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Separatrices of competition-diffusion equations
By

Hirokazu NINOMIYA

1. Introduction

In mathematical biology, theoretical understanding of the spatio and/or
temporal dynamics of biological individuals is one of major subjects. As one
example of population dynamics, we meet the situation where two species are
strongly competing. It is observed that one of the two species becomes extinct
in a habitat by competing, or two species can coexist by avoiding the competi-
tion with migration (see, e. g., [10]). The former phenomenon is called the
competitive exclusion principle, while the latter means the coexistence of
niche- segregation. To understand these phenomena, Lotka-Volterra competi-
tion models with diffusion have been often proposed so far.

A simple model in one dimension is described by

[u,:dluu-l-u (mi—cuu—ciw) (0<x<1, t>0) ,

1.1
1.1) vi=dwaztvme—com—cow) (0<x<1, t>0)

with the Neumann boundary conditions

[uI(O, t) =uz(1,t)=0 (t>0),

(12) 020, D=0, (1, 1) =0 (:>0),

where u (x, t) and v (x, t) usually represent the population density of two com-
peting species at position x € (0, 1) and time ¢> 0. Thus it is naturally
assumed that # and v are nonnegative. The constant m; is the intrinsic growth
rate, ¢;; the intraspecific competition rate, and ¢;; (i #j) the interspecific com-
petition rate where all constants m;, ¢;j, d; (i, =1, 2) are positive. By simple
rescalings, (1.1) with (1.2) is rewritten as

{ut=dun+u (a—u—bv) O<x<L,>0),

1.3
1.3) vi=vzztv(1—cu—v) (0<x<L, t>0)

with the Neumann boundary conditions

{u,(o, t) =us(L,t)=0 (t>0),

(1.4) 020, ) =v, (L, ) =0 (t>0),
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where a, b and ¢ are positive constants. The global existence of a solution of
the system (1.3) with (1.4) is proved by maximum principle (see [12]).
However, the qualitative property of solutions have not yet been completely
revealed. For the first step to do it, the system (1.3) in the absence of diffu-
sion is considered

(1.5) lu,=u(a—u—bv),

vi=v(1—cu—v),

where both components of initial data are positive. It is known that the asymp-
totic behavior of solutions to (1.5) consist of four types: (i) (a, 0) is a uni-
que globally stable equilibrium; (ii) (0, 1) is a unique globally stable equilib-
rium; (iii) @, o) =*((b—a)/ (bc—1), (ac—1)/(bc—1)) is a unique globally
stable equilibrium; (iv) there are two stable equilibria ‘(a, 0) and ‘(0, 1). In
the first three cases, any solutions generally converge to the unique stable
equilibrium (c.f.[1], [11]), while in the last case, which stable equilibrium the
solution converges to depends on the initial state. Therefore, the following
question naturally arises: what sort of initial data lead to the specific equilib-
rium, ecologically speaking, which of the two species becomes extinct depend-
ing on the initial state.

In general, the dynamics of solutions depends on the initial data, if
multi-stable equilibria coexist. Although there have been many works con-
cerned with the asymptotic behavior of solutions to various systems including
(1.3), most of them discuss the existence and the stability of equilibria
and/or periodic orbits (c. f. [4]), and do not tell us sufficient information on
the dependency of initial data on the dynamics of solutions because we need to
investigate the behavior of the solution with given initial data for the full time
range. This also motivates us to study the characterization of the besin of
attraction for the competition-diffusion system (1.3) as well as (1.5). Hereaf-
ter we assume the condition

(1.6) %<a<b,

for the bi-stable case (iv).

For the system (1.5) of ordinary differential equations with the condition
(1.6), it is already known that the first quadrant in the (u, v) plane is di-
vided into two basins of attraction by a separatrix which makes the boundary
between two basins of attraction [8], [7]. The separatrix for (1.5) is repre-
sented by the graph of a function 4, i. e.,

{t(u, v) ER?|u=0,v=0, v="h ()}

(c. £. [7]). That is, if v (0) >h (u (0)), then *(u (t), v (t)) converges to (0, 1),
while if v (0) <& (x (0)), then it converges to ! (a, 0). For the property of v=
h(u), it is shown in [7] that
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(i) ifa>1,v=nh) is concave (i. e, h"<0);
(i) if a=1, it is a straight line (. e, h(w)=(c—1)u/(b—1));
(iii) if a>1, it is convex (i. e., h">0).

Now, we return to the original system (1.3) with (1.6) under the
Neumann conditions (1.4). It is known that stable equilibria are only ‘(a, 0)
and ‘(0, 1), that is, any nonconstant equilibria and periodic solutions are unst-
able, even if they exist [9],[6]. Therefore, one finds that the problem is to de-
termine the separatrix for the constant equilibria ‘(a, 0) and ‘(0, 1).

For the special case where the diffusion coefficients are same (d=1), lida
et al [7] have recently shown that in the case a>1 there exists an initial data
“(u(x, 0), v(x, 0)) such that even if

vz, 0) >hw(x, 0)) for every x€[0, L],

"(ulx, t), vix, t)) converges to ‘(a, 0). In ecological terms, it implies that the
species u may wipe out v, even if v is superior to u everywhere at t =0. We
call such a phenomenon the diffusion-induced extinction of a superior species.
They show that this phenomenon possibly occurs, using the effect of the diffu-
sive migration and the concavity of the separatrix (or a>1). This implies the
difference of the structure of separatrix between the systems (1.3) and (1.5).
In order to construct the separatrix for ‘(a, 0) and ‘ (0, 1) of (1.3), (1.4),
and study the dependency of the asymptotic states on the initial data and the
parameters, we restrict our discussion to the neighborhood of an unstable con-
stant equilibrium * (1, v).

