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Construction of the Green function on
Riemannian manifold using harmonic coordinates

By

Tsutomu HIROSHIMA

0. Introduction

Let (M, g) be a compact Riemannian manifold of dimension #=>3 without
boundary. We denote the Levi-Civita Connection of (M, g) by V, and the La-
place operator by A. In this paper, we will prove an L’-estimate for the La-
place operator:

7 2ull, < CllAull,.

Naturally, the constant C depends on geometric data of (M, g). The main pur-
pose of this paper is to estimate the constant C in terms of the diameter, the
injectivity radius, and the lower bound of the Ricci tensor.

For the purpose of this, we construct the Green function using a paramet-
rix. In [2, 3], Aubin used the Riemannian distance function d (x, y) to con-
struct a parametrix of the Green function. However, the second derivatives of
the distance function cannot be estimated in terms of the Ricci tensor. In fact,
we need a bound of Riemann curvature tensor in order to yeild an estimate of
Ad (x, y). (Here the Laplace operator A acts on d (x, ) with respect to the
argument y.) Therefore we construct a parametrix utilizing the harmonic coor-
dinate of [1]. In the course of this we estimate the Green function and its
first derivatives near the singularity in Section 6, and, using the estimate of
the second derivative of the parametrix, we show the Calderon-Zygmund type
inequalities in Section 6, from which we can easily obtain an L’-estimate for
the Laplace operator.

We denote the diameter by D, the injectivity radius by 1o, the volume by
V, and the Ricci tensor by Ric. We fix a non-negative constant A for which
the bound Ric = — (n—1) Ag is satisfied.

For x € M, the Green function G; is a unique smooth functions on M\ {x}
that satisfies AG; = 8r— V! as distributions and SuGzdu= 0, where J; is the
Dirac function at ¥ and dg is the Riemannian volume form.
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1. Preliminaries

In this section we prepare some analytic tools. For p =21 and 0 < o < 1,
we consider the following norms for functions on an Euclidean ball By (r) = {&
e R":|E|<r}:

1/
;

171l = 1 o = {17 10ag]
lorlh, = {=f Iarkag”
S oy = 11 fllcomon = sup [£(E)];

&€ Bo(r)
[f]a' = sup |Z(§) —J (Ql
' ¢,LeBo(7) | 5_C |a .
[3dY

The Sobolev space L (By (r)) is the set of measurable functions for which the
norm

£ 2oy = I f1lp,r + 11 3f llp.r

is finite. The Holder Space C* (B (r)) is the set of functions for which the
norm

1 f llcagoen = I fller + [fJar
is finite.
We use Sobolev’s embedding theorem in the following form. For the veri-
fication, see the proof of [5, Theorem 7.17].

Theorem 1.1. Assume p > n and set o = 1—n/p. For f € LY (By (2r)),
we have Sobolev’s tnequalities

£ Heor < CULf Hp2r + 7211 £11p,20)
and
(Alar < CllOf llp.2r,
where C=C (n, p) is a constant that depends only on n and p.

We next consider the regularity for an elliptic partial differential equa-
tion

Sa0fu = . (1.1)

The elliptic regularity theorem [5, Theorem 6.2] can be restated as follows.

Theorem 1.2. Assume that the coefficients a” are smooth functions on
Bo (27) and satisfy for some constant £ > 0 the conditions
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1+ k)29 <a"(&) < (1 + k)27 (as symmetric bilinear forms)
and
7*[a"] a2 < k.
If u is a bounded weak solution of (1.1) for f € C*(Bo(2r)), then we have
7l 0 o,y + Pl 8% ],y + P [0%U] a0y < C Ul 1 lloo2r + AUl f lloo2r + 7 [f] a2r)

for some constant C=C (n, a, k).

For a compact Riemannian manifold (M, g), we can also define the norms

7l = lpllean = { [ 1 £1Pag)™”,
171l = 11 £ llcoun = supl £G) |

and
_ lf&) —fG) |
[f] “ J:%yueyl)w d (x, y) a

¥y
We define the Sobolev space L{ (M) using the norm

Hfllzzan = 1fIH, + 11 VLIl

where || V£1l, is the L?-norm of| V|, the pointwise Riemannian norm of the
covariant derivative V£, and the Holder space C* (M) using the norm

[ fllceany = Il + [f] @

It is well known the bound
Ric = — (n—1) Ag (1.2)

yields the lower bound for the Sobolev constant (cf. [6]). We state it as fol-
lows.

Theorem 1.3 There is a constant Cs, depending only on n, AD? and
D"/V, such that

fll e < Cs VSl (1.3)
for any f € LE(M) satisfying [m fdpu= 0.

We denote by Bz (r) the geodesic ball of M centered at ¥ and of radius 7,
by Sz the unit sphere of T:M with respect to g, and by dw the standard
volume form of the unit sphere Sz = S*”. Under the identification via the ex-
ponential mapping R+ X S; D (7, v) = expz (w) € M, we define a positive func-
tion a (r, v) on Ry X Sz by the equation dy = a (r, v) " 'drdw if the geodesic
[0, 7] © t = exp; (tv) is minimizing, and a (r, v) = 0 otherwise. Set y ="V
VAP We also restate Bishop-Gromov’s volume comparison theorem in the fol-
lowing form.
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Theorem 1.4 The function a (r, v) satisfies a (r, v) <Y Vy. For 0< r
< R, we have Vol (B(R))/Vol (Bx(r)) < y(R/r)" L.

2. Harmonic coordinates

First, we recall the result of Anderson and Cheeger [1] concerning the
harmonic coordinate which is useful in considering regularity problems on a
Riemannian manifold.

Theorem 2.1. Suppose that (M, g) is a compact Riemannian manifold
without boundary satisfying the bound Ric=— (n—1) Ag for some constant A = 0.
Given k > 0, p > n, there are constants Cy and Co, depending only on n, k, and p,
such that there is a coordinate uw = (u',--+, u™) on any geodesic ball By (r) for r

< min {C1/ VA, Caol satisfying the following conditions:

(1) ulx)=0.
(2) Each u*(k = 1,--+,n) is a harmonic function on By (r) with vespect to g.
(3)  The functions gi; = g (0/0u’, 0/0u’) satisfy

&ij (x) =0ij;
(1+x)7%0; < gij < (1+k)20:; (as symmetric bilinear forms);
| 0gille e < K.

Let p>n and set @=1—n/p. Fixing Kk = 1, we restate Theorem 2.1 in the
following form.

