Adjoint action on homology mod 2 of E_{8} on its loop space

By
Hiroaki Hamanaka

1. Introduction

Assume G is a compact, connected, simply connected Lie group. The space of free loops on G is called $L G(G)$ the free loop group of G, whose multiplication is defined as

$$
\varphi \cdot \phi(t)=\varphi(t) \cdot \phi(t)
$$

Let ΩG be the space of based loops on G, whose base point is the unit e. Then $L G(G)$ has ΩG as its normal subgroup and

$$
L G(G) / \Omega G \cong G
$$

Identifying elements of G with constant maps from S^{1} to $G, L G(G)$ is equal to the semidirect product of G and ΩG. Thus the $\bmod \mathrm{p}$ homology of $L G(G)$ is determined by the mod p homology of G and ΩG and the algebra structure of $\mathbf{H}_{*}(L G(G) ; \mathbf{Z} / p \mathbf{Z})$ depends on $\mathbf{H}_{*}(\mathrm{ad} ; \mathbf{Z} / p \mathbf{Z})$ where

$$
\text { ad }: G \times \Omega G \rightarrow \Omega G
$$

is the adjoint map.
In [4] some properties of $\mathrm{ad} *$ are studied and it is showed that H_{*} (ad ; $\mathbf{Z} / p \mathbf{Z})$ is equal to $\mathbf{H}_{*}\left(p_{2} ; \mathbf{Z} / p \mathbf{Z}\right)$ where p_{2} is the second projection if and only if $\mathbf{H}^{*}(G ; \mathbf{Z})$ is p -torsin free. For an exceptional Lie group $G, \mathbf{H}^{*}(G ; \mathbf{Z})$ has p-torsion when

$$
\begin{array}{ll}
G=G_{2}, F_{4}, E_{6}, E_{7}, E_{8} & \text { for } p=2, \\
G=F_{4}, E_{6}, E_{7}, E_{8} & \text { for } p=3, \\
G=E_{8} & \text { for } p=5
\end{array}
$$

The case where $p=2$ and $G \neq E_{8}$ is discussed in [6] and the case of $p=3,5$ is studied in $[8,7]$ respectively. In this paper we offer the result of the remained case, $(G, p)=\left(E_{8}, 2\right)$. The result is showed in Theorem 4. 1.

This paper is organixed as follows. In $\S 2$ we refer to the result of the algebra structure of $\mathbf{H}^{*}(G ; \mathbf{Z} / 2 \mathbf{Z})$ and $\mathbf{H}_{*}(\Omega G ; \mathbf{Z} / 2 \mathbf{Z})$ and the Hopf algebra

[^0]structure and cohomology operations of them. And in $\S 3$ we introduce the adjoint action and observe its property. Finally in $\S 4$ the induced homomorphism from the adjoint action of E_{8} is determined by using the result of E_{7} and cohomology operations.

The author is the most grateful to Professor Akira Kono for his advices and encouragements.
2. $\mathbf{H}^{*}(G ; \mathbf{Z} / 2 \mathbf{Z})$ and $\mathbf{H}_{*}(\Omega G ; \mathbf{Z} / 2 \mathbf{Z})$

We refer to the result of [1] and [2] about $\mathrm{H}^{*}(G ; \mathbf{Z} / 2 \mathbf{Z})$ for $G=E_{7}$ and E_{8}.

Theorem 2. 1.

$\mathrm{H}^{*}\left(E_{7} ; \mathbf{Z} / 2 \mathbf{Z}\right)=\mathbf{Z} / 2 \mathbf{Z}\left[x_{3}, x_{5}, x_{9}\right] /\left(x_{3}^{4}, x_{5}^{4}, x_{9}^{4}\right) \otimes \wedge\left(x_{15}, x_{17}, x_{23}, x_{27}\right)$
$\mathrm{H}^{*}\left(E_{8} ; \mathbf{Z} / 2 \mathbf{Z}\right)=\mathbf{Z} / 2 \mathbf{Z}\left[x_{3}, x_{5}, x_{9}, x_{15}\right] /\left(x_{3}^{16}, x_{5}^{8}, x_{9}^{4}, x_{15}^{4}\right) \otimes \wedge\left(x_{17}, x_{23}, x_{27}, x_{29}\right)$
where x_{i} is a generator of degree i. Moreover there is a homomorphism

$$
E_{7} \rightarrow E_{8}
$$

where induced homomorphism maps x_{i} in $\mathrm{H}^{*}\left(E_{8} ; \mathbf{Z} / 2 \mathbf{Z}\right)$ into x_{i} in $\mathrm{H}^{*}\left(E_{7}\right.$; $\mathbf{Z} / 2 \mathbf{Z}$).

