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Extending local representations to global representations
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Chandrashekhar KHARE and  Dipendra PRASAD

1. Introduction

It is a  theorem of Deligne (and Deligne-Serre for weight 1) that for a cuspidal
eigenform of the Hecke operators on  the  upper half plane which is of weight k,
the eigenvalues of the  Hecke operators Tp  a r e  algebraic integers a p  with
2p " 1

'
2

. I n  §2  o f th is  no te  w e pose a converse question to  th is , and analyse
to what extent C M  form s can be used to answ er it. I n  §3  a n  analogous issue
is considered in  th e  setting o f  Galois representations which can be thought of
a s  th e  non-abelian an a lo g u e  o f  th e  Grunwald-W ang theorem  i n  C lass Field
Theory. W e m ay view these questions (cf. the question of §2  and  Remark 4  of
§3) as asking fo r  a  kind of Chinese Remainder Theorem in  th e  setting of auto-
morphic and G alois representations respectively. In  §4  w e use the cohomology
o f m odular curves to  construct automorphic representations o f  PGL 2 (Q ) with
given local com ponent at p  a n d  unramified outside p .

2. Chinese remainder theorem for automorphic representations

T he a im  o f  th is section is  to  pose  the  following question and provide an
answ er to  it in  some very particular cases.

QUESTION. Suppose th a t  w e  a re  given finitely  m any prim es p i , . . . ,
a n d  algebraic integers cx, fo r  every i, 1 < i < r ,  w hich h a v e  th e  property that
cr(c i )6(oc i ) —  p r  for some integer k> 1 and for every embedding a: Q  C .  Then
does there exist a  cusp form  f  o f  weight k  w hich  is a n  eigenform o f  a ll  the
Hecke operators such that the Euler factor a t  p i o f  th e  L-series of f ,  for every
i, 1  <  i <  r, is

I, p i ( s) — 
(1 — =c4 )(1

The recent work of Wiles and Taylor on the Shimura-Taniyama conjecture,
cf. [W ] a n d  [TW ], a n d  its subsequent refinement by Diamond, cf. [D ], proves
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that all elliptic curves defined over Q  w hich are semi-stable a t  3  a n d  5  are
m o d u la r . Using this one may easily answer the  above question in  a  particular
c a s e . W e state this a s  th e  following proposition.

Proposition 1 .  I f  p i ,  . . . ,  p r  is  a  finite number of  prim es and  if  f or each
1 < i < r we are given a  rational integer ai such that a 1 < 2pP 2  then there exists
a  new form  f  o f  weight 2  and  o f  level prim e to  the prim es pi ( f o r  1 < i < r) such
that the eigenvalue of  the p ,' H eck e  operator T;,.  o n  f  is ai ( f o r 1 < i < r).
In  fact one may choose f  to  have rational q-expansion and  there exist infinitely
many such distinct newforms.

P ro o f. T he  m ain  ingredient is th e  result o f  Wiles, T ay lor and  Diamond
th a t  w e  have c ited  above . N am ely  by  th e  theorem  o f  H onda  a n d  T a te  we
construct elliptic curves E , over the  finite fields F,, ,  pi elem ents such that
the cardinality of E i (Fp ,)  is  1 + pi — ai . We further freely pick elliptic curves Ea

defined over F3 (respectively E f l o v e r  F5 )  with the  only restriction being that if
3 (respectively 5) is one of the primes pi above, then the elliptic curve Ea  (respec-
tively Ep )  i s  th e  sam e a s  th e  elliptic curve w hich has been selected over F3
(respectively over F5 )  in  th e  earlier line. L e t  E  be any elliptic curve whose
reduction m odulo pi i s  th e  elliptic curve E , fo r  every i, 1  < i  < r,  a n d  whose
reduction at 3 and 5 is Ea  a n d  Ep respectively (such a n  E exists by an application
of the  Chinese Remainder Theorem). A s E  has good reduction at 3 a n d  5  by
construction, the w ork of Wiles, Taylor and Diamond implies that E  is modu-
lar. T h e n  the L-function of E is the Mellin transform of a desired newform. The
last line is easily seen to be a  consequence of the construction in this proof.