Theorem 2.2 There is a constant Cy, depending only on n, p, and AD?,
such that there is a diffeomorphism F: By (r) — M for any x € M and v < Cyio
satisfying the following properties.

(1) F(0)=x.

(2) The local representation of g by F, which we denote by gi;, satisfies 470y
< gii < 405 as symmetric bilinear forms on Bo(r) and gi; (0) = dy;.

(3) The functions gi; satisfy

7 0gillpy <1 and 1 [gilar < 1.

(4)  The inverse mapping F~1= (f',==+, f*) can be considered as a function F~':
B: (4r) = R” and each component f* is a harmonic function with respect to
g.

Proof. Set Cs = min {Ci/ YA D, Ci}. Clearly the properties of Theorem
2.1 hold for ¥ < Csio. By taking F=u"", we easily see that the properties of
Theorem 2.2 are satisfied for r < Csio/4 except for the estimate of [gij] a.r.
Applying Sobolev’s inequality (Theorem 1.1), we can show that there is con-
stant C4, depending only on #n and p, such that

™ [giilawre < Cor™?||0gisllpr < Ca.
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We now set Cs = min {C:%%, 1/2}. The theorem is valid for Cy = CsCs/4.

Definition. We call the diffeomorphism F in Theorem 2.2 a
p-harmonic coordinate around x.

We fix p such that np/ (p —n) is not an integer and set 7o = Cxio/2. In a
p-harmonic coordinate F: Bo(2r,) — M, the Laplace operator 4 is given by

A= —2g"dk
i

If two p-harmonic coordinates F, F": By (r,) — M overlap, i.e.,
F(Bo(re)) N F' (Bo(ro)) + 0,
then
F(Bo(2r0)) < Brw (4r0) C Bro) (8ro).

Each component of the transition function F'"'¢F can be considered as a
function on Bo(279) which is harmonic with respect to gij, that is

A(F1oF)=—2g"05(F ' oF)=0.
if

Then Theorem 1.2 implies that there is a constant C, which depends only on n
and p, such that

N0; (F'7' 2 F) |l < C;
10l (F o) oy < C; (2.1)
711)+a [atzy (F’—l‘j' F)]a,ro <C

Thus we obtain the estimate of C***-norms of the transition functions of
p-harmonic coordinates.

Set to = 70/12. Let {Bz, (to/8)} §=1 be a maximal family of disjoint geodesic
balls of radius to/8. We can choose a p-harmonic coordinate Fi: Bo (1)) = M
around each x;. It is easy to see that |By, (to/4)} $=1 covers M. Hence {F: (Bo
(to/2))} &1 also covers M.

Set m (x) = # {A:x € Fx (Bo (to))} for x € M. Bishop-Gromov's volume
comparison theorem yields an estimate of @ in terms of n, A, D, V and t,.
Moreover,

Proposition 2.3 There is an upper bound mo for m (x) that depends only
on n and AD?

Proof. Let {4} P be the subset of the indices {A} =1 such that x € Fy, (B
(to)). Since Bz, (to/8) € Bz(3ts) C Ba, (5t0), we have

Vol (B; (3to)) Vol (Bg,, (5to) )
m(x) < max Vo(l)(BI,, (t/8)) = MaX Y51 (B,, (10/8))

Thus the result follows from Bishop-Gromov’s volume comparison theorem.
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Let x be a smooth non-increasing function on Ry satisfying
x()=1 fors <t/2; x(s)=0 fors =ty

—4/to < x'(s) <0; |x" ()1 <3285 |x”(s)|< 512/8.

We set ¥2(x) =x (|Fit(x)]) for x € F;(Bo (ts)) and ¥'1 (x) = 0 otherwise.
Then we see that

Q
1 S Z;’(;(x) Smo.
i=1

Thus we can construct a partition of unity {xsl #=1 subordinate to the covering
{F2 (Bo(to) )| §-1 by setting

__ Xalk)
)= S )

The C**“-norm of x1° Fy, can be estimated by to, n, p, and AD? In particular,
|22 —x20)| < Crgtd (x, ) (2.2)
for some constant C = C (n, p, AD?).

3. Parametrix of the Green function

In this section, we construct a parametrix of the Green function using the
p-harmonic coordinates {Fi} <. We denote by g% and g7 the metric tensor and
its inverse in the coordinate F;. From now on, we adopt Einstein’s convention.

For { € By(to), we define a non-negative function d4 on R” by

a2 (©)1* = ¢, (0 ("= (¢'=0)).
Choose a smooth increasing function ¢: R+ — Ry such that
¢ (s) =s for s < to/6; ¢ = to/3 for s = to/2;
0<¢ <1, —6/tt<¢" <0
We now define a function h¢ on R” by

(¢ (@d())} >~ (to/3) "

m—2)w '

ht(6) =
where w is the volume of the standard (n—1) -sphere. Notice that ¢ (&) = 0 if
d}(E) = to/2. The first derivatives are given by
0iht (&) = —% {@ @) (d2(8)) 1t (O g4 (0 (&—=0).

Since ¢’ (s) = 0 for s = to/2, we see that d;h¢ (&) = 0 if d} (&) = to/2. If d} (E)
< to/2, using the estimates 2s/3 < ¢ (s) <s for s < t/2 and | E—{[/2 <
dt (&) < 2| & — |, we obtain

| ot ()| < cl &=C '

for some constant C=C ().
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Similarly we can estimate the second derivatives of h¢, which are given by

08t ()= 219 @4 ()} W (@4(0)) a4 ()} b (0 gk (O) (€*— L") (€'=¢)
—L g @@ @ (©) )1 g (),

where we set &1 (s) = m—1) {¢' ()1 2= (s) ¢" (s) + ¢ (s) ¢’ (s) /s. Since ¥ (s)
=n for s < to/6 and ¥, (s) =0 for s = to/2, 0% ht vanishes for d? (§) = to/2
and we have

|o5mt (@ <cle=Cl™

for some constant C = C(n).
The following will be needed in the next section.

Lemma 3.1 There is a constant C depending only on n such that if | E—
(| > 2[£—¢] then

|07 nt (&) —ahint (§) <clé—Cl™e—-¢],
and if] E—C| = 2| €= |, then
|05kt (&) = dfint (O < C Il §=CI =TI + =L =t
Proof. We apply the mean value theorem with attention to the fact that
le—¢l>4e—C] for |6-CI>2/6—¢]
and
|-l 24l6-¢] for |&-CI22C-CL.

