The induced homomorphism of the Bott map on K-theory

Dedicated to Professor Yasutoshi Nomura on his 60th Birthday

By

Takashi Watanabe

1. Introduction

The original Bott map is a map from the unreduced suspension of a compact symmetric space into another compact symmetric space (see [5]). The complex K-theory of a compact symmetric space has been studied well (see [6], [12], [13] and [14]). The purpose of this paper is to describe the behavior of the homomorphism induced by the Bott map on complex K-theory.

Throughout this paper, G denotes a compact connected Lie group and σ an involutive automorphism of G. Then the fixed point set

$$
G^{\sigma}=\{x \in G \mid \sigma(x)=x\}
$$

of σ forms a closed subgroup of G. Let $\left(G^{\sigma}\right)_{1}$ be its identity component and H a closed subgroup of G such that $\left(G^{\sigma}\right)_{1} \subset H \subset G^{\sigma}$. Then the pair (G, H) is called a compact symmetric pair. and the coset space G / H is called a compact symmetric space. If G is simply connected, then G^{σ} is connected, so $\left(G^{\sigma}\right)_{1}=G^{\sigma}$, and G / G^{σ} is simply connected. Conversely, every compact, simply connected symmetric space can be expressed as a homogeneous space of a simply connected group G. When G^{σ} is not connected and a coset space G^{σ} / H is under consideration, we will use $\left(G^{\sigma}\right)_{1}$ instead of G^{σ} and abbreviate $\left(G^{\sigma}\right)_{1}$ to G^{σ} unless otherwise stated.

Associated with a symmetric space G / G^{σ}, there is a fibre sequence

$$
G^{\sigma} \xrightarrow{i} G \xrightarrow{\pi} G / G^{\sigma} \xrightarrow{j} B G^{\sigma} \xrightarrow{B i} B G
$$

and a map $\xi_{\sigma}: G / G^{\sigma} \rightarrow G$ defined by

$$
\xi_{\sigma}\left(x G^{\sigma}\right)=x \sigma(x)^{-1} \quad \text { for } x G^{\sigma} \in G / G^{\sigma}
$$

Let $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{K}^{n}$ where $\mathbf{K}=\mathbf{R}, \mathbf{C}$ or \mathbf{H}. An $n \times n$ matrix $A=\left(a_{i j}\right) \in$ $M(n, \mathbf{K})$ with coefficients in \mathbf{K} acts on \mathbf{K}^{n} by $(A \mathbf{x})_{i}=\sum a_{i k} x_{k}$. Let $1=I_{n}$ denote the $n \times n$ unit matrix and put

$$
I_{p, q}=\left(-I_{p}\right) \oplus I_{q}=\left(\begin{array}{cc}
-I_{p} & O \\
O & I_{q}
\end{array}\right) ; \quad J_{n}=\left(\begin{array}{cc}
O & -I_{n} \\
I_{n} & O
\end{array}\right)
$$

Note that $I_{p, q}^{2}=I_{p+q}$ and $J_{n}^{2}=-I_{2 n}$. The transpose and (for $\mathbf{K}=\mathbf{C}$ or \mathbf{H}) the conjugate of A are denote by ${ }^{'} A$ and $c(A)=\bar{A}$. Let G be a closed subgroup of the general linear group $G L(n, \mathbf{K})$. If $a \in G$, we have an inner automorphism $\operatorname{Ad} a$ of G defined by $\operatorname{Ad} a(x)=a x a^{-1}$ for $x \in G$.

Let $U(n, \mathbf{K})$ denote the group of all matrices leaving the Hermitian inner product on \mathbf{K}^{n} invariant. We have $U(n, \mathbf{R})=O(n), U(n, \mathbf{C})=U(n), U(n, \mathbf{H})=$ $S p(n)$, called the orthogonal, unitary, and symplectic groups respectively. $O(n)$ has two connected components, while $U(n)$ and $S p(n)$ are connected. The orthogonal (resp. unitary) matrices of determinant 1 are denoted by $S O(n)$ (resp. $S U(n)$). The groups $S U(n)$ and $S p(n)$ are simply connected. The group $S O(n)$ has a simply connected 2 -fold covering $\operatorname{Spin}(n)$ for $n \geq 3$. We denote by $G_{2}, F_{4}, E_{6}, E_{7}$ and E_{8} the 1 -connected exceptional Lie groups having the corresponding simple Lie algebras respectively.

The compact, 1-connected, simple Lie groups G and their centers $Z(G)$ are given as follows:

\underline{G}	$\underline{Z(G)}$
$\operatorname{SU(n+1)}$	$\mathbf{Z}_{n+1}=\left\{\alpha I_{n+1} \mid \alpha \in \mathbf{C}, \alpha^{n+1}=1\right\}$
$\operatorname{Spin}(2 n+1)$	$\mathbf{Z}_{2}=\{ \pm 1\}$
$\operatorname{Spp(n)}$	$\mathbf{Z}_{2}=\left\{ \pm I_{n}\right\}$
$\operatorname{Spin}(4 n)$	$\mathbf{Z}_{2} \times \mathbf{Z}_{2}=\left\{ \pm 1, \pm e_{1} \cdots e_{4 n}\right\}$
$\operatorname{Spin}(4 n+2)$	$\mathbf{Z}_{4}=\left\{ \pm 1, \pm e_{1} \cdots e_{4 n+2}\right\}$
G_{2}	$\{1\}$
F_{4}	$\{1\}$
E_{6}	$\mathbf{Z}_{3}=\left\{1, \omega 1, \omega^{2} 1\right\}$ where $\omega=(-1+\sqrt{3} i) / 2 \in \mathbf{C}$
E_{7}	$\mathbf{Z}_{2}=\{ \pm 1\}$
E_{8}	$\{1\}$

where \mathbf{Z}_{n} is the cyclic group of order n. Any compact connected Lie group G can be regarded as a compact symmetric space in the following manner. The product space $G \times G$ has an involutive automorphism τ^{\prime} given by interchanging the factors: $\tau^{\prime}(x, y)=(y, x)$ for $(x, y) \in G \times G$. Let $\Delta: G \rightarrow G \times G$ be the diagonal map. Then $(G \times G)^{)^{\prime}}=\Delta(G)$ and the homogeneous space $G \times G / \Delta(G)$ may be identified with G through the homeomorphism $\varphi: G \times G / \Delta(G) \rightarrow G$ defined by

$$
\varphi((x, y) \Delta(G))=x y^{-1} \quad \text { for }(x, y) \Delta(G) \in G \times G / \Delta(G) .
$$

