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1. Introduction

Consider a Markov semigroup S; on a compact metric space X that has
the Feller property. If we start the process with some initial distribution g,
then it is not always true that for large t the distribution g, = uS; is close to
an invariant distribution for the process. While any limit point as T— ©° of

. 1 r . . .
the time average ?j; udt is always an invariant measure, the same can not

be claimed for limit points of g, itself. The simplest examples are provided by
deterministic flows. However for any Markov chain on a finite state space,
continuous time rules out periodic behavior and ¢S, has a limit as t —°° and
this is always an invariant measure.

The natural question that arises is to determine if under some suitable
conditions on the Markov semigroup S; one can still claim that all possible
limit points of S, are invariant measures. Such a result in conjunction with a
uniqueness theorem for invariant measures will establish the convergence of
1S, to the unique invariant measure giving us a mixing result.

It has been conjectured that in the context of interacting particle systems
the answer is in the affirmative under some very mild restrictions. Let X=F7%
where F is a finite set. The state 1 of the system is described by its values
n(x) for x €Z° The infinitesimal generator of the particle system is given by

o)=Y [ er @& n o) () 1)

TCZ?

where the summation runs over all finite subsets of Z%. Here c¢r (d, 7) de-
scribes the rates for Poisson events that change the current configuration 7 to
a new configuration n° that has been altered on the finite index set T C Z¢
from 1 to & A whole family of such Poisson events are taking place simul-
taneously and the infinitesimal generator reflects that. Of course a whole lot of
these ¢z (+,*) may be 0. We say that a particle system has bounded flip rates
if there is a bound on the sum of all the Poisson rates that could affect a loca-
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tion r€Z°% 1. e,

sup[z S,};,?f;f’(dfv 77)] <o (2)

ez
LU

And we will say that a particle system has finite range R if the following two
conditions are satisfied:
a) cr(+,*) =0 whenever the diameter of T exceeds R, i. e. supzyerler—y|>R.
b) For every A CFT the function cr (4, ) does not depend on 7 (u) if dist
(T, u) 2R.
Under these conditions the operator £ is well defined for f € D, the space of
‘tame functions’ i.e functions that depend on {n (x)} only for x in some finite
set.

The operator £ on £ has a natural extension that defines a Markov
generator (see theorem 3.9 of Liggett[1]).

The following theorem was recently proved by Mountford [2] when the
dimension d =1.

Theorem 1. Let 1, be an infinite particle system on X = F% with bounded
Sflip rates and of finite range. Let (1 be some probability measure on X such that

lim uS;,=v

n—oo
exists, where 1,/ . Then v is invariant.

We provide a different proof in this note. The proof of Mountford uses
ABL coupling. We replace it by a relative entropy argument. Our proof is
shorter and we believe that it can bemodified and applied to other situations.

tdea of proof. In order to illustrate the idea behind the proof we will
show that if S; is a Markov semigroup with a bounded generator

@) = [ ) —r@]nle, ay) 3

then for any p and any fixed 0 <y <oo [|uSrsr — uS/>0 as t— o0, where
||a|| denotes the total variation norm of the signed measure a. If we take some
A>0 and consider the generator (14 2) 2 instead of £, by a Girsanov type
formula it is seen that the new process is absolutely continuous with respect
to the old one and one can get a bound on the relative entropy of the new pro-
cess with respect to the original one during any finite time interval [0, t]. A
simple estimate, for small A, gives the bound H <CtA? for the relative entropy
where C is a bound for the operator £. By making the choice of X=% we get
H=0(1) as t =0 for fixed 7. Since the marginal at time t of the speededup
process with generator <1 +(%)>Q is uSt4., and the relative entropy controls

the variational distance the proof is complete.
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Our proof of Mountford’s theorem is basically a modification of the above
idea. In order to have a bounded £ we need to put things in a finite box and
then try to control the influence of effects coming from outside the box. This
is done through the finite range condition. There is a fight between the small-
ness of the entropy bound and the growth of the domain that influences what
goes on in a finite box. When d =1 the entropy bound wing, giving us the re-
sult. The details are carried out in the next two sections.

it is enough to show that for any arbitrary finite M, local function f de-
pending on sites[—M, M], and any 7>0,
lim fSJdﬂ_fSHrfdﬂ':O (4)

t—oco

To do this we define a new process governed by the time dependent in-
finitesimal generator

Q7 (s) =2 (s) R (5)

where 277 (s): [0, e)—[1, ) is chosen so that
j;l/?”(s) ds=t+r1 (6)

The new proces will then have transition operators S§;’ = S,4:. Because 2 is
an unbounded operator, processes with generators £2(s) =21 (s) 2 are not abso-
lutely continuous with respect to the original one. But this situation can be re-
medied by truncating the processes.

Suppose we have a function h (s) =M, defined for 0<s<t, we truncate the
processes to[—h (s), h(s)] at time s€ [0, t]. We define the generators

2erm= Y [ e 0G0

Tcl=[h($)),1h,()])

Q=2 ) [ rer@ O () —£(D)

Tcl—=1h(s), A, ($)]]

We define four processes P, P!, P* and P*" corresponding to the generators £,
0% (s), 2" (s) and 2*"(s) respectively all having the same initial distribution
it. The processes P and P* have y,=uS, and ;4= uS:+r for marginal distribu-
tions at time t. P* and P*" are governed by truncated generators and the rela-

tive entropy of P*" with respect to P* can be estimated by means of a Girsa-
nov formula and will be carried out in section 3. In section 2 we will estimate

the effect of the truncation. If we denote by u,, 1, u* and p?* the marginals at
time t of the four processes P, P*, P and P** the relative entropy estimate in

section 3, will tell us how close pf"* is to A" In section 2 we will estimate the
total variation on the o-field corresponding to [— M, M] of the differences
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et and gt =t