In 82, we construct the local invariant manifold with codimension one
which coincides with the separatrix for (1.3) near ‘ (i, ¥) in some sence (see
Theorems 2.2 and 2.3). In §3, by using this invariant manifold, we present
several results: First, we give some conditions on initial distributions under
which one of the two species becomes extinct. As an example, choose a=1, b=
¢=2,and d=1in (1.3) which indicates that the system is symmetric with u
and v. If the initial data is taken as in Fig. 1, it turns out that the species u
survives and v becomes extinct (see §3). Namely, the species u, which distri-
butes more uniformly than v does near the equilibrium at t =0, wipes out the
other (see Fig. 2).

Second, we show that even if the images of two different initial states in
R? coincide together, each solution may converge to the different equilibrium
respectively. This means that the asymptotic state of solutions can be never
expected by means of the information of initial data in the (u, v) plane.

Third, we consider the dependency of the asymptotic behavior on the pa-
rameter d for suitably fixed a. We show that if the diffusion coefficients are
different, the diffusion-induced extinction can occur in the absence of the con-
cavity of the separatrix for (1.5). More generally, we investigate the de-
pendency on the parameters a and d. It indicates that one species u tends to be
extinct as its diffusion rate d or growth rate a decreases, that is, there is the
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relation between the diffusion rate and the growth rate such that the two spe-
cies are equally balanced. It is studied mathematically when (a, d) is close to
(1,1) and also numerically when (a, d) is not close to (1,1).

In §4, we give the proof of Theorems 2.2 and 2.3 and Proposition 3.5. If
the stable manifold at ‘ (i, ¥) has codimension one, the invariant manifold is
uniquely determined. If not, however, the invariant manifold is not unique.
Under some conditions specified later, we can construct it uniquely up to the
second order (see Theorem 2.3 and Proposition 4.2). We need to know the
whole dynamics for proving that the invariant manifold coincides with the
separatrix up to the same order. We investigate the local dynamics as long as
the solution is close to ‘ (i, v). Then we use the comparison theorem to show
the convergence of the solution.
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0.6}

0.4}

000000 00000000000000000000000000000000000000000000

0.6}
0.4}

0.2

Fig. 1 Example of initial data.
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with the initial data as in Fig. 1 in the case

)

1)

), v(x,

d=1and L

Fig. 2 The solution (u (x
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First we prepare the notation and the spaces. The usual inner product of

R? is denoted by

. =u1u2+vlvz

means an inner product in L2(0, L), i. e.,

Uz
V2

) €ER? and (-,*)

V2

for *(uy, v1), ' (uy,

for u, vEL?(0, L).

=j;L u (x)v (x)dx

u, v)
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We also introduce Hilbert spaces H and X

le('):<:((:)) >|u( -)erx(o,1),v( ) Lo, L)].

re=lor=( ) Jen

with their inner products and their norms respectively

< (’“ ) (“2 )) = [" @ @) 401 @, @, ol := (@, @)

(1

) ()2 = 0 Py <) (0 o=@, @

We use a new variable
u—u
w= _
V=

in order to investigate the behavior of solutions near the equilibrium point ‘ (s,
v). Let us define a linear operator A and a nonlinear mapping F : X—X as fol-
lows:

uz€L%0, L), v2€L%(0, L)]

52
—doti b
2.1) A= *
- 0% | _
cv — ax2+v

with domain

o1

Uzz, UIJ:ELZ (0. L) , Uz (O) :UI(O) Uz (L) =Vz (L) :0]

and
—E(E+
(2.2) F(co)'—‘-( §(&+om) ) where a)=<€>€X.
n(c&+n) n
The resulting system from (1.3) is rewritten as
(2.3) w,=—Aw+F (w).

It is easily seen that A is a sectorial operator (see [5]). The fractional
power of A can be defined in a usual manner.

Let o, be the (¢+1)th eigenvalue of —d?/dx? with the Neumann condi-
tions and {; a corresponding eigenfunction, namely,

(2.4) ak:<—72—k>z (=0), CO_\/L and {,= [cosﬂlg (k2>1).
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Since
(dox+i+oc+0)2—4 ((dox+u) (o +0) —bewv) = (dox+u—0r—v) 2+ 4bewv >0,

it is obvious that eigenvalues of the matrix

Mk:<d0k+11 bit )

cv 0'k+13
are real.

Lemma 2.1. Let pyx (tto,- <pti+) be the eigenvalues of My. The eigenva-
lues of A ave real, which can be denoted by 1A ;=1 satisfying

A< 4K
Precisely theve exist functions j. (k) and k(j) such that

Ui+ = Ajstios
(2.5) Ui—= Aj-tios
ljzllk(j).+ or Uk,

If 2i=2A4j, (1#52), then k(1) Fk(j2) . Moreover 1= pto,- <0 and po.+ >0.