W hen k  = 2  bu t ai a r e  not integers, we can't im itate the  above proof even
assuming the generalised form of the Shimura-Taniyama conjecture according to
which abelian varieties with real multiplication over Q  also  arise as factors of
the Jacobians of the  modular curves X o (N ) .  T he problem  being that it is not
clear if we can lift an abelian variety with real multiplication over the finite field
F  to  one over Q .  There is then the  problem o f doing this for finitely many13

primes p i ,  . . . ,  p r  sim ultaneously . We, however, don't even know if  an  abelian
variety over Fp can  be  lif ted  to  one over Q!

W e n o w  analyse to  w h a t ex ten t C M  fo rm s can  be  u sed  to  an sw er the
question . Here is the m ain result. A l l  the numbers 1, appearing in the theorem
below will have the property that o- (oci )(3- (a i ) = p r '  for some integer k  > 2  and
for every embedding o- : Q —* C.

Theorem I. A ssum e that a, = ot, + is an integer such that p i does not divide
ai J r  a n y  i, 1  < j < r. Then there is a C M  cuspidal eigenform  f  such that the
Euler factor at p i o f  th e  L-series of f  is

1
L p ,(f, s) —

(  -i ' ) ( 1  -
i p '
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if and only if  the quadratic imaginary f ields K i = Q( \ /4  —  4 p r)  are independent
o f  i.

P roo f. W e first recall that a  C M  modular form f  = f  is associated to a
Gr6Bencharakter 2 o f  a  quadratic imaginary extension K  o f Q .  This Gri5Ben-
charakter A can be thought o f a s  a  homomorphism A: I„(c)—> C* (where /,(c) is
the group of fractional ideals prime to  c  where c  is  a n  ideal o f  K ) such that
for any a c (9, with a 1 (mod c), where 0 ,  is the ring of integers of K, A((a)) =
aae  for some integers a, b. As L is a  modular form, one moreover has a >  0,
b > 0, and  ab = O. This follows for instance by comparing the Euler factor at
infinity associated to the  Gr6Bencharakter A a n d  to  a  modular form (see [Mi]
for instance).

The modular form L is  a n  eigenform o f the  Hecke operators and  has the
following Euler factor a t  primes p  coprime to  c:

    

1 1

 

if (p)= nfr

if (p) is inert

if (P)= n 2 .

L p ( fA , s) —

  

— A(7010 - s )( 1 — 2 (TE)P- s r

1

         

— /3,(p)p - 2 sr

     

1

     

W e now  assume th a t  th e  quadratic imaginary fields K i = Q(.\/4 —  4 p r 1 )  are
all the same, say  K , a n d  in  th a t case we construct a  Gr6Bencharakter 2 o f K
such  tha t th e  associated modular form f A h a s  th e  desired Euler factors a t  pi ,
1 < i < r. W e first no te  th a t a s  k > 2  and  pd a i ,  the  prime ideal (p i )  splits in
th e  quadratic imaginary field K = K i = Q(,./a7 —  4p r 1 )  (a s  o n e  c a n  ta k e  the
square ro o t o f  a7  —  4pr in  Q p i  ) .  L et (p i ) = n i fri b e  the factorisation of the
ideal (p i )  i n  K  a s  th e  product o f p rim e ideals i n  K .  Since ci  p r 1 ,  and

= (p i ), it follow s from  th e  assumption pd a i (possibly after replacing a i b y
)  tha t (I,) = (cT4i) _ Trr i .

