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Minimization of the embeddings of the
curves into the affine plane
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Masayoshi MIYANISHI

O. Introduction

Let C  b e  a sm ooth affine algebraic curve with only one place at infinity
defined over an algebraically closed field k  of characteristic zero; we also call C
a once punctured sm ooth algebraic curve. Assume that C  is em bedded into the
affine plane A2 as a closed curve. The image of C by an algebraic automorphism
of A2 is  a g a in  a curve of the same nature as C .  One m ay then ask w hat is
the smallest among the degrees of (p(C) when (I) ranges over automorphisms of
A2 . W e say that (p(C) is  a minimal embedding of C  if the degree of p(C) is  the
smallest.

The question was first treated by Abhyankar-M oh [1] and Suzuki [12] in
the case of genus g  o f C  is  zero. Namely, a m inim al embedding o f  th e  affine
line is a  coordinate line. The cases g = 2 , 3 ,  4 ,  . . .  w ere treated by Neumann
[8] by topological methods and by A'Campo-Oka [3] depending on Tschirnhausen
resolution tower.

W e shall here propose a different algebro-geometric approach based on the
classification of degenerations of curves, which enables us to describe an automor-
phism cp of A2 m inim izing the degree of yo(C).

Our theorem  is the following:

Theorem. L e t C  b e  a o n ce  punctured sm ooth algebraic curve o f  genus g,
which is embedded into the affine plane A2 =  Spec k[x, y ] as  a closed curve defined
by  f (x , y) = O. T hen there ex ists new  coordinates u, u o f  A2 such that

(1) k[x, y ] = k[u, v], and
(2) h(u,v):= f(x(u, v), y(u, 0) and e = deg h(u, v) are given as follows if g 4;

Case g = 0: e = 1 and h = u.
Case g = 1 : e  = 3  and h = y 2  — (u3 + au + b) w ith a, b e k.
Case g = 2: e = 5 and h = v 2 — (u5 + au 3 + bu 2 + cu + d ) w ith a, b, c,

d e  k.
Case g = 3: T here are  three types:

(1) e  =  4  and h  = y 3  + g,(u)v — (u 4  + g 2 (u)) w ith gi (u)e k [u] and
deg gi (u) 2  f o r i = 1, 2.
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(2) e = 7 and h = y 2  — (u 7 + g(u)) with g(u) e k[u] and deg g(u) 5.
(3) e = 6  and the multiplicity sequence o f  singularities at the point

at inf inity  P, is (2"), where (2 ')  im plies that there are 7 double
points centered at Po .

Case g = 4: T here are four types.
(1) e = 5  and h = y 3 + g,(u)v —  (45 + g 2 (u)) w ith g i (u) e k [u] and

deg g i (u) 3  f o r i = 1, 2.
(2) e = 9 and h = v 2 — (u9  + g(u)) with g(u) c k [u] and deg g(u) 7 .
(3) e = 6  and the multiplicity sequence o f  singularities at the point

at inf inity  is (26 ).
(4) e = 9  and the multiplicity sequence o f  singularities is (38 ).

(3 )
 

The automorphism cp of A 2 induced by acp(x) = x(u, v) and ayo(y) = y(u, v)
is described explicitly  as  a  Cremona transformation o f  P 2 induced by cp.
(c f  Lemma 8).

For the argum ents using Lem m a 9 below, we a re  indebted to  A. Sathaye
who instructed u s  how  to  use  L em m a 9 . W e are  very grateful to him.

1. Minimal degenerations

Embed A 2 in to  the projective plane P 2 w ith  the line at infinity l 3 L e t  C
be  a s  above an d  le t C b e  the  closure o f C in  P 2 ,  w hich is a  curve of degree,
say d , having a one-place point P , o n  lco .

Consider a  linear pencil A  o n  P 2 genera ted  by  0  and d l .  T h e  p o in t  13
0

is  a  b a se  p o in t o f  A .  Then, by blow ing up P  its in fin ite ly  near points
which are base points of A  a n d  by taking th e  proper transform o f A , we can
eliminate the  base  poin ts of A .  W e assume tha t w e need  th e  last blowing-up
to  m a k e  th e  linear system  free from  b a se  p o in ts . W hen the base points are
elim inated after finitely m any blow ing-ups, w e obtain a birational m orphism
a: V  — > P2 and  a  surjec tive  m orphism  p: V — > su c h  th a t V  is  a  nonsingular
projective surface, tha t a  is  a com posite of the above blowing-ups and  tha t the
fibers o f p  correspond bijectively to  the  members o f  th e  proper transform o- ' A
of A .  L et E  b e  the  exceptional curve arising from the  last blowing-up.

N ow  the  following result is proved in  [41, 5].