We also notice that either § or £does not appear in the left-hand sides of the
inequalities as the argument of gi;
Next, we will estimate Ah%, which are given by

At (&) =—g (©)9% nt (©)
=—Lip@ @) @ ©) e
Xﬁ@kﬂ@ﬁi)?—ﬂ@uﬁ)
L1 @O)1 " @HO) ek (©)] e (O h (0.
= — L@ ©) "Bt ()
—- 1 @O @HO) k()] "¢ (&) ek () —h (D))
+L 16 @) T @ (©) k()] -
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X g7 (8) gh (O) g3 (&) —gh (O (6 —=CF) (6" =) (3.1)
where @3 (s) =¥, (s) —n¢ (s) ¢’ (s) /s. Notice that ¥; satisfy
U(s) =0 fors < ty/6ors = te/2.

Since 0% ht vanishes for d# (§) = to/2, Ah} vanishes for d} (§) = to/2. For

A (8) = —— 13 (&)~ g7 (8) leh (&) —gh (D)

+% dt(©) 72 g5 (&) g (O 14 (&) =gk (O} (67 (6 =0).
Then (3) of Theorem 2.2 implies that, if d¢(&) < to/6,
| And (&) | < Cra®| E—C |*

for some constat C=C (). For to/6 < d} (€) < to/2, the estimate of| 8%kt (€) |
implies that, if to/6 < d2(§) < to/2,

| Ant (8)| < Cra™

for some constant C=C (n).
Combining these results, we obtain

| Ant(&)| < Crae| E—¢ |

where C is a constant that depends only on # and p.
Fix x € M and take A for which x € Fi(Bo(ty)). For y € F1(Bo(3t0)), set

Hi(y) = hbpw (F1(y)).

Notice that H4 = 0 outside Fz (Bo(2to)). Therefore we can smoothly extend H
over M to be zero outside F;(Bo(2to)). Using the partition of unity {x} $=1 con-
structed in Section 2, we define

Haly) = ém(x)Hi o).

It is clear that Hy (y) is a smooth function on M X M minus the diagonal that
satisfies

Cid (x, ) "—Cr3" < Hy(y) < Cad (x, y) 27" (3.2)

for some positive constants Ci, Cz, and Cs, which depend only on »n and p. The
function H(y) vanishes when d (x,y) = 2t,. Notice that we have

Mo

VH:(y)= Zx.(x) VH:(y)

2

1
and

AH, () =§ 1 (1) AHA ().

From the estimate on h#, we obtain the estimates on H% in the harmonic coor-
dinate Fi. Moreover, in view of (2.1), H: can be estimated in any other
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p-harmonic coordinate.
Hence the above argument shows:

Proposition 3.2 There is a constant C, depending only on n and p, such
that
| VH:()| < Cd (x, y) "

and
| AH: () | < Cr5%d (x, y) &
We can now prove Green’s formula.

Lemma 3.3 For any ¢ € C*(M)
0@ = [ He6) a0 6)ant) — [ AH6) 0 6Iant).

Proof. Take a p-harmonic coordinate F around x. Using integration by
parts, we obtain

fM\F(Bo(eHHI »)dg Glanb) _fM\F(Bo(e))AHI 6 eb)nb)
=L(aBo(e))H1 ) o () doly) — V.H: () ¢ 0)do(y), (3.3)

F(@Bo(e))
where v is the outward normal vector field of 0F (Bo(€)) =F (0Bo(€)) and do
is the volume element of F (8B (€)). Let gij and g” be the metric tensor and its
inverse in the harmonic coordinate F. Then v and do are given by

v (&) = 1g" (§) &bl 7% (6) &0,

and

do (&) =| &7 {g* (&) &€l V2 detgi; (B) dwe (€),

where dwe is the volume element of the (» — 1) -sphere of radius € in the
Euclidean space.

The estimate (3.2) implies that the first integral of the right-hand side of
(3.3) tends to 0 as €— 0. If x € Fx (Bo(to)), by putting Fi* = (f},**-, /) and
changing the variable, we have

- VHz () @ ) do(y)

F(3Bo(e))

=— | £17'¢" (&) &:0; (HE o F) (£) ¢ (F (€)) Vdet £i; () dwe (€)

9Bo(e)

= — aBo(G)l E |_1gij (S) Siakh}}-l ) (F;l ()F(S) ) aj (ff OF) (&)

X @(F(8))/det gi; (&) dwe (€)

=1 ld1or0 (FRtoFE)I T 17 g7 () ghi (Fxto F(0))

@ J 3Bo(e)

X &0;(f5oF) (8) (fio F(§) —fioF(0))
X @(F(8)det gi; (&) dwe (§). (3.4)
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Using Taylor’s formula and the transformation law

£i1(0) = gk (F7'oF(0))d:i(ff o F) (0) 9 (fi o F) (0),

we obtain
b1 oro (FT O F(8))
= lgly(Fr' o F(0)) (1o F (§) =fioF(0)) (fio F(§) —fao F(0))} 2
= 1gi;(0) &€ +0( e[t
=|el(1+o( €])
and
g7 (&) ghi(F7' o F(0)) &0;(ff o F) (§) (fio F (&) —fio F(0))
= £"(0) g1 (0)&E* + 0(| £ )
=[¢Fa+odeD).
Hence the integrand of the last integral of (3.4) is
€' (F(0)) (1+0(e)

and the integral tends to ¢ (F (0)) = ¢ (x) as €— 0. Multiplying (3.4) by
x2(x), summing it up over A, and passing to the limit, we obtain the lemma.

4. Estimate for singular integrals

We set I'; (y) = —AH;(y) and define functions I'¥ inductively by

rF16) = [ M@ 6)dut).

Proposition 4.1  Suppose k < n/a. Then IT'¥ (y) =0 for d (x, y) = 2kto
and

| ¥ @) < Crs*ed (x, y) ko
for some constant C = C (n, p, AD?).