Let Pc denote  the group of principal ideals (x) with x 1 (mod c). Denote
by po o  th e  character o n  Pc. given by p.„((x)) = (This is well defined for c
large enough as the  group o f units of K  is finite; moreover, c  can be taken to
b e  coprime to  any  g iven  idea l w h ich  w e  take  to  be  1 1 (p ) .)  L e t y o b e  a n y
extension of mo o  t o  1(c). O u r problem of the construction of A will be solved
as soon a s  we can demonstrate the existence of a Gr6Bencharakter A which is
unramified a t  n i a n d  Tri f o r  a ll i, 1  < i < r, w ith  2(n1) = a i ,  a n d  2( i ) = and
whose infinity type is e ither (a, 0) o r  (0, a) fo r some integer a > 1. From  the
relation (a i ) = nt - 1 ,  it follow s that for the  desired A, A/kto (ni )  and  A/p0 (Tr1)  must
be roots of unity, say w i , ( .o . Conversely if we can construct a  Gr6Bencharakter
y  w hich  is  unramified a t  n i a n d  i t  f o r  a l l  i, 1  < i < r, with v(it) =  (Di ,  and
v(t i ) = w ,  then A = vu o  w ill b e  the  desired Gr6Bencharakter. The existence of
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such a  Gr6Bencharakter v is  a  consequence o f  th e  theorem of Grunwald and
Wang, cf. EA-11, completing this part o f theorem.

T o  prove  tha t the fields K , m ust b e  th e  same fo r the  existence of a  C M
form f ,  it suffices to prove the following lemma.

Lemma 1. L e t  f  b e  a C M  f orm  such that the E uler f actor a t  p  of  the
L-series o f  f  is  El — app- s p k - 1 - 2 1 - 1 .  

A ssume that a p  i s  an  integer with
T h e n  f  arises f rom  a Griif iencharak ter o n  th e  quadratic im aginary  f ield K  =

(.\/ a p2 4 p  k - 1 ).

P ro o f . Suppose th a t f  arises from  a  Gr6Bencharakter 2 o n  a  quadratic
imaginary field L . L o o k in g  a t the Euler factor a t  p  attached to the  L-series of
f ,  we find that p must split in  L .  Write the factorisation of (p) in  L as (p )= Tff.

-sSince the E uler factor a t  p  o f  th e  L-series of f  i s  E1 app p k -1 -2 1 -1 , i t

follows that 2.(n) + A (t) = a p , and 2(z)2(T) = p k - 1 .  Therefore 2(z) and 2.( )  lie in
K .  From  the  defining condition of a Gr6Bencharakter, it follows that there is
an integer h > 1 such that .1(n)" c L .  It can be checked that a power of x + .6 7
w ith x, y rational, y  0 , a n d  x y  0 ,  is ra tional only  if  x + ,/ly is  a  rational
multiple of the th ird  root of unity w . It follow s that 2(7t)" is  a n  element o f K
but not of Q if p does not divide ap  (we are using the condition k  > 2 here). As
2(7t)h lie s  in  L , K  = L.

The case when ap  i s  a non-zero integer bu t //lap  can 't be  obta ined  by  CM
forms as the  next lemma show s. A s the case when ap  =  0 can be obtained by
any Gr6I3encharakter of any quadratic imaginary field in which (p) is  inert, this
completes all the cases in which C M  forms can be used.

Lemma 2. L e t  f  b e  a C M  f orm  such that the E uler f actor a t  p  of  the
L -series o f  f  is [1 —  app- s p k - 1 - 2 1 - 1 .  A ssum e that a p  i s  a non-z ero integer.
Then p does not div ide a l,.

P ro o f . Suppose th a t f  arises from  a  Gr6Bencharakter A  o n  a  quadratic
imaginary field L . L o o k in g  a t the Euler factor a t  p  attached to the L-series of
f ,  we find that p must split in L .  Write the factorization of (p) in L  as (p)= nTt.
Since the Euler factor a t  p  o f  th e  L-series of f  is E l — app- s p k - 1 - 2 1 - 1 ,  i t

follows that 2(n) + 2(t) = a p ,  and  2o i
w o  p k - 1 .  

If pa,,, th e n  fo r all integers
h > I, plA (e) + A (t).

Assume without loss of generality that the infinity type of A  is (a, 0). Then
there is a n  integer h  > 1 such that (m)" is  a principal ideal generated by, say y,
and such that

47.ch)

and

/o h )  )7a

Therefore y" + 17" is  divisible by p  which is obviously not possible.
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Remark 1. T h e  w eight 1  case  of the  question  above can be completely
answered using C M  fo rm s . One simply has to take a  quadratic imaginary field
in  which the prim e ideals (p i )  split a s  (p i ) = n i Tri a n d  construct a  finite order
-Graencharakter A o n  L  using the Grunwald-Wang theorem which is unramified
a t  the primes n ; a n d  Tri ,  and  has the property that A(ni ) = a i ,  and  A(Tri ) =  for
every i, 1 < i < r.

