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Adjoint action on homology mod 2
of E 8  on its loop space

By

Hiroaki HAMANAKA

1. Introduction

Assume G is a compact, connected, simply connected Lie group. The space
of free loops on G is called LG (G ) the free loop group of G, whose multiplica-
tion is defined as

9 • 0  (t) = 9  ( t ) • 0  (t).

Let DG be the space of based loops on G, whose base point is  the unit e. Then
LG (G ) has QG as its normal subgroup and

LG (G) / QG''="' G.

Identifying elements of G w ith constant maps from S' to  G, LG (G ) is equal to
the semidirect product of G  and  QG. T hus the  mod p  homology of LG (G ) is
determined by the mod p  homology of G and QG and the algebra structure of
H* (LG (G ) ; Z/PZ) depends on H* (ad ; Z/pZ) where

ad : G X  QG — 0 QG

is the adjoint map.
I n  [4] som e properties of ad* a re  studied and  it is show ed that H* (ad

Z/pZ) is equal to H* (P2 ; Z /pZ ) where pz is the second projection if and only
if H* (G ; Z) is  p-torsin free. F o r an exceptional Lie group G, 11* (G ; Z )  has
p - torsion when

G =  G2, F4, E6, E7, E8 for p = 2,
G = F4, E s , E7, E8 for p = 3,
G = Es for p = 5.

The case where p=2 a n d  G E 8  is discussed in  [6] and the case of p= 3, 5 is
studied i n  [8 , 7 ]  respectively. In  th is  p a p e r  w e  o ffe r  th e  re su lt o f  th e  re-
mained case, (G, p) (E8, 2). The result is showed in Theorem 4. 1.

T h is  p ap e r is  organixed a s  follows. In  §2 w e  re fe r  to  th e  re su lt of the
algebra structure of H* (G ; Z / 2Z) and H* (9 G  ; Z/2Z) and the Hopf algebra
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structure and cohomology operations of them. And in §3 we introduce the ad-
joint action and observe its property. Finally in §4 the induced homomorphism
from the adjoint action of E 8  is determined by using the result of E7 and coho-
mology operations.

The author is the most grateful to Professor Akira Kono for his advices
and encouragements.

2. H* (G ; Z/2Z) and H* (QG ; Z/2Z)

We refer to the result o f  [1 ] and [2 ] about H * (G ; Z / 2Z) for G= E7 and
Eg.

Theorem 2. 1.

H* (E7 ; Z/ 2Z) Z/2Z [x 3 , X 6 , X 9 ]  / X t )  0  A  (X 15, X 17 3 , X 27)

H* (E8. ; Z/2Z) = Z/2Z [X 3 , X 5 , X 9 , X 1 5 ] /  
( 4 6 , X 153,  4, 4 5 )  0  A  (X 17 , X 23 , X 27 , X 29)

where x i is a generator of degree i. Moreover there is a  hamomorphism

E7 E 8

where induced homontorphism maps x i i n  H* (E8 ;  Z /2Z ) into x i i n  H* (E7

Z/ 2Z) .

Theorem 2. 2. The x is  in  Theorem 2. I can be chosen so a s to satisfy

x 5 =  Sq2 x 3 ,
x 9 = Sq 4 x 5,

-(/-; (X3 ) =  (x 5 ) =  (T )(x9) = 0

and the coproduct of x15 is

(T)  ( X 1 5 )  =  X 3 2 X 9  + X 5 2 ®  X 5  ±  X 3 4  X 3 .

The algebra structure of H*  (QG  ;  Z /2 Z )  can be determined a s  an  ap-
plication o f  th e  Eilenberg-Moore spectral sequence. A n d  th e  Hopf algebra
structures and the action of cohomology operations which acts on  homology
dually was determined by A. Kono and K. Kozima. See [5, 3] for detail.

Theorem 2. 3.

H* (S2E7  ; Z/2Z) =  A (b2 , b4 , b5) O  Z/2Z[b10, b b b b  b_14, _16, _18, _ 22, - 26, 34]
H* (S2E8 ; Z/2Z) = A (b2 , b4, b8, b14) O  Z/2Z rb h h h h h h h l-  1 6 , -2 2 , -2 6 , -2 8 , -  3 4 , -  3 8 , -4 6 , -  5 8 ,

where bi is a generator of degree i.