Proof. Set p=d (x, y). We denote by Z the middle point of a minimizing
geodesic joining x and y. The first assertion is obvious from the fact that
I'} (y) =0 for d (x, y) = 2to. The second assertion follows from the estimate of
the integral

fm(‘%ﬂ:o)d (x, 2)**7"d (2, y)*"dpu (2)

for d (x, y) < 2(1+k)to. We split the domain of the integral into

Bz<‘%), B,,(le), Bz(p)\(B;(‘%)UB,,(%)), and B;(fzi+ 2to>\Bz(p).
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By Bishop’s theorem, we can estimate the integrals as follows:

j;z(%)d (x 2)* 7" (2, y)*dp(z) < 70)(1‘21)"‘”1;%71:0(-1(” - %(g)“ﬁlw-n'

j;’(%)d (x, 2)* " (2, y) *"du(z) < Tw(‘%)ka_”ﬁ% a1y, — I%(%)(k+l)a—n'

ka-n a-n < (E)(kﬂ)a—znfp 1
j;.»(m\(sz(%)ua.(‘%))d (5, 2)**7"d (2, y) *"dp(2) < 100 2 . 7" ldr

’

_ ﬁi’ﬂ(%)(wna—n

ka-n a-n
S it 5 ) ) )

) (k+D)a—2n
Srwfz (r—‘%) " dr
o

2to
S 271—17,60.[1E r(k+l)a—n—ld’,
2

%[(g)‘k“m‘”_ (2t) (k+1)a—n} if (k+)a<wn,

=1 2”'lrwlog% if (k+1)a=n,

| ?’2-2'__"1;%[(2%) (k+1)a—n_<%>(k+l)a_”} if (k+1)a > n.

Notice that we have put T=e(”‘m/’TD. The last integral vanishes when p = 4t,.
The claim now follows by induction.

.

Recall that n/a =np/ (p—n) is not an integer. The proof of Proposition 4.1
also yields the following estimate.

Proposition 4.2. Set N= [n/al + 1. Then
Y()=0 ford(x y) = 2Nt,
and
IrY )| < crg”
for some constant C=C (n, p, AD?).
The following estimate will be used later.
Corollary 4.3 Let 1 < k < N and f be a function on M. Set
w0 = [ TF@FG)au).

Then there is a constant C, depending only on n, p, and AD? such that
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for 1 < g < oo, The similar estimate holds for

w) = [ I 6ant).

Proof. From the previous propositions, we have
fMIF,f (lank) <c
and
J )t wlane) <c

for some constant C = C (n, p, AD?). For 1 < g < o, we have by Holder's in-
equality,

el < {1 R wlaae) | ([ o6 k)
<ot [ 1 rE@I6) apt),

from which we obtain (by integration in x)

Lluwbapt) <[ [ 1@ lau lr6) )
<crf 15l

This completes the proof for 1 < g <oo. For ¢ = o, the corollary follows
from

@l < [ 5@ lau6) - l1fl
We next estimate I'2 *! (y).
Proposition 4.4 (1) There is a constant C=C (n, p, AD?) such that
I’ p) =0 ford(x,y) 2 2(N+1)to
and
[r¥+ ()] < o™,

(2)  The function TN is of CB-class for any 0 < B < a. More precisely, in any
p-harmonic coordinate F: Bo(ry) — M, we have

B o Flgn < Crg”
for some constant C = C(n, p, 5, AD?).

Proof. The claim (1) can be proved easily by straightforward calculation
as in the proof of Proposition 4.1. To prove (2), we need the following lemma.

Lemma 4.5. Suppose that ky (&, §) and ks (€, {) are smooth functions on
Bo(R) X Bo(R) minus the diagonal satisfying

|k (8, Q] S CR™ E=CI% k(8 Q) —ki(E, 0| < CR™ E—E |7,
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(€0 < cle=tl 15260l <cle=gl
Set k(§, ) = k(& Q k(& §) and

w@®=J rE0r©ac

for f € C°(Bo(R)). Then u € C*(Bo(R)) for any 0 < B < a. More precisely, there
exists a constant C, depending only on n, .3, C1, Ca Cs, and Cs, such that

(ulsr < CRPII £ llog.
Proof of Lemma. Set p =| E—& | and &€ = (& +&)/2. We have

< U;e(%gﬂk(&. Olat + _]‘Be,(%}ﬂk(g', Olag
+-j;o<m\sz(p)lkl (&, 01« ez (& §) =2 (£, ) [aC
+ fao(m\Bz(p)lkl(&‘ Q) —k(€, C)l k2 (€, 0 ld C} I £ lleo,2.

lu (&) —u (€)

The first and the second integrals in the braces are estimated by

3 - -_
- - 3°C,CswR™" 3« R~8
CiCswR "j;zya 1y = —CIZ:—Pa < _le%saw__ 5

When | € —C| > p,
|ka(6, 0 —ke(8. 01 = ol SE(E. O
for some E which lies in the segment connecting & and €. Since] E— gl < 0/2
<l&-de,
E-d=zle-g-1E-¢l>1&-0/2
Then the third integral is estimated by
CiCR™p | 6=l E =™ ag

Bo(R)\Bi(p)

< 2n+1—ac1C¢R—a‘0 | g_cla—n—ldc

Bo(R)\Bi(p)
2R
< 2”+1‘“C1C4a)R_“pf 2y
o0
2n+l—aclc4wR—a a
< l—«a o
2”+1-ﬁC1C4(I)R_H
< 8
- 1—a o

Similarly, the last integral is estimated by

C2CaR™%0" | €= 17"d{ < 2°CoCsR ™" | £ —=Cl™aC

Bo(R)\Bi(p) Bo(R)\Bi(p)
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2R
< 2”C2C3(0R"’p"f r dr
o

= 2”CZC3wR""p“log27R
< ZHPCCWR™

= (@a—PB)e

because the function o — 0* ®log (2R/p) takes its maximum at o = 2Re™Y @9,
The lemma has been proved.

We now return to the proof of Proposition 4.4. By definition,
Q
[N+ (y) = —lZfMI"}" (2) x2(2) AHA (y) dp (2) .
=1
We rewrite each term of the sum in the harmonic coordinate F:

w@=— [ TE©0) 1) 4@ Jaag © al

In view of (2.1), it sufﬁces to estimate the C°-norm of u,. It is a consequence
of straightforward calculation that Ah¢ (€) expressed in (3.1) is a sum of the
functions which satisfy the condition of Lemma 4.5: for the first term, with
k(& Q) = W2 (d¢(&)); for the second term, with ki (&, Q) = g7 (&) lgh (&) — gl
(O1; and with ki (§,0) =g¥ (&) g4 (O g1 (&) — g} (O} for the last term. Then
the claim follows by applying Lemma 4.5. with

Q) =TI (F(0) xa (F2(Q)) v detgl; ().