Theorem 2.2. The x_{i} 's in Theorem 2.1 can be chosen so as to satisfy

$$
\begin{gathered}
x_{5}=\mathrm{Sq}^{2} x_{3} \\
x_{9}=\mathrm{Sq}^{4} x_{5} \\
\bar{\psi}\left(x_{3}\right)=\bar{\phi}\left(x_{5}\right)=\bar{\psi}\left(x_{9}\right)=0
\end{gathered}
$$

and the coproduct of x_{15} is

$$
\bar{\phi}\left(x_{15}\right)=x_{3}{ }^{2} \otimes x_{9}+x_{5}^{2} \otimes x_{5}+x_{3}{ }^{4} \otimes x_{3} .
$$

The algebra structure of $\mathrm{H}_{*}(\Omega G ; \mathbf{Z} / 2 \mathbf{Z})$ can be determined as an ap. plication of the Eilenberg-Moore spectral sequence. And the Hopf algebra structures and the action of cohomology operations which acts on homology dually was determined by A. Kono and K. Kozima. See [5, 3] for detail.

Theorem 2. 3.

$\mathrm{H}_{*}\left(\Omega E_{7} ; \mathbf{Z} / 2 \mathbf{Z}\right)=\wedge\left(b_{2}, b_{4}, b_{8}\right) \otimes \mathbf{Z} / 2 \mathbf{Z}\left[b_{10}, b_{14}, b_{16}, b_{18}, b_{22}, b_{26}, b_{34}\right]$ $\mathrm{H}_{*}\left(\Omega E_{8} ; \mathbf{Z} / 2 \mathbf{Z}\right)=\wedge\left(b_{2}, b_{4}, b_{8}, b_{14}\right) \otimes \mathbf{Z} / 2 \mathbf{Z}\left[b_{16}, b_{22}, b_{26}, b_{28}, b_{34}, b_{38}, b_{46}, b_{58}\right]$ where b_{i} is a generator of degree i.

Theorem 2.4. The coproduct of $\mathrm{H}_{*}\left(\Omega E_{8} ; \mathbf{Z} / 2 \mathbf{Z}\right)$ is given as

$$
\bar{\phi}\left(b_{i}\right)=0 \text { for } i=2,14,22,26,34,38,46,58
$$

$$
\begin{aligned}
\bar{\phi}\left(b_{4}\right)= & b_{2} \otimes b_{2}, \\
\bar{\phi}\left(b_{8}\right)= & b_{2} \otimes b_{2} b_{4}+b_{4} \otimes b_{4}+b_{2} b_{4} \otimes b_{2}, \\
\bar{\phi}\left(b_{16}\right)= & b_{2} \otimes b_{2} b_{4} b_{8}+b_{4} \otimes b_{4} b_{8}+b_{2} b_{4} \otimes b_{2} b_{8}+b_{8} \otimes \\
& b_{8}+b_{2} b_{8} \otimes b_{2} b_{4}+b_{4} b_{8} \otimes b_{4}+b_{2} b_{4} b_{8} \otimes b_{2}, \\
\bar{\phi}\left(b_{28}\right)= & b_{14} \otimes b_{14} .
\end{aligned}
$$

3. Adjoint action

Let Ad: $G \times G \rightarrow G$ and ad : $G \times \Omega G \rightarrow \Omega G$ be the adjoint action of a Lie group G defined by $\operatorname{Ad}(g, h)=g h g^{-1}$ and ad $(g, l)(t)=g l(t) g^{-1}$ where $g, h \in G$, $l \in \Omega G$ and $t \in[0,1]$. These induce the homomorphisms

$$
\mathrm{Ad}_{*}: \mathrm{H}_{*}(G ; \mathbf{Z} / 2 \mathbf{Z}) \otimes \mathrm{H}_{*}(G ; \mathbf{Z} / 2 \mathbf{Z}) \rightarrow \mathrm{H}_{*}(G ; \mathbf{Z} / 2 \mathbf{Z})
$$

and

$$
\operatorname{ad}_{*}: \mathrm{H}_{*}(G ; \mathbf{Z} / 2 \mathbf{Z}) \otimes \mathrm{H}_{*}(\Omega G ; \mathbf{Z} / 2 \mathbf{Z}) \rightarrow \mathrm{H}_{*}(\Omega G ; \mathbf{Z} / 2 \mathbf{Z})
$$

