The induced homomorphism of the Bott map on K-theory

Dedicated to Professor Yasutoshi Nomura on his 60th Birthday

By

Takashi WATANABE

1. Introduction

The original Bott map is a map from the unreduced suspension of a compact symmetric space into another compact symmetric space (see [5]). The complex K-theory of a compact symmetric space has been studied well (see [6], [12], [13] and [14]). The purpose of this paper is to describe the behavior of the homomorphism induced by the Bott map on complex K-theory.

Throughout this paper, G denotes a compact connected Lie group and σ an involutive automorphism of G. Then the fixed point set

$$G^{\sigma} = \{x \in G | \sigma(x) = x\}$$

of σ forms a closed subgroup of G. Let $(G^{\sigma})_1$ be its identity component and H a closed subgroup of G such that $(G^{\sigma})_1 \subset H \subset G^{\sigma}$. Then the pair (G, H) is called a compact symmetric pair, and the coset space G/H is called a compact symmetric space. If G is simply connected, then G^{σ} is connected, so $(G^{\sigma})_1 = G^{\sigma}$, and G/G^{σ} is simply connected. Conversely, every compact, simply connected symmetric space can be expressed as a homogeneous space of a simply connected group G. When G^{σ} is not connected and a coset space G^{σ}/H is under consideration, we will use $(G^{\sigma})_1$ instead of G^{σ} and abbreviate $(G^{\sigma})_1$ to G^{σ} unless otherwise stated.

Associated with a symmetric space G/G^{σ} , there is a fibre sequence

$$G^{\sigma} \xrightarrow{i} G \xrightarrow{\pi} G/G^{\sigma} \xrightarrow{j} BG^{\sigma} \xrightarrow{Bi} BG$$

and a map $\xi_{\sigma}: G/G^{\sigma} \to G$ defined by

$$\xi_{\sigma}(xG^{\sigma}) = x\sigma(x)^{-1}$$
 for $xG^{\sigma} \in G/G^{\sigma}$.

Let $\mathbf{x} = (x_1, ..., x_n) \in \mathbf{K}^n$ where $\mathbf{K} = \mathbf{R}$, \mathbf{C} or \mathbf{H} . An $n \times n$ matrix $A = (a_{ij}) \in M(n, \mathbf{K})$ with coefficients in \mathbf{K} acts on \mathbf{K}^n by $(A\mathbf{x})_i = \sum a_{ik} x_k$. Let $1 = I_n$ denote the $n \times n$ unit matrix and put

Communicated by Prof. A. Kono, September 20, 1995

Takashi Watanabe

$$I_{p,q} = (-I_p) \oplus I_q = \begin{pmatrix} -I_p & O \\ O & I_q \end{pmatrix}; \qquad J_n = \begin{pmatrix} O & -I_n \\ I_n & O \end{pmatrix}.$$

Note that $I_{p,q}^2 = I_{p+q}$ and $J_n^2 = -I_{2n}$. The transpose and (for $\mathbf{K} = \mathbf{C}$ or \mathbf{H}) the conjugate of A are denote by ${}^{t}A$ and $c(A) = \overline{A}$. Let G be a closed subgroup of the general linear group $GL(n, \mathbf{K})$. If $a \in G$, we have an inner automorphism Ad a of G defined by Ad $a(x) = axa^{-1}$ for $x \in G$.

Let $U(n, \mathbf{K})$ denote the group of all matrices leaving the Hermitian inner product on \mathbf{K}^n invariant. We have $U(n, \mathbf{R}) = O(n)$, $U(n, \mathbf{C}) = U(n)$, $U(n, \mathbf{H}) =$ Sp(n), called the orthogonal, unitary, and symplectic groups respectively. O(n) has two connected components, while U(n) and Sp(n) are connected. The orthogonal (resp. unitary) matrices of determinant 1 are denoted by SO(n) (resp. SU(n)). The groups SU(n) and Sp(n) are simply connected. The group SO(n) has a simply connected 2-fold covering Spin(n) for $n \ge 3$. We denote by G_2 , F_4 , E_6 , E_7 and E_8 the 1-connected exceptional Lie groups having the corresponding simple Lie algebras respectively.

The compact, 1-connected, simple Lie groups G and their centers Z(G) are given as follows:

Z(G)

 \underline{G}

$$SU(n + 1) \qquad \mathbf{Z}_{n+1} = \{ \alpha I_{n+1} | \alpha \in \mathbb{C}, \, \alpha^{n+1} = 1 \}$$

$$Spin(2n + 1) \qquad \mathbf{Z}_2 = \{ \pm 1 \}$$

$$Sp(n) \qquad \mathbf{Z}_2 = \{ \pm 1, \}$$

$$Spin(4n) \qquad \mathbf{Z}_2 \times \mathbf{Z}_2 = \{ \pm 1, \pm e_1 \cdots e_{4n} \}$$

$$Spin(4n + 2) \qquad \mathbf{Z}_4 = \{ \pm 1, \pm e_1 \cdots e_{4n+2} \}$$

$$G_2 \qquad \{1\}$$

$$F_4 \qquad \{1\}$$

$$E_6 \qquad \mathbf{Z}_3 = \{1, \omega 1, \omega^2 1\} \text{ where } \omega = (-1 + \sqrt{3}i)/2 \in \mathbb{C}$$

$$E_7 \qquad \mathbf{Z}_2 = \{ \pm 1 \}$$

$$E_8 \qquad \{1\}$$

where \mathbb{Z}_n is the cyclic group of order *n*. Any compact connected Lie group *G* can be regarded as a compact symmetric space in the following manner. The product space $G \times G$ has an involutive automorphism τ' given by interchanging the factors: $\tau'(x, y) = (y, x)$ for $(x, y) \in G \times G$. Let $\Delta: G \to G \times G$ be the diagonal map. Then $(G \times G)^{\tau'} = \Delta(G)$ and the homogeneous space $G \times G/\Delta(G)$ may be identified with *G* through the homeomorphism $\varphi: G \times G/\Delta(G) \to G$ defined by

$$\varphi((x, y)\Delta(G)) = xy^{-1}$$
 for $(x, y)\Delta(G) \in G \times G/\Delta(G)$.