5. Construction of the Green function

We are now ready to construct the Green function by using H: (y) and
¥ (y). Recall Green’s formula,

oW =[ H6)dp6)aut)+ [ T26) 0 () auty).
By putting ¢ (x) = 1 in Green's formula, we obtain
[ Roauw =1
Iterating Green’s formula, we also obtain
— N+1
0= [ K6 400)au6) + [ M) 0du) 6.1
where
N
Ke0)=He )+ [ SIFGH()dp().
M =1
From the results of the previous section, It is easy to see that
Kz @) | <Cd (x, )2

for some constant C=C (n, p, AD? and that K- (y) =0 for d (x, y) = 2(N+1)t,.
Hence we have
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[, K 0lant) < cr (5.2)

for some C=C(n, p, AD?).
By putting ¢ (x) = 1 in the formula (5.1), we also obtain

[ 6ant) =1,

Therefore we can define a function Rz by solving the equation

AR, = ['N+1— % (5.3)

under the condition

fMR:r(J')d/J )= 0.

The elliptic regularity theorem (Theorem 1.2) and Proposition 4.4 imply that
R is of C?-class.
Putting (5.3) into (5.1), we obtain

00 = [ Ke) 0 6)ant) + [ AR:0) 9 6)dny)
+ 4/ o0ane)

= [ K:0) 80 0)an6) + [ R26) A0 6)a(y)
++ 06 an6)

ie., A(K;+R:) =0:— VL Since Sy K:() TRz} dp () = JuK:()dp (),
we have
Gely) =Ke ) +Re ) =77 [ Ko ®)ape(y). (5.4)
We can now estimate the Green function near the singularity.

Theorem 5.1. There exist contants C, and C,, depending only on n, p,
AD? and V, such that

1G: )| < Cid (x, )%™ ford (x, y) < Csio.

Proof. Since we have already estimated K. (y) and
|+ [ e i) < G < Den
it remains to estimate Rz (y). By (5.1), we have
Re(@) = [ K.0) AR 6)ap) + [ T2 0)Re()duty)
= [ k)2 G ant) =3 [ Kew)aut) + [ TF6) R 6)an ).
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Therefore we obtain
Re@ < Il [ Kodage + L [ Ila+ 1l T 1) g1 R s 5.5)
Applying Sobolev’s inequality (1.3) and Holder’s inequality, we have
1 Re Iz, < CEIl VRe 11 = C3 [ RedRudpe = €3 [ ReTap— [ Rudp
= ¢4 [ RI*ap < Gl Rellzm 11 T2 Lz,

and hence
I Rz 122, < CEII 1272

From Proposition 4.4, we have

| I e < Cro”
and

2—
2+ |2, < Cr,z

for some constant C=C (n, p, AD?). Then putting these inequalities and (5.2)
into (5.5), we obtain

Il Rz llee < CHE™, (5.6)

where C is a constant that depends only on n, p, AD? and D"/V. The proof has
been completed.

We turn to the first derivative of the Green function.

Theorem 5.2 There exist constants C1 and Co, depending only on n, p,
AD? and D"/V, such that

| VGa(y)| < Cud (v, 9)™" ford (x,y) < Csio.
Proof. Differentiating (5.4), we have
VG:()= VK:(3) + VR:(y).
By the argument similar to [5, Lemma 4.1] , the formula
VK = VH )+ [, SIH) VH0)ap()
is justified for y = x. Then Propositions 3.1, 4.1, and 4.2 imply that
|VE:()| < Cd (&, 9)'"

for some constant C = C (n, p, AD?) and that VK. (y) = 0 for d (x, y) = 2(N+
1) to. Hence we have

fMI VKzldﬂ é Cro
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for some C = C(, p, AD?).

In order to estimate VR, we approximate R; with smooth functions
{@4} 7=1 in the C%-topology.

From Propositions 4.1 and 4.2, we see that the leading part of K (y) is
H:(y) and we deduce that

Kz (3’) > _.ar%—n

for some constant a depending only on #, p, and AD? Then we have

|7 ol () = fMK,,AI V oulap + fMF,”“I V ouldu

= [ Wu+ar AV gt [ 101V ol
Using Weizenbéck’s formula, we have

AV @il = 2(V Agr, V o0 —2| V2u2—2Ric (V @i, V @)
< 2{VAgi, Vo +2m—1)AlV @il*

Since K,+art™ is non-negative (by the definition of a),
[ Ktar™) A1V o lan < 2 [ (G+a™) (7 ou 7 Agut a1 AV pap
= ZfM (Kytard™) Az {A@i + (n—1) Apid dpe
—ZfM Apr + (n—1) Apd (VK,, Vordu
Passing to the limit, we obtain
[VRA? () < fMKy|AR1|2d,u+ar%'" fM|AR1|Zdﬂ+ m—1)A fMK,,R,AR,du
t+am—1)A%™ fMI VR,lZdu—szAR,WK,,, VR dy
~2—DA [ RV Ky, VRYdp+ [ TV RS an 65.7)

The right-hand side of (5.7) is estimated with a constant C = C (n, p, AD?,
D"/ V) as follows:

fMF,N“| VRdp < || TV+ . fMl VR:Pdu = Crg fMR,AR,du
<Cn™" fMR,r}V Hap < o

amn—1) A% fM| V R:|%dp < aCAvd™ < aCADME 2",
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fMKy|ARx|2du = fMKy

< (ot %) <c(1+ D%),%—Zn,

pl <2 -
N+1_ 1 < N+1||2 4 2
i an < 2l e+ 5) [ s

n » 1
art [ JaRap < 2ar ([ 102 P+ 5)
1 n
< Zanzf”(Cra” + 7) < Za(C + D7>rg—2n,

1
(=D A[ KiRedRedr < =) AIRAL (I + L) [ |Khap

< cAré‘"<ra" + lv) < CAD2<1 + D—I:)r%‘z",

1
—2 [ ARV Ky VR dp < 210240 + NV Rl f |V Kilap
< cnfr5r+ 5 )I7 Rl
D_n 1-n
< c<1 + V)To 1V Ralle.

~2(n=1)A [ ReV Ky, VR gt < 20— 1) AllRe Il 1V Re o [ | 7 Ko
< CAIIV Rz |l < CAD*E ™|V R; |l
Hence we obtain
IV RAE < Cird IV Rl + Cor§™®”

for some constants C; and C: depending only on #n, p, AD? and D"/V. This im-
plies

NV Rzl < Cr5™”
for some constant C = C(n, p, AD? D"/V) and the theorem follows.

Remark 5.3. Using the estimate of the heat kernel, one can estimate
Gz and V G; globally in terms of n, AD? D"/V. See [7] .

