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Construction of the Green function on
Riemannian manifold using harmonic coordinates

By

Tsutomu HIROSHIMA

O. Introduction

L e t (M , g )  be a compact Riemannian manifold of dimension n  3  without
boundary. We denote the Levi-Civita Connection o f  (M , g )  b y  V , and the La-
place operator by d. In  th is  paper, w e w ill prove an  LP - estim ate for the  La-
place operator:

II V2ullp clIdullp.
Naturally, the constant C depends on geometric da ta  o f (M , g) . The main pur-
pose of th is paper is to  estim ate  the constant C in  term s of the  diameter, the
injectivity radius, and the lower bound of the Ricci tensor.

For the purpose of this, we construct the Green function using a  paramet-
rix. I n  [2, 3], A ubin used th e  Riemannian distance function d (x, y )  to con-
struct a  parametrix of the Green function. However, the second derivatives of
the distance function cannot be estimated in  term s of the Ricci tensor. In fact,
we need a  bound of Riemann curvature tensor in  order to  yeild an estimate of
Ad (x, y ) .  (Here the Laplace operator d ac ts on  d (x, y )  w ith  respect to  the
argument y.) Therefore we construct a  parametrix utilizing the harmonic coor-
dinate o f  [1 ]. In  the  course  o f th is w e estim ate  the  G reen  function a n d  its
first derivatives near th e  singularity in Section 6, and, using the  estimate of
the second derivative of the parametrix, w e show the Calderon-Zygmund type
inequalities in Section 6, from  which we can easily obtain an  Lb -estim ate for
the Laplace operator.

W e denote the diam eter by D, the  injectivity rad ius by io, the volume by
V , and the R icci tensor by Ric. W e fix  a  non - negative constant A  fo r which
the bound Ric — (n 1)Ag is satisfied.

For x  G  M , the Green function Gx is a unique smooth functions on M\ I x }
that satisfies AGs = ax —  V - 1  as d istribu tions and  fmGxdp= 0, where öi is the
Dirac function at x  and dg is  the Riemannian volume form.
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1. Preliminaries

In th is  section we prepare some analytic tools. For p 1 and 0 < a 1,
we consider the following norms for functions on an Euclidean ball Bo (r) =
E  Rn :I <  r I :

Iii Ilp,r —  Il f  I ILP (Bo(r)) IfBo(r)1 f d ;
= Vdd" ;

11f lloo,r = 11f lico(Bo(r» = sup If col ;ea Ba (r)

Ef LY,r = s u p  If()—j()1
e.cEBe Ir) a •

E4 C

The Sobolev space Li (Bo (r)) is  the set of measurable functions for which the
norm

If  ila(B0(r» = 11f lip,r + II af

is fin ite . The Holder Space Ca  (Bo ( r ) )  is  the  set of functions for w hich the
norm

11f  Ilca(Bocr» = 11f I . , r [ f

is finite.
W e use Sobolev's embedding theorem in the following form. For the veri-

fication, see the proof of [5, Theorem 7.17].

Theorem 1.1. Assume p >  n and set a = 1 — n/p. For f  E  L  (Bo (2r) ),
we have Sobolev's inequalities

11f C (iif lipar ± ra il f  a r )

and

N a,r cl I af I lp,2r,
where C=C(n, p )  is a constant that depends only on n and p.

W e next consider the  regularity for an  elliptic partial differential equa-
tion

Ea i i nu = f. (1.1)

The elliptic regularity theorem  [5, Theorem 6 .2 ]  can be restated as follows.

Theorem 1.2. A ssume that the coefficients ai l  are  smooth functions on
Bo (2r) and satisfy for some constant K > 0 the conditions



Construction of the Green function 3

(1 ± ( ) .< (1 K) 2 5 " (as symmetric bilinear forms)

and

ra « , 2 , K.

If  u is a bounded weak solution of  (1.1) for f  E (130 (2r)), then we have

ru au li-,r r2 I1 a2u II., r r 2 + " [0 2u] cr,r C (II u r2ii f ii0,2r r2 + a a . 2 r )
for some constant C=C (n, a ,  .

For a compact Riemannian manifold (M, g), we can also define the norms

11f I =  11f Hew) = {LI f Vdtil u p ,
11f  ll = 11f  11coutn =  su p lf  (x)

x e M

and
I f  (X) — 1- (Y ) 

[f] a —  sup
x ,,Em d (x, y )a
x*y

We define the Sobolev space Li (M ) using the norm

If  ILf(m) =  Ilf lip +  II 17f lip,

where II Vf lip is the Lb-norm of I Vf I, th e  pointwise Riemannian norm of the
covariant derivative Vf, and the Holder space Ca (M ) using the  norm

11f  ' La(M) =  Ilf +  N  a.

It is well known the bound

Ric —(n —  1) Ag (1 . 2)

yields the  lower bound fo r the  Sobolev constan t (c f . [6]). We state it a s  fol-
lows.

Theorem 1.3 There is a constant Cs, depending only on n, AD', and
Dr /V, such that

f Cs f ii2 (1.3)

for any f  E  (M ) satisfying f  fd p =  O.

We denote by Bx (r) the  geodesic ball of M centered at x  and of radius r,
by Sx th e  u n it  sphere of T M  with respect to g , a n d  by do) the standard
volume form of the unit sphere Sx  = Sn - 1 . Under the identification via the ex-
ponential mapping It +  X  Ss  3  (r, v) e x p x (rv) E  M, we define a positive func-
tion a (r, y) on R+ X Sx by the  equation dtt = a (r, v) n

-
l drdw if  the  geodesic

[0, r] 3  t e x p x  (tv ) is minimizing, and a (r, =  0 otherwise. Set
V I D

. We also restate Bishop-Gromov's volume comparison theorem in  the  fol-
lowing form.

r = e (n-i)
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Theorem 1.4 The function a (r, v) satisf ies a (r, v) . .r 1 n - 1 ) r. For 0 <  r
R, we have Vol (Bx (R)) /V ol(Bx(r)) r  (R /r) n - 1 .

2. Harmonic coordinates

First, w e recall the  resu lt of Anderson and Cheeger [1] concerning the
harmonic coordinate which is useful in  considering regularity problems on a
Riemannian manifold.

Theorem 2.1. Suppose th at  (M, g )  is  a compact Riem annian manifold
without boundary satisfying the bound Ric —  (n —  1) Ag for some constant A  0.
Given K  > 0, p >  n, there are constants C1 and C2, depending only on n, K, and p,
such that there is a coordinate u = ( u 1 , " ,  u n )  on any geodesic ball Bx  (r) for r

min 1c1/ ../A, Czior satisfy ing the following conditions:
(1) u (x )=  O.
(2) Each uk (k = 1,—, n) is  a harmonic function on B (r )  w ith respect to g.
(3) The functions go =  g (a/ au , 0/au') satisfy

g (x) = 50 ;

(1+10 - 2 5i ; g i ; ( 1 + K ) 2 51 ; (as  symmetric bilinear forms);

1'1  n / P liagolivwxo-o K.

Let p>n and set a= 1 — n/p. Fixing K  = 1 , we restate Theorem 2.1 in the
following form.