Put $y * y^{\prime}=\operatorname{Ad}_{*}\left(y \otimes y^{\prime}\right)$ and $y * b=\operatorname{ad}_{*}(y \otimes b)$ where $y, y^{\prime} \in H_{*}(G ; \mathbf{Z} / 2 \mathbf{Z})$ and $b \in H_{*}(\Omega G ; \mathbf{Z} / 2 \mathbf{Z})$. Following are the dual statement of the result in [4].

Theorem 3. 1. For $y, y^{\prime}, y^{\prime \prime} \in \mathrm{H}_{*}(G ; \mathbf{Z} / 2 \mathbf{Z})$ and $b, b^{\prime} \in \mathrm{H}_{*}(\Omega G$; $\mathbf{Z} / 2 \mathbf{Z}$)
(i) $1 * y=y, 1 * \mathrm{~b}=\mathrm{b}$.
(ii) $y * 1=0$, if $|y|>0$, whether $1 \in \mathrm{H}_{*}(G ; \mathbf{Z} / 2 \mathbf{Z})$ or $1 \in \mathrm{H}_{*}(\Omega G ; \mathbf{Z} / 2 \mathbf{Z})$.
(iii) $\left(y y^{\prime}\right) * b=y *\left(y^{\prime} * b\right)$.
(iv) $y *\left(b b^{\prime}\right)=\sum\left(y^{\prime} * b\right)\left(y^{\prime \prime} * b^{\prime}\right)$ where $\Delta_{* y}=\sum y^{\prime} \otimes y^{\prime \prime}$.
(v) $\sigma(y * b)=y * \sigma(b)$ where σ is the homology suspension.
(vi) $\mathrm{Sq}_{*}^{n}(y * b)=\sum_{i}\left(\mathrm{Sq}_{*}^{i} y\right) *\left(\mathrm{Sq}_{*}^{n-i} b\right)$.
$\mathrm{Sq}^{n}\left(y * y^{\prime}\right)=\sum_{i}\left(\mathrm{Sq}^{i}{ }^{i} y\right) *\left(\mathrm{Sq}_{*}^{n-i} y^{\prime}\right)$.
(vii) $\Delta_{*}(y * b)=\left(\Delta_{*} y\right) *\left(\Delta_{*} b\right)$

$$
=\sum\left(y^{\prime} * b^{\prime}\right) \otimes\left(y^{\prime \prime} * b^{\prime \prime}\right)
$$

where $\Delta_{*} y=\Sigma y^{\prime} \otimes y^{\prime \prime}$ and $\Delta_{*} b=\sum b^{\prime} \otimes b^{\prime \prime}$, Also

$$
\bar{\Delta}_{*}(y * b)=\left(\Delta_{*} y\right) *\left(\bar{\Delta}_{*} b\right) .
$$

(vii) If b is primitive then $y * b$ is primitive.

Let $y_{2 i} \in \mathrm{H}_{*}(G ; \mathbf{Z} / 2 \mathbf{Z})$ be the dual of $x_{i}{ }^{2}$ for $i=3,5,9,15$ and y_{12}, y_{24}, y_{20} be the dual of $x_{3}{ }^{4}, x_{3}{ }^{8}, x_{5}{ }^{4}$ respectively with respect to the monomial basis. Also in $\mathrm{H}_{*}\left(E_{8} ; \mathbf{Z} / 2 \mathbf{Z}\right)$ we put as

$$
y^{m}=y_{6}{ }^{m_{1}} y_{12}{ }^{m_{2}} y_{24}{ }^{m_{3}} y_{16}{ }^{m_{4}} y_{20}{ }^{m_{5}} y_{18}{ }^{m_{6}} y_{30}{ }^{m_{7}}
$$

for $m=\left(m_{1}, m_{2}, \cdots, m_{7}\right) \in \mathbf{Z} / 2 \mathbf{Z}^{7}$. Then the. result of [4] implies the next theorem. See [6].