Proof. We prove the last part only. The remainder is easily shown, be-
cause the family of eigenvalues of A consist of |t} §=o. The matrix

u bu
MO - ( v v )
v v

has two real eigenvalues. The eigenvalues are the roots of the quadratic equa-
tion

(2.6) pr— +o) u— (be—1)uv=0
Since the last term is negative, we can check to,—- <0 and to,+ > 0. Noting

2= (dox+u+octo)ut+ do+u) (o +0) —beitv | lumuo-
= |—(d+1) po-+doy+i+dv} 6,>0,

M%LMMM(,,_ for k21,

we can show that po,- <A; for j=2.
The corresponding eigenvectors of A are denoted by ¢;, namely,
A¢i=2;¢;.
Especially, we can take
oi=en:li, ifj=j: (k)

where e, + are the eigenvectors corresponding to fix,+:
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1 1
| Ukt o _
ek,i_(y ) T Mee—dor—u | cv
kot b Uikt — Ok—D

The adjoint operator is

2
_d%+ﬁ cv
X
2.7) A* =
2
bil —%H

with the same domain as in A. Let ¢ be an eigenfunction corresponding to A;.
Multiplying appropriate constants, we can take ¢ satisfying
(@1, @i2) =0j1,
where 0y, stands for the Kronecker delta.
It is easily shown that {g;l j2; is a complete basis of H. Define
Piw:={¢f, @ np; . Qo :={¢f o)y ,
(DjIZPj(l) , w,':Q;(D
Thus @ can be expanded by

o

() ij: Zw,'([)j.
j=1

j=1

We also define the operator ~ from H to H by

D= (I—Pl)w=Zw,~.
j=2
We seek a locally invariant manifold with codimension one such that
0,=0 (o).
Thus we split (2.3) into
0, =—ho,+PF(w+d),
2.8 lé)‘,= —AGHF (01 +@).

Theorem 2.2. Assume A, <22, Then there exists a C*~function @ from (I
—Py)D(A) into P\D(A) such that the graph of @ is a locally invariant manifold
to (2.8) near *(u, ),

(2.9) o=V (|alk), ¢ (@) = ¥ ()

and
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aleg., €04) W}
d)(w):CO 0,+ 0,+) j+(0)

200,+— o~
2.10 Z {a(ek,+, ek,+)wj+(k)wj+(k) +a(ek,+, ek,—)wj+(k)wj—(k)
( ) ‘f‘Cok_1 Qs — o Wit e, - — to.—
a’(ek,—, ek,+) Wi (0Wjs k) + a’(ek,—. ek,—)wj-(k)wj-(k)]
Ui+ e~ o~ 2k~ — Mo~ '
where
El EZ % *
(2.11) ./ p =ug_& (&+bn,) +oF-n, (c&tn,).
1 2

We note that the denominators of the terms in the right hand side of
(2.10) are positive, because

Xj,+lj2—212212—21>0.

Remark. The principal part of the separatrix of (1.5) is given by

) legs + "u—w,v—0)|?

Xk Lt T o —a7) 2
Span g Tolled it v—0)f)

et tu—u,v—v)=ale e+

near ‘(u,v) =", v).

The locally invariant manifold in Theorem 2.2 is a separatrix in the fol-
lowing sense.

Theorem 2.3. For sufficiently small €> 0, there exists a positive constant 7

such taht
(i) o
(u( -0) —u )
v(+,0)—v

i e W) IE

then *(u(x, t), v(x, t)) converges to ‘(a, 0) as t — 0,

2

.
(ii) if

(5o Jelameo (g )

then '(u (x, t), v(x, t)) converges to ' (0, 1) as t =,

)

X

(u( - .0) —1Z> 2

v(+,0)—v

where ' (u (x, t), v (x, t) is a solution to (1.3) satisfying

‘ (u( -, 0) —u')
v(+,0)—v

Proofs of Theorems 2.2 and 2.3 are stated in §4.

>~7.
X
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3. Applications

In this section we apply Theorems 2.2 and 2.3 to some special cases and
we give the observation of (2.10). Before presenting the applications, we give
the following elementary lemma:

Lemma 3.1. The following hold:

i1, 1
j_ﬁC0+mC2h
Gl =] Y IR

0 otherwise.

This lemma can be easily shown by (2.4) so that the proof is omitted.

3.1. Separatrices for the same diffusion coefficients. In this susb-
section we assume d =1. Then we have

(3. 1) Ui, + = Ok +ﬂo,i, €k,+ —€0,+
by the definition of gx+ and ex:. For simplicity, we write o+, €0+ =" (uo,+,

UO,:I:) , and e:{t :t(ualt:t, v:)k.i) by s, ex="* (us, v+), and eXF="(u%, v¥), respec-
tively. Especially we can take

Separatrix

( b-g  ac-1
be-1, be-1

e
3

Fig. 3 Separatrix and vectors ex.
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(3.2) IR
ui=B vi=p At =p 2t
where

1 ., (pe—u)?
B 1+Jl—bT>o

because ‘ (0, 1) cannot be eigenvectors (see Fig. 3). We can check
(3.3) ef-e:=1 e¥:e.=0.

Similarly in §2 we set
y=e_ o, z=e,'w®,
(y Ck> 2=4, 0. 7=y vo
We prepare the following lemma:

Lemma 3.2.
u*ul + v’fvﬁ.) =ﬂ+‘8_12+b1_)'—{.£+

W) ale, e = (“2+25 -

(i) ales, e-)tale, e+)—(,u++g )<u “u- u++v vvv+>
= (s 41 )B_m'

% 2 *,2

(i) ale-, e-) = (M2=4202),

Proof. We prove (i) only. We obtain the first equality of (i), substitut-
ing u+ and u¥ into (2.11). For the last equality of (i), by definition, we have

wful  v%i B B (u—w) (e —w)®

u v b2cn?p?
_ﬁ_+B (tep-— (uatp- )u+u2) (u+—u)
b2cn?
=8 utbv—p,
b

The others can be proved similarly by (2.11) and (3.2).
This lemma and Theorem 2.2 imply the following.

