¢®y1s is non-zero and there is only one possible element ysyis in H®.
So we have S¢¥y1s=ysy1s.
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Since Sq”=S¢'Sq¢*Sq* and H*' (B) is a zero group, we obtain the equation

yi:=5¢" (ysy1s) = (Sqy®) y1s+ysSq'Se*Sq*y15= (Sqys) y1s
and conclude that
Sq'ys=y1s
and
Y12=5q¢"ys, Yy14=Sq¢"y12, Yy15=Sq'y14 .
Then, by the Adem relation Sq®Sq'=Sq2Sq"+Sq°=S4¢%Sq"+Sq'Sq®, we obtain
Sq°y15= 54"y 14 = S4°Sq"y14+54"S¢°y 14 = S4"S¢%y s
since H*' (B) =0. Thus ysy1s=S¢'Sq® 14 and Sq®y1s must be ysy14 by dimen-

sional reasons. Similary from the Adem relation Sq®Sq®=Sq"°+Sq*Sq°=Sq*Sq®

+Sq¢*Sq® and H®(B) =0, we can deduce ysy14=S¢2Sq®y12 and S¢®y12=ysy12.
Thus we get a following lemma.

Lemma. 2.1. S¢®y;=ysy; for j=8.12,14,15.
By using Serre spectral sequence, we see
H*(X)=A(0(ys). 0 (y12 0(y1a), 0(y1s))
and
Sq"o(ys) =0 (Sq"ys) =0 (y1s) .
Since X is an associative H-space, one can easily show
H*(X) =Z/2[x:)/ (x}) ®F (x11, x13)
where r;=0(y;+1) and
Sq¢*rr=xu, S¢*xrn=x13 .
Applying the Serre spectral sequence one more time, we obtain
H*(2X) = A (ae, aro, aiz, az) for * <23

where a;=o0(x;+1) for j=6,10,12 and

Sq6a6=8q60(r7) :0(50617) =0 (r13) =az ,
Sq"°a10=S¢"0 (x11) = 0(S¢*r,;) =0 .
Since in the Eilenberg-Moore spectral sequence

Cotor""4/2 (7 /2 Z/2)=>H*(X; Z/2) |

aqo corresponds to the relation x{; =0, we see
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H*(Q2X) =Z/2[as] ®E (aro, az) for * <23
and
@ (az) =a10®aio

where @ is the reduced coproduct induced from the loop product A: 2X X 2X
— 0X.

3. A construction

We assume that the all spaces are localized at 2 in the following sequel.
Let A=X"=57USUS®US™ We denote by

i 2AVSE— B
the composition of the wedge of following two maps
eval
2A— X(QB)— B ,
eval
S2—>3(Q2B)— B .
and the folding map BV B — B. We denote also by j the inclusion
jr ZAVSE—— YA x S8

Le M be the double mapping cylinder of f and j. Then, we have the following
diagram:

h iy
K B — M
(%) 1Al f1 i; 1
y .
L AV S FAXS®

where K and L are the homotopy fibers of the inclusions and f the induced
map from f on fibers.
Let

a;eH’ (FA)  (7=8,12,14,15), BieH*(S*) (£=6,7.8)

be the generators. Then o(q;) is the generator of H/"'(A) for j=8,12,14 and
(0 (at7)) 2 the generator of H** (A). Then, clearly H' (L) is generated by h'*
(ays) and H7 (L) =0 for j<15.

Since M is the double mapping cylinder, we obtain the following exact
sequence

3 x
H*(B) ® H* (XA x S8)

H* (M)

H*(ZAVS,)—

where & (m) = (ifm, ifm) and 7 (y, @) =f*y —j*a. One can easily see that 7
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is epic, so the above exact sequence splits to the short exact sequences. Since
(ys, as+Bs), (y;, a;) for j=12,14,15 and (0, a;Bs) for j =8,12,14,15 are in
the kernel of the homomorphism 7, there exist elements u; and vj+s for j =
8.12,14,15 such that

& (us) = (ys, as+PBs), &(u;) = (y;, @;) for j#8

and
S(UHB) = (0, CYj.Bs) .
Then, for j=12,14,15,
E(SqPu;+vsss) =Sq*€ (u;) +& (vjus)

=S¢® (yj, aj) + (0, a'jBS) = (ysyj, 0) + (0, ast)
= (ysyj, aiBs) -

On the other hand, since a;as=0 in H*(ZA), we obtain
S(Mﬂds) = (y;, aj) (ys, a8+BS) = (ysy;. aj.Bs) .