Theorem 3. 2. We define a submodule A of $\mathrm{H}_{*}(G ; \mathbf{Z} / 2 \mathbf{Z})$ as

$$
\begin{array}{lr}
A=\wedge\left(y_{6}, y_{10}, y_{18}\right) & \text { for } G=E_{7} \\
A=\left\langle y^{m} \text { for all } m \in \mathbf{Z} / 2 \mathbf{Z}^{7}\right\rangle & \text { for } G=E_{8}
\end{array}
$$

Then there exist a retraction $p: \mathrm{H}_{*}(G ; \mathbf{Z} / 2 \mathbf{Z}) \rightarrow A$ and the following diagram commutes.

Remark. 1. The submodule A has an algebra structure induced from that of $\mathrm{H}_{*}(G ; \mathbf{Z} / 2 \mathbf{Z})$. When $G=E_{7}, A$ is a commutative exterior algebra over $\mathbf{Z} / 2 \mathbf{Z}$. But when $G=E_{8}, A$ is a non-commutative algebra over $\mathbf{Z} / 2 \mathbf{Z}$. In fact A is the dual of $\wedge\left(x_{3}{ }^{2}, x_{5}{ }^{2}, x_{9}{ }^{2}\right)$ for $G=E_{7}$ and is the dual of $\mathbf{Z} / 2 \mathbf{Z}\left[x_{3}{ }^{2}, x_{5}{ }^{2}, x_{9}{ }^{2}\right.$, $\left.x_{15}{ }^{2}\right] /\left(x_{3}{ }^{16}, x_{5}{ }^{8}, x_{9}{ }^{4}, x_{15}{ }^{4}\right)$ for $G=E_{8}$. Thus we can easily see that, for $G=E_{8}$, A is generated by $\left\{y_{6}, y_{12}, y_{24}, y_{10}, y_{20}, y_{18}\right\}$ as algebra and the fundamental relations are

$$
\begin{gathered}
y_{2 i}^{2}=0 \text { for } i=3,6,12,5,10,9 \\
{\left[y_{2 i}, y_{2 j}\right]=0 \text { for }(i, j) \neq(6,9),(9,6),(5,10),(10,5),(3,18),(18,3)}
\end{gathered}
$$

and

$$
\left[y_{6}, y_{24}\right]=\left[y_{10}, y_{20}\right]=\left[y_{12}, y_{18}\right]\left(=y_{30}\right)
$$

Remark. 2. By Theorem 3. 1 (iv) and Theorem 3.2 we see that for $b \in$ $\mathrm{H}_{*}(\Omega G ; \mathbf{Z} / 2 \mathbf{Z})$ and $i=3,5,9$

$$
y_{2 i} * b^{2}=\left(y_{2 i} * b\right) b+\left(y_{i} * b\right)^{2}+b\left(y_{2 i} * b\right)
$$

where y_{i} is the dual of x_{i} for $i=3,5,9$ with respect to the monomial basis.
Remark. 3. By theorem 3.1 and 3.2, when $G=E_{8}$, if $y_{i} * b_{j}$ is determined for $i=6,12,24,10,20,18$ and $b_{j} \in \mathrm{H}_{*}(G ; \mathbf{Z} / 2 \mathbf{Z})$, then the map $\mathrm{H}_{*}(\mathrm{ad}$; $\mathbf{Z} / 2 \mathbf{Z}$) is determined completely.

4. Adjoint action on ΩE_{8}

The next theorem is the main result of this paper.

Theorem 4. 1. For $j \in\{6,12.24,10,20,18\}$ and $b_{i} \in H_{*}\left(\Omega E_{8} ; \mathbf{Z} / 2 \mathbf{Z}\right)$, $y_{j} * b_{i}$ is given by the following tables.

b_{j}	$y_{6} * b_{j}$	$y_{10} * b_{j}$	$y_{18} * b_{j}$
b_{2}	0	0	0
b_{4}	0	b_{14}	b_{22}
b_{8}	b_{14}	$b_{4} b_{14}$	$b_{26}+b_{4} b_{22}$
b_{14}	0	0	$b_{16}{ }^{2}$
b_{16}	$b_{22}+b_{8} b_{14}$	$b_{26}+b_{4} b_{8} b_{14}$	$b_{34}+b_{8} b_{26}+b_{4} b_{8} b_{22}$
b_{22}	$b_{14}{ }^{2}$	0	
b_{26}	$b_{16}{ }^{2}$	$b_{16}{ }^{2}$	$b_{22}{ }^{2}$
b_{28}	b_{34}	0	$b_{16}{ }^{2} b_{14}+b_{46}$
b_{34}	0	b_{38}	$b_{26}{ }^{2}{ }^{2}{ }^{2}$
b_{38}	$b_{22}{ }^{2}$	$b_{22}{ }^{2}$	$b_{28}{ }^{2}$
b_{46}	$b_{26}{ }^{2}$	0	$b_{16}{ }^{4}$
b_{58}	$b_{16}{ }^{4}$	$b_{38}{ }^{2}$	$b_{38}{ }^{2}$

