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Separatrices of competition-diffusion equations

By

Hirokazu NINOMIYA

1. Introduction

In  mathematical biology, theoretical understanding o f  th e  spatio and/or
temporal dynamics o f biological individuals is one of m ajor subjects. As one
example of population dynamics, we meet the situation where two species are
strongly competing. It is observed that one of the two species becomes extinct
in  a  habitat by competing, o r  two species can coexist by avoiding the competi-
tion  w ith  m igration (see, e. g . ,  [10]). The form er phenom enon is called the
competitive exclusion princip le , w hile  th e  la t te r  m eans the coexistence of
niche- segregation. To understand these phenomena, Lotka-Volterra competi-
tion models with diffusion have been often proposed so far.

A simple model in one dimension is described by

{ut—divtxx+u ( n' — cliu — e n v )  (0<x<1, t>0),
vt —d2vxx - I- v (1412 — C2114 — C22V) (0  <,X < 1 ,  t>0)

with the Neumann boundary conditions

Iux  (0, t) =u x  (1, t) = 0  (t > 0) ,
yx  (0, t) v ( 1 ,  = 0  ( t> 0 ) ,

where u (x , t) and y (x , t) usually represent the population density of two com-
pe ting  spec ie s  a t position x  c  (0 ,  1 )  a n d  tim e t >  0 . T h u s  it  is  n a tu ra lly
assumed that u and y are  nonnegative. The constant m, is  the intrinsic growth
rate, et ; th e  intraspecific competition rate, and co  ± j )  the  interspecific com-
petition ra te  w here all constants mi, co, d , (i, j =1, 2 ) are positive. By simple
rescalings, (1.1) w ith  (1 .2) is rew ritten as

(1 . 3)
lu duxx-Fu(a—u—bv) (0 <x <L, t >0),

with the Neumann boundary conditions

f ux (0, =ux (L, = 0  ( t  > 0) ,
(1.4)

yx (0, t) =y x  (L, =  0  (t> 0) ,
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(1.2)

Vt
=

V x x + V  (1 —CU — V ) (0<x<L, t >0)
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where a , b  and c  are positive constants. The global existence of a solution of
th e  sy stem  (1 .3 )  w ith  (1 .4 )  is  p ro v e d  b y  maximum p rin c ip le  (se e  [12]).
However, the qualitative property  of solutions have not yet been completely
revealed. For the  first step  to  do it, the system  (1 .3 ) in the absence of diffu-
sion is considered

(1. 5) lut-=u (a — u b v )  ,
v t = v (1 — cu

where both components of initial data are positive. It is known that the asymp-
totic behavior of solutions t o  (1 .5 ) consist of four types: (i) (a, 0 ) is  a  uni-
que globally stable equilibrium; (ii) ( 0 ,  1 )  is  a unique globally stable equilib-
rium ; ( iii)  t (tit, /7) t ( (b — a) / (bc — 1), (ac — 1) / (bc — 1 ) )  is  a unique globally
stable equilibrium; ( iv )  there  a re  two stable equilibria t (a, 0 )  and t (0, 1). In
th e  f irs t  th re e  cases, a n y  solutions generally converge to  the unique stable
equilibrium (c.f.  [ i ] ,  [11] ) , while in the last case, which stable equilibrium the
solution converges to  depends o n  th e  in itia l state . Therefore, th e  following
question naturally arises: w hat sort of initial data lead to the  specific equilib-
rium, ecologically speaking, which of the two species becomes extinct depend-
ing on the initial state.

I n  general, t h e  dynam ics o f so lu tions depends o n  th e  in it ia l d a ta , if
multi - stab le  equilibria  coexist. A lthough there have  been m any works con-
cerned with the asymptotic behavior of solutions to various systems including
(1 .3 ) , m ost o f  them  d iscuss  th e  e x is te n c e  a n d  th e  s tab ility  o f  equilibria
and/or periodic  orbits (c. f. [4 1 ) , and do not te ll u s sufficient information on
the dependency of initial data on the dynamics of solutions because we need to
investigate the behavior of the solution with given initial data for the full time
range . T h is also m otivates u s  to  s tu d y  th e  characterization o f  th e  besin of
attraction for the competition - diffusion system (1 .3 ) as well a s  (1 .5 ). Hereaf-
ter w e assume the condition

(1.6) 1

for the bi - stable case  (iv).
For the system  (1 .5 ) of ordinary differential equations with the condition

(1 .6 ), it is  a lready  know n tha t the  f irs t  q u a d ra n t in  th e  (u , y ) plane is di-
vided into two basins of attraction by  a  separatrix  which makes the  boundary
between two basins of attraction [8 ], [7 ]. The separatrix f o r  (1 .5 )  is repre-
sented by the graph of a function h, i. e.,

it ( 4 ,  y ) I t t>-0 ,v 0 ,V =“/S )1

(c . f. [7 ]). That is, if y (0) > h(u(0)) , then t (u (t), y  ( t ) )  converges to  t (0, 1),
while if y (0) <h (u (0)) , then  it converges to  t (a, 0). F or the  property of y
h (u) , it is shown in  [7 ] that
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(i) if a > l, v=h ( u )  is concave (i. e.,
(ii) if a =  1, it is  a  straight line (i. e., h ( u )  =  —1)u/ (6 - 1 ));
( ii i)  if a > l ,  it is convex (i. e., h" > .

N ow , w e  r e tu r n  to  th e  o r ig in a l sy s te m  ( 1 .3 )  w it h  ( 1 .6 )  u n d e r  the
Neumann conditions (1 .4 ). It is know n that stable equilibria a re  o n ly  (a , 0)
a n d  (0, 1), that is, any nonconstant equilibria and periodic solutions are unst-
able, even if they  ex ist [9 ],[6 ]. Therefore, one finds that the problem is to de-
termine the separatrix for the constant eq u ilib ria  (a, 0 ) a n d  (0, 1).