By using the fact that & is monic, we can prove (1) of the folltwing lem-
ma, and the rest of the lemma can be proved by a quite similar manner.

Lemma 3.1. (1) Sq®u;=vjsstuus (=12,14,15)

(2) 5(14%8:“12, 5(121412:%14. Sqluuzuls

(3) 5441’16:1)20. qulﬂ’zozvzz. Sqlvzzzvzs

Since & (vieus) = (0, asBs) (ys, as+Bs) = (0, 0), we have also vieus=0.

To get the imformation of cohomolgies of 2 M and 2% M, we compute the
cohomologies of K and £K up to some dimension.

By using the Serre spectral spectral sequence of the fibration

h if

K B M

and the above lemma, one can obtain elements 7; € H' (K) so as to satisfy 7(7;)
=vp;4 for j=15,19,21,11. Since vigus=0, us ® 75 is a cycle in the spectral

sequence and there is 7’5, € H2(K) to kill this cycle. Then, we have easily

H*(K) = <715, 1o, To1, Tozs 72> % <25

where {(S>represents the Z/2-vector space with the basis S, and

5447’15=7’19. 51127’19:7’21, Sqra1="22 .
So

ﬁ* (-QK) = <l1a, s, U0, U21, U2 K <24

is turned out by the Serre spectral sequence of the path-loop fibration of K.
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Proposition 3.2.  As an H* (K) -module,

H*(QM) ~H* (K) ® H*(2B)
=Z/2 [U7, V11, V13, VU1s, V19, V21, Uzz]

for degree <25.

The Serre spectral sequence of the fibration 2B — QM — K is trivial in
this range of degree. So we have only to show (0 (y12)) %= 72 in this spectral
sequence. Since we can obtain easily the following equations

o(u;) =vj-1, 0j+s) =vj47  (7=8,12 and 14)

where a: H* (M)— H* ' (QM) is the cohomology suspension. So we have also
0 (uy5) = 0'(341542844%8) =Sq"v; =1
0 (v23) ZU(SQISQZSQ4SCISM12> :Sq“l)u =vh

and the last equation shows that (0 (y.s))%=172 as required.
From (3.2), we have

H* (M) = A (06, 010, O12. 014, P15, 020, P21) % <23
as a module where p;_;= o (v;).
Since v13=S5¢%S¢*v; and Va1 =S¢2S¢%v11 =Sq'%v11, we can deduce
012=0% and 020=p% .
Thus, as a ring,
H*(2°M) =Z/2 (06, 010, 014, O18, 021] ¥ <23

and there are operations
361406:.010. 542010=026, Sq“pu:pls, 02018:0%0 .
Now we turn to the Serre spectral sequence of the fibration

Q2zh 2y

Q%K Q2°B QM .

Clearly, we can show that the cohomology of the fiber and total space are fol-
lowing:

H*(Q%K) = s, Gir, Cuo, Coo, C20> % <23
H* (.QZB) :Z/2 [aﬁ, aio, azo] / (azHl) %k SZO .

Since 7({3) =p14, we have

T(Czo) ZT(SQIS(IZSG4C13)
=54¢'Sq*Sq* 014
ZSql(pzm) =0 .
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Thus, { € Im (£2%h)* and the one possibility is
Lemma 3.3. Q% *az0= .

By comparing the Serre spectral sequences of {*K — (2B — (*M and (L
— (2(FAVS?)— (2(ZA XS®), we easily obtain the following lemma.