b_{j}	$y_{12} * b_{j}$	$y_{20} * b_{j}$	$y_{24} * b_{j}$
b_{2}	b_{14}	b_{22}	b_{26}
b_{4}	$b_{2} b_{14}$	$b_{2} b_{22}$	$b_{28}+b_{2} b_{26}$
b_{8}	$b_{2} b_{4} b_{14}$	$b_{28}+b_{2} b_{4} b_{22}$	$b_{4} b_{28}+b_{2} b_{4} b_{26}$
b_{14}	0	b_{34}	b_{38}
b_{16}	$b_{28}+b_{2} b_{4} b_{8} b_{14}$	$b_{8} b_{28}+b_{2} b_{4} b_{8} b_{22}$	$b_{4} b_{8} b_{28}+b_{2} b_{4} b_{8} b_{26}$
b_{22}	b_{34}	0	b_{46}
b_{26}	b_{38}	b_{46}	0
b_{28}	0	0	$b_{26}{ }^{2}$
b_{34}	0	0	b_{58}
b_{38}	0	b_{58}	0
b_{46}	b_{58}	0	0
b_{58}	0	0	0

Remark. The action of cohomology operations on, $\mathrm{H}_{*}\left(\Omega E_{8} ; \mathbf{Z} / 2 \mathbf{Z}\right)$ is determined by A. Kono and K. Kozima in [3]. But we do not use them. We use the Hopf algebra structure of $\mathrm{H}_{*}\left(\Omega E_{8} ; \mathbf{Z} / 2 \mathbf{Z}\right)$ and the result in $\mathrm{H}_{*}\left(\Omega E_{7}\right.$; $\mathbf{Z} / 2 \mathbf{Z}$).

Proof. In $\mathrm{H}_{*}\left(\Omega E_{7} ; \mathbf{Z} / 2 \mathbf{Z}\right) y_{j} * b_{i}$ and $\mathrm{Sq}_{*}^{2 k} b_{i}$ are determined as follows. See Theorem 5. 11 in [6].

b_{i}	$y_{6} * b_{i}$	$y_{10} * b_{i}$	$y_{18} * b_{i}$
b_{2}	0	0	b_{10}^{2}
b_{4}	b_{10}	b_{14}	$b_{22}+b_{2} b_{10}^{2}$
b_{8}	$b_{14}+b_{4} b_{10}$	$b_{18}+b_{4} b_{14}$	$b_{26}+b_{4} b_{22}+b_{2} b_{4} b_{10}^{2}$
b_{10}	0	b_{10}^{2}	b_{14}^{2}
b_{14}	b_{10}^{2}	0	b_{16}^{2}
b_{16}	$b_{22}+b_{8} b_{14}+b_{4} b_{8} b_{10}$	$b_{26}+b_{8} b_{18}+b_{4} b_{8} b_{14}$	$b_{34}+b_{8} b_{26}+b_{4} b_{8} b_{22}+b_{2} b_{4} b_{8} b_{10}^{2}$
b_{18}	0	b_{14}^{2}	b_{18}^{2}
b_{22}	b_{14}^{2}	b_{16}^{2}	b_{10}^{4}
b_{26}	b_{16}^{2}	b_{18}^{2}	b_{22}^{2}
b_{34}	b_{10}^{4}	b_{22}^{2}	b_{26}^{2}

b_{i}	$\mathrm{Sq}_{*}^{2} b_{i}$	$\mathrm{Sq}_{*}^{4} b_{i}$	$\mathrm{Sq}_{*}^{8} b_{i}$	$\mathrm{Sq}_{*}^{16} b_{i}$
b_{4}	b_{2}	-	-	-
b_{8}	$b_{2} b_{4}$	b_{4}	-	-
b_{10}	b_{4}^{2}	0	-	-
b_{14}	0	b_{10}	-	-
b_{16}	$b_{14}+b_{2} b_{4} b_{8}$	$b_{4} b_{8}$	b_{8}	-
b_{18}	0	0	b_{10}	-
b_{22}	b_{10}^{2}	0	b_{14}	-
b_{26}	0	b_{22}	b_{18}	-
b_{34}	b_{16}^{2}	0	0	b_{18}

By the naturality of adjoint action, the following diagram commutes.