Notice that rank $\Delta(G) < \operatorname{rank} G \times G$ provided $G \neq \{1\}$.

The classification of the compact 1-connected irreducible symmetric spaces $M = G/G^{\sigma}$ is known (e.g., see [15]). They are the compact 1-connected simple Lie groups G and the following:

M AI SU(n)/SO(n) (n > 2)AII SU(2n)/Sp(n) (n > 1)AIII $U(m + n)/U(m) \times U(n)$ $(1 \le m \le n)$ BDI $SO(m + n)/SO(m) \times SO(n)$ $(2 \le m \le n, m + n \ne 4)$ SO(n + 1)/SO(n) $(n \ge 2)$ BDII DIII SO(2n)/U(n) $(n \ge 4)$ CI Sp(n)/U(n) $(n \ge 3)$ $Sp(m + n)/Sp(m) \times Sp(n)$ $(1 \le m \le n)$ CII $E_6/[Sp(4)/\mathbb{Z}_2]$ where $\mathbb{Z}_2 = \{I_4, -I_4\}$ EL $E_6/[(S^3 \times SU(6))/\mathbb{Z}_2]$ where $\mathbb{Z}_2 = \{(1, I_6), (-1, I_6)\}$ EII $E_{6}/[(T^{1} \times Spin(10))/\mathbb{Z}_{4}]$ where $\mathbb{Z}_{4} = \{(\pm 1, \phi(\pm 1)), (\pm i, \phi(\mp 1))\}$ EIII EIV E_6/F_4 $E_7/[SU(8)/\mathbb{Z}_2]$ where $\mathbb{Z}_2 = \{I_8, -I_8\}$ EV $E_7/[(S^3 \times Spin(12))/\mathbb{Z}_2]$ where $\mathbb{Z}_2 = \{(1, 1), (-1, -e_1 \cdots e_{12})\}$ EVI $E_7/[(T^1 \times E_6)/\mathbb{Z}_3]$ where $\mathbb{Z}_3 = \{(1, 1), (\omega, \phi(\omega^2)), (\omega^2, \phi(\omega))\}$ EVII $E_8/Ss(16)$ where $Ss(16) = Spin(16)/\{1, e_1 \cdots e_{16}\}$ **EVIII** EIX $E_8/[(S^3 \times E_7)/\mathbb{Z}_2]$ where $\mathbb{Z}_2 = \{(1, 1), (-1, -1)\}$ $F_4/[(S^3 \times Sp(3))/\mathbb{Z}_2]$ where $\mathbb{Z}_2 = \{(1, I_3), (-1, -I_3)\}$ FI FII $F_A/Spin(9)$ G $G_2/SO(4)$

where we have used the notation of [16].

 G/G^{σ}

Let LG denote the Lie algebra of a compact simple Lie group G. The group of outer automorphisms Out(LG) = Aut(LG)/Inn(LG) is trivial except in the cases

$A_n, n > 1$:	$Out (LG) = \mathbb{Z}_2;$
$D_n, n > 4$:	$Out (LG) = \mathbf{Z}_2;$
D ₄ :	Out $(LG) = \Sigma_3$, the symmetric group on 3 letters;
<i>E</i> ₆ :	$Out (LG) = \mathbb{Z}_2.$

Each generator has a representative $\tau \in Aut(LG)$ of order 2, given as follows. A_n is the Lie algebra of G = SU(n + 1), and $\tau = c$, the complex conjugation. The fixed point set on SU(n + 1) is SO(n + 1), so SU(n + 1)/SO(n + 1) is the corresponding symmetric space. D_n is the Lie algebra of G = SO(2n), and $\tau =$ Ad $I_{1,2n-1}$. It has fixed point set $SO(2n) \cap [O(1) \times O(2n-1)]$, so the sphere $S^{2n-1} = SO(2n)/SO(2n-1)$ is the corresponding symmetric space. For E_6 , one constructs $\tau = \lambda$ to have fixed point set F_4 , so E_6/F_4 is the corresponding symmetric space.

Consider involutive automorphisms σ on compact 1-connected simple Lie groups G. According to [15, p. 287], there are two cases: either

(a) σ is an outer automorphism and rank $G^{\sigma} < \operatorname{rank} G$,

(b) σ is an inner automorphism and rank $G^{\sigma} = \operatorname{rank} G$. The irreducible symmetric spaces which belong to the case (a) are the compact 1-connected simple Lie groups G and

 $\begin{array}{lll} \underline{G/G^{\sigma}} & \underline{\sigma} \\ SU(n)/SO(n) & c \\ SU(2n)/Sp(n) & \text{Ad } J_n \circ c \\ SO(2m+2n+2)/SO(2m+1) \times SO(2n+1) & \text{Ad } I_{2m+1,2n+1} \\ S^{2n-1} = SO(2n)/SO(2n-1) & \text{Ad } I_{1,2n-1} \\ E_6/F_4 & \lambda \\ E_6/[Sp(4)/\mathbb{Z}_2] & \lambda \circ \text{Ad } \gamma \end{array}$