For the special case where the diffusion coefficients are sam e (d=  Iida
et al [7] have recently show n that in the case a >  1 there  exists an initial data

(x, 0), y (x, 0 ))  such that even if

(x, 0) >  h ( u (x ,  0 ) )  for every x  [0, L] ,
t ( x ,  ,  y (x ,  t ) )  converges to  ( a ,  0). In  ecological terms, it implies that the
species u  may wipe out v, even if 1) is superior to  u  everyw here at t =O. We
call such a  phenomenon the diffusion - induced extinction of a superior species.
They show that this phenomenon possibly occurs, using the effect of the diffu-
sive migration and the concavity of the separatrix (or a > 1). T his implies the
difference of the structure of separatrix between the system s (1 .3 ) a n d  (1.5).
In  order to  construct the  separatrix f o r  (a, 0 )  a n d  (0 , 1 ) o f  (1 .3 ), (1 .4 ),
and study the  dependency of the asymptotic states on the initial data and the
parameters, we restrict our discussion to the neighborhood of an unstable con-
stant equilibrium

In  §2 , w e construc t the local invariant m anifold  w ith  codimension one
which coincides with the  separatrix fo r  (1.3) n e a r  (vï, /7) in  some sence (see
Theorems 2 .2  and 2 .3 ) . In  §3, by  using  th is invariant manifold, we present
several results: F irst, w e give som e conditions on initial distributions under
which one of the two species becomes extinct. As an example, choose a =  1, b
c = 2, and d = 1 in  (1 .3 )  which indicates that the system is symmetric with u
and v . If the  in itia l da ta  is  taken  as in  F ig . 1, it  tu rn s  ou t tha t the  species u
survives and 1) becomes extinct (see §3). Namely, the  species u, which distri-
butes more uniformly than 1) does near the equilibrium  at t = 0, wipes out the
other (see Fig. 2).

Second, we show that even if the images of two different initial sta tes in
R2 coincide together, each solution may converge to  the  different equilibrium
respectively. T h is  m eans that th e  asym ptotic state of solutions can be never
expected by means of the information of initial data in the (u , y )  plane.

Third, we consider the dependency of the asymptotic behavior on the pa-
eameter d  fo r suitably fixed a. W e show th a t if the diffusion coefficients are
different, the diffusion-induced extinction can occur in the absence of the con-
cav ity  o f  th e  separatrix f o r  (1 .5 ) . M ore generally , w e investigate th e  de-
pendency on the parameters a and d . It indicates that one species u tends to be
extinct a s  its  diffusion rate d  o r growth ra te  a  decreases, that is, there  is the
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relation between the diffusion rate and the growth rate such that the two spe-
cies are  equally balanced. It is studied mathematically when (a, d )  is  close to
(1,1) and also numerically when (a, d )  is not close to  (1,1).

In  §4, we give the  proof of Theorems 2.2 and 2.3 and Proposition 3.5. If
the stable manifold a t  (a, iJ) has codimension one, the invariant manifold is
uniquely determined. I f  n o t, however, the invariant m anifold  is  n o t  unique.
Under some conditions specified later, w e can construct it uniquely up to the
second order (see Theorem  2.3 and Proposition 4.2). W e need to know  the
whole dynam ics fo r  p rov ing  tha t the invariant m anifold coincides w ith the
separatrix up to the same order. W e investigate the local dynamics as long as
the solution is  close to  ( if ,  T h e n  w e  use the comparison theorem to show
the convergence of the solution.

F ig .  1 Example of initial data.
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V

Fig. 2  The solution t (u (x, t),  y  (x , t )) w ith the initial data as in F ig . 1 in the case
a = 1 ,  b = c = 2 ,  d= 1 and L=1.

2. Local invariant manifolds and separatrices

First w e prepare the notation and the spaces. The usual inner product of
R 2 is denoted by

( n i (U2
— 14414, 2 ± V YV2

for V I) , (142, V2) E R2 a n d  ( • , • )  means an inner product in L 2 (0, L), i. e .,

(u, :=  f  u  (x )  (x )  d x for u, v  EL 2 (0, L ).
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We also introduce Hilbert spaces H  and X

H := la )( • ) = ( u  ( • ) ) u ( • ) L 2 (0, L ) ,  ( • ) EL 2 (0, L)),
(  •  )

X := 1 (.0 ( • ) = (
u (  •  )

)E ld u x e L 2 (0, L ), Vx EL 2 (0, L))
(  •  )

with their inner products and their norms respectively

<( 741) (74 2

v2 ) /  
: = I  141 (x) 2 (x) +v (x) v 2 (x) dx ,

0

L
1104 := Kw, (1)

Vi

<( 7 4 1 (742 741x (742x )  (4 1 ,2 x

V 1 ) ' \ V 2 )  I X : -  ‘ (  V  l x ) ' V  2 x ) -1 l x

▪  < ( U l x
v 2 x  4 ,  4 0 113C : = (0 )  , 0 1 )  x

We use a new variable

in order to investigate the behavior of solutions near the equilibrium point ( i i ,
77). Let us define a  linear operator A and a nonlinear mapping F : X— > X as fol-
lows:

(2.1) A: =

with domain

2/ — d a +
ax2

cf)

bù

a2

+ 1 -)
ax 2 I

u ( • )
D (A) : =1( 

v (  )

)E v x x E L2 (0 , L) , ux  (0) = v(0) = ux  (L) =v x (L) = 01

and

(2 . 2) F (w) " +  " ) where w (
— 77(c + 7)) 77

The resulting system from (1 .3 ) is rewritten as

(2.3) cot= — Aco+F (co) .

It is  easily  seen  tha t A  i s  a  sectorial operator (see [5 ] ) .  T he  fractional
power of A can be defined in a usual manner.

Let crk b e  th e  (k + 1) th  eigenvalue of — d2 /dx 2 w ith  the Neumann condi-
tions and Ck a  corresponding eigenfunction, namely,

(2. 4) 2a k—  
n-le\
L Co=v L  , and Ck -

2 r k x
 (k  1 ) .L c o s  L
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Since

(dak - FIT- Eak+f)) 2  — 4 ((dok+0 (ak+0 — bc/i/j) =  (dak - Fu. — ak 2 -1- 4baif)>O,

it is obvious that eigenvalues of the matrix

(d o k +ù  b ù

C V ) crk - 1- - v

are real.

Lemma 2.1. Let tik,± (14,- < fik,+) be the eigenvalues of Mk. The eigenva-
lues of A are real, which can be denoted by A l satisfying

2 i < A 2 - 2 3 - • " * 2 ;• - •

Precisely there exist functions 1 ± (k ) and k ( j)  such that

2
.i+(k ),

(2.5)2 f - ( k ) ,

2i= tik u),+ or lik(;),-•

If Â il= Rh (i1 * j 2 ) ,  then k (j 1) k (j2) . M oreover 21= g o ,_ <0 and rco,+ > O.

