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Adjoint action on homology mod 2
of Es on its loop space

By

Hiroaki HAMANAKA

1. Introduction

Assume G is a compact, connected, simply connected Lie group. The space
of free loops on G is called LG (G) the free loop group of G, whose multiplica-
tion is defined as

- Qi) =@(t) - ().

Let G be the space of based loops on G, whose base point is the unit e. Then
LG (G) has £2G as its normal subgroup and

LG(G) / G = G.

Identifying elements of G with constant maps from S' to G, LG (G) is equal to
the semidirect product of G and £G. Thus the mod p homology of LG (G) is
determined by the mod p homology of G and £2G and the algebra structure of
H« (LG (G) ; Z/pZ) depends on Hx(ad ; Z/pZ) where

ad : G X 26 — QG

is the adjoint map. :

In [4] some properties of ads are studied and it is showed that Hx (ad ;
Z/pZ) is equal to Hx (p2 ; Z/pZ) where p is the second projection if and only
it H*(G ; Z) is p-torsin free. For an exceptional Lie group G, H*(G ; Z) has
p-torsion when

G = Gg, Fy, E¢, E7, Eg for p= 2,
G = Fy4, Ee, Eq, Es for p= 3,
G =Es for p = 5.

The case where p=2 and G #Ejs is discussed in [6] and the case of p=3, 5 is
studied in [8, 7] respectively. In this paper we offer the result of the re-
mained case, (G, p) = (Es, 2). The result is showed in Theorem 4. 1.

This paper is organixed as follows. In §2 we refer to the result of the
algebra structure of H* (G ; Z/2Z) and H« (2G ; Z/2Z) and the Hopf algebra
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structure and cohomology operations of them. And in §3 we introduce the ad-
joint action and observe its property. Finally in §4 the induced homomorphism
from the adjoint action of Es is determined by using the result of E7 and coho-
mology operations.

The author is the most grateful to Professor Akira Kono for his advices
and encouragements.

2. H*(G :Z/2Z) and H« (2G ; Z/2Z)

We refer to the result of [1] and [2] about H*(G : Z/2Z) for G=E; and
Es.

Theorem 2. 1.

H* (.E7 ; Z/ZZ) =Z/2Z [13. Is, 19]/(I§, xi, 1‘3) BN (fos. ZL17:L23, x27)
H* (Es‘; Z/ZZ) = Z/2Z [13. I's, Lo, 115]/(2?:146, x§, xé, 1’?5) AN (Iw. X23, L27, ng)
where x; 1s a generator of degree i. Moreover there is a homomorphism
E;— Es
where induced homomorphism maps x; in H* (Es ; Z/2Z) into x; in H* (E; ;
Z/27).
Theorem 2. 2. The xi's in Theorem 2. 1 can be chosen so as to satisfy

x5 = Sq? x3,
T = Sq* x5,

</j(-1'3) = </—)(x5) = ﬁz(.rg) =0
and the coproduct of x15 1s

@ (rs) = 22 ® 19 + x5 ® x5 + x3* @ x5,

The algebra structure of Hy (2G ; Z/2Z) can be determined as an ap-
plication of the Eilenberg-Moore spectral sequence. And the Hopf algebra
structures and the action of cohomology operations which acts on homology
dually was determined by A. Kono and K. Kozima. See (5, 3] for detail.

Theorem 2. 3.

Hy (QE; ; Z/2Z) = A (by, ba, bs) ® Z/2Z[b1o, bra, bre, bis, baa, bas, bas)
Hy(QEs ; Z/2Z) = A (by, by, bs, b)) ® Z/2Z[bre, bz, bze, bas, bas, bas, bas, bss]

where b; is a generator of degree 1.

Theorem 2. 4. The coproduct of Hx (2Es ; Z/2Z) is given as
B(b) =0 fori = 2, 14, 22, 26, 34, 38, 46, 58,
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B (be) = by ® by,
(I;(bs) = by ® baby + bs ® by + babs ® ba,
é(

b16) = b, ® babsbg + by ® bsbs + baby ® babg + bg ®
bg + babg ® byby + bsbs ® by + babsbs @ b,,

@ (b2s) = brs ® ba.

3. Adjoint action

Let Ad : G XG—G and ad : G X 2G— £G be the adjoint action of a Lie

group G defined by Ad (g, h) =ghg™' and ad (g, 1) (t) =gl (t) g~ where g, hEG,
I€E02G and t€ [0, 1]. These induce the homomorphisms

and

Adx :H« (G ; Z/2Z) ® Hi (G ; Z/2Z) — H4 (G ; Z/2Z)

Put y ¥y ' =Ad« (y ®y’) and y ¥ b=ad« (y ®b) where y, y' €EHx (G ; Z/2Z)
and bEH« (2G ; Z/2Z). Following are the dual statement of the result in[4].