Consider the case (b). Since $\sigma: G \to G$ is inner, there is an element $x_{\sigma} \in G$ such that $\sigma = \operatorname{Ad} x_{\sigma}$, and G^{σ} is the centralizer $C_G(x_{\sigma}) = \{x \in G | x_{\sigma}x = xx_{\sigma}\}$. $(x_{\sigma} \in G$ is explicitly given in terms of an element $X_{\sigma} \in LG$; for details, see [11] or [15, Chapter 8].) Looking over the two tables below, we see that $x_{\sigma}^2 = 1$ or $x_{\sigma}^2 = -1$. Since G is connected, there is a (unique) one-parameter subgroup $v_{\sigma}: \mathbb{R} \to G$ such that $v_{\sigma}(1) = x_{\sigma}$. (It is defined by $v_{\sigma}(t) = \exp tX_{\sigma}$ for $t \in \mathbb{R}$, where $\exp: LG \to G$ is the exponential map.) Clearly

$$C_G(\operatorname{Im} v_\sigma) \subset C_G(x_\sigma) = G^{\sigma}.$$

Let $s_{\sigma} \colon \mathbf{R} \to G$ be the map defined by

(1)
$$s_{\sigma}(t) = \begin{cases} v_{\sigma}(2t) & \text{if } x_{\sigma}^2 = 1\\ v_{\sigma}(4t) & \text{if } x_{\sigma}^2 = -1 \end{cases}$$

for $t \in \mathbf{R}$. Then $s_{\sigma}(0) = s_{\sigma}(1) = 1$. So s_{σ} induces a homomorphism $S^{1} = \mathbf{R}/\mathbf{Z} \to G$ of Lie groups, and $C_{G}(\operatorname{Im} s_{\sigma}) = C_{G}(\operatorname{Im} v_{\sigma})$.

Notice that $C_G(x_{\sigma})$ is not always connected. Recalling our convention in the second paragraph of this paper, we put $H = G^{\sigma}$. Then it is a connected subgroup of maximal rank in a compact connected Lie group G. A complete list of such inclusions $H \subset G$ is given in [3]; to discuss it, we may take $\overline{G} = G/Z(G)$ instead of G and $\overline{H} = H/(Z(G) \cap H)$ instead of H, because $\overline{G}/\overline{H} \approx G/H$. These inclusions $\overline{H} \subset \overline{G}$ may be divided into two cases (see [2, §13]):

- (b1) \overline{H} is the connected centralizer $C_G(\overline{x})_0$ of an element \overline{x} of order 2, and \overline{x} generates the center of \overline{H} .
- (b2) \overline{H} is the centralizer $C_G(T^1)$ (which is known to be connected) of a one dimensional torus T^1 , and T^1 is the identity component of the center of \overline{H} .

The coset spaces G/G^{σ} which belong to the cases (b1) and (b2) are called *Riemannian* and *Hermitian symmetric spaces* respectively. The irreducible Riemannian symmetric spaces are given by

$\overline{G/G^{\sigma}}$	$\underline{\sigma = \operatorname{Ad} x_{\sigma}}$	$\frac{x_{\sigma}^2}{2}$
$SO(m + n)/SO(m) \times SO(n)$	Ad $I_{m,n}$	$I_{m,n}^2 = I_{m+n}$
SO(n + 1)/SO(n)	Ad $I_{1,n}$	$I_{1,n}^2 = I_{n+1}$
$Sp(m + n)/Sp(m) \times Sp(n)$	Ad $I_{m,n}$	$I_{m,n}^2 = I_{m+n}$
$E_6/[(S^3 \times SU(6))/\mathbb{Z}_2]$	Ad γ	$\gamma^2 = 1$
$E_7/[SU(8)/\mathbf{Z}_2]$	Ad λγ	$(\lambda\gamma)^2 = -1$
$E_7/[(S^3 \times Spin(12))/\mathbb{Z}_2]$	Ad σ	$\sigma^2 = 1$
$E_{8}/Ss(16)$	Ad $\tilde{\lambda}\gamma$	$(\tilde{\lambda}\gamma)^2 = 1$
$E_8/[(S^3 \times E_7)/\mathbb{Z}_2]$	Ad v	$v^2 = 1$
$F_4/[(S^3 \times Sp(3))/\mathbb{Z}_2]$	Ad γ	$\gamma^2 = 1$
$F_4/Spin(9)$	Ad σ	$\sigma^2 = 1$
$G_2/SO(4)$	Ad γ	$\gamma^2 = 1$

where $\gamma \in G_2$, $\lambda \gamma \in E_7$, $\sigma \in F_4$, $\tilde{\lambda} \gamma \in E_8$ and $v \in E_8$. The irreducible Hermitian symmetric spaces are given by

$$\begin{array}{lll} \underline{G/G^{\sigma}} & \underline{\sigma} = \operatorname{Ad} x_{\sigma} & \underline{x}_{\sigma}^{2} \\ \hline U(m+n)/U(m) \times U(n) & \operatorname{Ad} I_{m,n} & I_{m,n}^{2} = I_{m+n} \\ SO(2n)/U(n) & \operatorname{Ad} J_{n} & J_{n}^{2} = -I_{2n} \\ Sp(n)/U(n) & \operatorname{Ad} jI_{n} \text{ (where } j \in \mathbf{H}) & (jI_{n})^{2} = -I_{n} \\ SO(n+2)/SO(2) \times SO(n) & \operatorname{Ad} I_{2,n} & I_{2,n}^{2} = I_{n+2} \\ E_{6}/[(T^{1} \times Spin(10))/\mathbf{Z}_{4}] & \operatorname{Ad} \sigma & \sigma^{2} = 1 \\ E_{7}/[(T^{1} \times E_{6})/\mathbf{Z}_{3}] & \operatorname{Ad} \iota & \iota^{2} = -1 \end{array}$$

The one dimensional torus T^1 in (b2) is the image of s_{σ} of (1).