Theorem 2.2 T here is a constant CH, depending only on n, p , and AD2,
such that there is a diffeamorphism F: Bo (r) M for any  x E  M  and r  C  Rio
satisfy ing the following properties.
(1) F(0) = x.
(2) The local representation of g by F, w hich w e denote by  go, satisf ies 4- 1 5o

45i; as symmetric bilinear forms on B 0 (r) and g  ( 0) = ô .
(3) The functions go satisfy

ri  n / P 1 lp,r < 1 a n d  IA  [gii] a,r 1.

(4) The inverse mapping F - '=  (11
: , can be considered as a function F - 1 :

Bx  (4r) R n  and each component f k i s  a harmonic function with respect to
g.

P ro o f . Set C3 = m in 1C1/ /7 [ D, C2F . Clearly th e  properties o f Theorem
2.1 hold for r C3i0. By taking F = u - 1, w e easily  see  that the  properties of
Theorem 2.2 a re  satisfied fo r r C3i0/4 except fo r  th e  estimate o f  [go ] a , r .

Applying Sobolev's inequality (Theorem 1.1), w e can show that there is con-
stant C4, depending only on n and p, such that

ra  [g  ]cr,r/2 C4r— n/Pilagiy ilp,r C .
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We now set C5 =  min {C Z ', 1/2} . T he theorem is valid for CH = C3C5/ 4.

Definition. W e  c a l l  t h e  diffeomorphism F  i n  T h eo rem  2 .2  a
p- harmonic coordinate around x.

W e fix p such that np/ — n ) is  no t an  integer and set ro =  C1i0/2. In a
p- harmonic coordinate F: .130(2r0) M , the Laplace operator d is given by

d = —

If two p- harmonic coordinates F, Bo (ro) M overlap, i.e.,

F (Bo (ro) )  n (Bo (ro))0 ,

then

F (Bo (2ro)) C  BF(o) (4ro) c Bfino) (8r0)

Each component o f  th e  tra n s itio n  function 0F  c a n  b e  c o n sid e re d  a s  a
function on Bo (2r0) which is harmonic with respect to gii, that is

d (F— i  0 F) = — Egiiab (F- 1  F )  =  O.

Then Theorem 1.2 im plies that there is a constant C, which depends only on n
and p, such that

I la; (F' - ' F)11.,,,0 c;

rollah (F' - ' c; (2.1)

7
1

+ a  [a6 (F - 1  OF )]  a "  C.

T h u s w e  o b ta in  th e  estim ate  of C 2 - n o r m s  o f  th e  t r a n s it io n  functions of
p- harmonic coordinates.

Set to = ro/12. Let tax, (t0/8)1 ,i2=1 be a maximal family of disjoint geodesic
balls of radius t 0/8 .  W e can choose a p- harmonic coordinate FA: BO (ro) M
around each  xA. I t  is  e a sy  to  se e  th a t 113x, (1-0 /4 )  ,?-1 covers M . Hence 1F2 (BO
(to/ 2 ) )  51-1. also covers M.

Set m ( x )  = #  1 2  x  E  FA (BO ( t0 ))  fo r x  e  M . Bishop-Gromov's volume
comparison theorem yields a n  estim ate o f Q  in  te rm s of n, A, D , V  and t o.
Moreover,

Proposition 2.3 There is an upper bound mo for m  (x ) that depends only
on n and AD2.

Proof. Let 1/1ii V ) b e  the subset of the indices 121 ,41).1 such that x  E  FÂ, (Bo
(to ) ) .  Since Bx,, (t0/8) c  Bx (34) c EXA, (50 , we have

Vol (Bx (3t0) ) Vol (Bx, 1 (5t0) ) m (x) max Vol (1 31.,, (t0/8) ) nT x  Vol (3s,1 (t0/8))

Thus the result follows from Bishop-Gromov's volume comparison theorem.
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Let X  b e  a smooth non-increasing function on R+  satisfying
X (s) =  1  for s to/2; X (s) =  0  for s to;

— 4/t0 X' (s) 0; I x" (s) I 32 t6; (s) 512/a.

W e s e t  " (X ) = X  (I (X) I) for x E  F2 (130 (to)) and (X) = 0 otherwise.
Then we see that

E (x) mo.2=1
Thus we can construct a partition of unity Ixi ,?-1, subordinate to the covering
IF2 (Bo (to) )1 "1?-1 by setting

x, (x) = z 2  ( x )

Efi'=1,C.(x) •
The C2 "-norm of x,1 0  F t, can be estimated by to, h, p, and AD 2 . In particular,

I X2 (x) (y) I CrOd (x, y) (2.2)

for some constant C =  C(n, p, AD ' ).

3. Parametrix of the Green function

In th is section, we construct a  parametrix of the Green function using the
p-harmonic coordinates 1F21 = i. W e denote by grl; and g  the metric tensor and
its inverse in the coordinate F2. From now on, we adopt Einstein's convention.

F or C E  Bo (to), we define a non-negative function 4  on Rn by

1c/ (01 2 = (C) (V—  CI) (ei —  CO •
Choose a smooth increasing function 0: R+ R +  such that

(s) =s for s to/6; 0 to/3  fo r s

0 1; — 6/to 0" O.

We now define a function h  on Rn by

A 1 0 ( c / ( ) ) (to/3) 2-n
(n —2) w

where w is the volume of the standard (n - 1) -sphere. Notice that = 0 if
4 ( ) to/2 . The first derivatives are given by

aih,= 10 (d" (0 )1 1 - n 0' (C
1') ( )1 - 1 gj (C) Ci)

Since 0' (s) = 0 for s t0/2 , w e see that a i l t  ( )  =  0 if d ' ( ) t0/2 . If 4 ( )
to/2, using  th e  estim ates 2s/3 (s) s fo r  s t0/2  a n d  I — C1/2

4 ( )2 1  —  C  I, we obtain

I aiki, (0  I c l C1 1 - n

for some constant C =C (n ).
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Similarly we can estimate the second derivatives of h , w h ich  are given by

ah 1,1, = (÷) 10 (4 Z) - n  T1(4( )) 1d(01 - 2 4(C)gli(C) (V— Ck) (V —  CI)

— (l b  10 (4(0)[ 1.--n 0' (4(0) 14()1 gii (c) ,

where we se t WI (s) = (n- 1) 10' (s)I 2C O  0"  CO +  (s) (s)/s. Since (s)
=n for s t0/6  a n d  WI (s) =0 for s t0/2 , Ohh  vanishes for t0/2
and we have

1 ahh, ( ) 1
for some constant C C(n).

The following will be needed in the next section.

Lemma 3.1 There is a constant C depending only on n such that if  I
CI 21 then

I .901 (0 — ah (')1C I CI- n- 1 1 I,
and VI CI 21 C— C' I, then

I a?) 11/ a h ' c  1 r I C— l a  +I e— — ç  I I .
Proof. W e apply the mean value theorem with attention to the fact that

for 1 — C1.. 2 1 — '1
and

1 1 C 1 forI I 2 1 C—  C' 1.
W e also notice that either o r  'does not appear in the left - hand sides of the
inequalities as the argument of

Next, we will estimate dlt, which are given by

dh'() = ah ( )

= (+) 10 (4())1 - n  Wl(d{ ()) 14()1 - 2

X gy k (C) (C) (  C  V) co

+ lo (4(0)I 1 - no' (4(0) 14()1 - 1 gY (0 gli(c) .

