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Homological stability of
oriented configuration spaces
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§1. Introduction

For a connected space M, let F (M, d) be space ordered configurations of d
distinct points in, M, which is defined by

FWM, d)= {(x1, =, xa)| EM%: x;%#x; if i#j}.

Let 224 be the symmetric group of d letters {1, 2, -+, d} . 24 acts on F (M, d)
freely in the usual manner. The orbit space

CaM)=FM,d)/ 24

is called the space of configuratons of d distinct points in M. In this paper we
shall assume that M is an open manifold, i.e. each component is non-compact
and without boundary. Adding a point near one of the ends of M gives (up to
homotopy) a stabilization map

ja: Ca(M)—Casr (M),
The following is well-known:

Theorem 0 (F. Cohen [6], G. Segal [11]). If M is an open manifold, then
the stabilization map ja: Ca (M)—Car1 (M) is a homology equivalence up to dimen-
sion [d/2].

(We shall call a map f: X—Y a homology equivalence up to dimension m if
the induced homomrphism

f*: H; (X, Z)“’H,’(Y, Z)
is bijective when i<wm and surjective when i =m.)

Remarks. Various special cases of this result were known earlier. For
example.
(1) Let M=R? (¢g>2). Then limg-«Cs (RY) =K (24 1). The homology stabi-
lization of this space follows from work of Nakaoka ([10]). We can also show
this using theorem 0.
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(2) Let M=R2 Then Cs (M) =K (Brs, 1). The statement of Theorem 0 in this
case was proved by Arnold ([1]).

Let C,(M) =F (M, d) /A4, where A;C 24 is the alternating group of d let-
ters {1, -+, d} . We shall call C4(M) the space of oriented configurations of d dis-
tinct points in M. There is a non-trivial double covering Cq (M)— Cs (M).
Adding a point near an end of M gives a stabilization map

Ja: Ca(M)—=Casr (M)
In this note we shall determine the homological stability dimension for the

spaces 54 (M), when M is obtained from a compact Riemann surface by remov-
ing finite number of points.
More precisely, we shall prove:

Theorem 1. Let M be a compact Riemann surface, and let
M =M\ {n points!
where n=>1. Then the stabilization map
f;: Ca(M)—=Casr (M)
is a homology equivalence up to dimension [(d—1)/3]. Moreover, this bound is the
best possible.

We shall give a proof in the next section, based on the calculations due to
Bodingheimer, Cohen, Taylor and Milgram ([2], [3]). First we make some re-
marks and pose a question: '

Remarks. (1) It seems somewhat surprising that the answer is (about)
d/3, not d/2 as in the un-oriented case.
(2) An analogous argument proves a similar result for McDuff's configuration

space CE (M) of “positive and negative particles” ([9]). An application of this
will be given in [7].

Question. Is Theorem 1 true for any open manifold ?

§2. Proof of Theorem 1
Since M'=M\ {(n points)} =C\ |(n—1) points}, we shall assume that
M =C— {l points} (where I=n—1)

and write Cs for Cs (M) and Cq4 for C4(M’'). We shall only consider the case
121. The case [=0 can be dealt with in a similar way.
We shall show that

(k) H,(Ca, F)=Hy(Cyir, F)
is bijective for ¢<n (d) and surjective for g=n(d) if F=Z/p(p is any prime)
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or F=Q, where

[a/2] if F+Z/3
n(d) = .
[(@—1)/3] if F=Z/3
Theorem 1 follows from this and the universal coefficient theorem. (The case

F=Z/2 is trivial. Indeed, since C;/—C, is a double covering and the stabiliza-
tion map C4—Cas1 is a homology equivalence up to dimension [d/2], the result
follows from the Gysin exact sequence.)

We shall make use of the following well known fact ([4]):

Lemma 2. Let G be a group and HC G a subgroup of index 2. Let F be any
field of characteristic not equal to 2. Then theve is a natural additive isomorphism

H,(H, F)=H,(G, F)®H, (G, F(—1))

for any =1, where F (—1) denotes the field F with the G-module structure given
by

—f g€H

& f=

f g€H

for fEF and g€G.
Remark. Although similar result holds for any double coverings, be-

cause we do not need it, we omit this here.

Let us take G =1 (Cs) and H=m (Ca). Since Cq is a double covering, H
can be identified with a subgroup of G of index 2. It is well known that F (M’,

d) is a K (1, 1) -space ([8]). So the spaces Cy4 and C, are also K (1, 1) -spaces.