Remark 2. W e also  rem ark  tha t one  c a n  a sk  a  question  re la ted  to  the
question above w hich  has a  negative  answ er. S o  w e m ay  fix  a  totally real
algebraic integer, say a , and  a  positive  integer N , an d  a  p rim e  p  which does
not divide N , and  then  ask  if there exists a  cuspidal eigenform, say f ,  of some
weight k >  1 , fo r  th e  group To (N ), such  tha t the eigenvalue of the pth Hecke
operator Tp  o n  f  is a. Then the answer is no as the part of the Gouvea-Mazur
conjectures already proven by Coleman [C o], im plies that th e  "slopes" of the
eigenvalues of the A tkin operator Up ,  acting on the space of cusp forms o f all
weights, fo r  th e  g roup  To (N p), a re  d iscre te . T hus in  particular there exists a
number g  in  th e  interval (0, 1), such that there a re  n o  "slopes" in  th e  interval
(0, E). Then any a  w ith th e  property that its p-adic valuation, w ith respect to
which the slopes have been measured, is in the interval (0, e), provides a  negative
answer to the  question . We see this, as if there is a  J e Sk (To (N )), k  > 1, which
is an eigenvector for Tp ,  with eigenvalue a, then at least one of the roots, which
w e w ill call a  a n d  b , o f  th e  equation x 2  — ax + p k

- ' ,  say  a ,  has valuation in
the interval (0, e). But then f '(z ) = f (z ) — bf(pz), is an element of Sk (Fo (Np)), which
is an eigenvector for Up , with eigenvalue a. This contradicts the choice of E. We
refer to [C o] for the  precise definition of "slopes" and more about the Gouvea-
Mazur conjecture.

Remark 3. There is by now a well-known result for automorphic representa-
tions, cf. Rogawski [Ro], that there are automorphic representations whose local
components are pre-assigned discrete series representations at finitely many places.
However, in the question above we want to construct automorphic representations
whose local components a re  pre-assigned unramified principal series at finitely
many finite p laces, and a  discrete series at infinity when k  > 2. I t  is  u n lik e ly
that th is question can be handled by techniques of harmonic analysis alone, as
it is essential to specify the data which is used to define the unramified principal
series at the  finitely many local places, in the situation of question 1, to  b e  of
arithmetic kind.

3. Chinese remainder theorem for Galois representations

Here is the non-abelian version of the Grunwald-Wang theorem, and  is  the
Galois theoretic analogue of the question of §2 for weight 1.

Proposition 2. Suppose that we are given semi-simple matrices A ,,  . . . ,  A ,. in
GL (n,C) such that the eigenv alues of  A i a r e  roots of unity. Then there is a
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continuous irreducible representation 0: Gal (0/Q ) GL(n, C) which is unramified
a t  the prim es pi such  that the conjugacy  class of  the im age of  the Frobenius at
pi under the representation 0 contains A i f o r every  i, 1 < i < r.

Pro o f . W e consider a  degree n  extension K  of Q in  which all the primes
pi , i = 1, r, split. W r i t e  the prime factorisation of pi in  the  r ing  o f integers
of K  as p i = ... p i„ where the p i i 's are prim e ideals of the ring of integers of
K .  Let the eigenvalues of the matrix A i be co i ; fo r  j = 1, n  and  i = 1 , ...,
r  and  where the  coil s  a re  roots of un ity . W e further fix  a n  auxiliary prime p
which splits in  K  a s  p = p i p „  and  fix som e roots o f  unity cri , j = 1, n ,
w ith  th e  further constra in t tha t the o -i 's  a r e  m utually d is tin c t. T h e n  b y  the
Grunwald-Wang theorem we can construct a  finite order Gri5Bencharakter x  of
K  which is unramified at all the primes p ki (resp. p i 's) and such that x( ) = (n u

(resp. x(p1 ) = ni )  for j = I. . . . . n  a n d  i = 1, r .  W e consider x  by class-field
theory a s  a  character o f the  G alo is  group Gal (K/K) a n d  in d u c e  it  to  g e t a
representation, which we denote by 0 ,  o f Gal (Q/Q). W e see  by  construction
that th is 0  is  a  representation of the type claimed in  the  theorem (for instance
it's irreducibility follows by our choice of the auxiliary prime p  and the condition
tha t the cri 's  a s  above are  mutually distinct).