= — 1 10 (4())1 - n gr2 (d{ ( ) )

10 (4(0)1 n 0' (4(0) 14() I - l e Igl; (C)

+ 1 10 (4())1 - n  W1(4( ) ) 1d{(0 1 -2
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g y glik (C) - g j (C) (V  Ck) (V CI) (3.1)

where ¶2 (s) = (s) — 110 (s) (1/ (s) Is. Notice th a t ¶2 satisfy

W 2(s) =  0  for s to/6 or s to/2.

Since ahh  vanishes for t0/2,v a n i s h e s  for to/2. For
( ) to/6,

dis () = —(+) ( ) 1 — n( C )

11
60}  - n - 2  i f () gi (C) Igh — k (C) — C9 — O.

T hen  (3 ) of Theorem 2 .2  implies that, if _< t0/6,

d11.() CW1

for some constat C = C  (n ). For t0/6 to/2, the estimate of I ahh () I
implies that, if t0/6 t0/2,

I -dh, ( )1 CrcTn

for some constant C=C (n) .
Combining these results, we obtain

I d h (0 1 Cia-n

where C is a constant that depends only on n and p.
Fix x E M  and take A for which x E F2 (B0 (to) ) . For y E  F2 (B 0 (3 t0 ) )  , set

H',1(y) = hki(x) (Fi 1 (Y) ) •

Notice that HI 0 outside FA (Bo (2t0)). Therefore we can smoothly extend 1/.1.
over M to be zero outside FA (Bo (2t0)). Using the partition of unity 1x.Iy=, con-
structed in Section 2, we define

Hx  (Y) = X2 (Y)
2=1

It is c lear tha t lix (y) is  a  smooth function on M  X M  minus the diagonal that
satisfies

Cld (x. y) 2-n c i r rn < H- (y) < C3d (x, y) 2 2( 3  .  2 )

for some positive constants CI, C2, and C3, which depend only on n and p. The
function Hx ( y )  vanishes when d  (x, y) 2to. Notice that w e have

=  l x 2 (x) V 11(y)
2=1

and

dHx(y) = x2 (x) d 11'; (Y).
2=1

From the estimate on h , w e  o b ta in  the estimates on H I in the harmonic coor-
dinate  F 2 .  M oreover, in  v iew  o f  (2 .1 ), H  c a n  b e  e s t im a te d  in  any other
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p-harmonic coordinate.
Hence the above argument shows:

Proposition 3.2 There is a constant C, depending only on n and p, such
that

I Hx(y)I Cd(x, Y) l - n

and

I drix(y) CrIT'd (x, 
y ) a - n

W e can now prove Green's formula.

Lemma 3.3 For any cp G C 2 (M)

(x )  =  imHx (y) d  (y)dg (y ) —  im dflx (y) (y )d ,u  (y)

Proof. T ake  a p-harm onic coordinate F  around x. Using integration by
parts, we obtain

f H )d ) —x(y)Jcp (y,u(y A (y (p  (y ) d p  (y
m\F(B0(0) f m\F(B.(E» H x  ) )

Hx (y uço (y — )(y (y ) d  04 ) ,LcaBo(E» ) F ) d (y) fpaBoce»
where 1.) is the outward normal vector field of aF (Bo (E)) = F  (aBo (0)
is the volume element of F (aBo (E)). Let g,, and g " be the metric tensor
inverse in the harmonic coordinate F. Then i) and du are given by

1.) i g k I ( ) - 1 / 2 g i j  ( )  09.7

and

d a () =I ig k l  ( )  icvr 112 ,sId e tg  i f  ( ) d w c (6

(3. 3)

and d a
and its

where da), i s  the volum e element of the (n —  1) - sphere  o f  rad iu s  c  in  th e
Euclidean space.

The estim ate (3.2) im plies that the first integral of the right-hand side of
(3 .3 ) tends to  0  as c—> O. If x  e F2 (Ho (to)), by putting f l )  and
changing the variable, we have

-fFo.B.(0) G',14 (y) (y) d 04)

f=- 
f I I -1 ,g" (H.'1 0  F) ço (F (0) ,/det gi, d ( )aBo(E)

I 1- 1 g" a kh'.1Pri (x) ° F  (0 ) a, (A OF)asoce)
X  (p  (F ) dw,

=
aBo(E) 

14-1.Fozo c-)F () )1 g "(O g ii ° F(0 ))

X  ja ° F) (11 0  F — A 0 F (0))

X( F  ( ) )  det go (0 doJE ( ) . (3.4)
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Using Taylor's formula and the transformation law

g i ; (0) = (Fr i  0  F(0)) a i (f0  F ) (0 ) (f - ,2 0 F) (0) ,
we obtain

F(o)(F,T1 0  F  ())

=  IA) (FP 0 F (0)) ( ° F 0 F (0)) (e l°  ( ) F (0))1 1 1 2

=  jg  (0 )  n j  +  0(1 0 ) 1 112

=1 1(1 - E0(1 D )

and

giig il(FÏ1  °  F ( 0 )) ° F) ( f ° F —1.12 ° F (0 ))
= g1) g jk(0) ±  0(1 1 3)
= 10 ( 1 + O (I D).

Hence the integrand of the last integral of (3.4) is

El - nyo (F(0)) (1+0 (e))

and the  integral tends t o  cp (F (0)) = p  (x ) a s  E—> 0. M ultiplying (3.4) by
(x), summing it up over A, and passing to the limit, we obtain the lemma.

4 .  Estimate for singular integrals

We set (y) = — dilx (y ) and define functions rl` inductively by

p k + l (y) =f (z) (3)) c (z) .

Proposition 4.1 Suppose k n /  a. Then (y) = 0 f or d  (x, y) 2kt0
and

I n (y)I Cread (x, y)

for some constant C = C(n, p, AD2 ) .

Proof. Set p=d (x, y) . W e  d e n o te  b y  î the middle point of a minimizing
geodesic joining x  and y . T he f ir s t  assertion is  obv ious from  the  fact that
1"1 (y) =0 for d (x, y) 2t0. T he second assertion  follows from th e  estimate of
the  integral

fB,(+2,o)d (x
, z ) k a - n d (z, y) a - n dp (z)

for d (x, y) 2(1+k) to. W e split the domain of the integral into

B y ( - ) , B  î (P) (134-0  U ByM ) ,  a n d  B 2to)\13-F(P).
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By Bishop's theorem, we can estimate the integrals as follows:

f To) ( kf  z m d (x, Z) k a  - n d (z, y) a - n dp(z) r W ( ) a  n  2

2 ' dr = k a  2
)(k+l)a-n

-(0 (k+l)a-nka-n -n 2d (x
'

 z) d (z , y )" dp (z ) r W (k )
k a - n

f
'k

ra_id r  =  ra 2f 2

,o,
 ( k + l ) a - 2 n
d (x z) k a - n d (z, y) a - n dfi(z) rW

( n ) f
'clr

1:3,(p)VBxMu Br(Y)) 2

(

2nra)  (k )(k+l)a-n

fB , d (x, z) k c e - n d(z, y) a - n dp(z),1-+2to)\B,(p)

p F 2 to  r__u_,-,) (k+l)a -2n
TW

f

r n - l d r2

2to
<  2 n - l rcof  r (k+ l)a-n-1.

u,
4rk

2

2n-l rojf  ( _ 0  (k+l)a-n (2 t0)(k+1)a-n}
n—  (k +1) a IA 2 )

4to

2n-irw  ( 2 0  (k+l)a-n (,)(k + l)a -n

(k+ i)a-n 2

Notice that we have put 
r = e ( n - i ) V i T D .