Notice that $\operatorname{rank} \Delta(G)<\operatorname{rank} G \times G$ provided $G \neq\{1\}$.
The classification of the compact 1 -connected irreducible symmetric spaces $M=G / G^{\sigma}$ is known (e.g., see [15]). They are the compact 1 -connected simple Lie groups G and the following:

```
\(\underline{M} \quad \underline{G} / G^{\sigma}\)
\(A I \quad S U(n) / S O(n) \quad(n>2)\)
AII \(\quad S U(2 n) / S p(n) \quad(n>1)\)
AIII \(\quad U(m+n) / U(m) \times U(n) \quad(1 \leq m \leq n)\)
BDI \(\quad S O(m+n) / S O(m) \times S O(n) \quad(2 \leq m \leq n, m+n \neq 4)\)
BDII \(\quad \operatorname{SO}(n+1) / S O(n) \quad(n \geq 2)\)
DIII \(\quad \operatorname{SO}(2 n) / U(n) \quad(n \geq 4)\)
CI \(\quad S p(n) / U(n) \quad(n \geq 3)\)
CII \(\quad S p(m+n) / S p(m) \times S p(n) \quad(1 \leq m \leq n)\)
EI \(\quad E_{6} /\left[S p(4) / \mathbf{Z}_{2}\right]\) where \(\mathbf{Z}_{2}=\left\{I_{4},-I_{4}\right\}\)
EII \(\quad E_{6} /\left[\left(S^{3} \times S U(6)\right) / \mathbf{Z}_{2}\right]\) where \(\mathbf{Z}_{2}=\left\{\left(1, I_{6}\right),\left(-1, I_{6}\right)\right\}\)
EIII \(\quad E_{6} /\left[\left(T^{1} \times \operatorname{Spin}(10)\right) / \mathbf{Z}_{4}\right]\) where \(\mathbf{Z}_{4}=\{( \pm 1, \phi( \pm 1)),( \pm i, \varphi(\mp 1))\}\)
EIV \(\quad E_{6} / F_{4}\)
EV \(\quad E_{7} /\left[S U(8) / \mathbf{Z}_{2}\right]\) where \(\mathbf{Z}_{2}=\left\{I_{8},-I_{8}\right\}\)
EVI \(\quad E_{7} /\left[\left(S^{3} \times \operatorname{Spin}(12)\right) / \mathbf{Z}_{2}\right]\) where \(\mathbf{Z}_{2}=\left\{(1,1),\left(-1,-e_{1} \cdots e_{12}\right)\right\}\)
EVII \(\quad E_{7} /\left[\left(T^{1} \times E_{6}\right) / \mathbf{Z}_{3}\right]\) where \(\mathbf{Z}_{3}=\left\{(1,1),\left(\omega, \phi\left(\omega^{2}\right)\right),\left(\omega^{2}, \phi(\omega)\right)\right\}\)
EVIII \(\quad E_{8} / \operatorname{Ss}(16)\) where \(\operatorname{Ss}(16)=\operatorname{Spin}(16) /\left\{1, e_{1} \cdots e_{16}\right\}\)
EIX \(\quad E_{8} /\left[\left(S^{3} \times E_{7}\right) / \mathbf{Z}_{2}\right]\) where \(\mathbf{Z}_{2}=\{(1,1),(-1,-1)\}\)
FI \(\quad F_{4} /\left[\left(S^{3} \times S p(3)\right) / \mathbf{Z}_{2}\right]\) where \(\mathbf{Z}_{2}=\left\{\left(1, I_{3}\right),\left(-1,-I_{3}\right)\right\}\)
FII \(\quad F_{4} / \operatorname{Spin}(9)\)
\(G \quad G_{2} / S O(4)\)
```

where we have used the notation of [16].
Let $L G$ denote the Lie algebra of a compact simple Lie group G. The group of outer automorphisms Out $(L G)=$ Aut $(L G) / \operatorname{Inn}(L G)$ is trivial except in the cases

$A_{n}, n>1:$	Out $(L G)=\mathbf{Z}_{2} ;$
$D_{n}, n>4:$	Out $(L G)=\mathbf{Z}_{2} ;$
$D_{4}:$	Out $(L G)=\mathbf{\Sigma}_{3}$, the symmetric group on 3 letters;
$E_{6}:$	Out $(L G)=\mathbf{Z}_{2}$.

Each generator has a representative $\tau \in \operatorname{Aut}(L G)$ of order 2 , given as follows. A_{n} is the Lie algebra of $G=S U(n+1)$, and $\tau=c$, the complex conjugation. The fixed point set on $S U(n+1)$ is $S O(n+1)$, so $S U(n+1) / S O(n+1)$ is the corresponding symmetric space. D_{n} is the Lie algebra of $G=S O(2 n)$, and $\tau=$ Ad $I_{1,2 n-1}$. It has fixed point set $S O(2 n) \cap[O(1) \times O(2 n-1)]$, so the sphere $S^{2 n-1}=S O(2 n) / S O(2 n-1)$ is the corresponding symmetric space. For E_{6}, one constructs $\tau=\lambda$ to have fixed point set F_{4}, so E_{6} / F_{4} is the corresponding symmetric space.

Consider involutive automorphisms σ on compact 1-connected simple Lie groups G. According to [15, p. 287], there are two cases: either
(a) σ is an outer automorphism and rank $G^{\sigma}<\operatorname{rank} G$, or
(b) σ is an inner automorphism and rank $G^{\sigma}=\operatorname{rank} G$.