Thus we can easily see that above tables remain true also in $H_{*}\left(\Omega E_{8} ; \mathbf{Z} / 2 \mathbf{Z}\right)$ except for $y_{j} * b_{10}$ and $y_{j} * b_{18}$ by replacing b_{10}, b_{18}, by 0 .

Also we can easily see that

$$
\mathrm{Sq}_{*}^{8} \mathrm{Sq}_{*}^{4} \mathrm{Sq}_{*}^{2} b_{28}=\mathrm{Sq}_{*}^{14} b_{28}=b_{14} \neq 0 .
$$

This means $\mathrm{Sq}^{2} b_{28}=b_{26}$.
If b_{i} is primitive, $y_{j} * b_{i}$ is primitive. By (vii) of Theorem 3. $1, y_{j} * b_{i}$ is primitive for

$$
(i, j) \in\left\{\begin{array}{l}
(10,38),(12,38),(12,58),(20,22),(20,34),(20,46), \\
(20,58),(24,26),(24,38),(24,46),(24,58)
\end{array}\right\}
$$

Since primitive elements of these degrees are there in $\mathrm{H}_{*}\left(\Omega E_{8} ; \mathbf{Z} / 2 \mathbf{Z}\right)$ these elements are 0.

Next we consider $y_{12} * b_{2}$. Because $y_{12} * b_{2}$ is primitive, it is b_{14} or 0 . On the other hand, we have

$$
\begin{aligned}
\bar{\Delta}_{*}\left(y_{12} * b_{4}\right) & =\left(y_{12} * b_{2}\right) \otimes b_{2}+\left(y_{6} * b_{2}\right) \otimes\left(y_{6} * b_{2}\right)+b_{2} \otimes\left(y_{12} * b_{2}\right) \\
& =\bar{\Delta}_{*}\left(y_{12} * b_{2}\right) b_{2} .
\end{aligned}
$$

This means $y_{12} * b_{4}=\left(y_{12} * b_{2}\right) b_{2}$ since there is no primitive element in H_{16} $\left(\Omega E_{8} ; \mathbf{Z} / 2 \mathbf{Z}\right)$. Therefore we have

$$
\mathrm{Sq}^{2}\left(y_{12} * b_{4}\right)=\mathrm{Sq}^{2}\left(y_{12} * b_{2}\right) b_{2}=0
$$

while

$$
\mathrm{Sq}_{*}^{2}\left(y_{12} * b_{4}\right)=y_{16} * b_{4}+y_{12} * b_{2}=y_{14}+y_{12} * b_{2}
$$

Hence we obtain

$$
\begin{aligned}
& y_{12} * b_{2}=b_{14} \\
& y_{12} * b_{4}=b_{14} b_{2} .
\end{aligned}
$$

In the same way we can easily show

$$
\begin{aligned}
& y_{20} * b_{2}=b_{22}, \\
& y_{20} * b_{4}=b_{22} b_{2}, \\
& y_{24} * b_{2}=b_{26} \\
& y_{24} * b_{4}=b_{28}+b_{26} b_{2}
\end{aligned}
$$

Since

$$
\bar{\Delta}_{*}\left(y_{12} * b_{8}\right)=\Delta_{*}\left(y_{12}\right) * \bar{\Delta}_{* b_{8}}=\bar{\Delta}_{*}\left(b_{14} b_{4} b_{2}\right)
$$

and no primitive element is there in $\mathrm{H}_{20}\left(\Omega E_{8} ; \mathbf{Z} / 2 \mathbf{Z}\right)$, we have

$$
y_{12} * b_{8}=b_{14} b_{4} b_{2}
$$

In the similar way we can determine

$$
y_{12} * b_{28}, y_{20}, b_{28}, y_{20} * b_{28}, y_{12} * b_{16}, y_{20} * b_{8}, y_{20} * b_{16}
$$