Theorem 3.3. Assume p-> —20, and d = 1. The separatrix for (1.3) is

represented by the graph of the function @ satisfying ®= pe_Co+0 (| (7, 2) [%)
and
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O (7 2) = (“f.“z- +”f_”2') oty (W ”f}’i)z Cott«zi
v 20'k
k=0

i v 20+ - u 20 —p-
(3.4) o
+<ufu_u+ +va_v+)2 Cole—+pe) yuze
7 D 20t ps
k=1

Remark. The principal part of the separatrix v = h (u) for (1.5) is
given by

* 2 * 2 ~ -
o+  (ulud | viuy Cott+ utbv—ps
. L L ) 2 B 2
(3.5) Yo 2,a+—p¢_( u AL 20— - baiv °

by means of Lemma 3.2 (i). In order to know the sign of the last term of
(3.5), we substitute #+bv into the left hand side of (2.6):
(w+b0)2— w+v) @+bo) +av(1—bc) =bv {— c—1)u+ (b—1) 0}
= (a—1)bw.
This implies that
h" () <0 near u=u,
if and only if a>1 (see[7]).

In particular, we consider the case a =d = 1. In this case we can easily
calculate the eigenvalues and the eigenvectors. The eigenvalues of the matrix
M, are

(3.6) ,a_=—(b_blc>+cl—l), us=1.

The corresponding eigenvectors of My and ‘M, are

<
b b—1
(3.7 1
1 1
ot u* __ble—1) o= u¥ __ (=1
7\ )T 20— _b=l e T )T 2be—b—c\ b
v- c—1 U+ c
Recall
_ be—1)  b(—1) _ (b—1)c + b(b—1)
Y= 2%bc—b—c" 20c—b—c" % 2bc—b—c"" 2bc—b—c""

Substituting the above into Theorem 3.3, we get the following corollary:
Corollary 3.4. If

(b—1) (c—1)

5 e omen
o1 <2 I and a=d=1,



competition-diffusion equations 551

then ¢ is given by

b, Ny b2, VY we
(3.8) 07 2)= b Co 20k+ﬂ—+ h—1 Co 20ty
k=1

k=1

We address the question: Which of the two species becomes extinct when the
initial distributions for them are given in Fig. 1 ? Let us consider the case a=
1, b=2, and ¢ =2 to pay attention only to the influence of the initial states on
the asymptotic states. In this case we note that

1 u—v _utv 1

USUSR YT 2T g T3

Then we have
~ _Co us—vi
(3.9) ¢(@) =5y sk

by this corollary where ux= (u, {») and vi= v, {x). Since
wo=vo, ux=0 (£=1), v11#0 and v,=0 (E=2)

at the initial data, we have

—w(ay = o i 12
Ql {wl w(w)} - 2 201_'_1 >E|Iw”X
Theorem 2.3 implies that the species # wins out v, namely, that the species
which distributes uniformly near the equilibrium point ‘ (%, ) survives and
the other becomes extinct (see Fig. 2). Consider the initial distributions in
Fig. 4. By the effect of the diffusion, u easily become spatial homogeneous. So
u dominates (see Fig. 5).

Next we present two different initial data where the images of them in R?
coincide together and each solution converges to the different equilibrium. In
other word, it is impossible to select equilibria to which solutions converge, by
means of the information of the (u, v) plane of initial data. If we specify the
initial data such that

1 0 - it—szp
(u (x, 0) >=w‘(x, 0)_'_(14): )
vz, 0) v+s cos -

and

<u2(x, O)) w2( O)+<ﬁ> 12-320
= x' = 5
v¥(x, 0) v v+s coszﬁ
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12 17

0.8 0.8

0.6 0.6

04 oo o S .

- |
05 x 1 05 x 1

Fig. 4 Example of initial data.

Fig. 5 The solution ‘(u(x, t), v (x, t)) with the initial data as in Fig4 in the case
a=1, b=c=2, d=1and L=1.

where

1 1
20,41 <2541

for sufficiently small s> 0, then the image of the initial data ‘ (u! (x, 0), v*(
0)) coincides with that of *(u?(x, 0), v?(x, 0)). However, since

Q1 lol—T(a")} :%( 2.0+20. +1>

O lat— (@) =" 20+ 5.5 7)s

the former solution ‘(#!, v') converges to ‘(a, 0), while the latter * (u?, v?) con-
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verges to (0, 1) by Corollary 3.4 and Theorem 2.3.

3.2. Dependency on diffusion coefficients. In this subsection, we
focus ourselves on the phenomena which are exhibited by the difference be-
tween two diffusion coefficients. Hence we denote @, ¥, ¢, ¢; and @, in
Theorem 2.2 by @%¢, W4 ¢*¢ ¢%? and Q¥? respectively.