Proo f . W e prove th e  la s t p a r t  only. T he  remainder is easily shown, be-
cause the family of eigenvalues of A consist of 11k,± 7:=0. The matrix

( tit btic )
M o=

cv

has tw o real eigenvalues. The eigenvalues are the roots of the quadratic equa-
tion

(2.6) /12— (ii+ Ott —  (bc — 1) ii'F= 0

Since the last term is negative, we can check 11o,_<0 and ti, + >0. Noting

Itt2  ( C / a k  ±7i± ak (dak-Fii) (ak - 1- 13) — bciiii11.=u0.-
= (ci +1) go,_ - Fdak - 1- i± d17 ak > 0,

do - k+ ii± ak±
2

ii
> 0 >  g o ,_  f o r

we can show that 110 ,_ <2 ; for j . 2.

The corresponding eigenvectors of A are denoted by go j, namely,

A(Pi=ÂNi.

Especially, we can take

(pi =ek, ± Ck, if j= j± (k )

where ek,±  a re  the  eigenvectors corresponding to pk,±:

Mk
=



1 \

CV

\pk,± — o- k— f) I
ek,±—

(
14 k, ±

V  k,± bù
dak— U 
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The adjoint operator is

(2.7) A* :=

2
I d

5  
+tit

ax 2

btit

with the same domain as in A. Let go;' be an eigenfunction corresponding to A i .
Multiplying appropriate constants, we can take go7 satisfying

((,071, (p.i2) —
where dkr stands for the Kronecker delta.

It is easily show n that koil 7=1 is a complete basis of H. Define

Più) :=  (0 , 0))H(Pi ( 4 0 ) : =  Ke , ( 0 ) „  ,

, w i= Q i(0

Thus w can be expanded by

0 )=
j= 1 j= 1

We also define the operator — from H to H by

CO

co =
j= 2

We seek a  locally invariant manifold with codimension one such that

0)1= 0 (0)).

Thus w e split (2.3) into

con= — 210)1+P IF  (0)1+ 0 ,
(2.8)

ci3t = —Acii+P(coi 4- .

Theorem 2 .2 . Assume 21<222. Then there exists a C 2
- function 0  from  (I

—  P i ) D (A) into P IP  (A) such that the graph of 0 is a locally invariant manifold
to (2.8) near

(2 . 9) 0= vf+ 0 (1163111) , (cis) =Qi•(co)
and



(I) (0)) = Co 2go,+
a (eo,+, eo,+)tv.4(0) 
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(2.10)

where

CO

+C oE fa (ek ,+ , ek ,-1 -)W f-r(k )W j+ (k )  ±   a (ek ,+ , ek ,-)tv i.(k )w ;_(k ) 
21.2k,+— ,cto,- jak ,++ go,-

k=1
±  a (ek,_, ek,+)w;_(k)w;+(k)  ±  a (ek,-, ek,-)W :1-(k )W i-(k ) 

PO,- 214,- — go,-

(2.11)c r ( ( 1 ) ,  (
2

) ) -- vto*,_1(2+bri2) +11,-)71(c2+ 712)
111 P2

W e note  th a t  th e  denominators o f  th e  te rm s in  th e  r ig h t h an d  s id e  of
(2.10) are positive, because

/1)1+2), — /11 222 - 21>0.

Rem ark. The principal part of the separatrix of (1.5) is given by

et_ • (u— TT, v  IT) = a (eo,+, e0 ,+ ) let+ .21itt i v 0 7 0  
}
 2  +0 (let- • t (Pt — VT, V — 01 2 )

■ -near ku, y) — - \
V ) .

The locally invariant manifold in Theorem  2.2  is a  separa trix  in  the  fol-
lowing sense.

Theorem 2 .3 .  For suf f iciently  sm all E> 0 , there ex ists a positiv e constant ri
such taht

(i)

Q l { (

u (  ,  0 )
v (  , 0) — 17 )

( u  (  •  , ( u ( •  ,I3) 102
,i) (  • , o).--,7))) IRv( • )IIx'

then t (u (x, t), y  (x, t)) converges to  (a, 0) as t — >0°°,

(ii) if

Q 1 1 (v (. )
I — P1)( v140 °  ) ) ) ) } <  E ( U

v : 0 0))  T I
VT

) )02x'
( • , 0)

then (u (x , t), v(x, t)) converges to t (0 ,1 ) as t ,

where (u (x , t), v(x, t)) is a solution to  (1 .3 )  satisfying

( u ( . 0)0)

'i)( • , 0)

Proofs of Theorem s 2.2 and 2 .3  are  stated in §4.
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3 .  Applications

In this section we apply Theorems 2.2 and 2.3 to some special cases and
we give the observation of (2.10). Before presenting the applications, we give
the following elementary lemma:

Lemma 3.1 . The following hold:

v _    2j,

f o
(CiCk, co= ro j=k ,

0  otherwise.

This lemma can be easily shown by (2.4) so that the proof is omitted.

3.1. Separatrices for the same diffusion coefficients. In this susb-
section we assume d 1. Then we have

(3 .1 ) Pic,±—Crk+110,±, ek,±=eo,±
by th e  definition of ftk,± and ek,±. F o r simplicity, we write ,a0,±, eo,±
vo ,± ) ,  and e t ± =t ( t t ,  vcT,± )  by /./±, e± =t (u ± , v ± ) ,  and e t -=` (u t,  v ±*), respec-
tively. Especially we can take

a

F ig. 3  Separatrix and vectors e± .



(3.2)

where

u± = 1 ,  v ± = 1 1 ± — u  =  c v{ bù 11±—V

4=- 1 3  11 ± - 7 4   —  b u
vtI=B ± , v±—p± — p±

CV 11±—V
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1  _ 1 +  (g± — i ) 2  > 0
,3± bcuf)

because  (0, 1) cannot be eigenvectors (see Fig. 3). W e can check

(3.3) e t  e± --= 1, eT • e±  =0.

Similarly in §2 we set

y ==e_ • co, z=e+ • co,
y k =  (y , CO, z k =  (z, CO, g=y— yo.

W e prepare the following lemma:

Lemma 3.2.
*  2 *  2

(i) a (e+ , e+ )--=-11+ ( u - u +  +V - +) f a  -  b V  t t + 
=P+P-tit bit-V

(ii) a (e+ , e_) +a(e_, e + ) = (tt + -i-tt_)( 14 1 4 - u +

+  

v I 'v - 1 4 )
 V

= (p + + 1 1  ) Bil±bV  —  
bftf)
* 2 * 2

a ( e - , (14
V -V -

-
V

Proo f . W e prove  ( i )  only. W e obtain the  first equality  o f  (i), substitut-
ing u±  and 'pi t  in to  (2.11). For the last equality o f  (i), by definition, we have

u!u 2+ + v!v 2+  = B_  ± /3_ (ii_—ii) (u+ — 4) 2  

Û f) Û b2cù2f)2

= 13-  ±  )3- (tt+ii- —  (g++ tc-)f t+f t 2 ) (11-F—  ft) 
'a b2cii2f)2

o  'a +bf)— ,u+
A u - b f t f ) .

