Homological stability of oriented configuration spaces

By

Martin A. Guest, Andrzej Kozlowsky and Kohhei Yamaguchi

§1. Introduction

For a connected space M, let $F(M, d)$ be space ordered configurations of d distinct points in, M, which is defined by

$$
\left.F(M, d)=\left\{\left(x_{1}, \cdots, x_{d}\right)\right\} \in M^{d}: x_{i} \neq x_{j} \text { if } i \neq j\right\} .
$$

Let \sum_{d} be the symmetric group of d letters $\{1,2, \cdots, d\} . \sum_{d}$ acts on $F(M, d)$ freely in the usual manner. The orbit space

$$
C_{d}(M)=F(M, d) / \sum_{d}
$$

is called the space of configuratons of d distinct points in M. In this paper we shall assume that M is an open manifold, i.e. each component is non-compact and without boundary. Adding a point near one of the ends of M gives (up to homotopy) a stabilization map

$$
j_{d}: C_{d}(M) \rightarrow C_{d+1}(M) .
$$

The following is well-known:
Theorem 0 (F. Cohen [6], G. Segal [11]). If M is an open manifold, then the stabilization map $j_{d}: C_{d}(M) \rightarrow C_{d+1}(M)$ is a homology equivalence up to dimen. sion [d/2].
(We shall call a map $f: X \rightarrow Y$ a homology equivalence $u p$ to dimension m if the induced homomrphism

$$
f_{*:} H_{i}(X, \mathbf{Z}) \rightarrow H_{i}(Y, \mathbf{Z})
$$

is bijective when $i<m$ and surjective when $i=m$.)
Remarks. Various special cases of this result were known earlier. For example.
(1) Let $M=R^{q}(q>2)$. Then $\lim _{q-\infty} C_{d}\left(\mathbf{R}^{q}\right)=K\left(\sum_{d}, 1\right)$. The homology stabilization of this space follows from work of Nakaoka ([10]). We can also show this using theorem 0 .
(2) Let $M=\mathbf{R}^{2}$. Then $C_{d}(M)=K\left(B r_{d}, 1\right)$. The statement of Theorem 0 in this case was proved by Arnold ([1]).

Let ${\widetilde{C_{d}}}_{d}(M)=F(M, d) / A_{d}$, where $A_{d} \subset \sum_{d}$ is the alternating group of d letters $\{1, \cdots, d\}$. We shall call $\widetilde{C}_{d}(M)$ the space of oriented configurations of d dis. tinct points in M. There is a non-trivial double covering $\widetilde{C}_{d}(M) \rightarrow C_{d}(M)$. Adding a point near an end of M gives a stabilization map

$$
\widetilde{j_{d}}: \widetilde{C}_{d}(M) \rightarrow C_{d+1}(M) .
$$

In this note we shall determine the homological stability dimension for the spaces $\widetilde{C}_{d}(M)$, when M is obtained from a compact Riemann surface by removing finite number of points.

More precisely, we shall prove:
Theorem 1. Let M be a compact Riemann surface, and let

$$
M^{\prime}=M \backslash\{n \text { points }\}
$$

where $n \geq 1$. Then the stabilization map
is a homology equivalence up to dimension $[(d-1) / 3]$. Moreover, this bound is the best possible.

We shall give a proof in the next section, based on the calculations due to Bödingheimer, Cohen, Taylor and Milgram ([2], [3]). First we make some remarks and pose a question:

Remarks. (1) It seems somewhat surprising that the answer is (about) $d / 3$, not $d / 2$ as in the un-oriented case.
(2) An analogous argument proves a similar result for McDuff's configuration space $C_{n}^{ \pm}(M)$ of "positive and negative particles" ([9]). An application of this will be given in [7].

Question. Is Theorem 1 true for any open manifold?

§2. Proof of Theorem 1

Since $M^{\prime}=M \backslash\{(n$ points $)\} \cong \mathbf{C} \backslash\{(n-1)$ points $\}$, we shall assume that

$$
M^{\prime}=\mathbf{C}-\{l \text { points }\}(\text { where } l=n-1)
$$

and write C_{d} for $C_{d}\left(M^{\prime}\right)$ and \widetilde{C}_{d} for $\widetilde{C}_{d}\left(M^{\prime}\right)$. We shall only consider the case $l \geq 1$. The case $l=0$ can be dealt with in a similar way.