First we consider the case where a and d are close to 1. Put a=1+a, d=
1+4d. Note that the function ¥ given by (3.4) converges to (3.8) as a tends
to 1. Since ey, is independent of d, we also note that

u 1—d — Qa ,1
Then we have the following proposition.
Proposition 3.5. Set

o=
od

-a—
‘: ==

d=1

00

b—c)(c—1) , c(b+c—2) y2 YiZi
2bc— b—c? Z ( Soitu T Zoiti. )(20’;,+ﬂ_+20'k+ﬂ+>

(3.10)
+

Gplote=?) (o Y (s )
(2bc—b—rc) (b—1) 20k+,u+ 20 +us 200 Fpe—p-
k=

The proof is stated in the successive section.
In particular, if we put a=1, b=c=2 and uo=v,=1/3, then we obtain

wi0-5 T

(3.11) _ 2 2_ 2 2
L220k+1 (ux— l) 4 2 (uf Uk)+(1/tk+l)k) Fo@lale).
3

2 o 20'k+1 20'];"'%
Since
2
2 2
. 1+2<2;ﬁ1 . —— = | =0,
Zak_§ k+_ /Zak \/20'/;+§

it turns out that

_C_ (uk_vk)z 2(141: vk) (uk+vk)
220k+1 1 T T 7=
20k 3 k+§
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This implies that if the diffusion coefficient of one species decreases in the
case where a=1 and d is close to 1, then the species tends to become extinct.

lida et at [7] shows the diffusion-induced extinction in the case of the
same diffusion coefficients, namely, the species v can become extinct even if
the species v is superior to u everywhere at t =0, i. e., v (x, 0) >4 (u (x, 0)).
This phenomenon occurs by the effect of diffusion and the concavity of the
separatrix. If the diffusion coefficients are different, it may occurs without the
concavity. Actually, pick the initial data

ul(x, 0 i atoltsl )\
s (g e (7)-(TT)
for sufficiently small s where a=1, b=c=2, d=1+d and
0<p<—Asnl
2oy+1) (20, +1)
Since
v=hu)=u

in this case, we have
vz, 0) —h(u(x, 0)) =—pL<0 for each x.
By (3.11), however, we have
- T 2 -
e, (0) — 8T (@( -, 0))} =£ 050+ @) <0,

2 (20,+1) (201 +§>

from which it follows that the solution with the initial data (3.12) converges
to (0, 1). Ecologically speaking, the species # becomes extinct, nevertheless u
is superior to v everywhere at the initial state. Thus the diffusion-induced ex-
tinction can occur even in the case of the same growth rates (see Figs. 6, 7).

It is natural that the species of which the growth rate decreases becomes
extinct. As seen in (3.11), the species tends to win out, if its diffusion rate in-
creases.

Let us consider the relationship locally near (a, d) = (1, 1) when the two
species are equally balanced. As neutral initial data, we pick the initial data
below for (1.3) on the separatrix of (1.5):

Lemma 3.6. There exists initial data * (u® (x, 0), v* (x, 0)) = w?(x, 0) +
'(if, v) placed on the sepavatrix for (1.5) such that

u®(x, 0)

12 dSZ
= + € + a2 e '__‘__L eo. + (32)
v (x,0) ) <D> sCrea+F 7% Coeo /2 Coreo+to

(3.13) (

where
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u
Fig. 6 Example of solution with initial data
“(u(x, 0), v (x,0)) ='(u-+o.oo35+o. leos™7, 7+0. 1cos5L£)
in the case a=1, b=c=2,d=0.01, and L=1.
u

Fig. 7 Example of solution with initial data

Y (z, 0). vz, 0)) =t(,;+0.0035+0.1coszT’“, 7+0. lcoszLﬂ>

in the case a=1, b=c=2,d=0.01, and L=1. The image of initial distribution in
R? coincides with that of Fig.6. However, each solution converges to the different
equilibrium.

ri= aleo+, €o,+) Lo
2p0.+— o~

Proof. Recall that the separatrix for (1.5) is given near ' (, ¥) by the
graph:

(3.14) JLet- - o=1"(JLe}, - ) +o(lef, - wl?).
Substitution of
w=s{e,++0(s?)
into (3.14) yields
e - w=JL7r*{fs*+o(s?).

Lemma 3.1 immediately implies (3.13).
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Substitute the initial data (3.13) into (2.10), i. e.,
w?— 0% (H°) =0.

From the condition that the leading term of w¢— @%¢ (&%) vanishes, we obtain
the relationship between a and d, which is given by the following implicit
form:

,d a__ dhad (56
lime lof 2¢ (&7)] =Ta_¢a'd(Cleo,+) =0.

§—0 S

More precisely,

aleor, €os) _ (s, €14) (s - €04)" | (e €1) (el - €4)°

20,4+ — Mo,~ 20,4+ —to,- 2001,-— o~
(8.15) L lalen-, en) tales e)) (ef - eq) (efs - es)
ti+ T - o, :

If we take a=1 and d =1, then this equation holds. Actually, it is shown by
(3.1), (3.3) and ales, ey) =0, if a=d =1. We want to seek the function a (d)
satisfying (3.15) and a (1) =1, if it exists.

It seems that (3.15) is complicated. First we deal with the case with a=1
+a and d =1+d where @ and d are sufficiently small. The implicit function
theorem implies that

d

TG =™ (Lens))
Oa

(3.16) =-(1)

(a,d)=(1,1)
Thus

_ 2pe—p- __ 20,GpsB-(tbo—p.)
a__ hal — a0 a—
T ) =T G i T T ot s — i) Gpta—pp) b

by (3.1) and (3.3). Since

O] _ (=1
aa |a=1 2bc—b—c

by (2.6), we obtain

Omtbo—p) | _ _blc—1)
Oa la=i 2bc—b—c"

(a+b—p4) |a=1=0,

Substituting (3.10) into (3.16), we get

(Bbe—b—c—1) @be—b—c) (b+c—2) ~
2(bc—1)*(20,+1) d+o(ld]).