The others can  be  p roved  sim ila rly  by  (2.11) a n d  (3.2).

This lemma and Theorem  2.2 im ply the following.

Theorem 3 .3 .  Assume ,t.t_ >  — 20-1 and d = 1 . The separatrix fo r  (1.3) is
represented by the graph of the function 0  satisfy ing 0 =  Oe_Co + 0 (11̀ z)
and



e +=(
u+)

c - 1v+ \b - 1  1

/ \

*_e+ — (uT (b —1)c 
 11 \

2bc — b— cv \c.

550 Hirokazu Ninomiya

(3.4)

*  2 *  2 2 *  2 *  2
Z 

) _(14-1S—   ±V -11— )E  cOg-y k  
171

±  (U-14+  ± V
) E

—11+ C011+4 
2 a k +  20-k+211,--

k=1 k=0
co

 v_*v_v+)E o(ti_d-,± ),k z k  - r-- r
20-k+/-t+

k=1

Remark. T h e  p rin c ip a l p a rt o f  th e  separatrix y  = h (u )  f o r  (1 .5 ) is
given by

(3 • 5) yC I:V +   ( 1 4 ! 14 2+  + 1 L -*142+  )  2 C O [1 -1 - bV 11 + 2zo211+
 — 12_ 'a 2P+ — tt— bn'f)

by m eans o f Lemma 3 .2  ( i)  . In  order to  know  the  sign  o f  th e  last te rm  of
(3.5), we substitute ft -Fbf) into the left hand side o f  (2.6):

(1-s - kbf)) 2 ( f t (ù+b) +ùi (1—  bc) b i  L  (c - 1)tit + (b — 1)11
=  (a - 1) b.

This implies that

h" (u) < 0  near u =tit,

if and only if a> 1  (see [7]).

In  particular, w e consider the case a =d  =  1. In  th is  case we can easily
calculate the  eigenvalues and the eigenvectors. T he eigenvalues of the matrix
Mo are

(3.6) ( b -1 ) (c 1)1) 
,u- = bc — 1 ' 1 1 + —

The corresponding eigenvectors of Mo and  tMo are

/  1e_= =( 14— ) c, \
V-

(

\ --b

e* 14!)
b (c — 1) 

2bc —  b— c

(3.7)

Recall

b(c - 1) b (6 - 1) (b — 1)c b (6 - 1 ) V, z —2bc — b— cu 2 b c — b—c  ' 2bc — b— c
u +  

2bc — b— cu .

Substituting the above into Theorem 3.3, we get the following corollary:
Corollary 3 .4 .  If

(b —1) (c 1)  
< 2

(7r
)

2

a n d  a = d = 1,bc — 1
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then 0 is given by

2 . ) b  —  cy  b  c  2  y  y  k Z k  (3 . 8) b  `' ° L2ak - Fti_ 6 - 1  '''L 2 o - k ± p ± •
k=1 k=1

W e address the question: W hich of the two species becomes extinct when the
initial distributions for them are given in Fig. 1 ? Let us consider the case a =
1, b= 2, and c = 2 to  pay attention only to the influence of the initial states on
the asymptotic states. In this case we note that

1 =  u —vu  --I- v 1y 2  '  z —  2 3'

Then we have

vi
u  v k

2 2
(3 . 9) (I) ( 6 ) 2  L 2cik k +i

k=1

by this corollary where uk= (u, Ck) and vk= (v, CO. Since

U o-V O , U k -  0 0 2 ,  v i* 0  and v k = 0  ( k . 2)

at the initial data, we have

Q1iw1 — gr((5)1 = -Ç I
2  2 a 1 +1

Theorem 2 .3  im plies that th e  species u  w ins ou t v, nam ely, that th e  species
w hich distributes uniform ly near the  equilibrium point 77) survives and
th e  other becom es extinct (see F ig . 2 ). Consider the in itia l d istributions in
Fig. 4. By the effect of the diffusion, u  easily become spatial homogeneous. So
u dominates (see Fig. 5).

Next we present two different initial data where the images of them in  R 2

coincide together and  each solution converges to  the  different equilibrium. In
other word, it is impossible to  select equilibria to which solutions converge, by
means of the inform ation of the (u, v) plane of initial data. If we specify the
initial data such that

-( 141 (x ,  0 ) )
0) + ) =

U - s 2
p

7IX 
V1 ( X ,  0) V fl + S  C O S r

and

U - S2 Pu2 (x, 0) )
--= co2 (x, 0) + ) =

\ v2 (x, 0) V-Fs cos
2 r x ) ,
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u

0.6

0.4 . . .. . .. . . . . . . ... . . . .. . . . . . . . . .. . . . . . . . . . .. . . . ... . .

0.2

1

Fig. 4  Example of initial data.

Fig. 5  The solution t (u (x, t), y  (x , t)) w ith the initial data as in Fig.4 in the case
a= 1 , b= c= 2 , d=1 and L=1.

where

2o-2

1

+ 1  
< 2 p <  

2(71

1

+ 1

for sufficiently small s> 0, then the im age of the initial data t( x ,  O ) ,( x ,
0 ))  coincides with that of t (U 2 (x, O), y 2 (x , 0)). However, since

w(6 )-1)1' 1 " 2t9+ 20.11+1 )
5 2

'

QI
 1w

= . 1 . [ 2 t9 +  2o-
2
1+1 ) s2 '

the former solution t (Tt', y') converges to 1 (a, O), while the latter t  ( u 2 ,  y 2 )  con-

0.8

0.6

0.4

0.2

0 0

. . . . . . . . . . . . . . . . . . . .
• • • •  . . . . . . . . . . . .  • •  . . .

. . . . . . . . .
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verges t o  (0, 1) by Corollary 3.4 and Theorem 2.3.

3 .2 . Dependency on diffusion coefficients. I n  this subsection, w e
focus ourselves o n  th e  phenomena which a re  exhibited by th e  difference be-
tw een  tw o  diffusion coefficients. H ence w e denote  0 ,  W, 0, (pi a n d  Qj. in
Theorem 2.2 by  0 a , d , o a , d ,  ( d  a n d  Q .,aï respectively.

First we consider the case where a and d  are close to  1. Put a=1 -1- ci, d =
1 +1. Note tha t the  function Irgiven b y  (3.4) converges t o  (3.8) as a  tends
to 1. Since eo ,_ is independent of d, we also note that

— n a ,1
%.•11 — '.1 1  •

Then we have the following proposition.