Summarizing the above, the symmetric spaces G/G^{σ} which belong to the case (b2) satisfy

$$C_G(\operatorname{Im} s_{\sigma}) = G^{\sigma},$$

and the symmetric spaces G/G^{σ} which belong to the case (b1) satisfy

$$C_G(\operatorname{Im} s_\sigma) \subsetneqq G^\sigma$$

(see [11]).

For a space X let $SX = (X \times I/X \times 1)/X \times 0$, the unreduced suspension of X. Let $\dot{I} = \{0, 1\} \subset I = [0, 1]$. For a space X with base point $x_0 \in X$, let $\Sigma X = X \times I/(X \times \dot{I} \cup x_0 \times I)$, the reduced suspension of X, and $\Omega X = \{l | l: I \to X, l(0) = l(1) = x_0\}$, the loop space on X. If $[X, Y]_0$ denotes base point preserving homotopy classes of maps $X \to Y$, there is a natural isomorphism

$$[\Sigma X, Y]_0 \xrightarrow{\sim} [X, \Omega Y]_0.$$

Throughout this paper, we will assume that two involutive automorphisms σ , τ of a compact connected Lie group G satisfy

(2)
$$\sigma \circ \tau = \tau \circ \sigma$$

where σ is inner, but τ may be outer. It follows from (2) that

$$(G^{\sigma})^{\mathfrak{r}} = (G^{\mathfrak{r}})^{\sigma} = G^{\sigma} \cap G^{\mathfrak{r}},$$

for which we write $G^{\sigma\tau}$ (or $G^{\tau\sigma}$), and

$$\sigma(G^{\tau}) \subset G^{\tau}, \qquad \tau(G^{\sigma}) \subset G^{\sigma}$$

To be precise, we suppose the following two situations. The first situation is: (1-i) $\sigma: G \to G$ is inner;

(I-ii) $\tau: G \to G$ is inner, but $\tau: G^{\sigma} \to G^{\sigma}$ is outer;

So there is an element $x_{\tau} \in G$ such that $\tau = \operatorname{Ad} x_{\tau}$, and there is a one-parameter subgroup $v_{\tau}: \mathbf{R} \to G$ with $v_{\tau}(1) = x_{\tau}$.

(I-iii) If $x \in G^{\sigma\tau}$, then $xv_{\tau}(t) = v_{\tau}(t)x$ for all $t \in I$, i.e.,

$$G^{\sigma\tau} \subset C_G(\operatorname{Im} v_{\tau}).$$

(This condition is automatically satisfied if G/G^{τ} belongs to the case (b2). But, if G/G^{τ} belongs to the case (b1), that condition may not be satisfied. One way to satisfy it is to replace $G^{\sigma\tau} = G^{\sigma} \cap G^{\tau}$ by $G^{\sigma} \cap C_G(\operatorname{Im} v_{\tau})$. However, the coset space $G^{\sigma}/(G^{\sigma} \cap C_G(\operatorname{Im} v_{\tau}))$ cannot be a symmetric space any longer.) Following [8, §3], we define

$$\hat{b} \colon S(G^{\sigma}/G^{\sigma\tau}) \to G/G^{\sigma}$$

by

$$\hat{b}(xG^{\sigma\tau}, t) = xv_{\tau}(t)G^{\sigma}$$
 for $xG^{\sigma\tau} \in G^{\sigma}/G^{\sigma\tau}$

This is the Bott map [5]. Note that \hat{b} does not preserve the base point, i.e., by (I-iii), $\hat{b}(G^{\sigma\tau}, t) = v_{\tau}(t)G^{\sigma}$ for all $t \in I$. Following Harris [9], we define a reduced version

$$\hat{b}_0: \Sigma(G^{\sigma}/G^{\sigma\tau}) \to G/G^{\sigma}$$

of \hat{b} by

$$\hat{b}_0(xG^{\sigma\tau}, t) = v_{\tau}(t)^{-1} x v_{\tau}(t) G^{\sigma}$$
 for $xG^{\sigma\tau} \in G^{\sigma}/G^{\sigma\tau}$.

This map preserves the base point.

The second situation is:

(II-i) $\sigma: G \to G$ is inner;

So there is an element $x_{\sigma} \in G$ such that $\sigma = \operatorname{Ad} x_{\sigma}$.

(II-ii) $\tau: G \to G$ is outer;

Let $v_{\sigma}: \mathbf{R} \to G$ be a one-parameter subgroup with $v_{\sigma}(1) = x_{\sigma}$. (II-iii) If $x \in G^{\tau\sigma}$, then $xv_{\sigma}(t) = v_{\sigma}(t)x$ for all $t \in I$, i.e.,

$$G^{\tau\sigma} \subset C_G(\operatorname{Im} v_{\sigma});$$

(We keep on the same comment as that after (I-iii).)

(II-iv) $\tau: G \to G$ satisfies

(3)
$$\tau(v_{\sigma}(t)) = v_{\sigma}(t)^{-1}$$
 for all $t \in \mathbf{R}$.

By this with t = 1, $\tau(x_{\sigma}) = x_{\sigma}$ if $x_{\sigma}^2 = 1$, and $\tau(x_{\sigma}) = -x_{\sigma}$ if $x_{\sigma}^2 = -1$. Hence, in either case, the condition (3) is satisfied. A typical example of the second situation is: G = U(2), $\sigma = \operatorname{Ad} I_{1,1}$, $\tau = c$; then $G^{\sigma} = U(1) \times U(1)$, $G^{\tau} = O(2)$, and v_{σ} : $\mathbf{R} \to U(2)$ is given by

$$v_{\sigma}(t) = \begin{pmatrix} e^{\pi i t} & 0 \\ 0 & 1 \end{pmatrix}$$
 for $t \in \mathbf{R}$.