 The last integral vanishes when p 4t0.
The claim now follows by induction.

Recall that n/a =np/ ( p - n )  is not an integer. The proof of Proposition 4.1
also yields the following estimate.

Proposition 4.2. Set N  =  [n/ + 1. Then

(y) =  0  for d(x, y) 2Nto,

and

117(01 Cro-
n

for some constant C=C(n, p, AD2).

The following estimate will be used later.

Corollary 4.3 Let 1 k N  and f  be a function on M. Set

u (x) = f m r y
k (x)f (y)d p (y) .

Then there is a constant C, depending only on n, p, and A D', such that

r, 2

if  (k+1)a < n,

if  (k + l)a  = n,

if  (k + l)a  > n.



12 Tsutomu Hiroshima

Il ull q

f or 1 q 0 0 • T he similar estimate holds for

u (x) = (y) f (y) d (y) .
Proof. From the previous propositions, we have

L lry k  (x)10(y) C

and

Iruk (x)10 ( x )  <C

for some constant C = C (n, p, AD2). F or 1 _< q < 00, we have by Holder's in-
equality,

u(x)i( f m i ryk (x)I dp(y )l g (LI ryk (x)Ilf (y)lqdp (01

ca - 1 f m i ryk (x)ii f(y)igo (y )
from which we obtain (by integration in x)

LI u (x)l q d g (x) c a
- i f

m iryk (x)Idp(x)11f (y) d (3))

< f m i f (y) iqdtt(y)

T h is  completes th e  proof fo r  1 q  < 0 0  . F o r  q = 0 0  , th e  corollary follows
from

I u ( x) I f  m lryk (x) id (Y) • 11f

We next estimate /7 + 1  (y)

Proposition 4.4 (1) There is a constant C=C(n, p, AD2) such that

17+1 (y) =  0  for d (x, y) 2 (N+ 1) to
and

(t) I C r .

(2) The function r P i  is of C - class for any 0  <  <  a. More precisely, in  any
p- harmonic coordinate F: B0 (ro) —> M, we have

[ r xN+i 0  F] 41,7,0
C / V i

for some constant C = C (n, p, 13, AD9 .

Proof. The claim  (1) can be proved easily by straightforward calculation
as in the proof of Proposition 4.1. To prove (2), we need the following lemma.

Lemma 4.5. Suppose that k1(, C) and k2(, C) are smooth functions on
B0 (R) x B0 (R) m inus the diagonal satisfying

I ki(, C) I Cdr a l CI ° , I k1(, C )  — k1(', C) I C2R-al la,
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k2(,C)I c3IL , I
°

1 ( , C ) I C 41

Set k ( , C )= k 1 ( , C )k 2 ( , C )  and

u =  f B o ( R ) k  (• C)f  (C)dC

for f  E  (Bo (R )) . Then u  e  C (Bo (R )) for any 0  <  < a . More precisely, there
exists a constant C, depending only an n , a, 13, Ci, C2, C3, and C4, such that

CR I f

Proof of L em m a. Set p -=I l and =  (  - F')/2. W e have

u — u {Lod k c)Idc + fB ( n ik ) Id

+ f 01 • ik2(, ) Id130(RABi(0)

+ r, 1k1(, c) —k(', 01 • ik2(, c)idd • IL,R.

The first and the second integrals in the braces are estimated by

p3"Ci C3 coR- a -  3"C i C3 coR- s  
CiC3(01?- a  f  2 r▪  a - l d r = P •2"a 25a

When l
k2 — k2 = p1 5aki ( c) I

for some which lies in the segment c o n n e c tin g  and Since' I p/2
— Cl/ 2,

1— I1
Then the third integral is estimated by

C iC air a p laiC I - n - 1 4 Ciso(RABi(p)

< 2n+1-ac i c4R-a p  f
B o ( R ) \ B ( p )

2R< 2n+1-aci c 4 w R-a p  f e-2dr

Pa1—a
• 2n+1 -1 3 C1C4 aN - 4  

P •1—a

Similarly, the last integral is estimated by

C2C3R—
a Pa l Boue)I  —

ndC 2nC2C3R—a Pa  fB o ( R A B  ( 0 1 Cl—ndC
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2nC2C3col?' pa j  r - l dr
2R

=  2nC2C3coR- apalog
2 R

2 " " C  2 C3 a)R -

(a—  13)e

because the function p pa - s log (2R / p) takes its maximum at p = 2Re - 1 /  (a-  I
'

) .
The lemma has been proved.

We now return to the proof of Proposition 4.4. By definition,

F r i  (y) = _ J  F,Pr (z) x j (z) (y) d (z) .
2=1 M

We rewrite each term of the sum in the harmonic coordinate F2:

142 (0 f ( F  (C) ) x 2 (F (C)) i/detgli (C) d C.Bo(to)
In view o f  (2 .1), it suffices to estimate the Ce -norm of Isl. It is a  consequence
of straightforward calculation that Llh2c ( )  expressed in  (3 .1 ) is a  sum of the
functions which satisfy the condition of Lemma 4 .5 : for the first term, with

C) = gr2 (4  (0 )  ; for the second term, with ki C) =gli( )  —
(C) ; and with k1 (,C) =gii ( ) g ( C ) — g i  (C) I for the last term. Then
the claim follows by applying Lemma 4.5. with

f ( )  = (F,(c)) (F (0 ) i/detgl,(C)

5. Construction of the Green function

W e are  now ready to construct the Green function by using Hz ( y )  and
(y) . Recall Green's formula,

(x) =LH s  (y ) d (y) d  (y) f r  (y) ( y )  d p (y)

By putting (p (x) 1 in Green's formula, we obtain

fmr1 (y)(111(y) = 1.

Iterating Green's formula, we also obtain

(x) = L IG  (y) yo (y) d p (y) + f  s + 1  (y) (y) d p (y)( 5 . 1 )

where 

(y) = ( y )  + f rIc (411, (y) d (z)
k=1

From the results of the previous section, It is easy to see that

K x (y) C d  
y ) 2 - n

for some constant C = C (n , p, A D 9  and that Kx (y) = 0 for d (x, y) 2 (N +1) to.
Hence we have
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lics(y) (y) Co
for some C=C(n, p, AD2 ).

By putting go (x) 1 in the formula (5.1), we also obtain

fm r x" +1  (y) d ,u(y) = 1.

Therefore we can define a function Rx  by solving the equation

= 17+1— —
1

V
under the condition

fmRx (y) d (y) = 0

The elliptic regularity theorem (Theorem 1 .2 ) and Proposition 4.4 imply that
Rx  is of C2 - class.