Theorem 2. 4. The coproduct o f H* (D.E8 ; Z/ 2Z) is given as

(b i ) = 0  for i  =  2, 14, 22, 26, 34, 38, 46, 58,
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( 1 ) 4 )  =  b 2  0  b2,

(68) — b2 b2b4 b4 b4 b2b4 b2,

(b16) b2 O  b2b4b8 b4 O  (4 8b 2b4 O  b2b8 b8

b8b 2b8 0 b2b4 6468 O  ba b2b4b8 (8)  b 2,

(b28) b14

3 .  Adjoint action

Let A d : G X G.- +G and  ad  : G X  QG— • QG be the adjoint action of a Lie
group G defined by Ad (g, h) = ghg -

1 and ad  (g, 1) (t) = gl (t) g -
1 where g, h E G,

E QG and t E [0, 1]. These induce the homomorphisms

Ad* : H*  (G ; Z/ 2Z) H* (G ; Z/2Z) H* (G ; Z/ 2Z)

and

ad* : H*  (G ; Z/ 2Z) 0 H *(S2G  Z/2Z) H*  (QG ; Z/2Z)

Put y  *y ' = A d * (y  y ')  and y  * b= a d * (y  b) where y, y ‘  H* (G ; Z/2Z)
and b EH * (QG ; Z/ 2Z) . Following are the dual statement of the result in [4].

Theorem 3. 1. For y, y" c H* (G ; Z/2Z) an d  b, b' C H *  ( QG
Z/2Z)

(i) 1  * y  = y , 1  *  b = b.
(ii) y  * 1 = 0, if  IY I > 0, whether 1 e H* (G ; Z/ 2Z) or 1  E  H*  ( S2G ; Z/2Z)
(iii) (yy') *  b y *  (y ' * b).
(iv) y  *  (bb') = E (y ' *  h ) (y" * b') where d*y  =  Ey'
(y) a ( y  *  b )  =  y  *  a(b) where a is the homology suspension.
(vi) S q  (y  *  h ) = (Sql* y ) * b).

Sca (y * y') = Ei (Sqi* y )  *  (S O » y') .
(vii) d * (y  *  b )  = ( *  y )  *  (d * b)

= (y' *b') (y"*b")
where d * y  =  Ey' O  y" and d *  b  = Eb' O  b", Also

d*(y * b)= (A* y) * (21- * b) •
(4  If  b is primitive then y  *b is primitive.

Let y2i EH *(G  ; Z/2Z) be the dual of xi 2 fo r i= 3, 5, 9, 15 and y12, y24. Y20
b e  th e  dua l of x3

4 , x 3
8 , x 5

4 respec tive ly  w ith  respect to  th e  monomial basis.
Also in H*(Ea ; Z/2Z) we put as

ym = Y6 M i  Y12 M 2  Y24 M 3  Y16 m 4  Y20 m 5  Y l8 m 6  Y30 M i

for m = m2, , m7) E  Z/2Z 7 . T hen the , re su lt  o f  [4 ] implies th e  next
theorem. See [6].
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Theorem 3. 2. We define a submodule A of H*  (G ; Z/ 2Z) as

A  =-  A (y6, yio, y18) for G = E7
A  ------ (V" for all m  e Z/2Z 7) for G  = Es.

Then there exist a retraction p  : H* (G ; Z/ 2Z) A and the following diagram
commutes.

Remark. 1. The submodule A  has an  algebra structure induced from
that of H* (G ; Z /2Z ). W hen G=E7, A  is  a commutative exterior algebra over
Z/2Z. But when G = Es , A  is  a non-commutative algebra over Z/2Z. In fact A
is  the dual o f A  (132, x 5

2, 192)  for G = E7 and is  the dual of Z/2Z [1 32 , x52, 192 ,
/ 1 5 2] / (x 3 16,  1 5 8,  . / 9 4,  / 1 5 4\)  for G = E g. Thus we can easily see that, for G = Eg,
A is generated by {y6, y12  24 ,  Y b ,  o 2o, y18} a s  algebra and the fundamental re-
lations are

=  0 for i = 3, 6, 12, 5, 10, 9,

[y2i, Y2A - 0 fo r  (i, j) *  ( 6 , 9 ) , ( 9 , 6), ( 5 , 10),(10, 5),(3, 18), (18, 3)

and

[y6, y24] = [yio, y2o] = [y12, y18] (= 1/30).

Remark. 2. By Theorem 3. 1 (iv) and Theorem 3. 2 we see that for bE
H*  (QG ; Z/2Z) and i = 3, 5, 9

Y21 * b 2 =  ( Y 2 i *  b) b (y  *  b ) 2b  (Y  2 i *  b )

where y • is the dual of x i fo r i = 3, 5, 9 with respect to the monomial basis.

Remark. 3. By theorem 3. 1 and 3. 2, when G =E 8 , if y , *b ;  is deter-
mined for i = 6, 12, 24, 10, 20, 18 and bi E H* (G ; Z/2Z), then the map H*(ad
Z/2Z) is determined completely.