Remark 4. W e can ask more generally for the existence of a representation
o f  Gal (0/Q) w ith given restriction t o  th e  decomposition groups Gal (Op/Qp )
which takes va lues in  a  finite subgroup G c GL(n, C) fo r finitely many primes
p. O r in  another context we may ask for a version of the Chinese Remainder
Theorem for e-adic Galois representations—this would be the analogue on the
side of Galois representations of the question of §2 for weights > 2.

We deal with a  particular situation suggested by Remark 4. In the following
proposition, w e have fixed embeddings o f Q in  Qp  f o r  every prime p ; we will
abuse notation to include the prime at infinity also in the following proposition.

Proposition 3. L et G = S „, and suppose w e are  given pi : Gal
 ( Q . / Q . )

 G
f o r 1  < i  < r.  Then there ex ists p: Gal (Q /Q ) G  such that the restriction of p
to Gal(O p iQ p ,)  is conjugate in  G  to p i f o r every i.

P ro o f . Let G. denote  the image in G  of Gal (QpiQ p )  under pi . Let X  be
the  se t X  = {1, 2, ..., n} on which S,„ a n d  therefore every Gi ,  operates. W rite
X  =ILI„X„i ,  a disjoint union, such that every X i i s  invariant under G 1,  and  Gi

operates transitively o n  th e  se t X„,,. If  n„,, denotes the cardinality of X „,,, let
G„, i d e n o te  the im age of  G. in  t h e  symmetric group T h e r e f o r e  w e  have
maps n„, i : G.a n d  n i : G.f l OE

Let K i b e  the fixed field of the kernel of pi so  th a t K i i s  a Galois extension
of Q , , .

G a lo is  group is canonically isomorphic to Gi . Let K„, i denote the
extension of contained in K . which corresponds to the surjection G.
As 7E1 : Gi G ,

is an injection, the compositum of K„ FL,,i is  K i . Let , iG „ , ia

denote the subgroup of G„, i w hich is the stabiliser of an element (which will be
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arbitrarily chosen) o f  th e  se t X oe,i . L e t  L o o  b e  the  sub fie ld  o f K„, 1 f ixed  by
The degree o f L i o v e r  Qp , is  nco . Let f i d eno te  a n  irreducible monic

polynomial over Q ,, .
 degree nco  one of whose roots generate LŒ 1 . W e  assume,

as  we may, th a t the  polynomials f„,, are distinct for distinct oc. Then K OE,i will
b e  th e  splitting fie ld  o f fa , , ,  a n d  K i w ill  b e  th e  splitting fie ld  of the  degree n
polynomial fi =  n a f c,,, which has no multiple ro o ts . N o w  let f  be a polynomial
over Q  which approximates f i  w ell enough so that the  roo ts of f  generate the
field extension K i o f  Q , , .

 su c h  th a t th e re  is  a  matching o f  th e  roots of f
with those of f i  over K i su c h  th a t  the action of Gal (Q p iQ p . )  o n  th e  roo ts of
f  a n d  fi i s  th e  sam e after this identification. This is  possible b y  an extension
of Krasner's lemma which does this when f i is  irreduc ib le . F or the  general case
w e c la im  tha t any  m onic  polynomial f  w hich  is  near enough  to  l ;  also has
factorisation f  =  1- 1 f a  w ith deg fa =  d e g f ,  f OE irreducib le  m onic  a n d  near to
f o . F o r  th is  it is  enough  to  check th a t the  m apping which takes the n-tuple
consisting of the coefficients of fc,  to  the n-tuple consisting of the coefficients of
f  is an open m apping. Because of the open mapping theorem for Q„ it suffices
to  prove that the jacobian of such a  m apping is non-zero a t  the  po in t defined
by f o . This is  a sim ple consequence of the  well-known fact that the mapping
(x 1 , xn ) —> (s 1 , s n )  where s i i s  the  i- th  elementary symmetric function has
non-zero jacobian a t any  point (x 1 , xn )  with x, X k i f  1 k .  This completes
the proof of the claim from which we deduce that the roots of f i a n d  f  generate
the  sam e field. N ow  using th e  roots o f  th e  degree n  equa tion  f , w e  ge t the
desired map p: Gal (Q /Q )  Sn w hose restriction to  Gal (Qp ,/Qp ,) is conjugate in
Sn  t o  pi f o r  every i.