6. LP-estimate for the Laplace operator

Let us show Calderon-Zygmund type inequality for Gz in this section. We
first fix some notations. Let E; and E; be vector bundles over M with norms.
We use the same symbol| . |f0r the norms on E; and E,. For a section s of F;
or E;, we denote by # (s; @) the volume of the subset x € M:|s (x) | > al.
Notice that

_ s 12
) Hsllg
uls;a) <a "f |s|9ap < s

Is|>a

We denote by L?(E;) (resp. L?(E2)) the space of the sections whose L?-norm is
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finite.

Let us introduce the following basic interpolation theorem which is repe-
atedly used in this section. For the proof, see [5, Theorem 9.8] .

Theorem 6.1 (Marcinkiewicz’s interpolation inequality) . Let A
be a linear operator from L (E,) NL%2(E,) to L (E2) NL%2(E;) with 1 < q1 <gq»
< 00 satisfying

qy 4z
p(As; a) < &lih and  p(As: @) g%ﬁ”h
a

a2

for some constants C1 and Ca. Then A can be extended to a linear bounded operator
om LY(Ey) for g1 < q < gz and

1/q
lasll, < 22+ L) crepils I
for n = q1(q2—q) /q(g2—q1).

For a function f on M, we put

w(e) = [ H ) % 6)f 0)an).

By Green’'s formula, we have

10 00) = [ B %0 de Wapte) — [ A6 1:6) 0 () du o)

for any smooth function ¢. Therefore
[ 7006 ewaut = [ 4t 406 dut)
— [ [ 416 1267 6)a 6) | 0 () s ()

and we obtain

7)) = du ) = [ A 120D O)dn ). 6.1

We first show the following proposition.

Proposition 6.2 Let 1 < g < pand

w@ = [ 00 076)du6).

There exists a constant C, depending only on g, n, p, AD? and D/io, such that
72 |, < cllfll,.

Proof. We carry out the proof in nine steps. We always calculate in the the
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coordinate F; and denote the metric tensor by gi; and the Christoffel symbols
by I'#. Notice that there holds VZu = 0%u—I'0ku.

Step 1. First we prove this proposition for ¢ = 2. By Weitzenbock’s
formula, we have

V2 < [l du [l + (=1 ANV ull.

From (6.1) and Holder’s inequality, we obtain

| au @l < 27 + 2 [ 1am ) aw6) }{ [ | ari )11 76) i) ).

From the estimate of Aht (€), we can estimate the integrals [ u|AH} (x) ldu (»)
and [ u|AH; (x) |dg (x) with some constant C; that depends only on #, p, and
AD? Hence we have

Il du I} < 2(1+CHIfIB
Similarly we have

Pu| < [ 17 B laxb)

1/2

<{[ v @laew)) | [ 7m0 Faue)

The estimate of dhé (€) implies that there is a constant C;, depending only on
n, p, and AD? such that

J)vilan) <cw [ |vE@le < cb.

Hence we have

7 ully < 3D £ 115
Therefore we obtain
N7l <21 + CHIfFIB+ e—1)C3AD? || £ 115 (6.2)

Step 2. We denote by S2T*M the bundle of symmetric bilinear forms.
We apply Theorem 6.1 to the operator f — V2. By the result of Step 1, we
have

< NVl Clif13
- aZ - a2 N

Step 3. In Steps 3 and 4, we will prove that there is a constant C de-
pending only on #n, p, AD?, and D/i,, and satisfying

©(V2u;a) (6.3)

w(Vya) < C“a Il (6.4)

for any function f € L'(M).
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For simplicity, we denote the volume of a subset S C M by| S |. We have

1 v £l
|B_t(to) j;z(to)lfld# S Bx(to) Vv
Tgn Lrlh _ el 6.5)
0

where ¢ is a constant that depends only on n, p, AD? and D/i,. Here we have
used Bishop-Gromov’s volume comparison theorem, which says that for 0 <7
< R we have

|B:(R)| _ 7R™
B =y

Notice that we may assume ||f|l1 < aV/c. Otherwise, (6.4) is valid be-
cause (V2u;a) <V < cllflli/a. Hence

RO}
B (t0) wa|f|du£a

for any x € M.
Set Eo = {x € M:|f(x)| < al and define a sequence {ti} 51 by tx = 2 %t.
For k < 1, we put

Fum [« <2 gl >

and E = U$_; E . Then the set M\ (E U Eo) has measure 0, because

. 1 _
;ltl_.lg B:(tx) fBsz'f'd# =176l

for a.e. x € M.

We now define a family of subsets {E4} k21 inductively by E; = E1 and Ey
= Ek\ Ek 1 for k> 1. Notice that for x contained in the closure of E, we
have

1
B,(t,,)l./;,wlf lage > o (6.6)

1
(B, (2t,) |’/;z(2fk)|f ldp < a.

We can choose a finite subset N; of the closure of E; such that the geode-
sic balls {Bz (t1)} zen, are mutually disjoint and the geodesic balls {Bz (2t1)} zen
cover the closure of E;. Inductively we choose a finite subset N4 of the closure
of Ex\U ¥z U zen,Bz (2t;) such that the geodesic balls {Bz (tx)} zenx are mutually
disjoint and the geodesic balls {Bz (2tx)} zen. cover the closure of E;\ Ukl
U zen;Bz (2t;). In this way, we obtain a set of pairs { (xk, 0k): xx € M, px > O} 421
= {(x t;): x € Nj, j = 1,2, such that the geodesic balls {Bz, (204} x=1 cover
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E and the geodesic balls {Bz, (0x)] ¥k=1 are mutually disjoint. Moreover, (6.6)
implies that

T,
>
Bz, (0k) sz(p,‘)lfldﬂ_a

and

Btzont).
<
Bz, (20x sz(zp,)lfldﬂ =a

We define a family of mutually disjoint subsets {D4} ¢=1 inductively by

D; = By, (2{01)\ U Bz, (pi);
j=2

Dk=BI,,(2pk)\[( y Di)u(.UkBI,(p,-))] for k > 1.

1S§Sk-1

ObViOLlSly sz (pk) C Dk C BI,, (2()/.;) and U k=1 Dk = U kZIB.n (Zpk) D FE. From
Bishop-Gromov’s volume comparison theorem, we have

1 1
]D_k[j;klfld# = [ z,‘(Pk)l-];z,gzo,‘)lfldﬂ

2" f
< ]ﬁ—Lﬂr
= Bz, (2pk Bz,,(zp,glf .