4 .  Adjoint action on QE8

The next theorem is the main result of th is paper.
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Theorem 4. 1. For j  (6 , 1 2 . 2 4 , 1 0 , 2 0 , 1 8 }  and N E B * (QE8 ; Z / 2 Z ),
y , *  b, is given by  the following tables.

bj 116 * b1 y io  *  b Y 18 * b;
b2 0 0 0

1)4 0 b14 b22

1)8 b14 1)41)14 626 ± b4b22

b14 0 0 b 216

b16 b22 ± b8b14 b28 ± b4b8b14 b34 ± b8b26 ± b4b8b22
j .

022 b142 b162 0

028 0162 0 0222

b28 b34 b38 b162b14 + b46

b34
Cl, b222 b 226

b38 1)222 0 1)282

1)46 1)262 2/138 I.
16

b88 b164 b342 0382

131 1112 * b; 1120  * b; 1124 * 1)1

62 614 622 628
b4 62614 62623 628 ± 62626
68 6264614 628 + 6264622 64628 + 62b4626
b14 0 b34 638
b16 628 ± ,h 2b4b86 14 b8b28 ± 626468622 6468628 + 6264686 36
622 634 0 646
b26 638 kw 0

628 0 Cl 1)262

634 0 0 b58
638 0 658 0

646 658 0 0

658 0 0 0

Remark. The action of cohom ology operations on, H * (QE 8 ;  Z / 2 Z )  is
determined by A. Kono and K. K ozim a in  [3 ] . But we do not use them. We use
the  H o p f algebra s truc tu re  o f H *  (S2E 8 ;  Z / 2 Z )  a n d  th e  re su lt  in  H * (QE7
Z /2Z ).

Pro o f . In  H*  ( Q.E7 ;  Z / 2 Z )  y ,  *  b , and S q  b i are  determined a s  follows.
See Theorem 5. 11 in  [6 ] .
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bi y s  *  b i Yu) *  b i 1/18 *  b i
b2 0 0 bio
b4 blo 614 622 --i-  b2bio
bs b14 - I-  b4b10 618 - 1-  64614 b26 + b4b22 ± b2b4bi0
610 0 bio bi4
614 bio 0 bis
b16 b22 -I- b8b14 - I-  b4b8b10 626 ± bsbis ± babsbm 634 4- b 8b26  - I-  b4b8b22 ± b2b4b8bi0
Ns () bi4 bis
622 bi4 bio bio
626 bis bis bi2
634 bio bh bh

b, S 4  b, Sqt bi Sq8* b, SqV 1)1

b4 b2 — — —
68 b2b4 b4 — —
No bi 0 — —

b14 0 43 — —

Ns b14 +  b2b4b8 6468 b8 —
b18 0 0 bio —
b22 bin 0 b14 —

626 0 b22 b18 —
b34 bis 0 0 b18

By the naturality of adjoint action, the following diagram commutes.

H*(E 7 ; Z/2Z) 0 H *  (S2E7 ; Z/2Z)
 ad*

H*  (S2E7 ; Z/ 2Z)

H*(E 8 ; Z/2Z) O  H* (S2E8  ; Z/2Z)
 ad*

H*  (S2E8 ; Z/ 2Z)

Thus we can easily see that above tables remain true also in  I1*(S2E8 ; Z/2Z)
except for y i *  b i o  and y i *  b 18 by replacing b10 , b18 , by 0.

Also we can easily see that

S q  Scit Sqi< b 28 =  &Oft b28 =  b *  0.

This means Sq b28 -= b26.
If  b i is primitive, y i  *  b ,  is primitive. By (viii) o f Theorem 3 . 1 , y i*  b i is

primitive for

f (10, 38),(12, 38),(12, 58),(20, 22),(20, 34),(20, 46)1
1(20, 58),(24, 26),(24, 38),(24, 46),(24, 58)
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Since prim itive elements of these degrees a re  there  in  H * (Q .E8 ; Z/2Z ) these
elements are O.

Next we consider y12 *62. Because y12* b2 is  primitive, i t  is  b14 o r  O. On
the other hand, we have

* (y12 *  6 4 ) =  (Y 1 2  *  6 2 ) b 2  +  (Y 6  *  62) ° (1/6  * 62 ) +  62  0  (Y 1 2  *  62)

= d * (Y12 * 62) b2.

T h is  means y12 * b4 (y12 * 62) 62 since  the re  is  no prim itive element in  H16
(D.E8 ; Z/2Z ). Therefore we have

SO: (Y12 * 64) — ScOK (y12 * b2) b2 "-= 0,

while

Sq 2*  (Y 1 2  *  64 ) =  Y16  * 64  +  Y12  * 62 = Y14 + Y12 * 62.

Hence we obtain

Y12 * 62 = 614,
y12 * 64 = 61462.

In the same way we can easily show

Y20 * 62 = 22,
Y20 * b4 62262,
Y24 * 62 =  b 26,

Y24  * 64  =  6 28 + 62662.