Theorem 3. 1. Fory, y', v"€Hx (G ; Z/2Z) and b, b’ € Hy (G ;

Z/27)

(i)

1%y=y,1%b=nh
y % 1 =04 |yl >0, whether 1 € Hy(G : Z/2Z) or 1 € H4(QG ; Z/2Z).
(yy) *x b=y %k (y *b).
y kb)) = 2 (y *b)(y” *b) where Auy = Zy’ @ y”.
oy * b) =y % o(b) where 0 is the homology suspension.
Sqk(y * b) = 2 (Sqk y) * (Sq% ™' b).
Sqk(y * y") = 2 (Sqk y) * (Sak ' y").
Ax(y * b) = (Axy) * (A4 b)
=2 (y *b) ®(y"*0b")
where Axy = 22y ® y” and dx b = 2b’ ® b”, Also
Axly * b)= (s y) * (Ax b).
If b is primitive then y * b is primitive.

Let yo,i€Hx (G ; Z/2Z) be the dual of x;% for i=3,5, 9, 15 and y1z, Y24, Y20

be the dual of x3', x3®, xs* respectively with respect to the monomial basis.
Also in Hx (Eg ; Z/2Z) we put as

m — ml m2 m3 ms ms me m7
Y — Yes Y12 " Y24 " Y16 Y20 Y18 Y30

for m = (my, my, ==+, ms) € Z/2Z". Then the. result of [4] implies the next
theorem. See [6].
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Theorem 3. 2. We define a submodule A of Hx (G ; Z/27Z) as

A = A (ye, Y10, Y18) for G = E;
A = (™ forallm € Z/2Z7) for G = Eg.

Then there exist a vetraction p : Hx (G ; Z/2Z) — A and the following diagram
commutes.
. ad
He (G ; Z/2Z) ® Ha (96 ; Z/2Z) —  Ha(QG ; Z/2Z)
I} p®1
A ® H«(QG ; Z/2Z)

ad %

Remark. 1. The submodule A has an algebra structure induced from
that of H« (G : Z/2Z). When G=E7 A is a commutative exterior algebra over
Z/27Z. But when G=Es, A is a non-commutative algebra over Z/2Z. In fact A
is the dual of A (xs?, xs%, xe?) for G=E7 and is the dual of Z/2Z [x3? xs% x4,
1152 / (13", 28, 1o*, xr1s*) for G = Es. Thus we can easily see that, for G = E,
A is generated by {ys, y12, Y24, Y10, Y20, y18} as algebra and the fundamental re-
lations are

y3i = 0fori = 3,6, 12, 5,10, 9,

lyai, y2i]l = 0 for G, 5) # (6,9),(9, 6),(5, 10),(10, 5),(3, 18),(18, 3)

and .
[ye. y2ed = W10, y2o] = vz, y1e] (= ys0).

Remark. 2. By Theorem 3. 1 (iv) and Theorem 3. 2 we see that for b€

Hy(2G ; Z/2Z) andi = 3,5, 9
ya % 02 = (yz % b)b + (y; * b)*+ blys * b)

where y; is the dual of x; for ¢ = 3, 5, 9 with respect to the monomial basis.

Remark. 3. By theorem 3. 1 and 3. 2, when G =UEs, if y; *b; is deter-
mined for i=6, 12, 24, 10, 20, 18 and b;EH« (G ; Z/2Z), then the map Hx(ad ;
Z/27) is determined completely.

4. Adjoint action on QF,

The next theorem is the main result of this paper.



Theorem 4. 1.

yj * b;is given by the following tables.

Adjoint action of Es on its loop space

For j€ (6, 12. 24, 10, 20, 18} and b; EH« (REs ; Z/27),

bj Ye ¥ b; Yo * bj Yis ¥ b;
b2 0 0 0
by 0 b4 b2z
bs b4 bsbis bae + babze
bie | O 0 bis
_bie b2z + bgbis bze T babsbis bss + babze + bibsbze
baz bid bie’ 0
bzs bié® 0 bas?
bas b3a bas bi6?bia + bag
b34 0 bas® bae®
bs bas® 0 bag®
bse bae” bas® bie*
bss bie* bsd bss®
b Yz * b; Yzo ¥ b; Yo2u ¥ b;
bz b14 bzz b26
by babig babsy bas + babss
bs babsbiy bas + babsbas babas t bababae
bia 0 bas bss
bie bas + babsbsbiy bgbas 1 bababsbas babgbzs + babsbsbae
baz bag 0 bss
bze bag bas 0
bay 0 0 bss
bss bssg 0 0
bss 0 0 0
Remark. The action of cohomology operations on, Hx (QFs ; Z/2Z) is

determined by A. Kono and K. Kozima in [3]. But we do not use them. We use
the Hopf algebra structure of Hy (2Es ; Z/2Z) and the result in Hy (QF; ;
2/27).