Now we define

 $\hat{b}: S(G^{\tau}/G^{\tau\sigma}) \to G/G^{\tau}$

by

.

$$\hat{b}(xG^{\tau\sigma}, t) = \begin{cases} xv_{\sigma}(t)G^{\tau} & \text{if } x_{\sigma}^2 = 1\\ xv_{\sigma}(2t)G^{\tau} & \text{if } x_{\sigma}^2 = -1. \end{cases}$$

for $xG^{\tau\sigma} \in G^{\tau}/G^{\tau\sigma}$. This is the Bott map [5]. A reduced version

 $\hat{b}_0: \Sigma(G^{\tau}/G^{\tau\sigma}) \to G/G^{\tau}$

of this \hat{b} is defined by

$$\hat{b}_0(xG^{\tau\sigma}, t) = \begin{cases} v_{\sigma}(t)^{-1} x v_{\sigma}(t) G^{\tau} & \text{if } x_{\sigma}^2 = 1\\ v_{\sigma}(2t)^{-1} x v_{\sigma}(2t) G^{\tau} & \text{if } x_{\sigma}^2 = -1 \end{cases}$$

for $xG^{\tau\sigma} \in G^{\tau}/G^{\tau\sigma}$.

For a loop $s \in \Omega G$, let $\Omega_s G = \{l | l \in \Omega G, l \simeq s\}$, the component of ΩG containing s. In particular, when $s = 0_1$, the constant loop, it is denoted by $\Omega_0 G$. The loop product with $s^{-1} \in \Omega G$ yields a homotopy equivalence $\Omega_s G \simeq \Omega_0 G$. If $\pi: \tilde{G} \to G$ is the universal covering of G, then $\Omega \pi$ gives a homeomorphism $\Omega \tilde{G} \approx \Omega_0 G$.

Suppose given a symmetric space G/G^{σ} which belongs to the case (b). (In the case (b1), we have to replace $G^{\sigma} = C_G(x_{\sigma})$ by $C_G(\operatorname{Im} s_{\sigma}) = C_G(\operatorname{Im} v_{\sigma})$.) Then we have a homomorphism $s_{\sigma}: S^1 \to G$ defined as in (1). Hereafter, for simplicity, we abbreviate s_{σ} to s. Following Bott [4], we define a generating map

$$g_s: G/G^{\sigma} \to \Omega G$$

by

$$[g_s(xG^{\sigma})](t) = xs(t)x^{-1}s(t)^{-1} \quad \text{for } xG^{\sigma} \in G/G^{\sigma}.$$

Its image is contained in $\Omega_0 G$. We also define its unreduced version

$$f_s: G/G^{\sigma} \to \Omega G$$

by

Takashi Watanabe

 $[f_s(xG^{\sigma})](t) = xs(t)x^{-1}$ for $xG^{\sigma} \in G/G^{\sigma}$.

Its image is contained in $\Omega_s G$. This map can be viewed as a variant of the Bott map as follows. Let $\sigma': G \times G \to G \times G$ be the involutive automorphism defined by

$$\sigma'(x, y) = (\sigma(x), \sigma(y))$$
 for $(x, y) \in G \times G$.

Then $(G \times G)^{\sigma'} = G^{\sigma} \times G^{\sigma}$. Let $v_{\sigma'} \colon \mathbf{R} \to G \times G$ be the one-parameter subgroup defined by

$$v_{\sigma'}(t) = \begin{cases} (v_{\sigma}(t), v_{\sigma}(t)^{-1}) & \text{if } x_{\sigma}^2 = 1 \\ (v_{\sigma}(2t), v_{\sigma}(2t)^{-1}) & \text{if } x_{\sigma}^2 = -1 \end{cases}$$

for $t \in \mathbf{R}$. Then σ' , τ' , $v_{\sigma'}$ satisfy the condition (3). In this case, the adjoint $b: \Delta(G)/\Delta(G^{\sigma}) \to \Omega(G \times G/\Delta(G))$ of $\hat{b}: \Sigma(\Delta(G)/\Delta(G^{\sigma})) \to G \times G/\Delta(G)$ may be identified with $f_s: G/G^{\sigma} \to \Omega G$. In effect,

$$\varphi \{ [b(xG^{\sigma}, xG^{\sigma})](t) \} = \varphi \{ (x, x)v_{\sigma'}(t)\Delta(G) \}$$

$$= \varphi \{ (x, x)(v_{\sigma}(t), v_{\sigma}(t)^{-1})\Delta(G) \}$$

$$= \varphi \{ (xv_{\sigma}(t), xv_{\sigma}(t)^{-1})\Delta(G) \}$$

$$= xv_{\sigma}(t)(xv_{\sigma}(t)^{-1})^{-1}$$

$$= xv_{\sigma}(t)v_{\sigma}(t)x^{-1}$$

$$= xv_{\sigma}(2t)x^{-1}$$

$$= xs(t)x^{-1}$$

$$= [f_s(xG^{\sigma})](t).$$

2. Main results

For a compact Lie group G, there is a standard inclusion $\hat{\kappa}: \Sigma G \to BG$. Let $\kappa: G \to \Omega BG$ be its adjoint. If G is connected, κ becomes a homotopy equivalence. The following lemma was proved by Harris [9, §4].

Lemma 1. In the first situation, the diagram

$$\begin{array}{cccc} G^{\sigma}/G^{\sigma\tau} & \xrightarrow{b_0} & \Omega(G/G^{\sigma}) \\ & & & & & \\ \xi_{\tau} & & & & \\ & & & & \\ G^{\sigma} & \xrightarrow{\kappa} & \Omega B G^{\sigma}. \end{array}$$

is homotopy-commutative.