We shall show that
(*)

$$
H_{q}\left(\widetilde{C}_{d}, \mathbf{F}\right) \rightarrow H_{q}\left(\widetilde{C}_{d+1}, \mathbf{F}\right)
$$

is bijective for $q<n(d)$ and surjective for $q=n(d)$ if $\mathbf{F}=\mathbf{Z} / \mathrm{p}$ (p is any prime)
or $\mathbf{F}=\mathbf{Q}$, where

$$
n(d)= \begin{cases}{[d / 2]} & \text { if } \mathbf{F} \neq \mathbf{Z} / 3 \\ {[(d-1) / 3]} & \text { if } \mathbf{F}=\mathbf{Z} / 3\end{cases}
$$

Theorem 1 follows from this and the universal coefficient theorem. (The case $\mathbf{F}=\mathbf{Z} / 2$ is trivial. Indeed, since $\widetilde{C}_{d} \rightarrow C_{d}$ is a double covering and the stabilization map $C_{d} \rightarrow C_{d+1}$ is a homology equivalence up to dimension [d/2], the result follows from the Gysin exact sequence.)

We shall make use of the following well known fact ([4]):
Lemma 2. Let G be a group and $H \subset G$ a subgroup of index 2. Let F be any field of characteristic not equal to 2. Then there is a natural additive isomorphism

$$
H_{q}(H, \mathbf{F}) \cong H_{q}(G, \mathbf{F}) \oplus H_{q}(G, \mathbf{F}(-1))
$$

for any $q \geq 1$, where $\mathbf{F}(-1)$ denotes the field \mathbf{F} with the G-module structure given by

$$
g \cdot f= \begin{cases}-f & g \notin H \\ f & g \in H\end{cases}
$$

for $f \in \mathbf{F}$ and $g \in G$.
Remark. Although similar result holds for any double coverings, because we do not need it, we omit this here.

Let us take $G=\pi_{1}\left(C_{d}\right)$ and $H=\pi_{1}\left(C_{d}\right)$. Since \widetilde{C}_{d} is a double covering, H can be identified with a subgroup of G of index 2 . It is well known that $F\left(M^{\prime}\right.$, $d)$ is a $K(\pi, 1)$-space ([8]). So the spaces \widetilde{C}_{d} and C_{d} are also $K(\pi, 1)$-spaces. Hence we can assume $\widetilde{C}_{d} \simeq K(H, 1), C_{d} \simeq K(G, 1)$ and we can identify the covering map with the map $K(H, 1) \rightarrow K(G, 1)$ induced by the inclusion $H \subset G$. We can thus apply Lemma 2 to obtain:

Lemma 3. If $\mathbf{F}=\mathbf{Z} / p$ (p any odd prime) or $\mathbf{F}=\mathbf{Q}$, then there is a natural additive isomrphism

$$
H_{q}\left(C_{d}, \mathbf{F}\right) \cong H_{q}\left(C_{d}, \mathbf{F}\right) \bigoplus H_{q}\left(C_{d}, \mathbf{F}(-1)\right)
$$

for any $\mathrm{q} \geq 1$
Now, since $C_{d} \rightarrow C_{d+1}$ is a homology equivalence up to dimension [d/2], Theorem 1 follows directly from the following result:

Lemma 4. Let q and d be positive integers such that $1 \leq q \leq[d / 2]$ and (q, d) $\neq(1,2)$.
(1) If $\mathbf{F}=\mathbf{Z} / p(p$ prime, $p \geq 7)$ or $\mathbf{F}=\mathbf{Q}$, then

$$
H_{q}\left(C_{d}, \mathbf{F}(-1)\right)=0
$$

(2) If $\mathbf{F}=\mathbf{Z} / 5$ and $(q, d) \neq(3,6)$, then

$$
H_{q}\left(C_{d}, \mathbf{Z} / 5(-1)\right)=0
$$

(3) If $\mathbf{F}=\mathbf{Z} / 3$ and $d \geq 3 q+2$, then

$$
H_{q}\left(C_{d}, \mathbf{Z} / 3(-1)\right)=0
$$

Proof. Let $1 \leq q \leq[d / 2]$.
By (8.4) of [3], if n is sufficiently large, then

$$
H_{q}\left(C_{d}, \mathbf{F}(-1)\right) \cong H_{q+(2 n+1) d}\left(\Omega^{2} S^{2 n+3} \times\left(\Omega S^{2 n+3}\right)^{\ell}, \mathbf{F}\right)
$$

Note that

$$
\left.H_{j}\left(\Omega S^{2 n+3}\right)^{t}, \mathbf{F}\right) \cong \begin{cases}\mathbf{F}^{m(\beta)} & \text { if } j=(2 n+2) \beta, \quad \beta \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

and there is a stable splitting ([5]. [12])

$$
\Omega^{2} S^{2 n+3} \simeq_{s} \vee_{\alpha \geq 1} \sum^{2 n} D_{\alpha}
$$

where we take

$$
m(\beta)=\binom{\beta+l-1}{l-1} \text { and } D_{\alpha}=F(\mathbf{C}, \alpha)_{+} \wedge_{\Sigma \alpha}\left(\wedge^{\alpha} S^{1}\right)
$$

Since D_{α} has the homotopy type of a CW complex of dimension $2 \alpha-1, H_{j}\left(D_{\alpha}\right.$, $\mathbf{Z} / p)=0$ for any $j \geq 2 \alpha$.