The irreducible symmetric spaces which belong to the case (a) are the compact 1 -connected simple Lie groups G and

$\underline{G / G^{\sigma}}$	$\underline{\sigma}$
$S U(n) / S O(n)$	c
$S U(2 n) / S p(n)$	$\operatorname{Ad} J_{n} \circ c$
$S O(2 m+2 n+2) / \operatorname{SO}(2 m+1) \times \operatorname{SO}(2 n+1)$	$\operatorname{Ad} I_{2 m+1,2 n+1}$
$S^{2 n-1}=\operatorname{SO}(2 n) / S O(2 n-1)$	$\operatorname{Ad} I_{1,2 n-1}$
E_{6} / F_{4}	λ
$E_{6} /\left[\operatorname{Sp}(4) / \mathbf{Z}_{2}\right]$	$\lambda \circ \operatorname{Ad} \gamma$

Consider the case (b). Since $\sigma: G \rightarrow G$ is inner, there is an element $x_{\sigma} \in G$ such that $\sigma=\operatorname{Ad} x_{\sigma}$, and G^{σ} is the centralizer $C_{G}\left(x_{\sigma}\right)=\left\{x \in G \mid x_{\sigma} x=x x_{\sigma}\right\} . \quad\left(x_{\sigma} \in G\right.$ is explicitly given in terms of an element $X_{\sigma} \in L G$; for details, see [11] or [15, Chapter 8].) Looking over the two tables below, we see that $x_{\sigma}^{2}=1$ or $x_{\sigma}^{2}=-1$. Since G is connected, there is a (unique) one-parameter subgroup $v_{\sigma}: \mathbf{R} \rightarrow G$ such that $v_{\sigma}(1)=x_{\sigma}$. (It is defined by $v_{\sigma}(t)=\exp t X_{\sigma}$ for $t \in \mathbf{R}$, where $\exp L G \rightarrow G$ is the exponential map.) Clearly

$$
C_{G}\left(\operatorname{Im} v_{\sigma}\right) \subset C_{G}\left(x_{\sigma}\right)=G^{\sigma} .
$$

Let $s_{\sigma}: \mathbf{R} \rightarrow G$ be the map defined by

$$
s_{\sigma}(t)= \begin{cases}v_{\sigma}(2 t) & \text { if } x_{\sigma}^{2}=1 \tag{1}\\ v_{\sigma}(4 t) & \text { if } x_{\sigma}^{2}=-1\end{cases}
$$

for $t \in \mathbf{R}$. Then $s_{\sigma}(0)=s_{\sigma}(1)=1$. So s_{σ} induces a homomorphism $S^{1}=\mathbf{R} / \mathbf{Z} \rightarrow G$ of Lie groups, and $C_{G}\left(\operatorname{Im} s_{\sigma}\right)=C_{G}\left(\operatorname{Im} v_{\sigma}\right)$.

Notice that $C_{G}\left(x_{\sigma}\right)$ is not always connected. Recalling our convention in the second paragraph of this paper, we put $H=G^{\sigma}$. Then it is a connected subgroup of maximal rank in a compact connected Lie group G. A complete list of such inclusions $H \subset G$ is given in [3]; to discuss it, we may take $\bar{G}=$ $G / Z(G)$ instead of G and $\bar{H}=H /(Z(G) \cap H)$ instead of H, because $\bar{G} / \bar{H} \approx G / H$. These inclusions $\bar{H} \subset \bar{G}$ may be divided into two cases (see [2, §13]):
(b1) \bar{H} is the connected centralizer $C_{G}(\bar{x})_{0}$ of an element \bar{x} of order 2 , and \bar{x} generates the center of \bar{H}.
(b2) \bar{H} is the centralizer $C_{G}\left(T^{1}\right)$ (which is known to be connected) of a one dimensional torus T^{1}, and T^{1} is the identity component of the center of \bar{H}.
The coset spaces G / G^{σ} which belong to the cases (b1) and (b2) are called Riemannian and Hermitian symmetric spaces respectively. The irreducible Riemannian symmetric spaces are given by

$\underline{G / G^{\sigma}}$	$\underline{\sigma=\operatorname{Ad} x_{\sigma}}$	$\underline{x_{\sigma}^{2}}$
$\mathrm{SO}(m+n) / \mathrm{SO}(m) \times \mathrm{SO}(n)$	Ad $I_{m, n}$	$I_{m, n}^{2}=I_{m+n}$
$\mathrm{SO}(n+1) / \mathrm{SO}(n)$	Ad $I_{1, n}$	$I_{1, n}^{2}=I_{n+1}$
$S p(m+n) / S p(m) \times S p(n)$	Ad $I_{m, n}$	$I_{m, n}^{2}=I_{m+n}$
$E_{6} /\left[\left(S^{3} \times S U(6)\right) / \mathbf{Z}_{2}\right]$	Ad γ	$\gamma^{2}=1$
$E_{7} /\left[S U(8) / \mathbf{Z}_{2}\right]$	Ad $\lambda \gamma$	$(\lambda \gamma)^{2}=-1$
$E_{7} /\left[\left(S^{3} \times \operatorname{Spin}(12)\right) / \mathbf{Z}_{2}\right]$	Ad σ	$\sigma^{2}=1$
$E_{8} / \mathrm{Ss}(16)$	Ad $\tilde{\lambda} \gamma$	$(\tilde{\lambda} \gamma)^{2}=1$
$E_{8} /\left[\left(S^{3} \times E_{7}\right) / \mathbf{Z}_{2}\right]$	Ad v	$v^{2}=1$
$F_{4} /\left[\left(S^{3} \times S p(3)\right) / \mathbf{Z}_{2}\right]$	Ad γ	$\gamma^{2}=1$
$F_{4} / \operatorname{Spin}(9)$	Ad σ	$\sigma^{2}=1$
$\mathrm{G}_{2} / \mathrm{SO}(4)$	Ad γ	$\gamma^{2}=1$

where $\gamma \in G_{2}, \lambda \gamma \in E_{7}, \sigma \in F_{4}, \tilde{\lambda} \gamma \in E_{8}$ and $v \in E_{8}$. The irreducible Hermitian symmetric spaces are given by

$\underline{G / G^{\sigma}}$	$\underline{\sigma=\operatorname{Ad} x_{\sigma}}$	$\underline{x_{\sigma}^{2}}$
$U(m+n) / U(m) \times U(n)$	Ad $I_{m, n}$	$I_{m, n}=I_{m+n}$
$S O(2 n) / U(n)$	Ad J_{n}	$J_{n}^{2}=-I_{2 n}$
$S p(n) / U(n)$	Ad $j I_{n}($ where $j \in \mathbf{H})$	$\left(j I_{n}\right)^{2}=-I_{n}$
$S O(n+2) / S O(2) \times S O(n)$	Ad $I_{2, n}$	$I_{2, n}^{2}=I_{n+2}$
$E_{6} /\left[\left(T^{1} \times \operatorname{Spin}(10)\right) / \mathbf{Z}_{4}\right]$	Ad σ	$\sigma^{2}=1$
$E_{7} /\left[\left(T^{1} \times E_{6}\right) / \mathbf{Z}_{3}\right]$	Ad ${ }_{l}$	$t^{2}=-1$