Lemma 1. W ith the notations and assumptions as  above, we have:
(1) E  is  a  cross-section of  the f ibration p: V -> P 1 ,  and every  f iber o f  p  is

sm ooth at the point of  intersection with E.
(2) A  general f iber o f  p  is  a  smooth projective curve o f  genus g.
(3) T he proper transform  Fo  :=  C  o f  C  is  a  f iber of  p.
(4) Let F the  f iber o f  p  comprising the  proper transform  L  :=

T hen (F) r e d  consists o f  L  and  all (irreducible) exceptional curves but E
which arise f rom  the blowing-ups effected to make the pencil A  free from
base points. A ll other ,f ibers o f  p  are  irreducible.
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(5 )
 

Denote F F. T h e n  F c o n s is ts  o f  nonsingular rational curves w ith
simple normal crossings. Only  the component L  is possibly a  ( - 1 )  curve
among the irreducible components o f  F. Furtherm ore, the dual graph of
F  as  shown below in Figure 1 is a  tree such that the branching number
at each v ertex  is at m ost 3;

If  L  is  n o t a (— 1) curve the fibration p: V 13 '  is  minimal, i.e., there are
no ( — 1) curves contained in  th e  fibers of p. If  p  is  n o t minimal, we contract
the  component L  and  all subsequently contractible components o f F  to obtain
a  m in im al fib ra tion . T h u s, w e  have a  b ira tional m orphism  T: V a n d  a
minimal fibration p : v 13 '  of curves of genus g such that p = p • T. Let F := -E,F
be  the direct im age of F .  W e shall show that:

Lemma 2. 1  consists o f  nonsingular rational curves with simple normal cross-
ings, and the dual graph o f  r is  a  tree as  shown in Figure 2.

P ro o f . Suppose the assertion does not hold. Then, in the course of blowing
down contractible components of F, we have a ( — 1) component M with branching
number 3 whose location in the dual graph of the direct im age of F  is shown
as follow s (see Figure 2):

Figure 1

Figure 2
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Then, starting with E, a ll the  components lying o n  th e  right side o f M  can be
contracted as a  part of the reverse process of elimination of base points of the
pencil A .  The im age M  o f M  together with two remaining branches forms a
linear chain of nonsingular rational curves

o

A71, M

where (M 2 ) = 0 and two adjacent components M 1 , M 2 o f  M  have self-intersection
num ber < — 2. H ow ever, this linear chain is the  dual graph o f the  boundary
divisor of a m inim al norm al completion o f the  affine p la n e . Then one of the
adjacent components M , and M 2  must have positive self-intersection number by
Morrow [6]. So, w e are  le d  to  a contradiction. Q.E.D.

Thus the dual graph of r looks the  same as the one in  F igure 2  w ith the
self-intersection number o f M  is replaced by — 2. W e regard i t  a s  a  tree, and
call the horizontal linear chain and the slanted branches the trunk  and branches
of the tree, respectively. W e number the branches the first, the second, . . .  from
the right, i.e., from the branches close to  E.

W e shall evaluate the contributions of irreducible components of r in the
intersection number (r. K r ).

We consider the case where the dual graph of r has m ore than  r  branches
and the first r branches consist only of ( — 2) com ponents. A part of r containing
the first r  branches then looks like the  following:

A , Q,- A2 A, Q i

T , o

B (r) B (2) B '

where
(1) Q .  —  13(1) (1 < i < n) is  a  linear chain of ( — 2) components of length ui

with multiplicities (in T ) as shown below:

Q,

II , ( it , —  1)s,- 2s, s,
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(2) (A t) =  — (u, + 1) and  the  multiplicity of A . in F  i s  s, + u 1 u2 ...u 1_ , for
1 < i < r, where we set u 0  = 1,

(3) T  (0  < i < r )  i s  a  (possibly empty) linear chain o f  ( - 2 )  components,
and  one of the  end  components o f  T , meets E.

L e m m a  3 . W ith the notations and assumptions as  above, we have

E (si + — 1) 2g — 2 ,

where g  is  the g e n u s . In  particular, we have

r + 2r 2g — 1 .

P ro o f . N ote th a t (1- 2 ) = 0  and  (I"- = 2g —  2. F u r th e rm o re , (K,7 • Z) =
—2 — (Z2 )  >  0  fo r every com ponent Z  of F. T h i s  im plies that E ri = 1  A i •Kv
2g — 2, where A.  1( 17 = u i — 1. S in c e  the multiplicity of A . in  I -  is  si +  
we obtain the first inequality by computing the contribution .5 of the components
A. (1 i r ) .  N ote that u , >  2  and  si >  1  fo r 1  <  i < r. Hence we have

(1 + 2 1_1 ) = r + 2' — I .

Since 2g — 2 > (5, w e have r + 2r < 2g —  1. Q.E.D.