Applying the Künneth formula one can show that

$$
\begin{equation*}
H_{q}\left(C_{d}, \mathbf{F}(-1)\right) \cong \bigoplus_{\alpha=1}^{d} \bar{H}_{q+2 \alpha-d}\left(D_{\alpha}, \mathbf{F}\right)^{m(d-\alpha)} \tag{**}
\end{equation*}
$$

From now on we shall only consider the case $\mathbf{F}=\mathbf{Z} / p$ (p an odd prime). The case $\mathbf{F}=\mathbf{Q}$ can be dealt with analogously.

The following is well known:
Lemma 5. Let $p \geq 3$ be any odd prime.
(1) There is a multiplicative isomorphism
(a)

$$
H_{*}\left(\Omega^{2} S^{3}, \mathbf{Z} / p\right)=\mathbf{Z}\left[x_{1}, x_{2}, \cdots\right] \otimes E\left[y_{0}, y_{1}, y_{2}, \cdots\right]
$$

where $\operatorname{deg}\left(x_{i}\right)=2 p^{i}-2$ and $\operatorname{deg}\left(y_{i}\right)=2 p^{i}-1$.
(2) There is an additive isomorphism
(b)

$$
\widetilde{H}_{*}\left(D_{\alpha}, \mathbf{Z} / p\right)=\bigoplus_{J=\left(\varepsilon_{0}, m_{1}, \varepsilon_{1}, \cdots\right) \in \mathcal{F}} \mathbf{Z} / p\left\{\prod_{j \geq 1} x_{j}^{m_{j}} \cdot \prod_{j \geq 1} y_{j}^{\varepsilon_{j}}\right\}
$$

where we take:

$$
\mathscr{T}=\left\{J=\left(\varepsilon_{0}, m_{1}, \varepsilon_{1}, \cdots\right): \varepsilon_{j} \in\{0,1\}, m_{j} \geq 0, w(j)=\alpha\right\}
$$

and

$$
w(J)=\varepsilon_{0}+\sum_{j \geq 1} \not p^{j}\left(m_{j}+\varepsilon\right) .
$$

From Lemma 5

(c)

$$
\operatorname{dim}_{\mathbf{Z} / p} \widetilde{H}_{q+2 \alpha-d}\left(D_{\alpha}, \mathbf{Z} / \mathrm{p}\right)=\operatorname{card}(\mathscr{F})
$$

where

$$
\mathscr{F}=\left\{J=\left(\varepsilon_{0}, m_{1}, \varepsilon_{1}, \cdots\right) \neq(0,0, \cdots): \varepsilon_{j} \in\{0,1\}, m_{j} \geq 0, D(J)=q+2 \alpha-d, w(J)=\varepsilon\right\}
$$

and

$$
D(J)=\varepsilon_{0}+\sum_{j \geq 1}\left\{2\left(p^{j}-1\right) m_{j}+\left(2 p^{j}-1\right) \varepsilon_{j}\right\} .
$$

Here card (S) denotes the cardinality of a finite set S.
Note that for $J=\left(\varepsilon_{0}, \mathrm{~m}_{1}, \varepsilon_{1}, \cdots\right)$, if $\mathrm{w}(J)=\alpha$, then

$$
D(J)=q+2 \alpha-d \Leftrightarrow H(J)=\varepsilon_{0}+\sum_{j 21}\left(2 m_{j}+\varepsilon_{j}\right)=d-q
$$

Hence
(d)
$\mathscr{F}=\left\{J=\left(\varepsilon_{0}, m_{1}, \varepsilon_{1}, \cdots\right) \neq(0,0, \cdots): \varepsilon_{j} \in\{0,1\}, m_{j} \geq 0, w(J)=\alpha, H(J)=d-q\right\}$.
By (c) and (d) it suffices to show:
CLAIM. Let $1 \leq q \leq[d / 2], 1 \leq \alpha \leq d$ and $(q, d) \neq(1,2)$.
(1) If $p \geq 7$ is an odd prime or $p=5$ and $(q, d) \neq(3,6)$, then $\mathscr{F}=\phi$
(2) If $p=3$ and $d \geq 3 q+2, \mathscr{F}=\phi$.