Putting (5.3) into (5.1), we obtain

(x) = f mKx (y) Ago (y)dp (y) + f mAR x  (y) go (y) d [t(y)

( Y )  d  P ( Y)

= f  Ks  (OAT (Y)dg (y) f  mR,(y) Ago (y)dp(y)

+ (y) d g(y)

i.e., d(K x +R x ) =  —  V  .  Since Im ixx (y) + R x (Y)} d (Y) = Im lfs (y) d (y) ,

we have

G x(y )=K x (y )+R x (Y )+  v fmKx(y)dP(Y).
1

We can now estimate the Green function near the singularity.

Theorem 5.1. There exist contants C1 and  C y, depending only on n,
AD2 , and V, such that

IG (Y) C  (x , y) 2 - n  f o r d  (x, y) Czio.

P roo f Since we have already estimated K x (y) and

i f mKx d
Cr2 C D no
V V  °

 

it remains to estimate Rx (y) . B y (5.1), we have

Rx  (z) =  f  rf mK, (y) AR 2. (y) d tt (y) m zAr+1 (y) R x (y) d p (y)

=  fmK, (y) .1- 71 4 4  (y) d (y) f  mK  (y ) d  (y ) f  m r ,N  +1 (y) R x  (y) d p (y) .

(5.2)

(5.3)

(5.4)
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Therefore we obtain

1Rx (z) I1 1 /7 + 111.LIKzIo + +-/ f mr 2 N + '  II 
n2

+ n 2 I l Rx11,*
2
.  ( 5 .5 )

Applying Sobolev's inequality (1.3) and Wilder's inequality, we have

II Rx112

n
2

—
n

2 
C i II R x N  =  C ifm RxdRxdg = C f m RxrxN + 1 61,u— +LRxdf.t

= f R ,17 1 + 1 0 CillRx11 2 11 11+1 II ,z2_,
2

and hence

II Rx II  2 .a  I I  rIv±iiin-2 n+2

From Proposition 4.4, we have

II r's1+111. criTn

and

T N + '  .  <  Cr -n
x n + 2 0

for some constant C=C(n, p, AD2 ) . Then putting these inequalities a n d  (5.2)
in to  (5.5), we obtain

IIR IL0C r ,x

where C is  a constant that depends only on n, p, AD2 , and D'/V. The proof has
been completed.

W e turn to the first derivative of the Green function.

Theorem 5.2 There exist constants Ci and C2, depending only on n,
AD2, and Dn /V , such that

Gx(Y)1 Cid(x, )01 - n

Proof. Differentiating (5.4), we have

G x (Y )=  K x (Y )±  R x (Y )

By the argument s im ila r to  [5, Lemma 4.1] , the formula

K x  (y) = H x  (y ) + f Flr (z) Hz (y) d ,tt (z)
M  k= 1

is justified for y 4 x . Then Propositions 3.1, 4.1, and 4.2 imply that

I 171G(y)l Cd (x, y) 1'

for some constant C =  C(n, p, AD2 )  and th a t  17 Kx  (y ) = 0 for d (x, y) 2 (N +
1) t0 . Hence we have

Li 17Kildft C r o

(5 .

for d (x, y) C2i0.
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for some C = C ( , p, AD2)

I n  order to estimate  V R ,  we approximate Rx  with smooth functions
içoki in the 0 - topology.

From Propositions 4.1 and 4.2, we see that the  leading part of Kx (y) is
H (y ) and we deduce that

K (y ) — arg- n

for some constant a depending only on n, p, and AD2 . Then we have

I (Pk12 (Y) = f m Kydl VçokI 2 dp + f mr,N+11 V cpki2dg

=fma r o )  d17 (pki 2d1+ f mr„N+1117 (pk I20.

Using Weizenbôck's formula, we have

di V god' = 2(f7 d(pk, V(p) — 217 2 (pki 2  — 2Ric (7 (pk, (pk)

2( V d(pk , V çok ) + 2(n-1)AIV ç0k1 2 .

Since Kv - I- arg ' is non-negative (by the definition of a),

fm (Ky+arg- n ) ,61 (Pk I2d g  2  fm (K9
- Farg- n ) KV (Pk, Vd(pk+ (n —1 )A  çak)dg

=  2 f  (Ky +a ) d (Pxidçok  + 1) Agok I

— 2 f  Idyok + (n - 1) A(pk1 ( V Ky , V (pk)dp.

Passing to the limit, we obtain

I V Rsi 2 (y) KyldRxi2d,u+arVn f 1,6Rxi 2d11+ (n — 1) A f KyRxdRicitt

+a (n i )  A r  f  I Rx rdp - 2f dR s (f7 K„, VRdut

— 2 (n — 1)A f  R x ( l7  Ky , R x )d t t+  f  T y
N +1 117Rs120 .  ( 5 . 7 )

The right-hand side o f  (5.7) is estimated with a constant C = C (n, p, AD2 ,
D n/v) as follows:

im a + 1 1 VRxrdtt ryN+1 II.f V Rx 12 dg = CrEin f RxdR24 1-1

R x rP i d g  C rô -  2  n ,

a (n — 1 )A r r  f  17Rx124 2  aCArr 2" aCAD2r8-  2  n  ,iw
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f h ,
KylziRxi2dg= fK y

2
2(11r:+1 II + )fo  m

 

C(4 -2 n+ v2
r °C ( 1 +  D

v 2
2n ) r r 2n,

a r rn f  IziRx120  2arrn(11/7 +1 12d,u+ +7 )

2ar2o n(CrV' + ) 2 a ( C  -1.)14 ) 4 -2 ",

(n - 1) A fm Ky RxdRxdp (h — 1) A 11Rxli.(1117± '11. + 1
1•/ ) L ido

cArt- n(nTn + +7 ) c A D 2(1 + D
i4 )rg - 2 n ,

— 2 fi l idRx (17 V '  Rx ) d g  2(11r:11. + 5-)117RxII.LI

cro(rr +

c(i

— 2(n—  1) A fm Rx G ' R x ) d g .  2(n - 1)AhIRIL0 II VRx IL0J  7K y ldtt

CArrni I 17 /?,,IL. CAD2r10-'117Rx

Hence we obtain

7 R A  C irV ni Rx1 1. ± C2r8 -2n

for some constants C1 and  C2 depending only on n, p , AD2 and D'/V. T his im-
plies

117Rx Crô-n

for some constant C C (n, p, AD2 , D/ V) and the theorem follows.

Remark 5.3. Using the estimate of the heat kernel, one can estimate
Gx  and V G. globally in terms of n, AD2 , D/ V. See [7] .

6 .  LP-estimate for the Laplace operator
Let us show Calderon-Zygmund type inequality for Gx  in  this section. We

first fix some notations. Let E1 and E 2 be vector bundles over M with norms.
W e use the same symbol' • f o r  the norms on E1 and E2. For a section s of E1
o r  E 2, w e denote  by g (s; a )  the volume of the subset Ix e M :Is (x) >  al .
Notice that

P (s; a) a - q f Is lqd <  s 11'4 
isi>a 0

We denote by Lq (E1) (resp. Lq (E2)) the space of the sections whose Li - norm is
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finite.
L et us introduce the  following basic interpolation theorem which is repe-

atedly used in th is section. For the proof, see [5, Theorem 9.8] .