We assume, for a while, that the dual graph of f  has at least two branching
points, i.e., vertices where th e  branching num ber is at least (in fact, exactly) 3,
and that the first branch contains a  component with self-intersection < —3. T h e
dual graph looks like the  following near the  first branch;

A i Q1

—  I

o
B, Bs

( Q1 • B s) = I
B,

Then, i t  i s  n o t  possible tha t (A i) =  (/3 ) =  — 2. In  fa c t, since (Q )  = —2, Q,
becomes a  ( - 1 )  curve after the contraction of the components of T0 . I f  (Ai) =
( B ) = —2, the proper transform of A , has self-intersection > 0 after contracting
Q1 , B s an d  all contractible components in  the branch B" ) . Thus we would have
the  graph of a  m inim al normal completion of A 2 w h ic h  is  n o t a  linear chain
by  the  hypothesis that the  dual graph of F  has a t least tw o  branch ing  points.
This contradicts a  theorem of Ramanujam [10]. So, (./3) =  — p < —3 o r  (A ) =
— g < — 3.
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W e consider the case (B )= — p  < —3 first. T h e n  the dua l g raph  of
looks like:

 

To

   

where the components o f T ,, Q 1 , A 1 ,  . . . ,  A p _2  a re  (— 2) curves and q > 3.
Furthermore, any component of A 1 ,  . . . ,  A p _2  does no t rep resen t a branching
point of the dual graph of F .  In fact, if A i d o e s , the proper transform of Ai

after the contraction of the components of Tc„ Q 1 , A 1 ,  . . . ,  A i _ , is  a (- 1 )  curve
meeting three other components of the image of F  which is the boundary graph
of a normal completion of A2 . This is  impossible.

Let m. a ,  and b e  the multiplicities o f Q1 ,  A i (1  i  < p  —  1 )  and Bi

(1 < j < s) in the fiber T , respectively. Note that T , consists of m — 1 components
and its com ponent meeting E  has m ultiplicity 1. Since (T • Bs ) = 0 , w e have
m — O s + = O. B y  L e m m a  5  below, fis  > 0 ,  w here w e set A -, = 0
if s  =  1 .  So, m > (p — O A . Furtherm ore , since  (F-Q i ) = (T-  • A O = 0 (1 <  i <
p — 2), we compute

c<1 = 2 n1 — (111 — 1) — fis = m — (f35 -- 1)
2 2 = 2 2 1 —  m = m 2 (fis — 1 )

=  m  —  — 1 )(1q5 — 1 ) +  — —  — — 1) = P

Let 6 be the contribution of the components Bs and Ap _i  t o  (F . K O . Then
we have

6 = (q — 2)ap _1 + (p — 2)13, p (q  —  2) + ( p  —  2),q5

By evaluating the value of fis  (cf. the proof of Lemma 5), w e have

L em m a 4. W ith the notations and assumptions as above, the following asser-
tions hold:

(1) 6 > pq —  p —  2  if  s  = 1, 6 > pq — 4  if  s  = 2  and (E3 1 ) =  —2, 6 = pq +
q — 6  if  s  = 1  and f3s = 2, and 6 p q  + p  —  6  otherwise.
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(2) 5 = pq — p — 2  if  and  only  i f  s = 1 and f3 =  1.
(3) 6 = pq — 4  if  and  only  i f  s = 2, I3 =  1  and (13?) = —2.
(4) I f  s = 1 and p = 3  then q = 3.

P ro o f . W e note that (5 > pq — p — 2 if I3s = 1, 6 > pq —  4 if I3 =  2 and 6
pq + p — 6  if 3 , th a t  fis =  1  only  if  s = 1  a n d  th a t  [Is > > 0  i f  s > 2
(cf. Lemma 5). The assertions (1) and (2) follow  from  these rem arks. Suppose

= pq — 4. Then fl, < 2. If f3 =  1  then s = 1 and p = 2, which contradicts the
hypothesis p > 3. So, fis =  2 .  If s = 1  then m = 2p, =  p 1 and 6 = pq +
q — 6. Hence q = 2 , w hich  is again  a  con trad ic tion . T h u s fl, = 2 a n d  s = 2.
Then (./3 1 ) = —2 and f l _ i =  1 .  As for the assertion (4), if s = 1 and p = 3, the
component B, is contractible after the contraction of the components o f  T0 , Q 1

and A 1 , and the component A n _, must become a  (-1 )  curve after the contraction
of B .  So, q = 3. Q.E.D.