Proposition 3 .5 . Set

ad id

z)

 1 1

▪

 ( 2 (b— c)(c - 1 )   ± c (b±c —2)  )( ±  y  7k - k  

2bc c " a k 2o - k - Fg_ 2 c rk -F it+  )\ a rk + t i_  2cfk+tt+
k=1

CO

± Cob (1) c 2) (C —1) 1 1 V ak Y k Z k  4k 

(2bc — b — c) (b — 1) '
1
'
1 LJ 2o-k+11+(20-k+ g +

▪ 2

crk+11+
—

ke-)
.

k=1

The proof is stated in the successive section.
In particular, if we put a =  1, b c  =  2 and u0=v0=1/3, then we obtain

2 _ „ ,2

01 1 - 1 ( E  144 k 
• — 2 2ch +1

k=1

(3.11)

Since

CO

+ d-LIX (uk — vk) 2   ±  2 (u2
k (uk 4 - v0 2 .  0 (dlletilli).4 2o-

k -F1 1 2ak-F1
k=1 LAfrk 3 2 o - k - F -

7

3

2
ak

▪

 Y +27-
3 >

X2 2XY 
,.., 1 

+  
2o-k+1L.cfk 3

it turns out that

_CO a k   6 4 k - 1 1 0 2   ±   2 (u2
k  ±   (uk -1- vic) 2 >  0X .

4  2 o -
k +1 ,.., 1  2 c r k - F 1  7

k=1 L,Crk 3 4 . . c r k 3

Then

(3.10)
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T h is  im plies that if the diffusion coefficient of one species decreases in the
case where a-= 1 and d  is  close to  1, then the species tends to become extinct.

Iida e t  a t  [7 ] show s the  diffusion - induced extinction in the case of the
same diffusion coefficients, namely, th e  species y  can becom e extinct even if
the species y  is superior to  u everywhere at t = 0, i. e., y  (x, 0) >h  (u (x, 0)).
T h is  phenomenon occurs by th e  effect of d iffusion and the concavity of the
separatrix. If the diffusion coefficients are different, it may occurs without the
concavity. Actually, pick the initial data

(x , 0)
(3.12)

)=
(x, 0)

(x, 0) ± ( 14( 1;t ± : +
C ° ±

s c i
s C l )

for sufficiently small s where a=1, b=c=2, d=1+ c7 and

2cTs2 ori Co 0<p<
(2a1+1) 3

Since

v = h (u) u

in this case, we have

(x, 0) — h (u (x, 0)) = —pCo < 0  for each x .

B y (3.11), however, we have

Qij 1(01(0) V j — ed ( ,
cra1s20 +o (s) <0,2 (2a1 +1) (2a i

-q )

from which it follows that the solution w ith the  in itia l da ta  (3.12) converges
t o  (0, 1). Ecologically speaking, the species u becomes extinct, nevertheless u
is superior to y everywhere at the initial state. Thus the diffusion - induced ex-
tinction can occur even in the case of the same growth ra te s  (see Figs. 6, 7).

It is na tura l tha t the  species of which the growth ra te  decreases becomes
extinct. As seen in  (3.11), the species tends to win out, if its diffusion rate in-
creases.

Let us consider the  relationship locally near (a, d) =  (1, 1) when the two
species a re  equally balanced. A s neutral initial data, w e pick the initial data
below fo r  (1 .3) on the separatrix o f (1.5):

Lemma 3 .6 .  There exists initial data t (u a  (x, 0), ya (x, 0)) = coa (x, 0)
placed on the separatrix f o r (1.5) such that

(3.13)
(u a  (x , o )  )

-= 
(14 

)+sCieo,++ ras2 0 0,C e ' C2ie0±±o(s2)-

\ va (x ,0)

where
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20

Fig. 6  Example of solution w ith initial data

t (u(x, 0), v (x, 0)) = 1(a---1- 0.0035±0.1cos7, 1T+0.1cos n-
L
x )

in the case a=1, h=c=2, d= 0.01, and L 1.

Fig. 7  Example of solution w ith initial data

(u (x, 0), v (x, 0) ) = O. 0035+0 .1cos  + 0.1cos 2
L
7 rx )

in the case a = 1, b=c= 2, d= 0.01, and L = 1. The image of initial distribution in
R2 coincides w ith that of Fig.6. However, each solution converges to  the  different
equilibrium.

a ,   a (eo ,+ , eo ,+ )  

Proof. Recall that th e  separatrix f o r  (1 .5 )  is  g iv e n  n e a r  (u , f i) b y  the
graph:

(3.14) iff,e'cr,_ • co= r a (i/Eet+ • co) 2 +0 ( I et,+  •  0 ) 12 ) .

Substitution of

co= sCl eo + 0 (s 2 )

in to  (3 .14) yields

eg ,̀_ • w= i/EraUs2 ± (s 2 )

Lemma 3 .1  immediately implies (3.13).
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Substitute the initial data (3 .13) in to  (2.10), j .  e.,

0 4_ oa,d (65-a) —0 .

From the condition that the leading term of coi
d ( C i i a )  

vanishes, we obtain
th e  relationship between a  a n d  d ,  w hich  is  g iven  by  th e  following implicit
form:

na,d { co lt oa,d
urn _ T ex oa,d (c 1 e 0 ,+ ) _ 0.

2

More precisely,

a (e o+ , eo +) = a (e i,+ , e t,+ ) (0 +  • eo,+) 2 +   a(e i,_ , (el,- • e 0,+) 2 

2 14,-F 2/1-
(3.15) (a (e i,_ , e i,+ )+ a (e i,+ , e 1 ,- ) )  (0 -  •  eo,+) (e-F  • eo,± ) 

1 i,++1.11,- - 14,-

If w e take  a=  1 and d = 1, then this equation holds. Actually, it is shown by
(3 .1 ), (3 .3 ) and a (e+ , e+ ) = 0, if a =d =1. W e want to seek the function a (d)
satisfying (3 .15) and a (1) =1, if it exists.