Hence we can assume Coa =K (H, 1), Ca=K (G, 1) and we can identify the
covering map with the map K (H, 1)—K (G, 1) induced by the inclusion HCG.
We can thus apply Lemma 2 to obtain:

Lemma 3. If F=2Z/p(p any odd prime) or F =Q, then there is a natural
additive isomyphism

Hy(Ca, F) =H,(Ca, F)BH,(Ca, F(—1))
for any q=1

Now, since C4— Ca+1 is a homology equivalence up to dimension [d/2],
Theorem 1 follows directly from the following result:

Lemma 4. Let q and d be positive integers such that 1<q<[d/2] and (g,
d)#(1,2).
(1) IFF=2Z/p D prime, p=7) or F=Q, then

Hy(Cs F(—1))=0
(2) If F=Z/5 and (g, d) # (3,6), then
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H,(Ca, Z/5(—1)) =0
(3) If F=7Z/3 and d 23q+2, then
H,(Ca, Z/3(—1))=0

Proof. Let 1<¢<[d/2].
By (84) of [3], if n is sufficiently large, then

Hq (Cd, F (_ 1)) EHq+(2n+l)d (-QZSZ”+3 X (Q52n+3) I’ F)
Note that

F"® ifj=(2n+2)B, B=0

Hj (Qszn+3) I’ F) ~ [
0 otherwise

and there is a stable splitting ([5]. [12])
-QZSZ"+3:svaZIZana
where we take
+1—1
m(B) = (Bl—l ) and Da=F (C, @) + A5, (ASY).

Since D, has the homotopy type of a CW complex of dimension 2a— 1, H; (D,
Z/p) =0 for any j =2a.

Applying the Kiinneth formula one can show that

(% %) Ho(Co, F(—1)) =Dde1Hosr20-a (Do, F)™ 4@

From now on we shall only consider the case F=2Z/p (p an odd prime).
The case F=Q can be dealt with analogously.
The following is well known:

Lemma 5. Let p=3 be any odd prime.
(1) There is a multiplicative isomorphism

(a) Hy (22S% Z/p) =Z[x1, x>, < ]Q®E[yo, y1, ye, ]
where deg (x;) =2p'—2 and deg(y;) =2p'—1.

(2) There is an additive isomorphism

(b) Fa(Dar 2/9) =@ o v Z/p{ Tz - Ty
j21 j21
where we take:

T = |J= (&, my, &1, ) g€ 0,1, m;=0, w () =al

and

w(]) =eot 2> (m;+e).
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From Lemma 5

(c) dimz/sHgs2a-d (Do, Z/p) =card (F)

where
F= = (eo, my, &1, =*-) # (0,0, *+): &€ 0,1}, m;=0, D(J) =¢q+2a—d, w(]) =¢l
and

D()=eot+Z 2@/ —Dm;+ (2p—1)ejl.

j21
Here card (S) denotes the cardinality of a finite set S.
Note that for J= (g, my, &1, **), if w(J) =q, then

D) =¢+2a—d © H() =¢cot Z;>1 Cm;+e;) =d—q

Hence
(d)
F= {]': (80, my, €i, "') + (0,0, "’)Z &€ {0,1} s m,-ZO, w(]) =Q, HU) =d—qf .
By (c) and (d) it suffices to show:

CLAIM. Let 1<¢<[a/2], 1<a<d and (¢, d) #(1,2).
(1) If p=7 is an odd prime or p=5 and (q, d) # (3.6), then F=¢
(2) If p=3 and d=3q+2, F=¢.
Proof of Claim. (1) Assume that p=5 is a prime and J= (eo, m1, €, ***) €

7.
Since 1<q<{d/2] <d/2,
cot+ 2 Cmite) =H() =d—q=d/22a/2= {eo+ 2p’ m;j+e;)} /2.
j21 =1
Hence
(e) eot 2 {(d—p)m;+ (2—p;) et 20
Since J# (0,0, -++), one can deduce from (e) that
= {(1,0,0,0,0, “ee) if p>7
= (g, M1, €1, My, €2, **) =1
O T B T 2 (1,0,0,0,0, --) or (1,1,0,0,0, --) if p=5
Hence
(1,2) P27
(4. d)=l _
(1,2), (3,6) p=5

This is a contradiction.
(2) Assume d=>3¢g+2 and p=3. Then

a—d=w()—(g+H(J))
= leo+ 25213 (mj+e;)| — leot 221 2m;+e;) | —¢
=221 —=2)m;+ (3 —1)¢j —-q

2%2,-21 (2m,+5,-) - q
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_1 —
=5d—q—e)—q  (by H()=d—q)

1
= 9 d— 3g— &)

1 1
>3 1(3g+2) —3g—1] =35>0

Hence a=w (J) >d, which is a contradiction.

This completes the proof of Theorem 2.
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