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Relative entropy and mixing properties of interacting
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1. Introduction

Consider a  Markov semigroup S t on  a  com pac t m etric space X that has
th e  Feller property. I f  w e  sta rt the  p rocess w ith  som e in itia l distribution
then  it is  no t a lw ays true  tha t for large t the distribution tet -=ttSt. is  close to
an invariant d istribution for the  process. W hile  any lim it po in t a s  T- - * 0 0  o f

1 1

the  tim e average — f  p t clt is alw ays an  invarian t measure, th e  same can notT  o
be claimed for limit points of l i t  itself. The simplest examples are  provided by
deterministic flows. However fo r  a n y  Markov chain o n  a  finite state space,
continuous time rules out periodic behavior and ttS t h a s  a  lim it a s  t and
this is always an invariant measure.

T h e  na tu ra l question  tha t a rises is to  determ ine if  under some suitable
conditions o n  th e  Markov semigroup st o n e  c a n  s till c la im  th a t a ll possible
limit points of ,uS t a re  invarian t measures. Such a  resu lt in  conjunction with a
uniqueness theorem fo r invarian t m easures w ill establish the convergence of
pS t to  the unique invariant measure giving us a  mixing result.

It has been conjectured that in  the  context of interacting particle systems
the answ er is in the affirmative under some very mild restrictions. Let X =F v ,
where F is  a  finite se t. T he  sta te  77 of the  system  is described  by  its values

(x ) for x  Zd . The infinitesimal generator of the particle system is given by

pf(n)=E f
FT

1)) V( 77) (77) ) ( 1 )
Tczd

where th e  sum m ation runs over a ll fin ite  subsets o f Zd . Here C T  (c l, 77) de-
scribes the rates for Poisson events that change the current configuration 77 to
a  new configuration i  th a t  h a s  b e e n  a lte r e d  o n  th e  fin ite  index  se t T C
from  r) to A  whole family o f such Poisson events a re  taking place simul-
taneously and the infinitesimal generator reflects that. Of course a whole lot of
these CT (-,•) may be O. W e say that a  particle system  has bounded flip rates
if there  is a  bound on the sum of all the Poisson rates that could affect a loca-
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tion x  Zd , j .  e.,

xG7.!
su p fE  su p f c r  (c l, i)J< co

T 3 X  
n Ex FT

And w e w ill say that a  particle system has finite range R if the following two
conditions are satisfied:
a) c 2- (• ,• )= 0  whenever the diameter of T exceeds R, i. e. sup x ,y Erlx — y I
b) F o r every A  C F T  th e  function CT (A, 77) does not depend on 77 (u) if  dist
(T ,u ) R.
Under these conditions the operator Q  is well defined for f  E ,  th e  space of
'tame functions' i.e functions that depend o n  in (x) I on ly  for x  in  some finite
set.

T h e  opera tor Q  o n  0  h a s  a  na tu ra l extension th a t d e fin e s  a  Markov
generator (see theorem 3 .9  of Liggett [1 ]).

T h e  follow ing theorem  w as recently proved by Mountford [2] when the
dimension d=1.

Theorem 1. L et 77, b e an  in fin ite  p a r tic le  sy s tem  on X = F z  w ith  bound ed
f l i p  rates and  o f fin ite ran ge. Let 12 be som e probability m easure on  X su ch  tha t

Um i-eStn=

ex ists, w here t,,/ 0 0 . T hen  v i s  invariant.

W e provide a  different proof in  th is  note. The proof o f Mountford uses
ABL coupling . W e rep lace  it by  a  re la tive  entropy argum ent. O ur proof is
shorter and we believe that it can bemodified and applied to other situations.

id e a  of  proof. In  o rd e r  to  illu s tra te  th e  idea  behind  th e  proof we will
show that if S t i s  a Markov semigroup with a bounded generator

Qf (x) L E f  ( Y )  f  ( r ) ] n -  (x, dy) (3)

then  fo r  any  te and  any  fixed  0 < 00 , 1111,52-4-t tcS i11—+ 0  as 00, w here
Dail denotes the total variation norm of the signed measure a. If we take some
A> 0  and consider the  genera tor (1+ A) Q  instead of Q , b y  a  Girsanov type
formula it is  seen  tha t the  new process is absolutely continuous with respect
to the old one and one can get a  bound on the relative entropy of the new pro-
cess w ith respect to  the original one during any finite  tim e interval [0, t ] .  A
simple estimate, for small A, gives the bound 11 . Ct/i 2 for the re la tive entropy

where C is  a  bound for the operator Q . By making the choice of A = —

t  
we get

H o  (1 ) a s  t - - oo for fixed r . Since the m arginal at tim e t  of the  speededup

process with generator (1 -1-(f))S2 is ttSr+ t , and the relative entropy controls

the variational distance the proof is complete.