It seem s that (3 .15) is complicated. First we deal with the case with a=1
+c-r and d =1 + Er where -d-  and cT are  sufficiently small. T he implicit function
theorem implies that

19Sba 'd ( leo,+) 
aad d  

(1 )
:

=  a (r a  O a 'd ( le0,-F)) 
ôa

(3.16)

Thus

(a,d)=(1,1)

T a
2 /4 — p _  a  20-1C O tt+13- (tit + bti)—  p+) oa,l(c i e 0 ,± ) _  T a 2(71 + 2 g +

(2cr1+ 2 +  —tc_) (211+—g_)bù i)

b y  (3 .1 ) and  (3 .3 ). Since

at t+ 1  _  ( b - 1 ) c 
ad 2bc — b — c

b y  (2 .6 ), we obtain

a (fs +bf) — g) + 
(u+b 4)1a=1=0,

Substituting (3 .10) in to  (3 .16), we get

(3bc —  b — c — 1) (2bc —  b — c) (b + c — 2)  —(3 .17) a (1 +4 =1 T+ o (id1).2 (bc —  1) 3 (20- ,+1)

b (c —1)
a=1 2bc —  b — c

W e present the relationship computed numerically. In Fig. 8, the nullcline



competition-diffusion equations 557

a
1.75

1.5

1.25

1

0.75

0.5

0.25

0
0 0.5 1 1.5 2

d
Fig. 8  Plot of the solution a ( d )  o f  (3 .15) in the case b=c=2 and L=1.

o f  (3.15) has been plotted in the case of b = c = 2. The relation (3.17) indi-
cates the graph near a=  1.

4 .  Proof

W e assume 21 <222<0 in th is  section, because w e can prove easier for
th e  c a se  /12 . O.

First we give the proof of Theorem 2.2.

Proof of Theorem 2.2. W e m ake a modification of the system  (2 .3 ) out-
side certain neighborhood near w = O. Consider the following modified system
instead of (2.3):

(4.1) coi= —Aw-Ff (w)

where x  is  a smooth function satisfying

X (x) = 110

and

f ( w )  , x (lcor il ) x (116711x)F  (0 )).
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Recall that

(  U 0 , -  )
CO1

=
W 1 T 1

=
W I

and hence that

IwiI =  Col e0,— I IW1I = CoV74_ +vg,— IW1I.

Note that there exists a positive constant K1 >1 satisfying

II (1— P1)e - ( 1 - P 1 ) A ìix -Kie
- ( 2 2 - K 1 r ) 1  

for t O

(4.2) IP if (co l ) — P if (w 2 ) I <K ir (I col — wild - 061 — 6- 2 lx)I
11(1 — P1) f((.01) — (I — P i)  f(w 2) Ilx Kir (1(.01 —  coil ± II61 —  62 11x) .

for any 0)
1 , 0 ) 2  E  X. Especially,

J IPif (w) I 1(11'(1(.011 ± lia r )  ,(4.3)
1 II (1— Pi) f(w ) Ix --Kir (I coil +116 3 11x) .

T he asymptotic behaviors of solutions to this system  coincides w ith those of
solutions to  (2.3) in the neighborhood Dr of origin given by

Dr =  ko=w1+63EXI 1(-011-r, 11611x ‹ r  .

The existence of such a local invariant m anifold t o  (4 .1 ) follows from stan-
dard methods of the construction of invariant manifolds, the Lyapunov-Perron
method (see [5], or [2]). T hat is, there  is a  C2 -function 0  from  (I— POD  (A)
(1Br to PiD  (A) whose graph is locally invariant under the  semiflow defined
b y  (4 .1) where

B r=  16SE (I—Pi)xl Ilalx<r}

and r (> 0) is sufficiently sm all. It suffices to show  the properties o f  0 . Re-
view a  cone property, which will be useful in  several contexts a s  well as the
construction.of the manifold.

Lemma 4.1. If X , Y are positive continuous functions satisfying

(4.4)
{ X (t+ v) e'-' (t+ r) X  (t) e'T'' + Ki r f  o IX (t + s) + Y (t + s) e'-'-' ('+ s ) ds,

,

Y (t) eZt < Y (0) + Kir f t IX (s) + Y (s)  »d s ,o

for 0 < t ± r< t ,  then

(i) Y  (t) < Y  (0) e- 
( Z - K . , ( 1 + , v , ) , u

 provided X  (s) t c 2 Y  (s) for 0<s <t;
(Z+,,a+K 3)r)t(11) X (t) ( 0 ) e - provided Y  (s) <K 3 X  (s) for 0 <s < t,

where K i (i = 1, 2, 3) are positive constants. Moreover, if
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— /Ti ( 2  ±  ±  ) r > 0 ,
K2

then the region F2 = 1 (X , Y ) E  R 2 IO ic2 Y  < X  is positively invariant.

T his lemma follows from Gronwall's inequality. See [2, Lemmas 2.3-2.5].
This property is called a cone property.

By the variation - of-constants formula, we have

1(01(1-z ) l e " " + r )

1(01(t)le'l l t +Kir f ocicol(t+s)1+11(c0( , t +s)iix )e(t+s)ds,

6 ,), = e - A t et--) ( . 0 ) - F f  e - A ( t - S)f (CO 1, 63) ds,

for a solution (.01- keii to  (4.1). Set

/71= 2 i ,  ,72 = /12 — X(t) =10)1 (t)1, (t) = sup e:1-11e- A seti (
st:1

Note that

(4 . 6) 1105 ( • , t) Il Y  ( t ) K1la ( • , t)11x .

It is easily seen from  (4.5) th a t  (X (t ), Y (t )) satisfies (4.4) with Ki=-Ki, and
K2=-1c3 =1. Thus we get

10(0-3)111(611x

(4.5)

such that

(4.7)

Hence, Lemma 4.1 (i)

(4.8)

where

22—  — Kir - 4Kir>0

implies

1105 ( , t) 11x Ki1103 ( • , o)

= À2 — 210',

if û i  (t) ( • , t) is  a solution on the manifold, i. e., w  (t) = (63 ( ' , t ) ) .

Proposition 4 . 2 .  A ssume that 4 is a C2 -function f rom  (I —  P i ) D (A) nB,
to PiD (A) such that

G ( ; . = ot A 6 - 4- (I— P1) f +,11-6—Pif(-4+e5)

with

IG(6- ; 4D--)1 c116-)K
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in  Br  for some p satisfying p>1 and 21<p2 2 . Then there exists a positive constant

k1(ai) —  (63) I 016111;
in  ce- i B r  with sufficiently small r>0. If

IG (05 ;I  C (116311 +  ( d - 1 )  '116 0 )
as d is close to 1 where p i  > 0, p2_p, then

10 (6) — (6)) 1 (1164+ (d — 1) P'11611V)
Proof. This proposition  can  b e  p ro v ed  b y  the argum ent s im ila r to  the

center manifold theory in [3], [5] a n d  [13] except fo r the  infinite-dimensional
invariant manifold. So, we give the sketch of the proof of the  la tter part only.
Let ai ( , t )  be the solution of

63t = 6 3 -4 (0 (6 i)+ 6 ).