The one dimensional torus T^{1} in (b2) is the image of s_{σ} of (1).
Summarizing the above, the symmetric spaces G / G^{σ} which belong to the case (b2) satisfy

$$
C_{G}\left(\operatorname{Im} s_{\sigma}\right)=G^{\sigma},
$$

and the symmetric spaces G / G^{σ} which belong to the case (b1) satisfy

$$
C_{G}\left(\operatorname{Im} s_{\sigma}\right) \varsubsetneqq G^{\sigma}
$$

(see [11]).
For a space X let $S X=(X \times I / X \times 1) / X \times 0$, the unreduced suspension of X. Let $\dot{I}=\{0,1\} \subset I=[0,1]$. For a space X with base point $x_{0} \in X$, let $\Sigma X=X \times I /\left(X \times i \cup x_{0} \times I\right)$, the reduced suspension of X, and $\Omega X=\{l l l: I \rightarrow X$, $\left.l(0)=l(1)=x_{0}\right\}$, the loop space on X. If $[X, Y]_{0}$ denotes base point preserving homotopy classes of maps $X \rightarrow Y$, there is a natural isomorphism

$$
[\Sigma X, Y]_{0} \xrightarrow{\rightrightarrows}[X, \Omega Y]_{0} .
$$

Throughout this paper, we will assume that two involutive automorphisms σ, τ of a compact connected Lie group G satisfy

$$
\begin{equation*}
\sigma \circ \tau=\tau \circ \sigma \tag{2}
\end{equation*}
$$

where σ is inner, but τ may be outer. It follows from (2) that

$$
\left(G^{\sigma}\right)^{\tau}=\left(G^{\tau}\right)^{\sigma}=G^{\sigma} \cap G^{\tau}
$$

for which we write $G^{\sigma \tau}$ (or $G^{\text {to }}$), and

$$
\sigma\left(G^{\tau}\right) \subset G^{\tau}, \quad \tau\left(G^{\sigma}\right) \subset G^{\sigma} .
$$

To be precise, we suppose the following two situations. The first situation is:
(I-i) $\sigma: G \rightarrow G$ is inner;
(I-ii) $\tau: G \rightarrow G$ is inner, but $\tau: G^{\sigma} \rightarrow G^{\sigma}$ is outer;
So there is an element $x_{\tau} \in G$ such that $\tau=\operatorname{Ad} x_{\tau}$, and there is a one-parameter subgroup $v_{\tau}: \mathbf{R} \rightarrow G$ with $v_{\tau}(1)=x_{\tau}$.
(I-iii) If $x \in G^{\sigma \tau}$, then $x v_{\tau}(t)=v_{\tau}(t) x$ for all $t \in I$, i.e.,

$$
G^{\sigma \tau} \subset C_{G}\left(\operatorname{Im} v_{\tau}\right) .
$$

(This condition is automatically satisfied if G / G^{τ} belongs to the case (b2). But, if G / G^{τ} belongs to the case (b1), that condition may not be satisfied. One way to satisfy it is to replace $G^{\sigma \tau}=G^{\sigma} \cap G^{\tau}$ by $G^{\sigma} \cap C_{G}\left(\operatorname{Im} v_{\tau}\right)$. However, the coset space $G^{\sigma} /\left(G^{\sigma} \cap C_{G}\left(\operatorname{Im} v_{\tau}\right)\right)$ cannot be a symmetric space any longer.) Following [8, §3], we define

$$
\hat{b}: S\left(G^{\sigma} / G^{\sigma \tau}\right) \rightarrow G / G^{\sigma}
$$

by

$$
\hat{b}\left(x G^{\sigma \tau}, t\right)=x v_{\mathrm{\tau}}(t) G^{\sigma} \quad \text { for } x G^{\sigma \tau} \in G^{\sigma} / G^{\sigma \tau} .
$$

This is the Bott map [5]. Note that \hat{b} does not preserve the base point, i.e., by (I-iii), $\hat{b}\left(G^{\sigma \tau}, t\right)=v_{\tau}(t) G^{\sigma}$ for all $t \in I$. Following Harris [9], we define a reduced version

$$
\hat{b}_{0}: \Sigma\left(G^{\sigma} / G^{\sigma \tau}\right) \rightarrow G / G^{\sigma}
$$

of \hat{b} by

$$
\hat{b}_{0}\left(x G^{\sigma \tau}, t\right)=v_{\tau}(t)^{-1} x v_{\tau}(t) G^{\sigma} \quad \text { for } x G^{\sigma \tau} \in G^{\sigma} / G^{\sigma \tau}
$$

This map preserves the base point.
The second situation is:
(II-i) $\sigma: G \rightarrow G$ is inner;
So there is an element $x_{\sigma} \in G$ such that $\sigma=\operatorname{Ad} x_{\sigma}$.
(II-ii) $\tau: G \rightarrow G$ is outer;
Let $v_{\sigma}: \mathbf{R} \rightarrow G$ be a one-parameter subgroup with $v_{\sigma}(1)=x_{\sigma}$.
(II-iii) If $x \in G^{\tau \sigma}$, then $x v_{\sigma}(t)=v_{\sigma}(t) x$ for all $t \in I$, i.e.,

$$
G^{\tau \sigma} \subset C_{G}\left(\operatorname{Im} v_{\sigma}\right) ;
$$

(We keep on the same comment as that after (I-iii).)
(II-iv) $\quad \tau: G \rightarrow G$ satisfies

$$
\begin{equation*}
\tau\left(v_{\sigma}(t)\right)=v_{\sigma}(t)^{-1} \quad \text { for all } t \in \mathbf{R} \tag{3}
\end{equation*}
$$

By this with $t=1, \tau\left(x_{\sigma}\right)=x_{\sigma}$ if $x_{\sigma}^{2}=1$, and $\tau\left(x_{\sigma}\right)=-x_{\sigma}$ if $x_{\sigma}^{2}=-1$. Hence, in either case, the condition (3) is satisfied. A typical example of the second situation is: $G=U(2), \sigma=\operatorname{Ad} I_{1,1}, \tau=c$; then $G^{\sigma}=U(1) \times U(1), G^{\tau}=O(2)$, and v_{σ} : $\mathbf{R} \rightarrow U(2)$ is given by

$$
v_{\sigma}(t)=\left(\begin{array}{cc}
e^{\pi i t} & 0 \\
0 & 1
\end{array}\right) \quad \text { for } t \in \mathbf{R}
$$