Theorem 6.1 (Marcinkiewicz's interpolation inequality) . Let A
be a linear operator from L q , (E1) n L q 2 (E1) to La' (E2) n Lq 2  (E2) w ith  1 qi < q 2
<  CO sa tisfy in g

(A  .  )  <  C i ll 
q

s 11,1;<  C2ll s II% fi As; a  _ and p(A s; a)
a ' aq2

for som e constants C1 and C2. Then A  can be extended to a linear bounded operator
on L q (El) for qi < q  < q 2  and

1 1/q
il AS Ilq 21 q ±  q  I CI C2-7 7 IIS 119q - 4 71 (12 - q

for n = qi(q2— q) / q (q2 —  qi) .

For a function f  on M, we put

u (x ) = f3,11P (x) Xi (Of (Y) 0  (Y)

By Green's formula, we have

Xi (Y) 40 (Y) = fmm, (x) Xi (Y) d(P (x) d ,u (x) — LAM, (x) xi (Y) (P (x) dit (x)

for any smooth function ()D. Therefore

im f (x) Xi (Y) 40 (x )dp(x ) = f  mu (x) A ço (x) cl,t(x)
— im i lmdrn (X) X i (Y).f (Y) d tt (Y)1 (,D (x) d ii (I)

and we obtain

f (x) xi (x ) = Au (x) — f m Al-ti; (x) Xi (y) f (y) d ,u (y) . (6. 1)

W e first show the following proposition.

Proposition 6.2 Let 1 < q p  and

u  (x )  = f  m ilt"; (x) Xi (Y)f (Y) d It (Y) .

There exists a constant C, depending on ly on q, n, p, AD 2, and D/io, such that

UV 2u liqC H  f ll q .

Proof. W e carry  ou t the  proof in  nine steps. W e alw ays calculate in the the
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coordinate FA and denote the  metric tensor by gi) and the Christoffel symbols
b y  V . Notice that there holds t7 =  aPiLt j a kl•t.

Step 1. F irst w e  p rove  th is proposition for q = 2. By WeitzenbOck's
formula, we have

II 7 2/4, II II iu II + (n - 1)A 1 VulE

From  (6.1) and Holder's inequality, we obtain

I Au (x)122 1  f  (x)122  {LIAM / (x) I dR(Y ))1LI (x)I1 f (0120(01.

From the estimate of ih  (V , w e can  estim ate  the  in teg ra ls  f  MIL1H (x) Id (y)
a n d  f midM, (x) Id (x ) with some constant C1 that depends only on n, p ,  and
AD2 . Hence we have

II Ju I _< 2 (1+Cf) Ilf
Similarly we have

vu ( x) I vm ( x) iro idti (y)

W Mi (X) Id (Y) 
11/2 Li 1 / 2WI V Mi (X) IV (Y) 12 d (Y ) I •

The estimate of aq () im plies that there is a constant C2, depending only on
n, p, and AD2 , such that

LI VH (x ) Id P (y) C 2D ; LI V H,2, (x) Id (x) c2D .

Hence we have

II Vulli CW2 11 f
Therefore we obtain

117 2u 11Z 2(1  - 1-  Ci) lif (n-1)CZAD2 1If II. (6 . 2)

Step 2. W e denote by S 2T * M  the  bundle of symmetric bilinear forms.
W e apply Theorem 6.1 to  the  operator f 172u. By the  resu lt of S tep 1, we
have

t i ( v  2 u ;  co <  lIV2uIIZ <  CIIf II 
a

2

a
2 .

Step 3. In Steps 3 and 4, w e w ill prove that there is a constant C de-
pending only on n, p, AD2 , and Wick and satisfying

<  Clif 11i 
—  a

for any function f  E  L i
 ( M) .

(6.3)

itt ( 214., (6.4)
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For simplicity, we denote the volume of a subset S C  M  byl S I. We have

IB x  ( t . )  I 
L „

1
V

IIf  
x 0 )  I f  t t IB  (x to)l V

<  rDn 11j111 _  c I f  (6.5)t.74. VV '

where c  is  a constant that depends only on n, p, AD', and D/io. Here we have
used Bishop - Gromov's volume comparison theorem, which says that for 0 < r
<R  w e have

IBx(R)I <  rRn 
IBx(r)I IA  •

Notice tha t w e  m ay  assume 11j111a l / / c .  O therw ise, (6 .4 ) is valid be-
cause tt( 7 2u; a) V cii f Ilia. H ence

1 r
IBx (to) I B x ( t o i Idp a

for any x  E  M.
Set E0x  c  M : f(x)1 al and define a sequence ltkl 7,1 by tk =

For k 1, we put

E k =  x E .  n, \ if If Idtt >
ipx v,k) exc,k)

—
and E  = U E k. Then the set M\ (E  U Eo) has measure 0, because

1 m
113x(tk)I fBx(ik)IIf Idt t  =f  (x )I

for a.e. x  E  M.
—

We now define a  family of subsets lEkl inductively by Ei =  E 1  and Ek
=  E  k \  E  k -1  fo r  k  >  1. Notice th a t for x  contained in  th e  closure of E k we
have

IBruk)IJB.r.)
1 r iflat, a;

(6.6)

1 
IB (214) I f Bx(2t

f  Idg a.

We can choose a  finite subset N1 of the closure of E1 such  tha t the geode-
sic balls iBx (t1)1 xEN, are  mutually disjoint and the geodesic balls 1B x (26)1 xENI
cover the closure of El. Inductively we choose a  finite subset Nk of the closure
of Ek\ U lgiUxEN,Bx (26) such that the geodesic balls IBx  (tk)l xE. kN  are  mutually
d isjo in t and  the  geodesic balls 1Bx (2tk)1 xENk cover th e  closure o f Ek\ WI:11

UxeN,Bx (26). In this way, we obtain a set of pairs l(xk, pk): xk  E  M ,  Pk > 01 1c1
= t j ) .  X e  NJ, j  =  1,2,•••I such that the geodesic balls I/3, (2 Pk)1 cover
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E  and the  geodesic balls IR. (pk)I 1 a re  mutually disjoint. M oreover, (6.6)
implies that

1 
1Bxk (Pk) 1 fBx,(pd ifidga

and
1 

lBs k ( 2Pk)I L x , id(2p

We define a family of mutually disjoint subsets ipkI inductively by

DI = B x , (2p1)\ U (P i);

D k  =  B X k ( 2 P iC )\ [(  U  D i) U  (U  Bx,(10.i))]
j>k

for k  > 1.

Obviously BXk (P k ) C  D k  C  B i , ,  (21 ) )  and n R ) D F  F,k , - k = - k2i—xk \ - , k ,  - From
Bishop-Gromov's volume comparison theorem, we have

1 r  , 1 1
oki j „ kif idp ,D ,„ , ,

, i , x , , p k ,  i fB xk (2,9,d) 
f  kite

2nr r
' IBrk(2pol.h.k(2pdlf 

Idg

__ 2"ra

and
1 

a IB x k (pk) I Lx k ( p o l f iBxk4(n 4
r

 poi L ki f idtt.