Suppose th a t  -6  is  as in the lemma, and is extended to (I — PO X subject to the
same condition in (/ — PO X, if necessary, by multiplying the cut - off function.
Set (01 (t) = (  •  ,  t ) )  — (ái( • , t)) , which satisfies

wi t = — 210_)1+ P (f (0+ —  f ( + CI))) + ("(0+ (ii) —i'( -0+ —G (ai; .w

Thus, we obtain

w i (t +r) le" ± t )

Iw (t) f  ° IKir (1 + 2) loh (t + s)1+ c116A+ c (d 1) 'IIaiIII ei l ( t + s ) dS

where

a-0 (a-)  _21.K2= sup w063 I

Substitution of (4 .8) into the above inequlity yields

0
X  (t+ X  (t) +K i r f  (1 ±K 2 )X (t+s)ds

+
(0) ilk+ C K V (d  1) P i ll6 (0)

e
-p2(t+r)

1)2

where

X (t) = I col (t) 1e2 1 t , 2)2 = min (p (X2 — 21(i 21, P2 ( -2-2- 2-Ki — Ai) .

Gronwall's inequality implies that

(t F z-) X  ( t )  e - Klr (1 ± K 2 )K  3(1163 (0)K + (d — 1)116 (0)0V ) cv2(t+r)
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where K3 is  a positive constant independent of r. Since

X (t) r +2)t _ > 0  as t

we have

10 (6 (0) ) i)(05  (0 ) ) = - X (0) K3 (0) K+ (d — 1) 11105 (0 ) II 21

taking r=  —t and  letting t —> 0 0  , where r is chosen such that

21  K1(1 - 1-  K2) r < 0 , 1)2 K  (1  d- K2) r > 0,

and  (4.7) hold.

Since

G(6; 0) = — Pif(6) = 0 (116113c) ,

we have

(4.9) 10 (éi) 1 .1(4116- 113,, ,
using Proposition 4.2. Next we construct the approximate function gr of 0. The
principal part of G  (63 ; =0 is

agr(4.10) -  1  A6+ F (6)F + /l i g r  P  (6) =0.au)

T h is  a rg u m en t is  s lig h tly  d if fe re n t f ro m  t h e  th e o ry  o f  c e n te r  manifolds.
Actually, in  constructing (finite - dimensional) center manifolds, we can easily
seek gr as the  so lu tion  of (4.10), substituting the  formal expansion for ?r. In
our case, however, it seems to be difficult to seek it because qf maps from the
infinite-dimensional space. We do it  a s  follows. W e can construct the solution
o f  (4.10) by a  method of characteristics. Namely, we solve the invariant man-
ifold to the system

wit = — 21w1+QIF  (63) ,

[wit= (j 2).
W e substitute solutions of the  la tter equations into the  form er equation and
we get

= 1 1 1 W 1 Q EW i (0) e
\i=z

Using the variation - of - constants formula and letting t — °° yield

(4.12)w 1  ( 0 )  =  —  f  e ' s Q  E w ,  (0)e-"s

(4.11)

Recall that
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Q1F (0.)) = < u (u±bv), Co> —vt._<v (cu+v ) , Co>
where

(-0
=

(  )

—
E lw j,- (k ) ) k} E x .

V k,+
E

(VI k Uk,-

k=0

We have
(u± bv), Co)

<=-- E (w.,+,..k,+d-w.,_(k)vk,_)ckE iw„,(,) (.,,++bv,,+) ±w,_(,)(u,,_+bvi,_) c.,, co
k=0 1=0

= E iwi*(,)(uk,++byk,+) ±w.„(k) (uk,_ bv„,_) I co,
k=0

using Lemma 3.1. B y (2.11),

Q iF  (6 ) =  Coa eo,+)wi+mtvi.(o)
CO

ECo la (ek ,+, ek ,-F)w ,,-(k )w i,(k ) +a (ek , + , ek_)W jA -(k)W i-(k)

k=1
± a (e k ,_ ,  e k ,+)W i-(1 0 1 ,0 +(k )± a(e k ,- , e k ,- )w .i- (o w i- (k )  •

Substitution of th is in to  (4.12) yields (2.10). Let 5>0 be so small that

(4.13) (2+5) /12 — /3.1 > 0 .

Since

G (05 ; =0 (1101X+ 5 )

where Wis given by (2.10), Proposition 4.2 implies

0= T+ 0 (116iii 5 )
Next we prepare two lemmas to prove Theorem 2.3.

Lemma 4 .3 .  There exists a positive constant R >1 independent of  r such
that the solution co (t) ± t (ii,17) to (1.3) satisfying

ico (0) > R1163 ( , 0)11x

converges to (a, 0) .

Proof. There exists a positive constant K5 such that

  

for (  )E X .sup (Ill (X) I ±  IV  (X ) I) . -K5

   

Recall that
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uo,_  >0  a n d  vo,_

If we take

R— 2K5 m a x  f  1 1 
luo,-' vo,-

we have

wi (0) Couo,_ >RCouo,-II6 ( • , 0) 2 sup I/7 (x , 0) I,

(0) Covo,- ( • , 0) ilx;2 s u p
 I x , 0) I

where

IT(x,
w (x, t) =wi (t) co e.,_ (x, t) =wi (() o e ° , - +

F(x, ).

Namely,

3 1
(0) Co uo,- (0) Co uo,_+ii(x, 0) wi (0) Co uo,-,

3 1
(0) Co vo,- (0) Co vo,- - FT/7(x, 0) W1 (0) Co vo,-,

Let (T), (t) (IT (i =1, 2) be a spatial homogeneous solution to (1.5) with

(T)1 (0) =- Wi (0) Coeo,-, (0) =- (o) Coeo,-.

Comparing co (x, t) - P(vi, 77) with (a (t) 17) (i = 1, 2), we can show that
(x, t) (vi, IT) converges to (a, o).

Lemma 4 .4 . Set

X (t)Q  w i  (t) (61( • , t ) )  , Y  (t) = sup eL 3 11 e- A set3 ( • ,

for a solution co i +cii to  (4 .1) . If

+ 2R ± 2
1
R )r> 0,

then, the region

FR=  (X ,  Y) E R2I 0 2R Y<X[

is positively invariant where

K6
= 2Ki max le0 ,

1 1co, 1, leo,-IC01.

Moreover, if  (4.13) h o ld s  and  Qi w i  (t1) — (63 ( ,  t1 )} ( • , for
some t 1 > 0, then
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Q1 1w i ( t) — 0 (63 ( • , t ) )   >K -(z-Fa)Qi iwi (0) — 0 (63 ( • , 0)) } 
1163( • , t) Ir a—  11 1 6 3  (  •  ,  0 ) 1 1 .5 ( ±5

for 0 . t . t i  and sufficiently small r> O.