Examples of Lemma 1 are as follows. (I-1) $G = Sp(n), \ \sigma = \operatorname{Ad} jI_n, \ \tau = \operatorname{Ad} iI_n$ (where $i \in \mathbb{C} \subset \mathbb{H}$):

The diagrams (I-1) and (I-2) appeared in the proof of the Bott periodicity theorem for KO-theory (see [4] or [7]).

Lemma 2. In the second situation, the diagram

is homotopy-commutative.

Proof. It suffices to prove that the diagram

$$\begin{array}{cccc} \Sigma(G^{\tau}/G^{\tau\sigma}) & \xrightarrow{b_0} & G/G^{\tau} \\ & & & & & \\ \Sigma \tilde{i} & & & & & \\ & & & & & \\ \Sigma(G/G^{\sigma}) & \xrightarrow{\vartheta_s} & & G \end{array}$$

is homotopy-commutative. We have

$$(\hat{g}_s \circ \Sigma \tilde{i})(xG^{\tau\sigma}, t) = xs(t)x^{-1}s(t)^{-1}$$
$$= xs(t)x^{-1}v_{\sigma}(t)^{-1}v_{\sigma}(t)^{-1}.$$

On the other hand, in case $x_{\sigma}^2 = 1$, we have

$$\begin{aligned} (\xi_{\tau} \circ \hat{b}_0)(xG^{\tau\sigma}, t) &= v_{\sigma}(t)^{-1} x v_{\sigma}(t) \tau (v_{\sigma}(t)^{-1} x v_{\sigma}(t))^{-1} \\ &= v_{\sigma}(t)^{-1} x v_{\sigma}(t) (v_{\sigma}(t) x v_{\sigma}(t)^{-1})^{-1} \end{aligned}$$

by (3) and since $x \in G^{r}$

$$= v_{\sigma}(t)^{-1} x v_{\sigma}(t) v_{\sigma}(t) x^{-1} v_{\sigma}(t)^{-1}$$
$$= v_{\sigma}(t)^{-1} x v_{\sigma}(2t) x^{-1} v_{\sigma}(t)^{-1}$$
$$= v_{\sigma}(t)^{-1} x s(t) x^{-1} v_{\sigma}(t)^{-1}.$$

So, if we define $H: \Sigma(G^{\tau}/G^{\tau\sigma}) \times I \to G$ by

$$H(xG^{\tau\sigma}, t, u) = v_{\sigma}(t(1-u))^{-1}xs(t)x^{-1}v_{\sigma}(t)^{-1}v_{\sigma}(tu)^{-1},$$

then *H* is a base point preserving homotopy between $\xi_{\tau} \circ \hat{b}_0$ and $\hat{g}_s \circ \Sigma \tilde{i}$. The case $x_{\sigma}^2 = -1$ can be proved similarly, and the proof is completed.

Examples of Lemma 2 are as follows. (II-1) G = SU(2n), $\sigma = \operatorname{Ad} I_{n,n}$, and $\tau = c$:

Bott map on K-theory

(II-4) $G = E_6$, $\sigma = \text{Ad } \sigma$ and $\tau = \lambda$ (for notation see Yokota [16]):

 $\begin{array}{cccc} F_4/Spin(9) & \longrightarrow & \Omega(E_6/F_4) \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ E_6/[(T^1 \times Spin(10))/\mathbb{Z}_4] & \longrightarrow & \Omega E_6. \end{array}$

The diagrams (II-1) and (II-2) appeared in the proof of the Bott periodicity theorem for KO-theory (see [5] or [7]).

Let R(G) be the complex representation ring of G. It has an augmentation $\varepsilon: R(G) \to \mathbb{Z}$ given by assigning to each representation $\rho: G \to U(n)$ its dimension n, and Ker ε is usually denoted by I(G). For $\rho \in R(G)$, we put $\tilde{\rho} = \rho - \varepsilon(\rho) \in I(G)$. Let $\alpha: R(G) \to K^0(BG)$ be the homomorphism of [1, §5]. Then $\alpha(I(G)) \subset \tilde{K}^0(BG)$. Let $\beta: R(G) \to K^{-1}(G)$ be the map of [10, Chapter 1, §4]. Then β is (up to sign) the suspension of α . That is, if $\sigma^*: K^0(BG) \to K^{-1}(G)$ is the cohomology suspension in K-theory, by [10, Proposition 4.1], we have $\sigma^* \circ \alpha = \beta$. Since

$$\hat{\kappa}^* \colon K^*(BG) \to K^*(\Sigma G) = K^{*-1}(G)$$

is just σ^* , it follows that

$$\hat{\kappa}^*(\alpha(\rho)) = \beta(\rho)$$

for all $\rho \in R(G)$.

Consider now a symmetric space G/G^{τ} such that $\tau: G \to G$ is outer, and an honest representation $\rho: G \to U(n)$. Let U be the infinite unitary group and $\iota_n: U(n) \to U$ the canonical inclusion. Then the map $\xi_{\tau,\rho}: G/G^{\tau} \to U(n)$ defined by

$$\xi_{\tau,\rho}(xG^{\tau}) = \rho(x)\rho(\tau(x))^{-1} \quad \text{for } xG^{\tau} \in G/G$$

gives rise to an element $\beta(\rho - \tau^* \rho) = [\iota_n \circ \xi_{\tau,\rho}] \in \tilde{K}^{-1}(G/G^{\tau})$ (see [9, p. 325]). Note that $\xi_{\tau,\rho} = \rho \circ \xi_{\tau}$.

Our main result consists of two theorems, one of which is stated as follows.