In  th e  above argument w e have used the  following:

Lemma 5. Consider a  branch in the f iber F

B ,S  I

where Q  is  a  component o n  th e  trunk  and  Bi (1  < i < s) is  a  component in the
branch w ith (B7)= — b i <  —2 and multiplicity fii i n  F. T h e n  w e  have:

(1) Fo r 1 < i < s,

bi —1 0 0

fit+i det

—1 b1_1 —1 0

0 1 b2 —1

0 0 —1 b,

where I3s + ,  is  the multiplicity o f  Q  in
(2) Fo r 1 < i < s, > fli . In particular, s = 1 if  f3 = 1.

P ro o f . Since (F. Bi ) = 0  fo r  1 < i < s, w e have

13i+1 b1l3i + 13i-i — 0 ,

where /30  =  0 .  T o  show the assertion (1), we proceed by induction on i. Note
that (F. B,) = 132 — 61 ,6, = 0. The cofactor expansion along the  first row  of
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bi —1 0 0

— 1 b1-1 — 1 0

131  det

0 —1 b2 —1

0 0 —1 b1

is  bi fli —  13„, by  the induction hypothesis. Hence 13i + ,  is given a s  s ta te d . The
assertion (2) is also show n by induction if one notes that

fli+1 — 13i = (bi — — V I>  (bi — 2 ) A  O,

where A > A_, by  the induction hypothesis and  bi > 2. Q.E.D.

We next consider the case (Ai) =  —g <  — 3. Then the dual graph f1 looks
like:

Ap 2

    

-  r - 2

 

B,

- 1 )  0  B1

where (Q ) =  —2, T , is  a  chain of ( - 2 )  curves with its end component meeting
E, (B,2_,I + 2 ) = — p < —3 and  (Ap

2_1 ) =  — r  — 3. Let m, A  and  oci  b e  the  multi-
plicities of Q 1 , B i (1 i  s )  and  Ai (1 j  p  —  1) in f1 ,  respectively. Set 13 =
A- q + 2  and [3' = fis _q + 3 . We note that note of A 1 , ..., A p _2  represents a branching
point of the dual graph o f F.

A  straightforward computation shows that

13' = PS — A-0-1 (P — 1)fi + 1 a s  /3 > ,

A = (g — 2)/3' — (g — 3 )11 ,
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m = (q — 1)P — (q — 2)K

OE1 = 2m — (m — 1) — i3s = - fl + 1 ( p  —  2)fl + 2 ,

oc2 =  got, — m = 13' — 2/3 + q ,

ocp _, = 13' — (p — 1)/3 + (p — 2)q — (p — 3) (p — 2)q — p + 4 .

L et .5 b e  the contribution of the components B s _ q + 2 , A ,  a n d  A n _ ,  in  (f" • K ).
Then we have

6 > (p — 2)13 + (q — 2) { (p — 2 )13 + 2} + (r — 2) {(p — 2)q — p + 4}

= (p — 2)(q — 1)(r + fi — 2)2) + 2(q + r)  — 8.

Hence we easily obtain the  following:

Lemma 6. With the notations and assumptions as above, the following asser-
tions hold:

(1) 6 > 8  i f  1  = 1  and 6 > 10 i f  f l > 2.
(2) (5 = 8  i f  and only if s = q —  1, f i =11 and p = q = r = 3.

If  we contract E  and  all components o f the  trunk  a n d  a ll branches except
for the leftmost component of the trunk and  those of tw o branches a t  the base,
the dual graph G  of the im age of F  looks like:

o
E E  M  F, F

where (0  <  —2 a n d  (Fi
2 ) < —2. I f  we contract A7I and all contractible compo-

nents o f  th e  graph  G , w e w ill obtain  th e  boundary  dual graph  of a minimal
normal completion o f  V .  N ote  tha t th e  proper transform  M  o f i l-  i n  r has
self-intersection number —2. L e t  (5 b e  the contribution of the  components E.
(1 < i < u ) a n d  F;  (1  <j < M  to  (T• K r ). W i t h  the  no ta tions o f Lem m a 1, we
suppose tha t the  im age -6"' of the smooth fiber F„ meets la in a one-place point
P  with Ce • if )  = d >  O. W e  have the following result:

Lemma 7. A ssume that .5 < 8. Then the following list exhausts all possible
graphs of  G , where the positive multiples o f d  attached to the vertices indicate the
multiplicities of  the  corresponding components in F:
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(I) 6 = 0
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—2 —1 —7 —7

• o o (d_ I)
3d oc/

0
4d 2d

—I —2 —3
(2) 3=2d, (1.<c/.<4)

5d 10d 6d
0
2d

—3 —1 —7 —2 —7

(3) 6 = 4 d , • o o o' 0
3d

(d=  1,2)
4d 17d 9d 6d

—7 —1 —7 —4
(4) 6 = 4 d , • 0 o o (d=  1,2)

7d I4d 8d 2d

—7 —7 —1 —3 —2
(5) 3=6d, • 0 o (d= I)

5d 10d I5d
0

6d 3d

—2 —1 —7 —5
(6) 6=6d, • o o o ( d = l)

9d 18d 103 2d

—7 —1 —7 —6
(7) 6=8d, • o -o ( d = l)

I Id 72d 12d 2d

A  black circle in the list indicates that the corresponding component or an excep-
tional curve obtained by  blow ing up points of  the com ponent can be brought to
the line at inf inity  of  P 2 .