Proof. W e can  assume tha t X  (t) is  positive. The following inequalities
are easily obtained:

X ( t +  1-) d' ( t + v) X  (t)e -L`± K 6r J . ° x (t+ s )eL (t±s .)d s ,{

t

Y (t) e t Y (0 ) -FK6r
 f t

 IX (s) ± Y (s) e d s .

T h e  f ir s t  p a r t  o f  this lem m a follow s from  th e  above inequalities and  Gron-
wall's inequality (see Lemma 4.1). W e prove the  la tte r pa rt. By assumption,
X(t) 2RY(t) holds for 0 . ...t__<ti . Hence, we have

I (th (t) — o (ai(,, I  10), (0) — (co (', 0)) le _ +K1, 1163 (*, , 0) lixe- v 't

for where

2)3 -  .

1
2 K 6  (1  +2R)r.

Since

(2+5) 1)3 - -A-.
1

— K6r>0

for sufficently small r>0, we obtain

10)1 (t) - (  •  ,  t ) )   > ( 0 )  - (â ( ,  0 ) )  }  
116i ( • , - ( • , 0) Ili+

if Q1 16) 1 (0) - 0 (6 i(  • , 0 f l 1 O .

Proof of Theorem 2.3. Let cui (t) er.) (x , t)  be  a solution t o  (4.1) satis-
fying the assumptions of Theorem 2.3 (i). If there exists a positive time t2>0
such that

Qi 10)1(t2) ((-6 ( • , t2)) I --2R1163( ' , t2) L,( t )  + 6 3 (  •  ,  t) E D ,  for 0  t

then the solution t (a, fi) +0) 1 (0 +63(x, t )  converges t o  (a, 0) by Lemma 4.3.
So, we suppose that

Qi (t) — (63( • , t))} 2R1163 ( • , Ilx

as long as 6h (t) +63( • , t) E  Dr . By Lemma 4.4, we have

Q1 Iw (t )  — ø(á( ,  t ) )  I  >  Qi Iw (0) — ø(ô3( • , O) )I  >
1163 ( , Ili+6— ( • , o) I3 4+61163( • , 0) Ili

We pick n. satisfying

r Eleo,-ICo( r \2+3
Kirt (K7r1),

(4.14)

>2r,
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where K 7  ( > 1 )  is  a positive constant such that

116311x 1(711(011x for wEX.
If 11w( • , 0)1Ix-r1 and 11e6( , 011x=r/ (leo, - 1C0R) at some positive time t ,  then

I (6)1= leo,-1CoQi (63) > sleo,-1W r  \2+6 > 2 r .

(K7ri ) ■Kileo,-1CoR

This implies that

Icoil > r  o r  10(C6)1>r.

The la tter inequality contradicts (4.9) if r<1/K4. The form er inequality also
contradicts O) e  Dr . Since 1163 ( • , 0) 1Ly (1e0,-1C0R) , 116 ( • , 11,,__11 (leo,_1
Col? ) as long as coi  (t) +6; ( • , t) E  Dr. The first equation o f  (4.14) a n d  (4.9)
imply that there exists t3 >0 satisfying 104(1-3)1=r. Thus

R116 ( • , t3) leo,rico= ire (
1
),

( 1 o
lQicoi (t3) .

Using Lemma 4.3, we complete the proof of Therem 2.3 (i). Theorem 2.3 (ii)
can be shown similarly.

Hereafter we consider the case with d close to  1. Put

d=1 - FCT.

The function 0 "  g iv en  b y  (2.10) converges t o  (3.4) a s  d tends to  1. Then
we have

Proposition 4 .5 .  The following holds:

(4.15) T a 'l  — cTEa +0 (116 illi+ 5 4 - c71+4 116 )- 11i)

where Wa 'l  = Wa 'd id-i and

Ea =- (A"  EI(2.!tr i (k) - E-uTr2 (k)) a k -

„

- " k

2 ak +

 2

k=1

(2UVt+ (k) ( u s
ltu+  - W U -) T2 (le) ± 214-U- T3 (k)) 20.0.kkY+kfuk 

2
ak1S+Zk (.07.2 (k) + 2 4-T3 (0 ) a r k  ± 2t1 + - 4a }

Ti (0 ,  
( „ * u 2 v*v2 Co_

77

T2 (k) = ( 14-14

 u

-14+ ± (11- ± g + )  

/7 2ak+11+

T3 (k) =  ( 14 !142+ +V *112+) 4 t1 +  
1-1 2crk - F2g+ — tt-•

Proof. The system  (2.3) is rew ritten as

CO
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Yi = — P -Y i+  (e1R, Co),
Y t=yxx —  /14+ e!F—  <e!F, Co> +cli,!u x,x ,
z t = zx x

—  1.1+ z +eTF+cTu Tux s .

T hus T.  a'1 ± -d - satisfies
a g r a,i+i _ agra,i+a

a ., (y.rs 114' + iTu l'ux x ) +
Oz

 ( z x s  —1142+ cTu'+vt.)

= — tt_W "3 - '±  (eF (63), Co )  .

Substituting (4.15) into the above equation and taking the principal part yield
as  a aE a aw a,1  * aV ra,1
ail (5 -xx f i -y ) a z ( z x x  i i + z )  a i l . v t_ u x x  a z  itT_//txx= —g—Ea.

W e use  the  same argum ent as in  the proof of Theorem 2.2 in  order to solve
the  above equation. That is, one can find Ea as an invariant m anifold of the
system

(4.16)

Recall that

Iy i t  — - - tt _y 1+ a y-  u!ux x + a graz"  u : uxx ,
aw a ,

Yt="y- xx — i14 ,

Zt =  Zxx —  P+Z •

W a 'l =  E (ri (0 0 - Fr2(k)ykz0+Er3(k)zi
k=1 k =0

b y  (3.4). Substitute
y k —  e – (ak +a-) ty  k (0) , zk (t) = z k (0)

into th e  first equation o f  (4.16) and  integrate over [0, cc). Then w e obtain
Ea. Proposition 4.2 implies

I o (wa, i—cTEa)1 c(11611i+5 +cP+5 116illi).
Since V . "  is b ilinear in 6, we can show

ad L =1-
Proof of P roposition 3.5. Since a=d =1, we have

77- 321 ((( kkk ))) ==—  60(
 ( 2

—
b (71:: ±)±1:12C-0.-° )2k

r, a—
a yra,d
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b y  (3.8). Substituting  y (k ) (i, = 1, 2, 3) into Ea, w e obtain (3.10).
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