2. Construction of truncated processes

A theorem of Liggett (theorem 3.9 (c) [1]) provides the basis for estimat-
ing the difference between the truncated and untruncated processes. First
some notation: for any bounded function f on F? let us define

4, () =sup{lfn) —fn'lim, n:nly)=n'(y) Vy+zl (7)
and
D(X) =1 ZA,(x) < oof (8)

Theorem 2. Let S; be the semigroup of a finite range, bounded flip rate
particle system on F*. Then for fED (X)

Asys () <eTAs () (9)
Here I is an operator defined on 1, (Z), the Banach space of all functions B on Z
such that |Bl.w;=2Zz |B(x)| <o, by

IB() =) B 7z, v)

wheve ¢t (y) = SUDppum @) =n.(x) Yr#y mCT (7]1, d§) —cr (T)zv dé) "T} and 7’(35, y) =
ZTM‘ CT(y>

We assume with out loss of generality that supyez {2752 supyezer (FT, 77)} <1
in what follows.

Corollary 1. Let £ be the genevator of a particle system with bounded flip
rates and dinite vange R. Then ior each local function f depending on sites on
[—M, Mlwe have

Asr () <2 e exp[—y log‘;y—bt'] (10)

whenver x| =M+ 2Rbt. Here b=2(4R+1), y ’x|2;M and ||flle=supyerlf (n)|.

Proof. Note that
el (x) = Z%ﬁl, (x)
n=0 )
And since 7(x, y) =0 whenever |x—y|>2R, we have

I'"Af(x) <2"(4R+1)" sup A4A,(y).

yily—xI<2Rn
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But f is a function depending only on sites on [—M, M], so that
sup  As(y) L2y (M+20R—x),

yily—z|<2Rn

where x (y) is the indicator function of the interval [0, o). Therefore

+1))*
oy @) <ol Y AZUREL)?
w2 [ (2|~ M) /28] ’

from which (10) follows.

Theorem 3. Let { be a finite range, bounded flip rate particle system with
state space X =Fz. Let (" be the truncated process, with the same initial distribu-
tion, corvesponding to the function h (s) with the property that h(s) 2Rc(t—s) +R
+RE+M for some k that we may choose later to depend on t. The difference in the

variational norm between (1, and pl, the distributions at time t of the two processes
Cand L on the o-field corresponding to the sites[—M, Mlis bounded by

2
et — pell < e

provided ¢ = 2ebe*.

Proof. Let u (s, {) =S,-¢f ({), where { is any local function depending on
sites on[—M, M]. Then since

wls, 1) —u 0 )~ [*(2L2L) 4 (o) (0, 2)as

is a martingale and %—;-F.Qs"u: (RF—Q)u, we have

(Sh) () = (5) (0 = [ (3 (2~ DS (Cas) (1)

Now for any g€d (X) we have

(@-2s5@I< Y 4,@)

lzl2h(s)—R

and since Si_s fED(X), we have

supl (S50 (© = 5D ©I< [ ), Ay @las. (12)

lxl2h(s) =R

But from corollary 1 and the fact that ¢ =2ebe® =4e (4R+1) ¥,

j;t Z As,sr (x)ds£|l/1|mj: Z e ds

lzl2h(s)—R n2Res+ER
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< _ZU/L__Q-M
bReR (e—1)
The proof is now complete.

Remarks. Exactly the same type of estimates are valid for comparing
the speeded up process P* with its truncated version. One slight difference of
no consequence is that the flip rates may not be bounded by 1. Since our
speedups are going to be very minor we assume that 0 <2 (s) <2. If we had

assumed intially that all flip rates are bounded by % then Theorem 3 would

apply for the speeded up version as well. So we have

2
Ah__ 2 g_____ —kR 13
et — R 1) (13)

3. Relative entropy of truncated processes

The processes P* and P** have the same initial distribution g and time

dependent gnerators 2" (s) and 2" (s) =2 (s) 2" (s) repectively. Since 2" (s)
is a bounded operator on [0, t]1, Girsanov formula can be used to calculate the

relative entropy of P*" with respect to P* on the o-field ! generated by
in(s): 0<s<tl. Since

H () <H (P P")

if we can estimate H (P**|P*), and show that it tends to zero for some reason-
able choices of k, A, and h, we will be done.

Lemma 1.
H (PH|P*) <2 f h(s) (A4 (s) =1)% ds (14)

Proof. Denote by N (s) the total number of jumps ocurring up to time s.

Then the Radon-Nikodym derivative of P*" respect to P* on F! is given by the
following formula

P2 —exp [log #e@aN ) = [}, errT L) @7 ~Das)

ap*
Tcl-h(s),h(s)]

and a direct computation yields

HEp) = (B ) er (T 0 (3705) tog 27(5) = (A4 (5) —1)ds

Tcl-h(8),h(s)]

Equation (14) now follows from the assumption of bounded flip rates and the
inequality In x <xr—1 for x<1.
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The following lemma is elementary.

Lemma 2. Let o, .= {A""(-) €L ([0, t]): [of (A*"(s) —1)ds=7| and
h(s) =Rc(t—s) +R+Rk+M. Then

t N -1
infieq,, j; h(s) A" (s) —1)2 ds=Rc72[1ogR"};§_kA}L f; R ] (15)

and the infimum is attained at A1 (s) =1 +-h—%)~ with

B Ret+Re+M+R] -
a=Ret|log™ b Tt R
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