Now we define

$$
\hat{b}: S\left(G^{\tau} / G^{\tau \tau}\right) \rightarrow G / G^{\tau}
$$

by

$$
\hat{b}\left(x G^{\tau \sigma}, t\right)= \begin{cases}x v_{\sigma}(t) G^{\tau} & \text { if } x_{\sigma}^{2}=1 \\ x v_{\sigma}(2 t) G^{\tau} & \text { if } x_{\sigma}^{2}=-1 .\end{cases}
$$

for $x G^{\tau \sigma} \in G^{\tau} / G^{\tau \sigma}$. This is the Bott map [5]. A reduced version

$$
\hat{b}_{0}: \Sigma\left(G^{\tau} / G^{\tau \sigma}\right) \rightarrow G / G^{\tau}
$$

of this \hat{b} is defined by

$$
\hat{b}_{0}\left(x G^{\tau \sigma}, t\right)= \begin{cases}v_{\sigma}(t)^{-1} x v_{\sigma}(t) G^{\tau} & \text { if } x_{\sigma}^{2}=1 \\ v_{\sigma}(2 t)^{-1} x v_{\sigma}(2 t) G^{\tau} & \text { if } x_{\sigma}^{2}=-1\end{cases}
$$

for $x G^{\tau \sigma} \in G^{\tau} / G^{\tau \sigma}$.
For a loop $s \in \Omega G$, let $\Omega_{s} G=\{l \mid l \in \Omega G, l \simeq s\}$, the component of ΩG containing s. In particular, when $s=0_{1}$, the constant loop, it is denoted by $\Omega_{0} G$. The loop product with $s^{-1} \in \Omega G$ yields a homotopy equivalence $\Omega_{s} G \simeq \Omega_{0} G$. If $\pi: \widetilde{G} \rightarrow G$ is the universal covering of G, then $\Omega \pi$ gives a homeomorphism $\Omega \tilde{G} \approx \Omega_{0} G$.

Suppose given a symmetric space G / G^{σ} which belongs to the case (b). (In the case (b1), we have to replace $G^{\sigma}=C_{G}\left(x_{\sigma}\right)$ by $C_{G}\left(\operatorname{Im} s_{\sigma}\right)=C_{G}\left(\operatorname{Im} v_{\sigma}\right)$.) Then we have a homomorphism $s_{\sigma}: S^{1} \rightarrow G$ defined as in (1). Hereafter, for simplicity, we abbreviate s_{σ} to s. Following Bott [4], we define a generating map

$$
g_{s}: G / G^{\sigma} \rightarrow \Omega G
$$

by

$$
\left[g_{s}\left(x G^{\sigma}\right)\right](t)=x s(t) x^{-1} s(t)^{-1} \quad \text { for } x G^{\sigma} \in G / G^{\sigma} .
$$

Its image is contained in $\Omega_{0} G$. We also define its unreduced version

$$
f_{s}: G / G^{\sigma} \rightarrow \Omega G
$$

by

$$
\left[f_{s}\left(x G^{\sigma}\right)\right](t)=x s(t) x^{-1} \quad \text { for } x G^{\sigma} \in G / G^{\sigma} .
$$

Its image is contained in $\Omega_{s} G$. This map can be viewed as a variant of the Bott map as follows. Let $\sigma^{\prime}: G \times G \rightarrow G \times G$ be the involutive automorphism defined by

$$
\sigma^{\prime}(x, y)=(\sigma(x), \sigma(y)) \quad \text { for }(x, y) \in G \times G
$$

Then $(G \times G)^{\sigma^{\prime}}=G^{\sigma} \times G^{\sigma}$. Let $v_{\sigma^{\prime}}: \mathbf{R} \rightarrow G \times G$ be the one-parameter subgroup defined by

$$
v_{\sigma^{\prime}}(t)= \begin{cases}\left(v_{\sigma}(t), v_{\sigma}(t)^{-1}\right) & \text { if } x_{\sigma}^{2}=1 \\ \left(v_{\sigma}(2 t), v_{\sigma}(2 t)^{-1}\right) & \text { if } x_{\sigma}^{2}=-1\end{cases}
$$

for $t \in \mathbf{R}$. Then $\sigma^{\prime}, \tau^{\prime}, v_{\sigma^{\prime}}$ satisfy the condition (3). In this case, the adjoint $b: \Delta(G) / \Delta\left(G^{\sigma}\right) \rightarrow \Omega(G \times G / \Delta(G))$ of $\hat{b}: \Sigma\left(\Delta(G) / \Delta\left(G^{\sigma}\right)\right) \rightarrow G \times G / \Delta(G)$ may be identified with $f_{s}: G / G^{\sigma} \rightarrow \Omega G$. In effect,

$$
\begin{aligned}
\varphi\left\{\left[b\left(x G^{\sigma}, x G^{\sigma}\right)\right](t)\right\} & =\varphi\left\{(x, x) v_{\sigma^{\prime}}(t) \Delta(G)\right\} \\
& =\varphi\left\{(x, x)\left(v_{\sigma}(t), v_{\sigma}(t)^{-1}\right) \Delta(G)\right\} \\
& =\varphi\left\{\left(x v_{\sigma}(t), x v_{\sigma}(t)^{-1}\right) \Delta(G)\right\} \\
& =x v_{\sigma}(t)\left(x v_{\sigma}(t)^{-1}\right)^{-1} \\
& =x v_{\sigma}(t) v_{\sigma}(t) x^{-1} \\
& =x v_{\sigma}(2 t) x^{-1} \\
& =x s(t) x^{-1} \\
& =\left[f_{s}\left(x G^{\sigma}\right)\right](t) .
\end{aligned}
$$

2. Main results

For a compact Lie group G, there is a standard inclusion $\hat{\kappa}: \Sigma G \rightarrow B G$. Let $\kappa: G \rightarrow \Omega B G$ be its adjoint. If G is connected, κ becomes a homotopy equivalence. The following lemma was proved by Harris [9, §4].