(2)
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Our proof of Mountford's theorem is basically a modification of the above
idea. In order to  have a  bounded Q we need to pu t things in  a  finite box and
then try  to  control the influence of effects coming from outside the box. This
is done through the finite range condition. T here  is  a  fight between the  small-
ness of the entropy bound and the growth of the dom ain that influences what
goes on  in  a  finite box. W hen d = 1 the entropy bound wing, giving us the  re-
sult. The details are carried out in the next two sections.

it is enough to  show  that fo r any arbitrary  fin ite  M , local function f  de-
pending on sites [— M, 10] , and any r>0,

f  S tfdp —  f  S l + rfd,u1=0 (4)

T o  d o  th is  w e  d e f in e  a  new  p rocess governed  by  th e  tim e dependent in-
finitesimal generator

Q t ( s ) = Âf (s) (5)

where 2 '(s ): [0 , 0 0 ) — > [1, 0 0 )  is chosen so that

f o
l 2 " ( s )  d s =t+z - (6)

The new proces w ill then have transition operators Sô,(; ) =S t + ,. Because D  is
an unbounded operator, processes with generators Q (s) A  (s) D are  not abso-
lutely continuous with respect to  the original one. But th is situation can be re-
medied by truncating the processes.

Suppose we have a function h (s) defined for 0 we truncate the
processes to [— h (s) , h (s)] at time sE  [O, .  We define the generators

S2" (s)f = E fF C T C) V (Ce) —f ( ) )
Tc[—fh(s)1,1.h,(s)11

,Q2 'h (s)f (C) = (s) C T  (C1 , C) V (Ce) f (C ))

 

Tc1-1h(s)1,1h,(s)11

 

We define four processes P, p 2
, P h and  P2 'h  corresponding to the generators D,

D2 (s), Q h  (s) and D 2 'h  (s) respectively all having the same initial distribution
tt. The processes P and P2 have  gr=f iS t and lit-i-r= juSt+r for marginal distribu-
tions at tim e t. P h and  13 2 'h a r e  governed by truncated generators and the rela-
tive entropy of P'" w ith  respect to  P h  can be estim ated by m eans o f a  Girsa-
goy formula and w ill be carried out in section 3. In section 2 we will estimate
the effect of the truncation. If we denote by /i t , 14, I f ;  and tet

l '" the  marginals at
time t of the four processes P, P2 , P h  and  P h ,  th e  relative entropy estimate in
section 3, will te ll us how close td' h  is  to  A . In  section  2 we will estimate the
to ta l v a ria tio n  o n  th e  a - field corresponding to [— M , M.]  o f  th e  differences

li m
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ti t — ,0 and

2. Construction of truncated processes

A  theorem of Liggett (theorem 3.9 (c) [1]) provides the  basis for estimat-
in g  th e  difference between th e  truncated  a n d  untruncated processes. First
some notation: for any bounded function f on F z  le t u s define

f (X ) = SU P I Et- 07) —f()71 ; )7, )7': 17 (y) (y) Y (7)

and

D (X ) =  if: E d f(x ) <co} (8)
xEZ

Theorem 2 .  L et St be  the  semigroup of  a finite range, bounded f l ip  rate
particle system on F z • Then for f ED (X)

Asti. (x) f  (X) (9)

Here r  is an  operator defined on 11(Z) , the Banach space of all functions 13 on Z
such that 10111,(z);= Ex 113 (x)1< 0 0  , by

r $ (y)=Ep(x)r(x, y)

where CT (y) = sul),2072:77.(x) --,,Ad,v.z4y IlIcr (771, Cr 0 7 2 , d )  I I I  an d  î  (x , y )  =
(y)

We assume with out loss of generality that suprEz iEnx suNEer (Fr, 17)1 1
in what follows.

Corollary 1. L et D  be the generator of  a particle system with bounded f lip
rates and dinite range R. Then ior each local function f depending on sites on
[ — M, M]we have

is tf(x ) 2 I I exp [ — y  logl

Ixi — M whenver IxI_ M - I- 2Rbt. Here b•=2 (4R +1) , y 2 R  ' and

Proof. Note that

etr(x)=E  (tr) df (x)n ! 
n=o

And since r (x, y) -= 0 whenever Ix — y1 >2R, we have

Tnd f  (x) S2n(4R-I-1)n s u p  d f (y).
y:ly —xi 52Rn

(10)

I. = sup, .pzIf (n) I.
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But f  is a  function depending only on sites on [ — M, M], so that

sup f (Y) 2111110.X +2nR — x) ,
y dy -xi<212rt

where X (y) is the indicator function of the interval [0, co). Therefore

A S :I (X )  211/110. E( 2 t ( 4 R + 1 ) ) "
n !