Remark 5. We don't know if the Proposition above is true even for G = A n .

Remark 6. The problem of extending local representations to a global one
is much subtler than the problem of constructing extensions of global fields with
given local extensions. This is evident even in  the case of a  global cyclic exten-
sion in  which case when the local field extension is unramified extension of the
same degree, the local representation will be the additional data  specifying which
generator of the  cyclic group the Frobenius corresponds to.

4. Cohomology of modular curves

In  th is section w e use the cohomology of modular curves to find cuspidal
automorphic representations o f PGL (2) over Q  which are holomorphic discrete
series of weight 2, a re  ramified only at the prime p, and have a  fixed vector for
the congruence subgroup F ( p ) .  A  sim ilar trea tm ent can  be  m ade  fo r higher
weight and higher ram ification. For related issues, the reader may consult [H],
[C W ] and [Y].

We begin by recalling the representation theory of SL(2, Fp ). T he  p rinc ipa l
series representations Ps(x) of SL(2, Fp ) are parametrized by non-trivial characters

C * . W e  have Ps(x ,)= Ps(x 2 )  if  a n d  only if X i = X 2, or X i = X i '.  If
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x  0  1, b u t x2 = 1, then  the principal series representation Ps(x ) splits into two
irreducible representations P + a n d  P -  o f  d im e n sio n s  (p  + 1)/2. T h e  discrete
series representations Ds(x) of SL(2, Fp ) are parametrized by non-trivial characters
x o f N , th e  norm  one  subgroup o f Fp*2, N W e have Ds(x i ) = Ds(x 2 )
if and only if x i = x 2 , o r x i =  I f  x  0 1, but x2 = 1, then the discrete series
representation Ds(x ) splits into two irreducible representations D+  a n d  D -  o f
dimensions (p — 1)/2. Besides the representations listed above, there is the trivial
representation and the Steinberg.

The following lemma about action of finite groups o n  algebraic curves can
be proved using a triangulation of the curve compatible w ith the  group action.
W e will not give details of the sim ple proof (see also [CW]).

Lemma 3. L e t G  be  a  f inite group acting faithfully  o n  an  algebraic curve
X .  L et Y  = X /G  be  the quotient cu rv e . L et x (X )= 2 — 111 (X , C) be the Euler
characteristic of  X  thought of  as an element of the Grothendieck group of  represen-
tations o f  G . For any  subgroup H  of  G , let r(G /H ) denote the representation of
G  o n  functions on  G /H ; le t r(G ) denote th e  regular representation o f  G .  Let
x (Y )= 2 — 111 (Y) denote a virtual vector space with trivial G action. Then we have

Z(X) = r(G) 0 7,(Y ) —  [r(G )  —  O M ) ]

where the  subgroups H  in  th e  summation above are  th e  stabilisers o f  th e  fixed
po in ts o f  the  ac tion  o f  G  on  X , tak ing only  one stabiliser ou t o f  a G-orbit of
f ix ed points.