P ro o f . Starting with 11-1 , contract all possible components of the graph G.
In the course of contractions, when a component with self-intersection 0 , say A,
is produced for the first time, other components have negative self-intersection.
Furthermore, if there are two components B1 , B 2  meeting A then (B?) < —2 or
(Bi) < —2. Then , by M orrow's list [6 ], the boundary dual graph of a minimal
normal completion of A2  w hich is obtained from  the graph G  is either one of
the following:

o
 

(n<  — 2)

W e then retrieve the dual graph  G  b y  the reverse process of blowing-ups.
Note that w e have to choose a center of blowing-up on components with self-
intersection > — 1 whenever such components exist; if there are two such compo-
nents, the center is necessarily the intersection point of the two com ponents. The
resulting graphs appearing in the course of the blowing-ups must be linear chains.

On the other hand, as meets the component /171  in a one-place point P
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with (C. - /4 ) =  d > 0, the multiplicity of e" a t P is d as well because the blowing-up
w ith center P  separates th e  proper transforms o f  e  and A i .  I f  w e  ob ta in  a
minimal normal completion of A 2 b y  the above-mentioned contraction and trans-
fo rm  it  to  P 2 b y  a birational m orphism  with A 2 k e p t  intact, w e  ob ta in  an
irreducible curve C ,  w ith  a one-place point P ,  o n  th e  line at infinity, which
might differ from the  curve C  w e sta rted  w ith . W e can  express the degree of
C , and  the  multiplicity at P , in  terms of d. Then we can determine the multi-
plicities of the components o f G  in  r  and  hence their contributions to  (r• Kr).
The rest is a  straightforward computation. Q.E.D.

2. Minimal embeddings and Abhyankar - Moh theory

L et C  b e  a s  in  th e  sec tio n s  1  an d  2 . S u p p o se  th a t  C( 1 )  := ça(C) h as the
smallest degree for an autom orphism  cp o f A2 . L et go* b e  th e  associated ring
autom orphism  of k[x , y]. W e m ay view  cp* a s  defining a  (non-linear) change
of corrdinates x' = q)*(x), y' = (p*(y). N am ely, w e consider cp a s  a  Cremona
transformation of P 2 keeping A2 in ta c t . A s  we defined a: V —> P 2 a n d  T: V —> V
fo r C  and  its closure C, we similarly define (7( 1 ) : V ( 1 )  —› P 2 a n d  Ta

) :  v ( 1 )  — *  v ( 1 )

for C" ) a n d  its c losure  C m . T hen V " )  h a s  a m inim al fibration p (i) : v(1) p l

such that the  proper transform F41 ) o f  th e  closure C ( 1 ) i s  a  fiber. Let 1- ( 1 )  b e
the fiber of # ( 1 ) containing the  proper transform of the  line at infinity of P 2 .

Let V -> V") be the birational mapping induced by the Cremona transfor-
mation go: p2 p 2 .  Since (p maps the curves CA defined by f  = A  isomorphically
to  the  curves O P defined by f ( 1 )  = A, where A e  k  a n d  C , c ") a re  defined by
f  = 0 , f ( 1 )  = 0, respectively, i1 is a  fiber-preserving isomorphism between V - r
a n d  on _ r(i), a n d  i  is  decom posed  as 1// = COL 0- 1 , w h e re  0 : W  V  and
0( 1 ) : W  17 ( 1 )  a re  the  com posites o f blowing-ups with centers o n  r  a n d  F ( 1 ) ,
respectively. Meanwhile, since F  and r(1) have no (— 1) components, 0 ( 1 ) m ust
coincide w ith 0  u p to  a n  isom orphism  near F  a n d  F ( 1 ) . Namely, th e  map-
ping tfr: V -> V( 1 ) is  a n  isomorphism such that =  # ( 1 ) •çli. H e n c e  w e  k n o w  the
following:

L em m a 8 . W ith the notations and assumptions as above, the curve C ( 1 )  w ith
its embedding into P 2 is obtained from  V by  f irst contracting E and all contractible
components o f  F to obtain a minimal normal completion of A2 and then transforming
it  to  P 2 b y  su ch  a birational transform ation that the im age C ( 1 )  o f  th e  f iber F,
has the smallest degree.