Lemma 1. In the first situation, the diagram

is homotopy-commutative.
Examples of Lemma 1 are as follows.
(I-1) $\quad G=\operatorname{Sp}(n), \sigma=\operatorname{Ad} j I_{n}, \tau=\operatorname{Ad} i I_{n}($ where $i \in \mathbf{C} \subset \mathbf{H})$:

$(\mathrm{I}-2) \quad G=\operatorname{SO}(4 n), \sigma=\operatorname{Ad} J_{2 n}, \tau=\operatorname{Ad}\left(J_{n} \oplus J_{n}^{-1}\right):$

(I-3) $\quad G=\operatorname{SO}(2 n+1), \sigma=\operatorname{Ad} I_{2,2 n-1}$ and $\tau=\operatorname{Ad} I_{1,2 n}$:

(I-4) $G=G_{2}, \sigma=\operatorname{Ad} \gamma$ (in the notation of [16]) and $\tau=\operatorname{Ad} I_{1,3}$:

(I-5) $G=E_{7}, \sigma=\operatorname{Ad} \sigma$ and $\tau=\operatorname{Ad} \iota$ (in the notation of [16]):

The diagrams (I-1) and (I-2) appeared in the proof of the Bott periodicity theorem for KO-theory (see [4] or [7]).

Lemma 2. In the second situation, the diagram

is homotopy-commutative.

Proof. It suffices to prove that the diagram

is homotopy-commutative. We have

$$
\begin{aligned}
\left(\hat{g}_{s} \circ \sum \tilde{i}\right)\left(x G^{\tau \sigma}, t\right) & =x s(t) x^{-1} s(t)^{-1} \\
& =x s(t) x^{-1} v_{\sigma}(t)^{-1} v_{\sigma}(t)^{-1} .
\end{aligned}
$$

On the other hand, in case $x_{\sigma}^{2}=1$, we have

$$
\begin{aligned}
\left(\xi_{\tau} \circ \hat{b}_{0}\right)\left(x G^{\tau \sigma}, t\right)= & v_{\sigma}(t)^{-1} x v_{\sigma}(t) \tau\left(v_{\sigma}(t)^{-1} x v_{\sigma}(t)\right)^{-1} \\
= & v_{\sigma}(t)^{-1} x v_{\sigma}(t)\left(v_{\sigma}(t) x v_{\sigma}(t)^{-1}\right)^{-1} \\
& \quad \text { by }(3) \text { and since } x \in G^{\tau} \\
= & v_{\sigma}(t)^{-1} x v_{\sigma}(t) v_{\sigma}(t) x^{-1} v_{\sigma}(t)^{-1} \\
= & v_{\sigma}(t)^{-1} x v_{\sigma}(2 t) x^{-1} v_{\sigma}(t)^{-1} \\
= & v_{\sigma}(t)^{-1} x s(t) x^{-1} v_{\sigma}(t)^{-1} .
\end{aligned}
$$

So, if we define $H: \Sigma\left(G^{\tau} / G^{\tau \sigma}\right) \times I \rightarrow G$ by

$$
H\left(x G^{\tau \sigma}, t, u\right)=v_{\sigma}(t(1-u))^{-1} x s(t) x^{-1} v_{\sigma}(t)^{-1} v_{\sigma}(t u)^{-1}
$$

then H is a base point preserving homotopy between $\xi_{\tau} \circ \hat{b}_{0}$ and $\hat{g}_{s} \circ \sum \tilde{i}$. The case $x_{\sigma}^{2}=-1$ can be proved similarly, and the proof is completed.

Examples of Lemma 2 are as follows.
(II-1) $\quad G=\operatorname{SU}(2 n), \sigma=\operatorname{Ad} I_{n, n}$, and $\tau=c$:

(II-2) $\quad G=S U(4 n), \sigma=\operatorname{Ad} I_{2 n, 2 n}, \tau=\operatorname{Ad} J_{2 n}:$

(II-3) $\quad G=S O(2 n), \sigma=\operatorname{Ad} I_{2,2 n-2}$ and $\tau=\operatorname{Ad} I_{1,2 n-1}$:

(II-4) $G=E_{6}, \sigma=\operatorname{Ad} \sigma$ and $\tau=\lambda$ (for notation see Yokota [16]):

The diagrams (II-1) and (II-2) appeared in the proof of the Bott periodicity theorem for $K O$-theory (see [5] or [7]).

Let $R(G)$ be the complex representation ring of G. It has an augmentation $\varepsilon: R(G) \rightarrow \mathbf{Z}$ given by assigning to each representation $\rho: G \rightarrow U(n)$ its dimension n, and $\operatorname{Ker} \varepsilon$ is usually denoted by $I(G)$. For $\rho \in R(G)$, we put $\tilde{\rho}=\rho-\varepsilon(\rho) \in$ $I(G)$. Let $\alpha: R(G) \rightarrow K^{0}(B G)$ be the homomorphism of [1,§5]. Then $\alpha(I(G)) \subset$ $\tilde{K}^{0}(B G)$. Let $\beta: R(G) \rightarrow K^{-1}(G)$ be the map of [10, Chapter 1, §4]. Then β is (up to sign) the suspension of α. That is, if $\sigma^{*}: K^{0}(B G) \rightarrow K^{-1}(G)$ is the cohomology suspension in K-theory, by [10, Proposition 4.1], we have $\sigma^{*} \circ \alpha=\beta$. Since

$$
\hat{\kappa}^{*}: K^{*}(B G) \rightarrow K^{*}(\Sigma G)=K^{*-1}(G)
$$

is just $\boldsymbol{\sigma}^{*}$, it follows that

$$
\hat{\kappa}^{*}(\alpha(\rho))=\beta(\rho)
$$

for all $\rho \in R(G)$.
Consider now a symmetric space G / G^{τ} such that $\tau: G \rightarrow G$ is outer, and an honest representation $\rho: G \rightarrow U(n)$. Let U be the infinite unitary group and $\iota_{n}: U(n) \rightarrow U$ the canonical inclusion. Then the map $\xi_{\tau, \rho}: G / G^{\tau} \rightarrow U(n)$ defined by

$$
\xi_{\tau, \rho}\left(x G^{\tau}\right)=\rho(x) \rho(\tau(x))^{-1} \quad \text { for } x G^{\tau} \in G / G^{\tau}
$$

gives rise to an element $\beta\left(\rho-\tau^{*} \rho\right)=\left[l_{n} \circ \xi_{\tau, \rho}\right] \in \tilde{K}^{-1}\left(G / G^{\tau}\right)$ (see [9, p. 325]). Note that $\xi_{\tau, \rho}=\rho \circ \xi_{\tau}$.