We will apply this lemma in the case when X  = X (p) is the compactification
of H/F(p) o n  which G = SL(2, F)/±  1  acts faithfully. In  th is case Y = P i , and
the  only poin ts of P i  above  w h ich  the  ac tion  o f G  o n  X (p) has fixed points
correspond to  the points i, w ,o o  on the extended upper-half plane. The stabiliser
of i  is  the  subgroup H (i) generated by

( 0 1 1 )
s(i) =

0)'

the stabiliser of co is the  subgroup H(co) generated by

( 0  1
s(w) =

—1 — 1

and the stabiliser of co  is  the  subgroup H(cc) generated by

As,
r(G /H )= E dim (VH ) V,

the  calculation of dim (V ") for irreducible representations V  o f G  will give the
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representation r(G /H ). This can be obtained from the character table of SL(2, F p ).
The results depend on the congruence of p  m odulo 12, as the condition for the
elements i and ai to be diagonalisable in SL(2, Fp ) depends on this congruence.

We state the  results only for p +  1 mod 12.

Proposition 4. I f  p — 1 (mod 12), then

11
p 11 p 111(X , C) = 
 —  E P s ( ) —

X) ± E Ds(x) + 2  E Ds(x) + 2  E  Ds(x)
6 , 6 , x0)=1 x(c0=1

p +
+

1 
S t  

p —
12 

11(P + + P ) — 
p  + 1

12
+ 1 2 a

(D
+

 + D )6 

H ere the  sum m ation is ov er only  those x  w hich giv e rise to distinct Ps(x ) (or,
Ds(x )); a = 1 i f  the unique quadratic character o f  N  tak es the  v alue 1 on i, and
a = 0  otherwise, so a = 1  if p — 1  mod 24  and z ero otherwise.

Proposition 5. If p -__ 1  (mod 12), then

P — 1P  —1  
111(X, C) — E Ps(x) + E Ds(x) — 2  E  Ps(x) — 2  E  Ps(x)

6
z 6 xx ( - 1 ) = 1 x(co)=1

P —+ 
p  —

6  

1 3  

S t

 p  —

12

25 

(P+ + P- )
12

1  (D+ + D - ),

w here again the sum m ation is over only  those z  w hich giv e rise to distinct Ps(x)
(or, Ds()).

R em ark 7. All the representations of SL(2, Fp )  have their characters defined
over R  except f o r  13+ , P ,  D ,  D -  i n  t h e  c a s e  when p 3 mod 4. Since
111(X (p), C) = H ° (X (p), S2') e H °  (X  (p), SP), knowing t h e  SL(2, Fp )/ +1 module
structure of 111(X (p), C ) le ts  u s  deduce th e  SL(2, F)/±  1  m odule structure of
H ° (X (p), S21 )  except that we will be able  to determine only th e  sum o f multi-
plicities o f  13+ , P ,  a n d  t h e  sum o f multiplicities of D ,  D .  S e e  Casselman
[Ca, page 122] for the decomposition of H °  (X (p), Q 1 )  in  the case p  = 11 which
is in  accordance with our Proposition 4.

L et X  (p)e = X(17) X SL(2, Fp) PGL(2, Fp ). Clearly, X (p)e is  a disjoint union of
two copies of X  (p), a n d  th e  representation o f PGL(2, Fp )  o n  H ° (X(p)e, Q 1 )  or
on H 1(X(p)e, C) is the induction from SL(2, F,,)/± 1 to PGL(2, Fp ) of SL(2, FI )/+ 1
module H °  (X (p), f2 ')  o r  H 1 (X (p), C). This allows us to calculate H ° (X e, S2') as
PGL(2, Fp ) module from the results obtained above. The results obtained above
can be summarised in  th e  following theorem.

Theorem  2. For p  > 2 3 , the  representations o f  the  ade le  group PGL (2, A)
appearing in  the  discrete spectrum  of  L 2(PGL(2, Q)\PGL(2, A)) w ith the discrete
series D 2  a t  th e  inf inite place, unram if ied outside p, an d  at p  h av in g  a  vector
inv ariant under F(p) are ,f initely  m any , and  their local com ponent at p  is any
possible representation of  PGL (2, Qp )  w ith a  v ector invariant under F(p) except
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that in the principal series case, the inducing character may have to be altered by
an  unramified character.

W e e n d  by remarking that we believe the  questions raised in  this note are
m o re  interesting than th e  fragm entary answ ers that w e can provide a n d  it is
partly our intention in  writing this note to draw attention to  the questions raised
here.
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