In  th e  next section we shall consider the  cases of low  genus g = 1, 2, 3,
4. O u r  approach is to classify all possible types o f the  dual graphs o f F  and
to verify then the existence or non-existence of curves with given types of the
dual graphs. The following result of Sathaye-Stenerson [11] based on Abhyankar-
Moh's theory of approximate roots is a crucial criterion for the existence of such
curves.
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A  sequence of positive  integers ((50 , , 6 ,) i s  s a id  to  b e  a  characteristic
(5-sequence if it satisfies the  following three conditions:

1. Set d, = gcd (60 , , (5 ,) for 1 < i < h + 1. Set n, = cl i /d ,,, for 1 < i < h.
Then d „, = 1 a n d  n, > 1 for a ll 2 < i < h.

2. 6,n, c <60 , ..., = the  semigroup generated by {60 , ,
3. 6, < 5 _ n _ 1 f o r  i > 2.
The semigroup A  = <6 0 , ,  ,  6 g > is called the  planer semigroup generated

by the  6-sequence ( 6 ,  , , (5h ) .  W e  d e f in e  the  conductor of .4 as

= 1 — + (n, — 1)61 .

L et C  be  a n  irreducible curve o n  A2 defined by f (x , y) = 0  such  tha t the
closure C  o f C  o n  P 2 h a s  o n ly  one place a t  P0  o n  th e  line  a t in fin ity . L et v
be  the  (normalized) valuation of the  function field K  = k(C) w ith center at Po .
We may (and shall) assume by a  suitable change of coordinates x, y  on  A2 th a t
f  = f (x , y ) is  monic i n  y  w ith  coefficients in k [x ]  a n d  that deg x  (f — axm) <
m  fo r 0 0 a c k , where m = deg x  ( f )  a n d  n = deg  

( f )
 (c f . Abhyankar-Singh [2,

Lemma (1.11)]). Furtherm ore, we assume th a t  C  is  n o t  ra tio n a l. T hen  n =
—v(x) and m = — v(y) (cf. ibid.). Let g  E  k[x, y ] be the i-th approximate root of
f(x, y ) fo r  1 < i < h, w hich is monic in  y  and unique, and le t (5, = — v(gi (x, y)).
Let 60  = —v(x) = n and  6, = — v(y) = m .  Then (60 , 6,, ,  (5h )  is  a  characteristic
(5-sequence. It is known that gi i s  monic of degree d,/d, in  y  and  that

deg, (f(x, y) — gi (x, < d, —  (d i /d i ).

Furthermore, if  c(.4) is  the  conductor o f the  planar semigroup .4 generated by
(6e, 6 1, , (5h), the  following genus formula is know n (cf. Abhyankar-Singh [2]):

c(.4) = 2pc,(C),

where p(C )  i s  the arithmetic genus of the  curve C  with its singularities at the
point P0  a n d  its infinitely near points all resolved.

W hat we shall m ake use of is  the following result [11, Theorem]:

Lem m a 9. Let ((5e , , , (5, )  be a chracteristic 6-sequence. Then there exists
an irreducible curve C with one place at infinity  such that C is defined by f(x , y) = 0
w ith f  E k [x , y ] m onic in  y  an d  th at the  degree semigroup o f  C  i s  the planar
semigroup generated by  (6, 6,, ..., (5h).

3. Minimal embeddings in low genus

L e t C  b e  a  sm ooth affine algebraic curve o n  A2 w ith  o n ly  one place at
infinity and let g  be the geometric genus of C .  W e retain here all the notations
and  assumptions in  the  previous sections.

3.1. Case of g = 1. Since (r• K v )  0 ,  F  consists of ( - 2) curves and the
dual graph of r has therefore one branching p o in t. T h e  dual graph consists of
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three linear chains m eeting in one vertex, and one of three branches meets the
exceptional curve E .  S o , w ith  the  no ta tions o f L em m a 7 , e is  sm oo th  and
d = 1. By Lemma 7, the  dual graph of F  is:

L

A,

where the attached integers indicate the multiplicities in F. T h e n  the contraction
of all components of the trunk, M , A 2  and A , m aps V to P2  w ith  the image of
L  a s  th e  line at infinity I .  T he im age C  of F0  u n d e r  th e  above contraction
is a  smooth curve of degree 3 and l  the inflectional tangent of C . I t  is  n o t
h a rd  to  show th a t C  is expressed as

y2  = x
3  + ax + b

where (x, y, 1) is a  system of inhomogeneous coordinates of P 2 a n d  a, b e k.