Lemma 3.4.
(3 )* L H3(Q%K)— H™(Q2L)

1S am isomorphism.

4. The main result

Let Y be an H-space with inverse. Then, we define two commutator maps
I'y ! YXY—=Yand I''y | YXQV — QY by the following equations:

I'y(a, b) =aba™'p7"
Iy(a, 1) (1) =al(t)a1(t) 7" .

Let D be the composiotion

jixjz r
7

R(ZAVSE) xQ(ZAVS?)
and put b7:0'(0'3), b/7=0'(‘88) in H7<.Q(2A \/SS))

D:AXS R(ZAVS?®)

Since asfs = 0 in H* (XA V S®), there is an element by, € H*(Q2(JAV S?))
satisfying @ (b14) =b; ®b’;.  We abuse the notation a;eH* (A) for o(as) where
as is the generator of H3(XA).

Lemma 4.1. D*b14:a7 ®B7

Proof. First we show that F*b14:b7 ®b,7+b,7®b7. Since ZIS <b14) =b7 ®b/7
and by, b'7 are primitive, one can easily obtain

Ad¥b1a=1®b1y+br ®b"7+b'; ®by.
(See [10], Lemma 3.2.) We can put
T*b1u=A * b1y ®1+B * b;®b'7+C * b'7®bs+D + 1®by,
by the dimensional reasons. Since Ad = A(I'Xid) (id X 4), we get

Ad*byy= (id X A) ¥ (I'Xid) *A1*by,
= (id ®4*) (I'* ®id) Pby,
=(ild ®A4*) (I'*®id) (1®byy+b,9b7+b,,91)
:1®b14+(1d ®A*) (F*b7®b/7) +F*b14 .

On the other hand, since Ad*b;=1®b, and
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Ad*b;= (id ® A%) (I'* ®id) pb;=T*b,+1®b; ,
We have I'*b;=0. Thus it follows that A=D=0 and B=C=1. So, we have
D*bu: 'ik®].§k)r*b14

= (ﬁk ®]§k) (b7 b7 +b'7 ®b7)
=a7 ®ﬁ7.

Now, since the composition
AVS'CAXSE— Q(ZVSH) |

is homotopic to the constant map, D induces the map from A AS”. Let us de-

note this map by D. We denote also the composition of j; X ¢ (j,) and I'" by
D:AXS = Q*(ZAVS) .
Since D’ is homotopic to the constant map on A V S° we get an induced map
D ANS*— Q2 (SAVSP)
whose adjoint map is D.
Proposition 4.2. ;9D =constant map.
Proof. By the definition of D, we obtain the equation

(£2;°D) (a, s)) () =j[(a, ) V %, %V (s, 1)]
=[((a,t), %), (%, (s,1))]

where a €A, s €S"and t € I. Since £2;°D can be deformed to the map D de-
fined by the formula

(D s)) =10, (1)), (@) (0)]

in 2 (XA X S®) which is clearly homotopic to the constant map, the result fol-
lows.
We can prove also £2% oD’ = constant map by the very similar way. So

there exists a lift D”: A X S¢— Q7 [ satisfying (Q%') D’ =D’. Then we get
the following homotopy commutative diagram:

QK o 0B — O
27 2
Q71 Q%1 1
22p' 22
Q2 —— Q*(ZAVSY) ——— IAXSE
D1 D1
A X S8 _— A XSS

We denote the composition
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FQB
AXSS——— QBX Q?°B— Q°B

by D” where the first map is the product of the inclusion A € 2B and the ad-
joint of the inclusion S"C2B. Then

D= QoD =Q*oQ*oD
and we obtain the equation
D"*a50=D'Q%*Sq" 115
=Sq" D * Q% * 15
=Sq"D"*by5 .
Since I'"*0= (id ® o) I'’* and biz=0(by4), we conclude that
D'"*bi3=at; ® s
by Lemma 4.1. So we have
D"*a0=Sq"a; ® Bs=2 ® B .
which implies
I $pa20=12®as .

Thus the result follows.
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