Our main result consists of two theorems, one of which is stated as follows.
Theorem 3. In the first situation,

$$
\hat{b}_{0}^{*}: \tilde{K}^{0}\left(G / G^{\sigma}\right) \rightarrow \tilde{K}^{0}\left(\Sigma\left(G^{\sigma} / G^{\sigma \tau}\right)\right)=\tilde{K}^{-1}\left(G^{\sigma} / G^{\sigma \tau}\right)
$$

satisfies

$$
\hat{b}_{0}^{*}\left(j^{*} \alpha(\tilde{\rho})\right)=\beta\left(\rho-\tau^{*} \rho\right)
$$

for all $\rho \in R\left(G^{\sigma}\right)$, where

$$
\tilde{K}^{0}\left(B G^{\sigma}\right) \xrightarrow{j^{*}} \tilde{K}^{0}\left(G / G^{\sigma}\right) .
$$

Proof. It suffices to prove this for each representation $\rho: G^{\sigma} \rightarrow U(n)$. By definition

$$
\hat{b}_{0}^{*}\left(j^{*} \alpha(\tilde{\rho})\right)=\left[B l_{n} \circ B \rho \circ j \circ \hat{b}_{0}\right] \in\left[\Sigma\left(G^{\sigma} / G^{\sigma \tau}\right), B U \times \mathbf{Z}\right]_{0} .
$$

Under the isomorphism

$$
[\Sigma X, B U \times \mathbf{Z}]_{0} \cong[X, \Omega(B U \times \mathbf{Z})]_{0}=[X, \Omega B U]_{0}
$$

it corresponds to

$$
\begin{aligned}
{\left[\Omega B l_{n} \circ \Omega B \rho \circ \Omega j \circ b_{0}\right] } & =\left[\Omega B l_{n} \circ \Omega B \rho \circ \kappa \circ \xi_{\tau}\right] \quad \text { by Lemma } 1 \\
& =\left[\kappa \circ l_{n} \circ \rho \circ \xi_{\tau}\right] \in\left[G^{\sigma} / G^{\sigma \tau}, \Omega B U\right]_{0} .
\end{aligned}
$$

Under the isomorphism $\kappa^{*}:[X, U]_{0} \cong[X, \Omega B U]_{0}$, it corresponds to

$$
\left[l_{n} \circ \rho \circ \xi_{\tau}\right]=\beta\left(\rho-\tau^{*} \rho\right) \in\left[G^{\sigma} / G^{\sigma \tau}, U\right]_{0}
$$

To state the other of our theorems, we need to recall the work of Clarke [6]. Suppose that the second situation is given; in particular, G / G^{σ} is a symmetric space which belongs to the case (b). (In the case (b1), we have to replace G^{σ} by $C_{G}\left(\operatorname{Im} s_{\sigma}\right)$). Then we have a circle $s=s_{\sigma}: S^{1} \rightarrow G$ defined as in (1), and G^{σ} coincides with the centralizer of the image of s in G. As is well known, if $\pi: \tilde{G} \rightarrow G$ is the universal covering, $\pi_{1}(G)=Z(\tilde{G})$ is finite. Let d be the smallest positive integer such that $d[s]=0$ in $\pi_{1}(G)$. Then there is a unique homomorphism $\tilde{s}: S^{1} \rightarrow \tilde{G}$ such that $s \circ d=\pi \circ \tilde{s}$ (see [6, Proposition (2.6)]). Let \tilde{G}^{σ} be the centralizer of the image of \tilde{s} in \tilde{G}. Then $\tilde{G}^{\sigma}=\pi^{-1}\left(G^{\sigma}\right)$ and $\widetilde{G} / \widetilde{G}^{\sigma} \approx G / G^{\sigma}$ (see [6, Proposition (2.7)]). We define $f_{\tilde{s}}: \tilde{G} / \widetilde{G}^{\sigma} \rightarrow \Omega \tilde{G}$ by

$$
\left[f_{\tilde{s}}\left(x \widetilde{G}^{\sigma}\right)\right](t)=x \tilde{s}(t) x^{-1}
$$

Let $\theta_{s}: R(G) \rightarrow R\left(G^{\sigma}\right)$ and $\theta_{\tilde{s}}: R(\tilde{G}) \rightarrow R\left(\tilde{G}^{\sigma}\right)$ be the derivations of [6, Definition (2.1) and Proposition (2.5)] associated with s and \tilde{s}, respectively. Then

$$
\begin{equation*}
\theta_{\bar{s}} \circ \pi^{*}=\pi^{*} \circ\left(d \cdot \theta_{s}\right) . \tag{4}
\end{equation*}
$$

Let $\sigma^{*}: \tilde{K}^{-1}(\widetilde{G}) \rightarrow \tilde{K}^{-2}(\Omega \tilde{G})$ be the cohomology suspension in K-theory and g : $\tilde{K}^{0}\left(\tilde{G} / \widetilde{G}^{\sigma}\right) \rightarrow \tilde{K}^{-2}\left(\tilde{G} / \widetilde{G}^{\sigma}\right)$ the Bott isomorphism, i.e., multiplication by the Bott generator $g \in \tilde{K}^{-2}\left(S^{0}\right)$. Then, by [6, Proposition (2.8)],

$$
\begin{equation*}
f_{\tilde{s}}^{*} \circ \boldsymbol{\sigma}^{*} \circ \beta=g \circ j^{*} \circ \alpha \circ \theta_{\tilde{s}} . \tag{5}
\end{equation*}
$$

Moreover, as in [6, Lemma (2.10)], for the induced homomorphisms

$$
f_{s}^{*}, g_{s}^{*}: K^{*}(\Omega \tilde{G})=K^{*}\left(\Omega_{0} G\right) \rightarrow K^{*}\left(\tilde{G} / \widetilde{G}^{\sigma}\right)=K^{*}\left(G / G^{\sigma}\right),
$$

we may identify f_{s}^{*} with $d \cdot g_{s}^{*}$. Combining (4) and (5), we conclude that

$$
\begin{equation*}
g_{s}^{*} \circ \boldsymbol{\sigma}^{*} \circ \beta=g \circ j^{*} \circ \alpha \circ \theta_{s} \tag{6}
\end{equation*}
$$