as in the table of Theorem.
Also as

$$
\begin{aligned}
\bar{\Delta}_{*}\left(y_{24} * b_{8}\right) & =\Delta_{*} y_{24} * \bar{\Delta}_{*} b_{8} \\
& =\bar{\Delta}_{*}\left(b_{26} b_{4} b_{2}+b_{28} b_{4}\right)
\end{aligned}
$$

and the only primitive element in $\mathrm{H}_{32}\left(\Omega E_{8} ; \mathbf{Z} / 2 \mathbf{Z}\right)$ is $b_{16}{ }^{2}$, we can put

$$
\begin{equation*}
y_{24} * b_{8}=b_{26} b_{4} b_{2}+b_{4} b_{28}+p b_{16}{ }^{2} \tag{1}
\end{equation*}
$$

where $\rho \in \mathbf{Z} / 2 \mathbf{Z}$. Applying Sq* ${ }^{4}$ to each side of (1), we have

$$
\mathrm{Sq}^{4}\left(y_{24} * b_{8}\right)=y_{20} * b_{8}+y_{24} * b_{4}=b_{22} b_{4} b_{2}+b_{26} b_{2},
$$

while

$$
\operatorname{Sq}^{4}\left(y_{26} b_{4} b_{2}+b_{28} b_{4}+\rho b_{16}{ }^{2}\right)=b_{22} b_{4} b_{2}+b_{26} b_{2}+\rho b_{14}^{2} .
$$

Thus $\rho=0$ and $y_{24} * b_{8}$ is determined. Now we can determine $y_{24} * b_{16} \bmod$ ulo primitive elements. Since no primitive elements is there in $H_{40}\left(\Omega E_{8}\right.$; $\mathbf{Z} / 2 \mathbf{Z})$, we can determine $y_{24} * b_{16}$ as

$$
y_{24} * b_{16}=b_{28} b_{8} b_{4}+b_{26} b_{8} b_{4} b_{2}
$$

Since b_{14} is primitive, $y_{20} * b_{14}=b_{34}$ or 0 . Also $\operatorname{Sq}^{2}\left(y_{20} * b_{14}\right)=y_{18} * b_{14}=$ $b_{16}{ }^{2}$. This implies

$$
y_{20} * b_{14}=b_{34}, \mathrm{Sq}^{2} * b_{34}=b_{16}{ }^{2}
$$

In the similar way we apply Sq_{*}^{2} to $y_{6} * b_{28}$. Sq_{*}^{2} to $y_{12} * b_{22}$, Sq_{*}^{4} to $y_{12} * b_{26}$ and Sq^{2} to $y_{20} * b_{26}$. and see that the followings are determined as the statement :

$$
y_{6} * b_{28}, y_{12} * b_{22}, y_{12} * b_{26}, y_{20} * b_{26}, \mathrm{Sq}_{*}^{4} b_{38}, \mathrm{Sq}^{2} b_{46}
$$

From the above result we can deduce that

$$
\mathrm{Sq}_{*}^{8} b_{46}=\mathrm{Sq}_{*}^{8}\left(y_{20} * b_{26}\right)=y_{12} * b_{26}=b_{38}
$$

Also as $\bar{\Delta}_{*} \mathrm{Sq}^{4} b_{28}=\mathrm{Sq}^{4}{ }^{4} b_{28}=0$, we have $\mathrm{Sq}^{4}{ }^{4} b_{28}=0$. In the similar way we have
$\mathrm{Sq}_{*}^{2 k} b_{i}=0$ for $(k, j) \in\left\{\begin{array}{l}(3,28),(1,38),(3,38),(2,46) \\ (4,46),(2,58),(3,58),(4,58)\end{array}\right.$.
Using the above result we can compute $\mathrm{Sq}^{4}\left(y_{18} * b_{38}\right)$ as

$$
\mathrm{Sq}_{*}^{4} y_{18} * b_{38}=y_{18} * b_{34}=b_{26}^{2}
$$

while $y_{18} * b_{38}=b_{28}{ }^{2}$ or 0 . This implies $y_{18} * b_{38}=b_{28}^{2}$. In the similar manner, applying Sq^{4} to $y_{10} * b_{28}, \mathrm{Sq}^{4}$ to $y_{10} * b_{38}, \mathrm{Sq}_{*}^{8}$ to $y_{6} * b_{46}, \mathrm{Sq}_{*}^{2}$ to $y_{12} * b_{34}, \mathrm{Sq}^{4}$ to $y_{24} * b_{14}$ and Sq^{2} to $y_{24} * b_{22}$, the followings are determined :