3.2. Case of g = 2. Since (F • K O = 2, F consists of ( — 2) curves except for
( i ) two ( — 3) curves with multiplicity 1, or
(ii)) one ( — 3) curve with multiplicity 2, or
(iii) one ( — 4) curve with multiplicity 1.
Consider, first, the case where the dual graph of F  has only one branching

p o in t .  Then the  graph consists of three linear chains L , ,  L 2  a n d  L 3  meeting
in one vertex, and one of the linear chains, say L3 , meets E .  Then L3  consists
on ly  of ( — 2) curves a n d  th e  curve e is  sm oo th  w ith  d = 1. By Lemma 7,
the  dual graph must be:

5

E

where (A i) = —3. B l o w  u p  a  p o in t  o n  B  w hich  is  no t the intersection point
B fl M  and  le t L  be  the exceptional curve. Then all components of F  are con-
tracted together with E , and the contraction brings V  to  P 2 w ith  the image of
L  as the  line  a t in fin ity . The image C  of F 0  i s  a  curve of degree 5 meeting 1x,
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in a one-place point 13
0 ,  where the multipliticy sequence of singularities is (3, 2).

T hen  it is  no t ha rd  to  show th a t C  is expressed as

y 2  =x 5  + ax 3 + bx 2 + cx + d ,

where (x, y, 1) is a system of inhomogeneous coordinates of P 2 and a, b, c, d c k.
Now suppose tha t the dual graph of F  has more than one branching point.

Lemmas 4  and 6  im p ly  th a t the first branch of the graph consists o f ( — 2)
curves. Then the argument in Lemma 3 implies that the graph consists of ( — 2)
curves and one ( — 3) curve  loca ted  nex t to  the first branching point. Then
d =( e • 1i71) = 2  and the dual graph is given as follows:

6
L o

\ M —3
o o o  o  o o    0

A2 12 10 8 6 4 2 2 I

A, 8

The contraction of E  and all components o f r except for L  brings V t o  P 2

with the image of L  as the line at infinity G .  Let be the image of F0  under
the contraction. Then is  a curve of degree 6  w ith a one-place point 13

0  on
G , and the multiplicity sequence of singularities at P0 i s  (28 ), where 28 signifies
tha t 2  is iterated 8  tim es. N ow  w e apply L em m a 9. W e have:

50  = di  = 4 , Si  = 6 , d 2 =  2  ,  h = 2 , n i  = n , = 2 ,

(52  < = 12,2 6 2  e <4, 6 >.

Then 52 is  one of 3, 5, 7, 9, 11, while c(4) = 5
2
 + 3 = 2pa (C) and pa (C) = 2. This

is  a contradiction. Thus this case is  impossible.
W e can use a complete list of classification of degenerate fibers in a pencil

of genus two (cf. Namikawa-Ueno [7] and O gg [9]).

3.3. Case of g  = 3. Since (F. = 4 , T  m ay contain ( — a) curves with
a = 2 , 3 , 4 , 5 . Consider first the case where the dual graph of F  has only one
branching point. Then, in view of Lemma 7, the following two cases are possible:

(1)

o o o  
II 10 3 2 1— I

o
/ o  9

/  6
o/

3
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where (L2 ) = —3 and all other components are (— 2) curves.

B o  7
M

o o  o
/ 1 4  1 3 1)

A, /

- 0 - 0 - 0 o
3 2 1

where (A i) = —4 and all other components are ( - 2 )  curves.
In the  case (I) w e obtain P 2 f ro m  i7 by contracting E  and all components

of F  except for L .  The image of L  is  the line at infinity G  and the image of
C  of F, is a smooth curve of degree 4. It is  no t hard  to  show tha t C is defined
by an equation

y3 + g i (x)y = x 4  + g 2 (x) ,

where gi (x )e k [x ] and deg gi (x) 2  for i = 1, 2.
In the case (II), let a ,  b e  the blowing-up of a point Q , on B  such that

Q, Bnm and let o-
2 b e  the blowing-up of a point Q 2  o n  o- ,- 1 (Q

1
)  such that

Q2 0 o- ,- 1 (Q,)n o - (B). Then contract E  and all components of F  as well as the
proper transform o-

2' (o-
i
- 1 (12,)) to  ob ta in  P 2 w ith  the line at infinity G , which is

the image of o-
2
- 1 (Q2 ). Let e  b e  the image of F0  u n d e r  the above birational

m apping . T hen  C  is  a curve of degree 7  w ith a one-place point P0  at infinity,
and the multiplicity sequence of singularities at P0  i s  (5, 22 ). It is  n o t h a rd  to
show th a t C  is then defined by an equation

y 2 = x 7 + ox )

where g(x) E k[x] and deg g(x) < 5.
C onsider next the case w here the d u a l g ra p h  of 1  h a s  more th a n  one

branching point. W e then m ake use of Lemmas 3 , 4 , 6  and 7  to  deduce the
following two possibilities:

\ o o o o o o   o
A 2 / 1 2 10 8 6 4 6 5 4 3 2 1 —1

o

o

/  8A, 0 3
4

L 6
o —3

where all components are (-2 ) curves excep t for one (— 3) component.
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(IV)

6

where all components a re  ( — 2) curves except for tw o ( — 3) components.
In the case (III), contract E  and all components of F  except for L  to bring

V  to  P 2. Then L  gives rise to  the  line at infinity G .  The image o f  F0  is
a  curve o f  degree 6  w ith  a one-place point Po  o n  G , a n d  th e  multiplicity of
singularities at P0  i s  (27 ). Furthermore, we have

6 0 =d1 = 4 , 6 1 = 6  , d 2  =  2 d 3  =  1n i  =  ,  n 2  =  ,

62  E <2, 3> , 62  is  o d d ,  6 2 <  12, a n d

c(A) = 62 + 3 = 6 .