< 2"

and

1 o
< < T_L[
“= Bz, (04) »/;Jzk(p,,)lfld# = |Bg, (4p) fDJfIdﬂ.

Therefore the volume of the subset U »1Bz, (160%) is equal to or less than

S 1B (16001 £ 20T [ |lap < F7ILN, 6.7)
k21 k21 4 Ik

a
Using the defining function ¢« of Dy, we decompose f as follows:

f=fot Zfu

k21

fi= o — 155 [ s

Then the function fo satisfies|fo| < 2"va for ae. x €M and |l folly < IfIL.
The functions {fil k=1 satisfy Jufidy = 0.

Step 4. Set ux (x) = JuHs () x2®) fu @) dpe(y) for k = 0. From the re-
sult of Step 1, we have

where

) < A7l cllg

a? a?

1(Vug a/2
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< Cll fo llll fo Il < 27Cll £l 6.8)

a? a

for some constant C = C(n, p, AD?).

Next we analyze uy for k = 1, Recall that the support of x, is contained
in F1(Bo (to)) and Hj = 0 outside F; (Bo (2to)). If Dy N F1(Bo (ko)) * @, then
Bz, (to) N Br,o (2te) * @. Since 8ty < 7o, we have

Dy C By, (to)) T Bryo (4t)) € Fi(Bo (1))
and
Fi' (D) C© F1' (B (204)).

Therefore we can analyze uy in the p-harmonic coordinate F}, i.e.,

w® = [ t@Ox: (A0 Vid g0 dl

Here we have put £ = Fi! (x), & = Fi* (x4), and { = F7i! (). Recall that gi;
satisfies 47'0;; < gi; < 40;; as symmetric bilinear forms in the coordinate Fj.
If x € Bz, (1604), then|E— & = 8o, and|é— | = 404 Hence there exists a con-
stant C = C(n) such that

' 2
fM\Bz,‘(lﬁok)l Vi (x) |d# (x)

< C[f|e~ek|zspk |0%u, (£) |V/det g3; () d€
+’£e—ek|280k|n{i (6) O (€) |Wd€] . (6.9)

In the first integral of the right hand side, we can interchange the order of in-
tegration and differentiation:

Ohue(® = [ 95 m(®)xa(Ofe(0) VAot g (D al

[E—&xl <40k

= 0% 12 (&) x2 (©) — 05 ht (&) x2 (€)1 fie (O) Vdet £ (D) d .

[C—&xl <40k

The last equality holds because [ufidt = 0. From Lemma 3.1 and (2.2), we
observe that

10%h¢ (&) x2 (0) — %k, (&) x4 (&4 |
< Ch®ll—&dlolE—&d™ +IC—&dle—&dl Y

for some constant C = C(n, p, AD?). Since v/det gi;(§) < 2", we obtain

»ﬁe—eg|230k|azuk (&)|vdet g (B) d€



24 Tsutomu Hirvoshima

: zncﬁpme—eusm[(%Yl E—& | +Hdod £—6 |_"_1]d§
% -/;C—eusmk'f" (©)v/det g5 (0) aC

< 2w [ (%) +apuar - 15l

Yo
= 27Co|(24) logge+ ]Il
sznao(za +1)||fklll

As to the second integral, we use the estimates

j;o(mlathé () 17797V /det g () d &

70 a-1/G-1
e [roviny

B Cp__nl) (2rg) P~/ 470 (6.10)
and
T 10 < Cll Og llpre < Crg=7 (6.11)

for some constant C = C(n). These inequalities imply

j‘le—EkIZBpklri{i (&) Oux (8) |/ det g1 () d€

=3 R T N 1CE I Ty R
X |fe () |v/det £ (Q) €

= ”Fi;llp'mjl‘c-ensm U;wo)la’hé (©) |’”"‘”~/md$] ®-vr
X |, (O |v/det g5 (Q) d

< Cllfilly

for some constant C = C (n). Thus we can find a constant C, depending only
on n, p, AD? and D"/V, such that

2 <
fM\Bz,‘(IGDk | V uk|dﬂ o C”fk ”l

Hence the volume of the subset{x € M\U y21Bz (1601): | V2 (u—uo) (x)|= a/Z]
is equal to or less than
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2 [ 2 2y [
a - <= 2
a M\UkZIBrk(IGDk)I V2w = o) Id'u - ak§1 M\sz(lepk)l v ukld’u

<L s isll

k21

<%\ =gl

<%z (6.12)
Combining (6.7) and (6.12), we obtain

u(Vi(u—uop);a/2) < clis 1l (6.13)

a

for some constant C = C (n, p, AD?, D*/V). Now (6.4) follows from (6.8),
(6.13), and

w(V2u;a) <p(VEu—uo);a/2) +1(Viuo;a/2).
Step 5. From (6.3) and (6.4), we obtain Proposition 6.2 for the
case 1 < ¢ < 2 by applying Marcinkiewicz's interpolation inequality.

Step 6. In the case 2 < g < p, we need to consider the adjoint ope-
rator. Let b be a section of symmetric 2-tensor S*TM and define a function
V *2p in the sense of distribution, that is, it satisfies

qus V*bdyu = fM VigbYdu

for any smooth funtion ¢ on M. Let 2 < g <p and set ¢ =¢q/(g—1),p =p/
(p—1). We define a function v by

v = [ HEG) 12 () V*20 0)dpey).

Then for the function v(x) = JuH3 &) x23)f»)du(y), we see that

fMV%,ub”du = fovdu.
By duality, it suffices to show the existence of a constant C = C (n, p, q, AD?,
D/io) satisfying
Nolly < cllblly.
Notice that, from (6.2) and by duality, we already have
4 w1l < Cllb Il (6.14)
for some constant C = C(n, p, AD?).
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Step 7. We define a function w by

wi) = v+ [ TH6)OHEG) xa (b ()du ).
By Holder’s inequality, we see that
w@ =< ([ rekae)”
AL aH )P bau)
AL e
Then (6.10), (6.11), and the estimate

fp“Bo(fo)) {LA(Bo(ro)JalHé (y) |Mp_l)dﬂ (x) ] |bii (Y) lq'd/«t (}’)
< Crf)’“””"‘”f 6% () [7d e (y)

] 1/9-1/p

“ani)”

Fa(Bo(70))
imply
J— q"
Lx(Bo(ro))lw (®) —v () |7dp (x)
< f (|
¢ Fx(Bo(ro))Ib (:V)| du(y)
and hence