Theorem 3. In the first situation,

$$\hat{b}_0^*: \widetilde{K}^0(G/G^{\sigma}) \to \widetilde{K}^0(\Sigma(G^{\sigma}/G^{\sigma\tau})) = \widetilde{K}^{-1}(G^{\sigma}/G^{\sigma\tau})$$

satisfies

$$\hat{b}_0^*(j^*\alpha(\tilde{\rho})) = \beta(\rho - \tau^*\rho)$$

for all $\rho \in R(G^{\sigma})$, where

$$\widetilde{K}^0(BG^{\sigma}) \xrightarrow{j^*} \widetilde{K}^0(G/G^{\sigma}).$$

Proof. It suffices to prove this for each representation $\rho: G^{\sigma} \to U(n)$. By definition

$$\hat{b}_0^*(j^*\alpha(\tilde{\rho})) = [B\iota_n \circ B\rho \circ j \circ \hat{b}_0] \in [\Sigma(G^{\sigma}/G^{\sigma\tau}), BU \times \mathbb{Z}]_0.$$

Under the isomorphism

$$[\Sigma X, BU \times \mathbb{Z}]_0 \cong [X, \Omega(BU \times \mathbb{Z})]_0 = [X, \Omega BU]_0,$$

it corresponds to

$$\begin{split} \left[\Omega B\iota_n \circ \Omega B\rho \circ \Omega j \circ b_0\right] &= \left[\Omega B\iota_n \circ \Omega B\rho \circ \kappa \circ \xi_{\tau}\right] & \text{by Lemma 1} \\ &= \left[\kappa \circ \iota_n \circ \rho \circ \xi_{\tau}\right] \in \left[G^{\sigma}/G^{\sigma\tau}, \Omega BU\right]_0. \end{split}$$

Under the isomorphism $\kappa^*: [X, U]_0 \cong [X, \Omega B U]_0$, it corresponds to

$$[\iota_n \circ \rho \circ \xi_{\tau}] = \beta(\rho - \tau^* \rho) \in [G^{\sigma}/G^{\sigma\tau}, U]_0.$$

To state the other of our theorems, we need to recall the work of Clarke [6]. Suppose that the second situation is given; in particular, G/G^{σ} is a symmetric space which belongs to the case (b). (In the case (b1), we have to replace G^{σ} by $C_G(\operatorname{Im} s_{\sigma})$.) Then we have a circle $s = s_{\sigma}: S^1 \to G$ defined as in (1), and G^{σ} coincides with the centralizer of the image of s in G. As is well known, if $\pi: \tilde{G} \to G$ is the universal covering, $\pi_1(G) = Z(\tilde{G})$ is finite. Let d be the smallest positive integer such that d[s] = 0 in $\pi_1(G)$. Then there is a unique homomorphism $\tilde{s}: S^1 \to \tilde{G}$ such that $s \circ d = \pi \circ \tilde{s}$ (see [6, Proposition (2.6)]). Let \tilde{G}^{σ} be the centralizer of the image of \tilde{s} in \tilde{G} . Then $\tilde{G}^{\sigma} = \pi^{-1}(G^{\sigma})$ and $\tilde{G}/\tilde{G}^{\sigma} \approx G/G^{\sigma}$ (see [6, Proposition (2.7)]). We define $f_{\tilde{s}}: \tilde{G}/\tilde{G}^{\sigma} \to \Omega\tilde{G}$ by

$$[f_{\tilde{s}}(x\tilde{G}^{\sigma})](t) = x\tilde{s}(t)x^{-1}$$

Let $\theta_s: R(G) \to R(G^{\sigma})$ and $\theta_{\tilde{s}}: R(\tilde{G}) \to R(\tilde{G}^{\sigma})$ be the derivations of [6, Definition (2.1) and Proposition (2.5)] associated with s and \tilde{s} , respectively. Then

(4)
$$\theta_{\tilde{s}} \circ \pi^* = \pi^* \circ (d \cdot \theta_s).$$

Let $\sigma^*: \tilde{K}^{-1}(\tilde{G}) \to \tilde{K}^{-2}(\Omega \tilde{G})$ be the cohomology suspension in K-theory and $g: \tilde{K}^0(\tilde{G}/\tilde{G}^\sigma) \to \tilde{K}^{-2}(\tilde{G}/\tilde{G}^\sigma)$ the Bott isomorphism, i.e., multiplication by the Bott generator $g \in \tilde{K}^{-2}(S^0)$. Then, by [6, Proposition (2.8)],

(5)
$$f_{\tilde{s}}^* \circ \sigma^* \circ \beta = g \circ j^* \circ \alpha \circ \theta_{\tilde{s}}.$$

Moreover, as in [6, Lemma (2.10)], for the induced homomorphisms

$$f_{\tilde{s}}^*, \ g_s^* \colon K^*(\Omega \tilde{G}) = K^*(\Omega_0 G) \to K^*(\tilde{G}/\tilde{G}^{\sigma}) = K^*(G/G^{\sigma})$$

we may identify $f_{\tilde{s}}^*$ with $d \cdot g_{\tilde{s}}^*$. Combining (4) and (5), we conclude that

(6)
$$g_{s}^{*} \circ \boldsymbol{\sigma}^{*} \circ \boldsymbol{\beta} = g \circ j^{*} \circ \boldsymbol{\alpha} \circ \boldsymbol{\theta}_{s}$$

Thus

$$\hat{g}_{s}^{*}: K^{*}(G) \to K^{*}(\Sigma(G/G^{\sigma})) = K^{*-1}(G/G^{\sigma})$$

satisfies

$$\hat{g}_{s}^{*}(\beta(\rho)) = g(j^{*} \circ \alpha)(\theta_{s}\rho)$$

for all $\rho \in R(G)$.