(3.17) a(1+d)=1—

We present the relationship computed numerically. In Fig. 8, the nullcline
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Fig. 8 Plot of the solution a(d) of (3.15) in the case b=c=2 and L=1.

of (3.15) has been plotted in the case of b=c =2. The relation (3.17) indi-
cates the graph near a=1.

4. Proof

We assume A; <242 <0 in this section, because we can prove easier for
the case 4.2 0.
First we give the proof of Theorem 2.2.

Proof of Theorem 2.2. We make a modification of the system (2.3) out-
side certain neighborhood near @ =0. Consider the following modified system
instead of (2.3):

(4.1) o,=—Aow+f(w)
where x is a smooth function satisfying

1 (x<1),

X(x):[o @>2)

and

) =x (120) (18k) (o)

T
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Recall that
Uo,—
w1:w1§01:w1( )Co-
Vo,—

and hence that

|(01| = Coleo.—l |w1| =Cowub-tvj- |w1|.

Note that there exists a positive constant K, >1 satisfying

" (I_Pl)e—(I—Pl)At”XSKle—uz—Klr)t for tZO
4.2) 1|Pif(@") —P:if(0?) | <K (ot — i +]é'—&%x)
[T—Py) f(@") — T—P)) f(0?) |x <K (|0} — 0?|+ ' — @lx) .

for any w!, w?* € X. Especially,

I |P1f(w) | <Ky (lwll +"(B"x) )

4.3
(4.3 [(I=P2) (@) Iy <Ko (on|+ladle).

The asymptotic behaviors of solutions to this system coincides with those of
solutions to (2.3) in the neighborhood D, of origin given by

D= lo=wi+BEX| || <7, |@lx<r}.

The existence of such a local invariant manifold to (4.1) follows from stan-
dard methods of the construction of invariant manifolds, the Lyapunov-Perron
method (see [5], or[2]). That is, there is a C®*-function @ from (I —P,)D (A)
N B, to P.D (A) whose graph is locally invariant under the semiflow defined
by (4.1) where

B,= @€ (I—Py) X| ||&lx<#

and v (>0) is sufficiently small. It suffices to show the properties of @. Re-
view a cone property, which will be useful in several contexts as well as the
construction.of the manifold.

Lemma 4.1. If X, Y ave positive continuous functions satisfying
- - 0 -~
X+ et <X et try | X (t+s) Y (E+s) | Fds,
(4.4) , i
YO < (0) +rwr [ 1X(s)+Y (5)| e,
for 0LZt+ <4, then

i rv< Y(O)e_(%_"‘(H"Z)')' provided X (s) <k,Y (s) for 0<s<¢;
(i) X () <X (0)e™ HFmOFedt hronided Y (s) <ksX (s) for 0<s<t,

where ki (i=1, 2, 3) are positive constants. Moreover, if
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> = 1
12_21_K1<2+K2+K_2>1’>0,

then the region I',={(X, Y) €RY 0<k, Y<X|is positively invariant.

This lemma follows from Gronwall's inequality. See [2, Lemmas 2.3-2.5].
This property is called a cone property.
By the variation-of-constants formula, we have

|(D1 (t+ Z') |e11(t+t)

0 ,
(4.5) <la: (®) |e‘”+K17fT (o G+s) |+ (@ (-, t4s) ) e s,
t

8(- . 0=ca (-, 0+ [ A9, @as,

for a solution @+ @ to (4.1). Set

A=A, L=L—Kr, X(t)=|w () I. Y (t) =sup 6’125”@_“(3( ) "X

520

Note that
(4.6) l@(-, OlIx<v ) <Kld(-,¢t)lx.

It is easily seen from (4.5) that (X (t), Y (t)) satisfies (4.4) with k,=K?%, and
k2=k3=1. Thus we get

|0 ()] <|@lx
such that
(4.7) Ao—Ai— Ko —4Kir>0
Hence, Lemma 4.1(i) implies
(4.8) la (-, Olx<killa(-, 0)lxe
where

v1=A,—2K%r,

if w,(t) +@ (-, 1) is a solution on the manifold, i. e., @, (t) =@ (B (-, 1)).

Proposition 4.2. Assume that Disa C%*function from (I—P,)D(A) NB,
to P\D (A) such that

G(&: B ;=% —A@+ U —P)f(B+&)} + 1,0 P.f(F+d)
with

IG(@ ; ®)|<C|adlk
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n By for some p satisfying p>1 and 2, <pAa. Then there exists a positive constant
C/

|0 (@) — @ (@) |<Clalk
in @E B, with sufficiently small r>0. If
G(@; ®)|<C(|&lk+ (@ —1)"|@le)
as d is close to 1 where p1>0, p2<p, then
|0(&) — @ (@) |<C (lalk+ @—1)*|al).

Proof. This proposition can be proved by the argument similar to the
center manifold theory in [3], [5] and [13]except for the infinite-dimensional
invariant manifold. So, we give the sketch of the proof of the latter part only.
Let @ (-, t) be the solution of

@=—Ad+F(0(B) +d).

Suppose that @ is as in the lemma, and is extended to (I—P;) X subject to the
same condition in (I—P,) X, if necessary, by multiplying the cut-off function.