Hw=—vlly < Cllblly (6.15)
for some constant C = C(n, p, q).
Step 8. In Steps 8 and 9, let us show that, if 1 < ¢’ < 2, we have
Hwlly < Cllblly , (6.16)

for some constant C = C(n, p, q, AD? D/io).
From (6.14) and (6.15), it follows that there is a constant C = C(n, p, g,
AD?) such that

lwll; < llvllF+Tw—vll; < Cll b L,

and hence we have

2
o) < CIL1E 6.17)
a
Step 9. In view of Theorem 6.1, it remains to show that
wlwa) < Cllelh (6.18)

for some constant C = C (n, p, q, AD? D/i,). We shall decompose b as in Step 3.
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We may assume fu| b |dy < aV/c for the same constant ¢ of (6.5). We can
construct a set of triplets

[k, 0k D)1 2k €E Dy T M, 0 < i < to/2} k21

satisfying the following properties:

(1)  {Di} 421 is a family of mutually disjoint measurable sets such that D, C
B.tk (2016) .

(2) |b] <a for ae. x € M\U 21D

1 n
(3) ]D—krj;kleuSZra.

(4) The volume of the subset Ui21 Bz (160x) is equal to or less than
47l b ll1/a.
If F; (Bo(2to)) intersects with Dy then Br, o (4to) N Bz, (to) *+ @ . Since 12t
= 79, We have

Dy © By, (to) € Bryo (6t0) € Fa(Bo(ro)).

Using the coordinate F, we express b as b” 8;0; by functions b" on Fi (Bo (r0)) .
We define sections by = b0;8; of S?TM|p, by setting

i

- 1 i
= t
W = o), e

For x, y € F1(Bo (r0)), the norms of the fibers S?T:M, S*T,M satisfy| * |, < 16
| . |,,. Therefore, we verify

- 16f
<
lod <11, 10 la

_ < f
j;klbkldﬂ 16 Dk|b|d/1.

Using the defining function ¢ of Dy, we now decompose b into bo + Zx21bx by
setting

and

b = g(b—bx) for k> 1.
Then we have
Hoolly < 16ll61l; |bo]| <274 for ae.x € M. (6.19)
We set

@ = [ H) 1) 7%, ()aey)
and

we) = vl + [ TH6) BB G) 22 () bF (e ),

where b is the local expression of by in the coordinate F; From (6.14), we



28 Tsutomu Hiroshima

have
2 2
2w a/2) < 4IIZ;20II2 < Cllalzollz < Cll be I(I;.Ilbolll'
Then it follows from (6.19) that
b
ﬂ(wo,a/Z) S Clla “1

for some constant C = C(n, p, AD?). For x & By, (16p4), we have
= [ VO 6)apt)+ [ Th6)a HG) 1) b 6)dny).
= [ 0638 B )¢ ()any)

because the singularity of H; lies outside the support of b. Notice that both
the domain of integral and the support of vy are subdomains of F; (B, (r)). By
putting F1 () = x, F2(&) =y, and F (&) = xx, we have

w(© = Q0 (© (© Vaetz, (§ de
Since
oo, (O VAt (0= 0,
we obtain
@l <cf 110502 =03 k(&) bf (§)la

for some constant C = C (n). From Lemma 3.1, we see that there exists a con-
stant C = C(u, p) such that

0% 1ht (&) — 0% nt (&) | < ClIC—&l™ Y E—&.

Therefore we have
@1 < [ |03 b(0) — 05 ht(&0) | o (6)IVaet 2,8 a
< Coul C—& 7 M b Iy,
and hence
G e
<coef . lL=&l g - Nl

270
< prkj;pk - |l be s
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< S0 b

As in Step 4, we can estimate the volume of the subset

{x € M\ U B,, (160,): | w—wo (x) | > a/Z}

k21

from above by the quantity Cllb1li/a for some constant C = C (n, p, AD?).
Then (6.18) follows. Thus we obtain (6.16) by applying Theorem 6.1 again.
This completes the proof of Proposition 6.2.

The following corollary is a direct consequence of Proposition 6. 2.

Corollary 6.3. Let 1 < g < p. For a function f on M, define a function
by

ulx) = fM Hy(x)f () dp(y).
Then there is a constant C, depending only on w, p, q, AD? and D/io, such that
72 ll, < CIlfll,

Thus we can estimate the constant that appears in the L”-estimate for the
Laplace operator in terms of the diameter, the injectivity radius, and the lower
bound of the Ricci tensor.

Theorem 6.4. Let ¢ > 1 and f be a function on M. Define a function u
by

w@ = [ Gor6)dut).
Then there is a constant C, depending only on n, q, AD? and D/io, such that
72y < CIlfll,
In particular, by putting f= Au, we have
72 ll, < Clldu ll,.

Proof. Choose p such that p > #n and p = q. On account of Corollaries 4.3
and 6.3, we have only to show that, for the function u# defined by

u (x) =fMR,,(x)f(y)dﬂ o),

there is a constant C = C (n, p, g, AD?, D/io) such that
V2 ll, < CIlfll,

Set @ = 1—n/p and B = /2. In every p-harmonic coordinate F : By (r)) — M,
by the elliptic regularity theorem (Theorem 1.2), we have

Al 9%Re e < Cfll Rellese + 13 + A (1,0

N+l_l

¥ %4
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for some C = C(n, p). Hence, by Proposition 4.4 and (5.6), we obtain
|| asz ||00,ro/2 < Crs™

for some constant C = C (n, p, AD? D"/V). Recall that i%/V is estimated from
above in terms of n (cf. [4]). Therefore we can estimate the L?-norm of
Viz'iRz= Vtsz.t_ iI;akR.t:

V2R, I, < Cig*=27?, (6.20)

where C is a constant depending only on n, p, AD? and D/i,. Notice that the
ratio i0/7o depends only on #n, p, and AD? Since R, is of C?-class, we have

V2u(y) szszx W fx)dux).
Applying Hélder’s inequality, we deduce

oGl < vt [ 172Re6)19 170 e o).
Integrating this in y and using (6.20), we obtain

17 2lly < ver [ 17 2RA8 |56 e )
< pab-1/p 2
< veo-vr [ 117oR, 11|76 e o)
<C(V/D") =7 (D/ig) =07 £ |l

for some constant C = C (n, p, AD? D/is). This shows the theorem because
V/D" is estimated from above by #, p, and AD?
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