Therefore the volume of the subse t U ic i/3x k  (16pk) is equal to o r less than

ElBx,(16P01 f  I f <  45-11f( 6  .  7 )a .13k a

Using the defining function Ok of D k, we decompose f  as follows:

f  = fo + Efk,

where

fk  Økf

T hen th e  function fo  satisfies 1 fo 2"ra fo r  a.e. x  e  M  and 11f0 111 1 f  III.
The functions 141 sa tisfy  inf fkdp = O.

Step 4. Set vtk (x ) = fm 1-4 (x) X2 (Y) fk (Y) d i  ( Y )  f o r  k O. From the re-
sult of Step 1, we have

ji ( V  u 0; a/2) <  4117 2u01 1Z <  C11 fo liz2 

Ii Id p a.

a
2

a
2
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< clIfolLIIA H,2 5 C II f I I ,  
a

2 a (6 .8 )

for some constant C = C(n, p, AD2 ).
Next we analyze uk  for k 1. Recall that the  support o f X2 is contained

in F2 (B0 (t0 ) )  and Hiz, 0  outside F2 (Bo (2t0)). If D k n F2 (B0 (t0)) * 0  , then
Bx , (to ) n BF2 (0) (2t0) * 0. Since 8t0 r o ,  we have

D k  C  Bxk (to) C  B F A ( o ) ( 4 t o )  C F2 (B 0 (r0 ))

and

(Dk) (Brk(2Pk)).

Therefore we can analyze uk in the p-harmonic coordinate F2, i.e.,

uk = fic-eki ok hi() X2(C)fk +/clef gjj () d.

Here we h a v e  p u t  = (x) , =  F I '  (X k ), a n d  =  F r ' (y) . Recall that g i ;
satisfies 4'511 g i , 45,, a s  symmetric bilinear forms in  th e  coordinate F2.

If x E Bxk (16pk), 8pk andl CI 4pk. Hence there exists a con-
stant C  =  C (n ) such that

fm\Bxk (16p,) I 2/44 (x) id,u (x)

C [f lahuk () li/det g,„ ()

L-k1t3Pk aiuk (0 11
 
det g „  ( ) (6.9)

In the first integral of the right hand side, we can interchange the order of in-
tegration and differentiation:

ahuk =  i1 c _ ek i 4pk ab hi(0 X2(C)fk(C),/det gi)(C)c1C

Pi (0 XA(C) —  a6 hik() )(2 Z , )} fk (C) , /det gi; (C) d C.

The last equality holds because fAekcitt = O. From Lemma 3.1 a n d  (2.2) , we
observe that

la2fre(e) x2 (C) — a'hi,(e) x.1 (et) I
c eklale— ekl - n

for some constant C  =  C(n, p, AD2 ). Since a/det 2n, we obtain

fe_eki
8Pkia2Uk ( ) 111 det g t,



24 Tsutomu Hiroshima

< 2nCf8 p k i c  e k i ro f( LIP—
r o

k1 - n - F 4 p k I

X if
k (

)11
1 det (C) d

I klP k

C

• 2"C w i r° 1(4P—
ro

k1 -1-4pkr- 1 dr • ll f k ill

= 2nCa)1(4 P —
r o

k ) a logQ -4111.4111

• 2nCo)( 1 +1)11 f kae

As to the second integral, we use the estimates

la 112 (0 l" ( I ) -1) det g o () df Boo.0) I c

< CI:2 r o

r
-(n-1)/(P- 

d r
o

= C 1)  (2r _) (P-n)/(1'-1)
°

and

(6 . 1 0)

IIFijiIp,ro cil ag iip,ro Cr " ( 6 . 1 1 )

for some constant C =  C (n ). These inequalities imply

In co aluk co g i; di 8pkL k  

11'1)() a 14/det gi; () dd
f i c 4pk if k 1 , 8 „ k

x  ifk  (01A/det gi; (C) c/C

1"-I)V det go ( )  
4pk U B 0(ro)

Efk (Olidet gi; (C) c1C

^ Cflfk iIl
fo r some constant C = C (n ). Thus w e can find a constant C, depending only
on n, p, AD' , and Dn/V, such that

fm\B.„(16pk ) 
I V 2i ldii cl I fk  I

Hence the volume of the subset{ x E U (16pk): I 7 2 (u — uo) (x) I a/21
is equal to o r less than
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2  r 1172 (u — uo) Idtt j  m \ B x k u s p o
Ea k

l 7 2ukldpa  Jm\u,,,y.voispk)

E Ilfk Illa
2 C

Ilfa
4 C

VIII.a
Combining (6.7) a n d  (6.12), we obtain

p  (17 2 (u — uo ); a / 2 )  _<
Clif Ili 

a

(6.12)

(6.13)

fo r some constant C =  C (n, p, AD2 , D/ V ). Now (6.4) follows from (6.8),
(6.13), and

p (7 2u; a )  -,a(17- 2 (u — uo);a/2) +p(7 2u0; a/2) .

Step 5. From (6.3) a n d  (6.4), we obtain Proposition 6.2 for the
case 1 < q < 2 by applying Marcinkiewicz's interpolation inequality.

Step 6. In  the  case  2 < q p, we need to consider the  adjoint ope-
rator. Let b be a  section  of symmetric 2 - tensor S2 TM and  define a  function

* 2 b in the sense of distribution, that is, it satisfies

LOG' * 2 bdp = kbbiidp

for any smooth funtion q5 on M. Let 2 q < p  an d  se t q' = q/ (q —1) , p' = p/
(p- 1). We define a function y by

v (x) = f 111 (y) x2 (x) * 2 1) (y) d fi(y)

Then for the function v (x ) = (X ) X2 ( y) f (y) d (y), we see that

fm iittb "dp  =  fivdp .

By duality, it suffices to show the existence of a constant C = C (n, p, q, AD2 ,
D/io) satisfying

v 11g, b  Ile.

Notice that, from (6.2) and by duality, we already have

H2 b 112 (6.14)

for some constant C = C(n, p, AD2).



fFj(Bo(ro)) UFA (Bo(ro))

< c4P—n)/(P-1)fFA(Bo(ro)) 
lb" (Y)

la1H-.1.(y)IPmP- 1 )dit(x)}1bii (yc  (y )
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Step 7. We define a function w by

( x )  =  V (x ) fF,,(Bo(ro))
/V r (y) a1H (y) x2 (x) b i i (y )d  (y).

By Holder's inequality, we see that

1w (x) — v (x) 1 (Y) d tt (3))f F2(Bo(ro))

fF2(Bo(ro))
1a0 r

(y
)IP/(P—

fFa(Bo(ro)) 
al //1 .2r (Y) I PRP-

1/e
1)Ibii (y)  l e d t t

 (y)  I •

T hen  (6.10), (6.11), and the estimate

I 1/p

X
1)0  (y)11/q-Up

imply

fp ,

2 (B o  (ro ))
1w (x) — v (x)l e  c1 tt (x)

C 
f b ,A ( B o ( r o ) )

lb " (ON' d (Y)

and hence

11w— v C 11 b (6.15)

for some constant C = C(n, p, q) .