Proof of Claim. (1) Assume that $p \geq 5$ is a prime and $J=\left(\varepsilon_{0}, m_{1}, \varepsilon_{1}, \cdots\right) \in$ \mathscr{F}.

Since $1 \leq \mathrm{q} \leq[d / 2] \leq d / 2$,

$$
\varepsilon_{0}+\sum_{j \geq 1}\left(2 m_{j}+\varepsilon_{j}\right)=H(J)=d-q \geq d / 2 \geq \alpha / 2=\left\{\varepsilon_{0}+\sum_{j \geq 1} p^{j}\left(m_{j}+\varepsilon_{j}\right)\right\} / 2 .
$$

Hence
(e)

$$
\varepsilon_{0}+\sum_{j \geq 1}\left\{\left(4-p^{j}\right) m_{j}+\left(2-p_{j}\right) \varepsilon_{j}\right\} \geq 0
$$

Since $J \neq(0,0, \cdots)$, one can deduce from (e) that

$$
J=\left(\varepsilon_{0}, m_{1}, \varepsilon_{1}, m_{2}, \varepsilon_{2}, \cdots\right)= \begin{cases}(1,0,0,0,0, \cdots) & \text { if } p>7 \\ (1,0,0,0,0, \cdots) \text { or }(1,1,0,0,0, \cdots) & \text { if } p=5\end{cases}
$$

Hence

$$
(q, d)= \begin{cases}(1,2) & p \geq 7 \\ (1,2),(3,6) & p=5\end{cases}
$$

This is a contradiction.
(2) Assume $d \geq 3 q+2$ and $p=3$. Then

$$
\begin{aligned}
\alpha-\mathrm{d} & =\mathrm{w}(\mathrm{~J})-(\mathrm{q}+\mathrm{H}(\mathrm{~J})) \\
& =\left\{\varepsilon_{0}+\sum_{j \geq 1} 3^{j}\left(m_{j}+\varepsilon_{j}\right)\right\}-\left\{\varepsilon_{0}+\sum_{j \geq 1}\left(2 m_{j}+\varepsilon_{j}\right)\right\}-q \\
& =\sum_{j \geq 1}\left\{\left(3^{j}-2\right) m_{j}+\left(3^{j}-1\right) \varepsilon_{j}\right\}-\mathrm{q} \\
& \geq \frac{1}{2} \sum_{j \geq 1}\left(2 m_{j}+\varepsilon_{j}\right)-q
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2}\left(d-q-\varepsilon_{0}\right)-q \quad(\text { by } H(J)=d-q) \\
& =\frac{1}{2}\left(d-3 q-\varepsilon_{0}\right) \\
& \geq \frac{1}{2}\{(3 q+2)-3 q-1\}=\frac{1}{2}>0
\end{aligned}
$$

Hence $\alpha=w(J)>_{d}$, which is a contradiction.
This completes the proof of Theorem 2.

> Department of Mathematics, University of Rochester, Rochester, New York 14627, U.S.A. Department of Mathematics, Toyama International University Department of Mathematics, The University of Electro-Communications

References

[1] V. ARNOLD, On some topological invariants of algebraic functions, Trans. Moscow Math. Soc., 21 (1970), 30-52.
[2] C-F. Bödigheimer, Cohen, F. and Taylor, L., On the homology of configuration spaces, Topology, 28 (1989), 111-123.
[3] C-F. Bödigheimer, F. Cohen and R. Milgram, Truncated symmetric products and configuration spaces, Math. Z., 214 (1993), 179-216.
[4] T. Bröcker, Homologie symmetris und alternierender Gruppen, Inventions Math., 2 (1967), 222-237.
[5] F. Cohen, M. Mahowald and R. Milgram, The stable decomposition for the double loop space of a sphere, Proc. Symp. Pure Math., 32 (1978), 225-228.
[6] F. Cohen, T. Lada, and P. May, The homology of iterated loop spaces, Lecture Notes in Mathematics 533 (1976).
[7] M. A. Guest, A. Kozlowski and K. Yamaguchi, Stability of cofiguration spaces of positive and negative particles, preprint.
[8] P. May, The geomentry of iterated loop spaces, Lecture Notes in Mathematics 271 (1972).
[9] D. McDuff, Configuration spaces of positive and negative particles, Topology, 14 (1975), 91-107.
[10] M. Nakaoka, Decomposition theorem for homology groups of symmetric groups, Annals of Math., 71 (1960), 16-42.
[11] G. Segal, The topology of spaces of rational functions. Acta Math., 143 (1979), 39-72.
[12] V. Snaith, A stable decomposition of $\Omega^{n} S^{n} X$. J. London Math. Soc., 7 (1974), 577-583.