$$
y_{10} * b_{28,} y_{6} * b_{38}, y_{6} * b_{46}, y_{12} * b_{34}, y_{24} * b_{14}, y_{24} * b_{22}
$$

as in the table in Theorem.
Moreover by applying Sq^{4} to $y_{10} * b_{46}, \mathrm{Sq}^{2}$ to $y_{12} * b_{46}$ and Sq^{2} to $y_{20} * b_{38}$ we have that

$$
\begin{aligned}
& y_{10} * b_{46}=b_{28}{ }^{2}, \\
& y_{12} * b_{46}=b_{58}, \\
& y_{20} * b_{38}=b_{58},
\end{aligned}
$$

Since $y_{18}{ }^{2} * b_{28}=0$, we can see

$$
y_{18} *\left(y_{18} * b_{28}\right)=y_{18} *\left(b_{16}^{2} b_{14}+b_{46}\right)=b_{16}{ }^{4}+y_{18} * b_{46}=0 .
$$

Therefore $y_{18} * b_{46}=b_{16}{ }^{4}$. In this way we compute $y_{12}{ }^{2} * b_{2}, y_{24}{ }^{2} * b_{4}$ to obtain

$$
\begin{aligned}
& y_{12} * b_{14}=0 \\
& y_{24} * b_{28}=b_{26}{ }^{2}
\end{aligned}
$$

Also we can compute $y_{24} * b_{34}$ as

$$
y_{24} * b_{34}=y_{24} *\left(y_{20} * b_{14}\right)=y_{20} *\left(y_{24} * b_{14}\right)=y_{20} * b_{38}=b_{58}
$$

The rest we have to do is to determine $y_{6} * b_{58}, y_{10} * b_{58}$ and $y_{18} * b_{58}$.
By applying Sq^{2} to $y_{20} * b_{38}$, we have

$$
\mathrm{Sq}_{*}^{2} b_{58}=\mathrm{Sq}_{*}^{2}\left(y_{20} * b_{38}\right)=y_{18} * b_{38}=b_{28}{ }^{2}
$$

Thus by applying Sq^{2} to $y_{12} * b_{58}$, it follows that

$$
0=\mathrm{Sq}^{2}\left(y_{12} * b_{58}\right)=y_{10} * b_{58}+y_{12} * b_{28}^{2}=y_{10} * b_{58}+b_{34}{ }^{2} .
$$

Therefore $y_{10} * b_{58}=b_{34}{ }^{2}$. We apply Sq* to $y_{10} * b_{58}$ and $\mathrm{Sq}^{8} *$ to $y_{18} * b_{58}$ to obtain

$$
\begin{aligned}
y_{6} * b_{58} & =b_{16}{ }^{4} \\
y_{18} * b_{58} & =b_{38}{ }^{2} .
\end{aligned}
$$

Now we obtain the all entries of the tables in Theorem 4. 1.
Q. E. D.

Department of Mathematics Kyoto University

References

[1] S. Araki, Cohomology modulo 2 of the compact exceptional groups. J. Math.Osaka Univ., 12 (1961). 43-65.
[2] S. Araki \& Y. Shikata, Cohomology mod 2 of the compact exceptional group Es, Proc. Japan Acad., 57(1961), 619-622.
[3] A. Kono \& K. Kozima, The mod 2 homology of the space of loops on the exceptional Lie groups, Proc. Royal Soc. Edinburgh 112. A (1989), 187-202.
[4] A. Kono \& K. Kozima. The adjoint action of Lie group on the space of loops, Journal of the Mathematical Society of Japan, 45-3(1993), 495-510.
[5] M. Rothenberg \& L. Steenrod, The cohomology of the classifying spaces of Hspaces, Bull. Amer. Math. Soc. (N.S.), 71 (1961), 872-875.
[6] H. Hamanaka, Homology ring mod 2 of free loop groups of exceptional Lie groups, to appear in J. Math. Kyoto Univ.
[7] H Hamanaka, S. Hara and A. Kono, Adjoint action on the modulo 5 homology groups of E_{8} and ΩE_{8}, to appear in J. Math. Kyoto Univ.
[8] S. Hara \& H. Hamanaka. The homology mod 3 of the space of loops on the exceptional Lie groups. to appear in J. Math. Kyoto Univ.

[^0]: Received January 18. 1996
 Partially supported by JSPS research fellowship for young scientists.