Set w1 () =@ (@ (+,t))—@D(@(+ 1)), which satisfies

wr=—haon+P,f(0+&) —F(®+d)) +% f(D+d) —F(O+d)—G (@ D).
Thus, we obtain

|w1 (t+1’) |e/11(t+r)

0
<lw, @) |eh’+f K (1+Ky) o (t+s) |+ Clalk+ Cd—1) 2@ ¢ ds

where

0B (") .,
o ¢

K= sup

o'l@l=1

Substitution of (4.8) into the above inequlity yields

X(t42) <X +Kr [ (14K X (1+5)ds

o CKtll® (O) g +CKE* @ = 1)@ O) & -y
V2

1
where

X (8) =l ()™, vo=min (p (A;— 2K} 7) — A1, p2 (Ae—2K% 7) — Ay).
Gronwall’s inequality implies that

X(t42) SX O 59K (16 (0) e (0= 1) 16 (0) ) e+,
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where K3 is a positive constant independent of 7. Since
X (t) Sra+kdt ——( g5t —o00,
we have
|0(@(0) — @ (& (0))|=x(0) <K; {l@ (0) lg+ (@—1)*lla (0) I8,

taking 7= —t and letting ¢ —°°, where 7 is chosen such that

A~ K (1+K,)r<0, v,— K, (1+K3) r>0,
and (4.7) hold.

Since
G(@; 0) =—P:if (@) =0 (@),
we have
(4.9) @ (@) | <Kllal .

using Proposition 4.2. Next we construct the approximate function ¥ of @. The
principal part of G (@ ; ¥) =0 is

(4.10) —g% |—AG+ U—P)F (&)} +1,U—P.F (&) =0.

This argument is slightly different from the theory of center manifolds.
Actually, in constructing (finite-dimensional) center manifolds, we can easily
seek ¥ as the solution of (4.10), substituting the formal expansion for ¥&. In
our case, however, it seems to be difficult to seek it because ¥ maps from the
infinite-dimensional space. We do it as follows. We can construct the solution
of (4.10) by a method of characteristics. Namely, we solve the invariant man-
ifold to the system

(4.11) {wlt=_11W1+Q1F(w),

wi=—Aw; (G<2).
We substitute solutions of the latter equations into the former equation and

we get
wi = — A +Q1F<ij (0) e“l"(oj).

i—2

Using the variation-of-constants formula and letting t —© yield

(4.12) w, (0) = —j;we“sQ,F( wj (0)6_1’5(0;)43-
j=2

Recall that
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QF () =—uf_<ulwtbw), {>—vE_<viutv), {>
where

) I L

Vi, + Vk,~

We have
uw+bv), {o

= <Z (wj, wrtn+ w5 Govi,-) Ckz i (g4 bvis) Fwio g+, ) G, §o>
k=0 1=0

= Z (Wi otrr Twiewi—) Wi p s Tove+) Fwi o g+ bvi, )1 Lo

k=0
using Lemma 3.1. By (2.11),
QF (@) =— Lo (eo,+, eO,+)wj+(0)wj+(0)
- COZ {a (ek,+, ek,+)wj+(k)wj+(k)+a (ek,+, ek—)wh(k)wi—(k)

k=1
+a(ek.—. ek,+) wi—(k)wj+(k)+a(ek,—, ek,—)w;'_(k)wj_(k)} .

Substitution of this into (4.12) yields (2.10). Let >0 be so small that
(4.13) (24+6) A,— A4, >0.
Since
G (@; ¥)=0lalz?
where ¥is given by (2.10), Proposition 4.2 implies

o=U+0 (|al3?).
Next we prepare two lemmas to prove Theorem 2.3.

Lemma 4.3. There exists a positive constant R> 1 independent of v such
that the solution o (t) +* Gz, v) to (1.3) satisfying

Qlwl(o) >R”(B( . O) "X
converges to *(a, 0).

Proof. There exists a positive constant K5 such that

e

sup (ju (x) [+1]v @) ]) <K

Recall that
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uo—>0 and wo,-<0.

If we take
R_—5max[ 1 ,—-1—]
0 uo,— Vo,-
we have
w1 (0) Couo,—>RC0%o,—"@( - 0) I|X22 sup |17(I. 0) |
—uw <O) COUO,—> _RCOUO,—"(B( * O) "XZZ Sup |17(‘rv O)l
where

i (x, t) >

o, t)=wit)Coeo-+dx, t)=w ()& eo—+ ( 7. 1)

Namely,

%wl (0) Co Uo,— 2w, (0) Co 140,—+17(1‘, 0) Z% w1 (O) Co Uo,—,

% w1 (0) Co Vo,- Swl (0) Co Vo,- ‘HT(I, 0) S% w1 (0) Co Vo,—,
Let @; (t) +' (&, ) (i=1, 2) be a spatial homogeneous solution to (1.5) with
@ (0) =1 0) Lo, @ (0) =51 (0) L

Comparing o (x, t) +'(, v) with (@ () +' (W, 0) =1, 2), we can show that-
o (x, t) +' (i, v) converges to ‘(a, 0).

Lemma 4.4. Set

X)) =Q o, () — D@ (-, ), YE)=supe™|e®a(-, 0k

520

for a solution w,+a@ to (4.1). If

To— T Ko 2+ 2R+ )r>0,

then, the region
I'r=1(X, Y) €RY 0<2RY< X}

18 postitively tnvariant where

1
Ke=2K? max{m, 1, |€0,—|C0]~

Moreover, if (4.13) holds and Q, @, (t;) — @ (@ (-, t)} <2R|& (-, t) |lx for
some £, >0, then
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Quiw () — P (@ (-, 1))} >K—(z+o)Ql {@.(0) —@(@(-,0)]}
l@ (-, ol ! la (-, 0

for 0Lt <t, and sufficiently small r>0.