(1x1 -m )12R]

from which (10) follows.

Theorem 3. Let be a finite range, bounded f lip  rate particle system with
state space X = Fz. Let C h be the truncated process, with the same initial distribu-
tion, corresponding to the function h ( s )  with the property that h (s) Rc (t —  s) +R
H- Rk - I- M for some k that we may choose later to depend on t . The difference in the
variational norm between fi t and ttP, the distributions at time t of the two processes

and Ch on the a - field corresponding to the s i t e s [ — M, M ]is bounded by

2Il1tP-1t,11.<7we - -

provided c= 2 eb e R .

Proof. Let u (s, Si_$f (C), where f is any local function depending on
sites on [ — M, M ]. Then since

u(s, (0, v)—fs(  au  + (Q u ) (a, vd)dv,o-

is a m artingale and as +.Q.:u= (W — Q)u, we have

(AO (C) —  (Stf) (C )= f t (51(s4, — , Q)st_.0 (cds) (11)

Now for any g  Ed (X ) we have

I (S4i  — S2) g (C) I E Ag(x)
,x1 h(s)—R

and since S t - s  f ED (X) , we have

r t
supl (S i) (C) (S f)

o
st_sf (x )d s.

cot
(12)

But from corollary 1 and the fact that c=2ebe R =4e (4R +1) e R  ,

f t  E  i s f r i l(x )d s  L tL f0
t E e - n  d s

Irl h(s) — R n Rcs-i-kR
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24. _kR
bReR  (e — 1) e

The proof is now complete.

Remarks. Exactly th e  same type of estimates a re  valid  fo r  comparing
the speeded up process PA w ith  its truncated  version. One slight difference of
n o  consequence is that th e  f lip  ra te s  m ay  no t be  bounded  by  1. Since our
speedups a re  going to be very m inor w e assume tha t 0 _</1 (s) If  we had

1
assumed intially th a t a ll f lip  ra te s  a re  bounded by -

2
-  then Theorem  3 would

apply for the speeded up version as well. So we have

2 kR

bReR  (e — 1) -
(13)

3. Relative entropy of truncated processes

T he  processes Ph a n d  P2 'h h a v e  th e  sam e in itia l distribution p  and time

dependent gnerators h  (s )  and S22 'h (s) = Â (s) S2 h (s )  repectively. Since Q" (s)
is  a  bounded operator on [0, t] , Girsanov formula can be used to calculate the

relative entropy of P A ' h w i t h  respect to  P  o n  th e  a - fie ld  g l  generated by
17(s): 0 _<6 . Since

(fil'hiliji) - 11(P2 'h iph )

if we can estimate H(P2 'h iPh ), and show tha t it tends to zero for some reason-
able choices of k, .1, and h, we will be done.

Lemma 1.

H (P2 'h iPh ) h (s) (.1". (s)1 ) 2  ds (14)

Proof. Denote by N (s) the  to tal number of jumps ocurring up to  tim e s.

Then the Radon - Nikodym derivative of P.' respect to Ph on  g ?  is given by the
following formula

dPÀ'h
r t

j log .1t 'r(s)dN(s) —
0

c (F T  , (s) — 1) dsl=exp
dPh

T c  f- h(s),h(s)1

and a direct computation yields

H  (p ,i,h lp h ) —  f t E p A . h ( E C T  (F T , Cs ) )  (2 t ,r ( s ) lo g  Â t ,r ( s ) (/3,t,r (s )\ — 1)  dS
0

Tcl- h(s),h(s)1

Equation (14) now follows from the assumption of bounded flip rates and the
inequality In x x i  for x 1.
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T h e  following lemma is elementary.

Lemma 2. Let slit ,r =  12' ( • ) EL I ([0, t]): fo t (Â'''(s) — 1) d s  =  I  and
h (s) =Rc (t — s) R  R k + M .  Then

[log RRct - kk Rk+M+R1 - 'infi 1 t h  (s) 2 '(s) — 1) 2 ds=Rcy 2 (15)

and the infimum is attained at (s) =1+
 h (

a
s )

 with

a = R c r i l o g

R d + R ± M ± R 1 - 1 .
RIz+M -FR
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