The other of our theorems is stated as follows.

Theorem 4. In the second situation,

$$\hat{b}_0^*: \widetilde{K}^{-1}(G/G^{\mathfrak{r}}) \to \widetilde{K}^{-1}(\varSigma(G^{\mathfrak{r}}/G^{\mathfrak{r}\sigma})) = \widetilde{K}^{-2}(G^{\mathfrak{r}}/G^{\mathfrak{r}\sigma})$$

satisfies

$$\hat{b}_0^*(\beta(
ho- au^*
ho))=g(j^*\circ Bi^*\circlpha)(heta_s
ho)$$

for all $\rho \in R(G)$, where

$$\tilde{K}^{0}(BG^{\sigma}) \xrightarrow{Bi^{*}} \tilde{K}^{0}(BG^{\tau\sigma}) \xrightarrow{j^{*}} \tilde{K}^{0}(G^{\tau}/G^{\tau\sigma}).$$

Proof. It suffices to prove this for each representation $\rho: G \to U(n)$. We have

$$\begin{split} \hat{b}_0^*(\beta(\rho - \tau^*\rho)) &= [\iota_n \circ \rho \circ \xi_\tau \circ \hat{b}_0] & \text{by definition} \\ &= [\iota_n \circ \rho \circ \hat{g}_s \circ \Sigma \tilde{i}] & \text{by Lemma 2} \\ &\in [\Sigma(G^r/G^{r\sigma}), U]_0 = \tilde{K}^{-1}(\Sigma(G^r/G^{r\sigma})). \end{split}$$

Under the isomorphism $[\Sigma X, U]_0 \cong [X, \Omega U]_0$, it corresponds to

$$[\Omega \iota_n \circ \Omega \rho \circ g_s \circ \tilde{i}] = (\tilde{i}^* \circ g_s^* \circ \sigma^* \circ \beta)(\rho).$$

By (6), it is equal to

$$\begin{split} (\tilde{i}^* \circ g \circ j^* \circ \alpha \circ \theta_s)(\rho) &= g(\tilde{i}^* \circ j^* \circ \alpha)(\theta_s \rho) \\ &= g(j^* \circ Bi^* \circ \alpha)(\theta_s \rho) \\ &\in [G^t/G^{\tau\sigma}, \, \Omega U]_0 = \tilde{K}^{-2}(G^t/G^{\tau\sigma}). \end{split}$$

There remains the following situation:

(III-i) $\sigma: G \to G$ is inner;

(III-ii) $\tau: G \to G$ is inner, and $\tau: G^{\sigma} \to G^{\sigma}$ is inner.

In this case, by the result of [13] or [14], $K^*(G/G^{\sigma})$, $K^*(G^{\sigma}/G^{\sigma\tau})$ are generated by 0-dimensional generators. Therefore, for dimensional reasons, $\hat{b}_0^*: K^*(G/G^{\sigma}) \to K^*(G^{\sigma}/G^{\sigma\tau})$ is trivial.

> DEPARTMENT OF APPLIED MATHEMATICS OSAKA WOMEN'S UNIVERSITY e-mail: takashiw@appmath.osaka-wu.ac.jp

References

 M. F. Atiyah and F. Hirzebruch, Vector bundles and homogeneous spaces, Proc. Sympos. Pure Math., 3 (1961), 7-38.

Takashi Watanabe

- [2] A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces, I, Amer. J. Math., 80 (1958), 459-538.
- [3] A. Borel and J. de Siebenthal, Sur les sous-groupes fermés connexes des groupes de Lie clos, Comm. Math. Helv., 23 (1949), 200-221.
- [4] R. Bott, The space of loops on a Lie group, Michigan Math. J., 5 (1958), 35-61.
- [5] R. Bott, The stable homotopy of the classical groups, Ann. of Math., (2)70 (1959), 313-337.
- [6] F. Clarke, On the K-theory of the loop space of a Lie group, Proc. Camb. Phil. Soc., 76 (1974), 1-20.
- [7] E. Dyer and R. Lashof, A topological proof of the Bott periodicity theorems, Ann. Mat. Pure Appl., 54 (1961), 231-254.
- [8] B. Harris, Suspensions and characteristic maps for symmetric spaces, Ann. of Math., 76 (1962), 295-305.
- [9] B. Harris, The K-theory of a class of homogeneous spaces, Trans. Amer. Math. Soc., 131 (1968), 323-332.
- [10] L. Hodgkin, On the K-theory of Lie groups, Topology, 6 (1967), 1-36.
- [11] K. Ishitoya and H. Toda, On the cohomology of irreducible symmetric spaces of exceptional type, J. Math. Kyoto Univ., 17 (1977), 225-243.
- [12] H. Minami, K-groups of symmetric spaces I, Osaka J. Math., 12 (1975), 623-634; II, Osaka J. Math., 13 (1976), 271-287.
- [13] H. V. Pittie, Homogeneous vector bundles on homogeneous spaces, Topology, 11 (1972), 199-203.
- [14] V. P. Snaith, On the K-theory of homogeneous spaces and conjugate bundles of Lie groups, Proc. London Math. Soc., 22 (1971), 562-584.
- [15] J. A. Wolf, Spaces of constant curvature, fifth edition, Publish or Perish, Inc., 1984.
- [16] I. Yokota, Realizations of involutive automorphisms σ and G^{σ} of exceptional linear Lie groups G, Part I, $G = G_2$, F_4 and E_6 , Tsukuba J. Math., 14 (1990), 185-223; Part II, $G = E_7$, Tsukuba J. Math., 14 (1990), 379-404; Part III, $G = E_8$, Tsukuba J. Math., 15 (1991), 301-314.