Proof. We can assume that X (t) is positive. The following inequalities
are easily obtained:

- ~ 0 -
X(t_'_r)ell(t‘FT) SX(t)elll_i_Kﬁ,r f X(t_'_s)ell(t‘i's?ds’
(4.14) '

Y (1) <Y (0) +Ker f "X () Y (s)] eRds.

The first part of this lemma follows from the above inequalities and Gron-
wall’s inequality (see Lemma 4.1). We prove the latter part. By assumption,
X (t) <2RY (t) holds for 0<¢<t,. Hence, we have

|01 (1) = @@ (-, )| 2] (0) = D@ (-, 0) e " |G (-, ) <K@ (-, 0)|re
for 0<t<¢,, where
vs=A,—Ks(1+2R)v.
Since
(24+0) vs—Ai—Ker>0
for sufficently small r>0, we obtain

Qulw () =@(@(-, )l L Qe 0)—0@(-,0))}
laa (-, o) I = ke -, 0|z

if @ iwl(o)——ﬁ(éj( °, O))} >0.

Proof of Theovem 2.3. Let w, (t) +@ (x, t) be a solution to (4.1) satis-
fying the assumptions of Theorem 2.3 (i). If there exists a positive time t;>0
such that

Qi (t) — @ (@ (1))} 22R|B(+ , t,)|x, w1 (t) +@(+, 1) €D, for 0<i<t,

then the solution ' (it, v) +,(t) +@(x, t) converges to ‘(a, 0) by Lemma 4.3.
So, we suppose that

Qi () —@(@( -, ) <2R|& (-, t)|x
as long as @, (t) +@(+,t) € D,. By Lemma 4.4, we have

Quio @) =0@(-, 1))} 5 Qe (0) =@ @(-,0)} o €
laa (-, 0) & Kl (-, 0lF° K@ (-, 0%

We pick 7 satisfying

r €|eo,—|Co< v >2+6
>
K <Te, 0R" (Km)? \Kileo-|CoR 2,
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where K7 (>1) is a positive constant such that
l@lx<Kwlx for @EX.

Iflo(-,0)x<n and [|@( -, ) lx=7/(eo_|R) at some positive time ¢, then

— Y| — _ ~ €|eo,—|Co P 244
|, @(w)|—|eo,—|C0Q1 lw,— @ (@)} = (o) ? <K1|eo,_|CoR> >2r.

This implies that
lw|>r or |®(@)|>r

The latter inequality contradicts (4.9) if »<1/K, The former inequality also
contradicts @ € D,. Since [@ (-, 0) [lx <v/ (leo-ICoR) , llad (-, t) ik <#/ (e,
CoR) as long as @, (t) +@( *, t) € D,. The first equation of (4.14) and (4.9)
imply that there exists t3>0 satisfying @, (£)|=7. Thus

Rl@ (-, ts)]x< |€0,f|Co = |lc:OIEIiSC)O| =Qiw ().

Using Lemma 4.3, we complete the proof of Therem 2.3 (i). Theorem 2.3 (ii)
can be shown similarly.
Hereafter we consider the case with d close to 1. Put

d=1+d.

The function ¢*¢ given by (2.10) converges to (3.4) as d tends to 1. Then
we have

Proposition 4.5. The following holds:
(4.15) o=t —gEe+0 (lalE+a o blk)

where W= |,_; and

oo

2

k=1

+ CuFury () + s tuu_) 7, (k) +2uku_7; (k) )Zi"y"z—"
Oy +1/t+

+ ey )+ 2utys () 5 SEE
-/2 +/3 20k+2ﬂ+_ﬂ— )

(k) :<ui‘uz_+vi‘vz_>_c_‘a~

7 v 20k+;1_‘
_(uFu_u, va_v+>co([,c_+u+)
rolh) = (ASte 0200 ol bits)

_ (uful vai) Cotts
“(”'"< P PR P

Proof. The system (2.3) is rewritten as
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yu=—p-yi+ (e*F, {,
U= Yz—p-gt+e*F—<e*F, (> +du*u,,,
21= 2z szt eXF+dutu .

Thus ¥ “*7 satisfies

al+d al+d
W—ag— (gzr_ﬂ—g-'_avufuzz) +WT (Zzz_ﬂ+z +CTM$MH)

=¥ (@), L),
Substituting (4.15) into the above equation and taking the principal part yield

a,l al
a_ (yzz U- y)+ (sz /—5+2) ag] ufuu— ag“z ui‘uu=—ﬂ_5“.

We use the same argument as in the proof of Theorem 2.2 in order to solve
the above equation. That is, one can find £ as an invariant manifold of the
system

a,l a a,l

'
yu=—ﬂ-y1+aayA U+ lg:z U Fzz,

(4.16) PR -
Y= Yzz— M-V,
2= Z2zx— U4Z.

Recall that

o= Z (1 (B) yi+ 72 (k) yan) + Z 7s (k) 2

k=1 k=0
by (3.4). Substitute
Yk (t) =e—(m¢+u—)tyk (0) . Zi (t) =e—(0'k+ll+)tzk (0)

into the first equation of (4.16) and integrate over [0, ©©). Then we obtain
Z* Proposition 4.2 implies

@ — (a1 —gEe) | <C (@l +al@lk) .
Since ¥* is bilinear in @, we can show

ovr*?
0d la=r
Proof of Proposition 3.5. Since a=d =1, we have
(k) = (b—c) go
n b (200 tp-)"

— (b+ _2) Co
7 () =) E20k+ﬂ+),

73(k) =0,

= ——
d =
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by (3.8). Substituting 7: (k) =1, 2, 3) into ¢ we obtain (3.10).
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