Step 8. In Steps 8 and 9, let us show that, if 1 < 2, we have

11W la' Gli b( 6 . 1 6 )

for some constant C = C (n, p , q, AD2 , D/io).
F rom  (6.14) a n d  (6.15), it follows that there is a constant C = C(n, p , q,

4D2 ) such that

11w 112 li v 112+11w v 112c il b  1 1 2 ,

and hence we have

 

,tt (w ; a )  <  C ilb  
a

2 • (6.17)

Step 9. In view of Theorem 6.1, it remains to show that

 

f t (w ; <  C u ba) a 
IL (6.18)

for some constant C = C(n, p, q, AD2 , D/io) We shall decompose b as in Step 3.
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W e m ay assume fml b Idtt a V / c  fo r  th e  sam e constant c  o f  (6.5). W e can
construct a set of triplets

(Xlc, Pk, DO: Xk Dk C  M ,  <  Pkt o /  2 }

satisfying the following properties:
(1) IDkl is  a  family of mutually disjoint measurable se ts such that Dk c

Bx,(2 p k) .
(2) Ibl a for a.e. x E  M\ U

1 r
(3) DkIJ Dk i  b  Id P 2 n r a .

(4) T h e  v o lu m e  o f  th e  s u b s e t  U k21 Bx, (16p k) is  e q u a l  to  o r  less than
r II b

If F2 (B0 (2t0)) intersects with Dk then BFA(o) (4t0) n B x k (t ( ) ) 0  .  Since 12t0
= ro, we have

Dk c Bx, (to) c BF2(o)(6t0) C  F2(B0(ro)).

Using the coordinate F2, we express b as bi i aiai  by functions on F2 (Bo (ro)).
We define sections bk =  bikl a,a; of S2 TMID, by setting

= if bi j dkD k

For x, y  c  F2 (Bo (ro)), the  norms of the fibers S2 TxM, S2 T y M satisfy I I x 16
I • ly. Therefore, we verify

lb kl ID1 6,,1 f)ki 1)1
0

and

iD k Dk
Ib kid 1 6 f Id #.

Using the defining function Ok of Dk, we now decompose b into bo ic ibk by
setting

bk = çbk(b — bk) for k 1.

II b0 IL 1611b ; I boI 2" 4 ra  for a.e. x E M. (6.19)

v k (x) = f 111 (y) x2(x) * 2 1) k (Y)d,u (Y)

k (x) = v k (x) f (y) a (Y) X2 (x) (Y) citt (Y) ,

where WI/ is  the local expression of bk in  the  coordinate F2. F ro m  (6.14), we

Then we have

We set

and
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have
<  411 wo <  c II bo <  Cil bo bo te(wo; a/2) •

a
2

a
2 a2

Then it follows from (6.19) that

ii(wo; a/2) C b  

for some constant C =  C(n, p, AD 2 ) . For x EE Bx,(16pk), we have

Wk(X) = fm 7J11:1(y) (y)dp(y) (y) al 1.1(y) xi (x) (y)dp(y).

=  fm x 2(x)O6H,(y)bv (y ) (y)

because the  singularity of Hx lies outside the  support o f bk. Notice that both
the domain of integral and the support of vk are subdomains of FA (B0 (ro)). By
putting FA (C) = x,  FA ( )  = y, and FA = X k, we have

v k  (C) = f x2(C) ah bill ../det gi•

Since

6;1() A/clet g i; ( ) d = 0,
fe-eki ok

we obtain

w k ()1 c f —ah h(e/c)I bid (0 Ide130(4pk)

for some constant C =  C (n ). From Lemma 3.1, we see that there exists a  con-
stant C =  C(n, p )  such that

h (e ) 11," (WI CIC — e d .
Therefore we have

Wk f ah 1,1: ( ) — ah h(ek) II bV () 1 det gu ()

CPkI C — ek H 011 bk Ill,

and hence

Iwk lVdet g i ) (C) d

Cov
kl

cpk f lc— ,ri-n-1I • libkiiiic_ek1,8,k
2 r o

8 p k  r - 2 c1r • II bk

a
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C w
II bk8

As in Step 4, we can estimate the volume of the subset

{X  E  M\ U B x k  (16p : I w— wo (x) I a / 2 1
k  1

from  above by th e  quantity  C II b Il da fo r  some constant C = C (n, p , AD 2 ).
T hen  (6.18) follows. Thus we obtain (6.16) by applying Theorem 6.1 again.
This completes the proof of Proposition 6.2.

The following corollary is a direct consequence of Proposition 6.2.

Corollary 6.3. L et 1 < q p . For a function f  on M, define a function
by

u (x) f  m  Hy  (x) f (y) d 1.1 (y) .

Then there is a constant C, depending only on n, p, q, AD2, and D/io, such that

II V 2u lIqC  1If

Thus we can estimate the constant that appears in the LP-estimate for the
Laplace operator in term s of the diameter, the injectivity radius, and the lower
bound of the Ricci tensor.

Theorem 6.4. Let q > 1 and f  be a function on M. Define a function u
by

u  (x ) =  f m  Gy (x) f (y) d (y) .

Then there is a constant C, depending only on n, q, AD2, and D/io, such that

II 172u C lIf

In particular, by putting f=  du, we have

17 2u 11gC  iid u  1 1 g .

Proof. Choose p  such that p >  n and p q. On account of Corollaries 4.3
and 6.3, we have only to show that, for the function u defined by

(x) = (x ) f  (0 d i  t ,

there is a constant C =  C(n, p, q, AD2 , D/io) such that

II V 2u lia Cilflia.

Set a =1 — n/p  and 13 = a /2 . In  every p- harmonic coordinate F :Bo (ro)
by the elliptic regularity theorem (Theorem 1.2), we have

411 a2Rx 1100,ro/2 C [li R I I , ro  + 411IY + 1  — 1 11 + 1O+13 [E .P ]5,rolV 0 , 3 , r o
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for some C =  C(n, p ) .  Hence, by Proposition 4.4 a n d  (5.6), we obtain

11 a2R.1110,r072 Cr(7n

for some constant C =  C (n, p, AD2 , D '/V). Recall that iv y  is estimated from
above in  te rm s o f n  (cf. [4]). Therefore  w e can estim ate  th e  LP - norm  of

=  fiRx—  TakRx:

117 2 RrIlp < Citi - pvp (6.20)

where C is  a constant depending only on n, p, AD 2 ,  and D/io. Notice th a t the
ratio i0/r0 depends only on n, p , and AD2 . Since Rx  is  of C2 -class, we have

V 2u (y) V2Rx (y) f (x) d itt (x) .

Applying Holder's inequality, we deduce

172u (y) v2Rx (y) f (x ) (x).

Integrating this in y and using (6.20), we obtain

117 2/4113 Vq- l f  11 V 2 Rx1131 f (x)1q( ( x )

Vq(P- 1 ) / P f  II V 2Rx  Ili 1 f (x)Ncltt(x)

(V /Dn ) q ( P - 1 ) / P  (D / io) n " - 1 ) / P ii f

fo r  some constant C =  C (n, p, AD 2 ,  D/io). T his show s the  theorem because
V/Dn is estimated from above by n, p , and AD2 .
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