Thus

$$
\hat{g}_{s}^{*}: K^{*}(G) \rightarrow K^{*}\left(\Sigma\left(G / G^{\sigma}\right)\right)=K^{*-1}\left(G / G^{\sigma}\right)
$$

satisfies

$$
\hat{g}_{s}^{*}(\beta(\rho))=g\left(j^{*} \circ \alpha\right)\left(\theta_{s} \rho\right)
$$

for all $\rho \in R(G)$.
The other of our theorems is stated as follows.
Theorem 4. In the second situation,

$$
\hat{b}_{0}^{*}: \tilde{K}^{-1}\left(G / G^{\tau}\right) \rightarrow \tilde{K}^{-1}\left(\Sigma\left(G^{\tau} / G^{\tau \sigma}\right)\right)=\tilde{K}^{-2}\left(G^{\tau} / G^{\tau \sigma}\right)
$$

satisfies

$$
\hat{b}_{0}^{*}\left(\beta\left(\rho-\tau^{*} \rho\right)\right)=g\left(j^{*} \circ B i^{*} \circ \alpha\right)\left(\theta_{s} \rho\right)
$$

for all $\rho \in R(G)$, where

$$
\tilde{K}^{0}\left(B G^{\sigma}\right) \xrightarrow{B i^{*}} \tilde{K}^{0}\left(B G^{\tau \sigma}\right) \xrightarrow{j^{*}} \tilde{K}^{0}\left(G^{\tau} / G^{\tau \sigma}\right) .
$$

Proof. It suffices to prove this for each representation $\rho: G \rightarrow U(n)$. We have

$$
\begin{aligned}
\hat{b}_{0}^{*}\left(\beta\left(\rho-\tau^{*} \rho\right)\right) & =\left[l_{n} \circ \rho \circ \xi_{\tau} \circ \hat{b}_{0}\right] \quad \text { by definition } \\
& =\left[l_{n} \circ \rho \circ \hat{g}_{s} \circ \Sigma \tilde{i}\right] \quad \text { by Lemma } 2 \\
& \in\left[\Sigma\left(G^{\tau} / G^{\tau \sigma}\right), U\right]_{0}=\tilde{K}^{-1}\left(\Sigma\left(G^{\tau} / G^{\tau \sigma}\right)\right) .
\end{aligned}
$$

Under the isomorphism $[\Sigma X, U]_{0} \cong[X, \Omega U]_{0}$, it corresponds to

$$
\left[\Omega l_{n} \circ \Omega \rho \circ g_{s} \circ \tilde{i}\right]=\left(\tilde{i}^{*} \circ g_{s}^{*} \circ \sigma^{*} \circ \beta\right)(\rho) .
$$

By (6), it is equal to

$$
\begin{aligned}
\left(\tilde{i}^{*} \circ g \circ j^{*} \circ \alpha \circ \theta_{s}\right)(\rho) & =g\left(\tilde{i}^{*} \circ j^{*} \circ \alpha\right)\left(\theta_{s} \rho\right) \\
& =g\left(j^{*} \circ B i^{*} \circ \alpha\right)\left(\theta_{s} \rho\right) \\
& \in\left[G^{\tau} / G^{\tau \sigma}, \Omega U\right]_{0}=\tilde{K}^{-2}\left(G^{\tau} / G^{\tau \sigma}\right) .
\end{aligned}
$$

There remains the following situation:
(III-i) $\sigma: G \rightarrow G$ is inner;
(III-ii) $\tau: G \rightarrow G$ is inner, and $\tau: G^{\sigma} \rightarrow G^{\sigma}$ is inner.
In this case, by the result of [13] or [14], $K^{*}\left(G / G^{\sigma}\right), K^{*}\left(G^{\sigma} / G^{\sigma \tau}\right)$ are generated by 0 -dimensional generators. Therefore, for dimensional reasons, $\hat{b}_{0}^{*}: K^{*}\left(G / G^{\sigma}\right) \rightarrow$ $K^{*}\left(G^{\sigma} / G^{\sigma \tau}\right)$ is trivial.

Department of Applied Mathematics
 Osaka Women's University
 e-mail: takashiw@appmath.osaka-wu.ac.jp

References

[1] M. F. Atiyah and F. Hirzebruch, Vector bundles and homogeneous spaces, Proc. Sympos. Pure Math., 3 (1961), 7-38.
[2] A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces, I, Amer. J. Math., 80 (1958), 459-538.
[3] A. Borel and J. de Siebenthal, Sur les sous-groupes fermés connexes des groupes de Lie clos, Comm. Math. Helv., 23 (1949), 200-221.
[4] R. Bott, The space of loops on a Lie group, Michigan Math. J., 5 (1958), 35-61.
[5] R. Bott, The stable homotopy of the classical groups, Ann. of Math., (2)70 (1959), 313-337.
[6] F. Clarke, On the K-theory of the loop space of a Lie group, Proc. Camb. Phil. Soc., 76 (1974), 1-20.
[7] E. Dyer and R. Lashof, A topological proof of the Bott periodicity theorems, Ann. Mat. Pure Appl., 54 (1961), 231-254.
[8] B. Harris, Suspensions and characteristic maps for symmetric spaces, Ann. of Math., 76 (1962), 295-305.
[9] B. Harris, The K-theory of a class of homogeneous spaces, Trans. Amer. Math. Soc., 131 (1968), 323-332.
[10] L. Hodgkin, On the K-theory of Lie groups, Topology, 6 (1967), 1-36.
[11] K. Ishitoya and H. Toda, On the cohomology of irreducible symmetric spaces of exceptional type, J. Math. Kyoto Univ., 17 (1977), 225-243.
[12] H. Minami, K-groups of symmetric spaces I, Osaka J. Math., 12 (1975), 623-634; II, Osaka J. Math., 13 (1976), 271-287.
[13] H. V. Pittie, Homogeneous vector bundles on homogeneous spaces, Topology, 11 (1972), 199-203.
[14] V. P. Snaith, On the K-theory of homogeneous spaces and conjugate bundles of Lie groups, Proc. London Math. Soc., 22 (1971), 562-584.
[15] J. A. Wolf, Spaces of constant curvature, fifth edition, Publish or Perish, Inc., 1984.
[16] I. Yokota, Realizations of involutive automorphisms σ and G^{σ} of exceptional linear Lie groups G, Part I, $G=G_{2}, F_{4}$ and E_{6}, Tsukuba J. Math., 14 (1990), 185-223; Part II, $G=E_{7}$, Tsukuba J. Math., 14 (1990), 379-404; Part III, $G=E_{8}$, Tsukuba J. Math., 15 (1991), 301314.