So, 62 = 3, and such a  curve C exists by virtue of Lemma 9. A defining equation
of C  is given by

(x3 + y 2 )2 + ax 4 + bx 3 +  a 2 x 2 + cx + ax 2 y2 +  by 2  + dy  = O,

with d 0  0  (cf. [8]).
In the case (IV), we consider a  similar contraction of V  t o  P 2 a n d  obtain

a  curve o f  degree 9  w ith  a  one-p lace  poin t P0  o n  t h e  lin e  a t in f in ity . The
multiplicity sequence of singularities is (38, 2). Furthermore, we have

60  =  d  =  6  ,  6, = 9 , d 2 = 3 , =  1  ,  n, = 2 , n2 = 3 ,

62 E <2 , 3 > , 3 k .62 , <  18 , and

c(A) = 2(62 + 2) = 6 .

So, 62 = 1 0 <2, 3>, a  con trad ic tion . Hence this case is  impossible.

3.4. Case of genus 4. N ote tha t (F- = 2g — 2 = 6. The following list
exhaust all possible dual graphs of T.

(I)
o  5

\  1 0

_ 3 / 451 4 13 3 2 1 —1

/  6

3



o 6

N

/ 1 2  1 0  8 6
o

8

o

/

4

-3 E

0 5

10 9 2 1 -1
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where deg C =  5  a n d  th e  multiplicity sequence o f  singularities at the  po in t at
infinity is (22 ).

o  9

\ o o  o  - - - o - - o — o
/ 1 8 17 16 3 2 1

o
/  1 0

5  

o
/

2

 

E

o
— i

 

where deg C =  9  and  the  multiplicity sequence is (7, 23 ).

where deg e  =  6  and  the  multiplicity sequence is (26 ).

( IV )

 

—I
o -0  o
2 1 E

  

where deg C =  9  and  the  multiplicity sequence is (38 ).

( V)
o  10

\
-3 E

o o    ........ o
/ 2 0  1 8 4 2 2 1 -1

/
0

 1 23  

1
4

1

where deg C = 10 and  the  multiplicity sequence is (6, 4, 2").
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o  12

\  
—3 —3 E

o o  o 0  0  0  0  0  0  o ........  o
24 20 16 12 8 4 4  2 2 1 —I

160 2 0 1

where deg C = 12 and the multiplicity sequence is (48 , 23 ).

( VII) 0  12

\
—3 E

o o  o  ........ o
/ 2 4  2 0  1 6 12 8 4 4 4 4 3 2 1 —I

/  1 6 — 4  1
(:(

8

where deg C = 12 and the multiplicity sequence is (48 , 3).
The cases (I) — (IV) do exist. In the case (I), C  is defined by an equation

y 3 + g i (x)y = x 5 + g2 (x) ,

where g i (x) E k[x] and deg g i (x) 3  for i = 1, 2. In the case (II), C  is defined
by an equation

y2 = x 9  + g(x) , deg g(x) 7 .

In the cases (III) and (IV), w e know  the existence of by  L em m a 9.
According to [8 ] , C  is defined respectively in the cases (III) and (IV) by

(x 3  +  y 2 )2  ± a x 4 L_ 3O X  + C x 2 d x  +  axy 2 + hy 2 + exy + fy  = 0 , (e 0 )

3 2■3 3  7 b  6 3  2y +  a x  +  x  +  a  x
5 + 2abx 4  + cx 3 +  a2 bx 2  +  dx

+ 6ax 4 y 2 +  2bx 3 y2 + 3a 2 x 2 y2 + 2abxy 2 +  (c — a3 )y2

— 6axy4  +  by4  = 0 , (d a4  — 8ac) .

B y the sam e lem m a, we can show b y  the same reasoning as in the cases
of g  = 2 , 3  th a t the remaining cases (V) — (VII) are impossible.

T hus w e have completed a  proof o f our theorem  sta ted  in the introduc-
tion. W e  f in a lly  note th a t  the above argument can  be  app lied  to  the case of
higher genus, though more complicated classification of possible types of the
dual graph of r will be involved.

( VI)

o
/

8
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