Since

* (y12 *  6 8 ) =  z (y 1 2 ) *  Z i> 8 6 8  =  3 - *(b14 b4 b2)

and no primitive element is there in H20(QE8 ; Z/2Z), we have

Y12 * 68 = 6146 462,

In the similar way we can determine

y12 * 628, y 20, 628, y 20 * 628, y12 * 616, Y20 * 68, y20 * 616

as in the table of Theorem.
Also as

* (y24 *  6 8 )  = Y24 * d* b8
— d*(b26b4b2 + 62814)

and the only primitive element in H32 (QE8 ; Z/2Z) i s  6162, we can put

(1) y 24 * 1)8 = b26b4b2 b4b28 Pb162

where p  E Z/2Z, Applying Solt to each side o f  (1 ),  we have
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SO: (Y 2 4  *  b 8 ) =  Y 2 0  *  b 8  ±  Y 2 4  *  b 4 b22b4b2 b26b2.

while

Sd (y 2664 62 + 62864 - I-  pb16 2 ) —  b 2 2 b 4 b 2  +  b 2 6 6 2  +  p14.4.

Thus p = 0 and y 24 *  6 8 is determined. Now we can determine y 24 *  6 16 mod-
ulo prim itive elements. Since no  prim itive  elements is there in  H40 (QE8
Z/2Z), we can determine y 24 *  6 16 as

1124 * b16 = b28b8b4 b26b8b4b2.

Since 614 is primitive, 1120 * 614 -= 634 o r  O. Also Sd(y2o*b14) =y18* b4 =

h1€2 . This implies

y 2 0  * b14 b34, SCl 2* b34 = b16 2 .

In the similar way we apply S d  to 116 * 628. Sd to 1112 * 1)22, 808 to Y 1 2  *  bzo

and S d  to yzo * 626. and see that the  followings a re  determined as the  state-
ment :

Y6 * b28, Y12 * b22, 1112 * b26. y2 0  * 626, Sd 638, Sqic b46.

From the above result we can deduce that

Sd 6 46 = (11 20 *  11
2 6 )  =  y1 2  * b26 b38.

Also as 3. * sq .>, b28 = Sq b28= 0, we have Sqt8 b28 -= O. In  the similar way we
have

(3,28),(1,38),(3,38),(2,46),
Sqf: bi =  0 fo r  (k , j) E  1(4,46) , (2,58) , (3,58),(4,58)

Using the above result we can compute Sd(y18*638)as

Sd y18 *  b 3 8  =  y 1 8  *  b 3 4  =  bi6,

while y18*638=6282 or O. This implies y 18*b38=bi8. In the similar manner, ap-
plying Sqt to 1110*628, SO, to 1110* 6 38, Sq8*  to 116*646, Sd to 11 12 *1) 34 , Sqt to

1124*b14 and S d  to y24*b22, the followings are  determined

Y10 * b28, y6  * b38, 116 * b46, 1112 * b34, 1124 * b14, 1124 * b22

as in the table in Theorem.
Moreover by applying Sqt to y o * b45 , S d  to 1112 *646 and S d  to y20*638

we have that

1110 * b46 = b28 2 ,

Y12 * b46 = b58,

Y20 * b38 = b58,
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Since yi8 2 *  b 2 8  =  0 ,  we can see

Y18 * (Y18 * b28 ) =  y18  * (b16 2 b14 + b46) = b16 4  + y18 *  /4 6 O.

Therefore y18*6 46=1)16 4 . In this way we compute y122 *62, y24 2 *b 4  to obtain

y12 * b14 =- 0,

y24 44 0 28 = b26 2 .

Also we can compute y24  * b 3 4 as

y24 * b34 =  y24  * (1/20 * b14 ) =  1120  * (1124 *  b 1 4 ) =  y2 0  *  b 3 8 b58.

The rest we have to do is to determine y 6 *  b 5 8 ,  Y10*b58 and y18*b68.

By applying SO: to 11 20 * b 3 8 , we have

S q l 6 5 8  -= Sce8 (112 0  *  h  )-3 8 , =  1118 * 1) 38 b282 .

Thus by applying SO, to 11 1 2 *6  5 8 , it follows that

0 -= Sce8 (1112 * b 58) =  Y 1 0  *  1 ) 58 ± y12 * b28 2 =  y io b58 b3a2 .

Therefore 11 10 * 658 = b34 2 . W e apply S c it  to  y i 0  *  b 58 a n d  S q l  to 1118 * b88 to
obtain

y s  *  b s s  =

Y18 , &.
b5 8  =  6 3 8

2 .

Now we obtain the all entries of the tables in Theorem 4. 1.

Q. E. D.
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