Proof. In Hyx (QE; ; Z/2Z) y;* b; and Sq¥% b; are determined as follows.
See Theorem 5. 11 in[6].
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bi |lye % bi Yo ¥ b; yis ¥ b;
bz 0 0 b%o
bs ||b1o b1 baz + bablo
bs ||b1a t babro bis + bab1s bag + babse + bobsbdo
byo ||0 b%o bis
bis b%o 0 b%ﬁ
bis ||baz + bgbia + babsbio |bze + bsbis + babsbia [by, + bgbys + bebsbaz + babebsbZo
bys |10 by bis
bae || b4 bs bo
bas ||bte bls b2
bsa | b4, b3, b3e
bi Sqk b; Sa% bi | Sqk bi | Sq¥ b;
b4 bz - - -
bg baby by — —
bio b2 0 - —
b4 0 b1o - -
bie bis T bobsbs bsbs bs -
bls 0 0 blo —
baa || b 0 bis -
bze 0 b2z bis -
bsg be 0 0 bis

By the naturality of adjoint action, the following diagram commutes.

Hax (E7 , Z/ZZ) ® Hx (QE7 ) Z/ZZ)

H*(Es ) Z/ZZ) ® Hx (QES ) Z/ZZ)

!

adx

—  H«(QE;;Z/27)

|

adx

—  Hx«(QEs; Z/2Z)

Thus we can easily see that above tables remain true also in Hx (QFs ; Z/2Z)
except for y; % by and y; * bis by replacing by, bis, by O.
Also we can easily see that

This means Sq% bz = bas.
If b; is primitive, y; * b; is primitive. By (i) of Theorem 3. 1, y; * b; is

primitive for

6.7 e |

Sa% Sak Sak bas = Sq¥ b = bi # 0.

(10, 38),(12, 38),(12, 58),(20, 22),(20, 34),(20, 46) ]
(20, 58),(24, 26), (24, 38),(24, 46) (24, 58)
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Since primitive elements of these degrees are there in Hx (Q2Fs ; Z/2Z) these
elements are 0.

Next we consider yi2 % b2. Because yi2 % b2 is primitive, it is b4 or 0. On
the other hand, we have

Bx (Y12 % by) = (y1z % by) ® by + (ys * by) ® (ys * by) + by ® (y1z % by)
= Ay (y12 * b2) by

This means yi12 % by = (y12 % b2) b, since there is no primitive element in Hye
(QFEs : Z/2Z). Therefore we have

Sa% (yiz * by) = Sak (yiz * b2) b, = 0,
while
Sak (yiz * by) = y1s * by + y12 ¥ by = yua + y12 * bo.
Hence we obtain

Y1z ¥ by = by,
Y12 X by = bsbo.

In the same way we can easily show

Y20 * b2 = by,
Y20 ¥ by = baoby,
Yaa ¥ by = bge,

Y24 % by = bz t baghe.
Since
A (y12 * bg) = Ax(y1z) * Asxbs = Ax (D14 by by)
and no primitive element is there in Hzo (2Fs ; Z/2Z), we have
Y12 ¥ bg = busbaba,
In the similar way we can determine
Y1z X bas, Y20, bas, Y20 ¥ bag, Y12 Xk bie, Y20 * bs, Y20 *k bie

as in the table of Theorem.
Also as

Ay (yza * bg) = Ax you * Ax bs
= Ax (b2sbsbz + bogbs)

and the only primitive element in Ha; (2Es ; Z/2Z) is bie?, we can put
(1) Yaa %k bg = bagbab2 + babas =+ j)bmz

where p € Z/27Z. Applying Sqk to each side of (1), we have
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Sak (yze * bg) = yazo % by T+ yas * by = bagbsby + bacbz,
while
Sak (yasbabs + bagbs + 0b162) = bazbsbs + baebs + pbla.

Thus o = 0 and ya4 * bg is determined. Now we can determine ya4 * big mod-
ulo primitive elements. Since no primitive elements is there in Hyo (QE; :
Z/2Z), we can determine yz4 * by as

Y2a % bis = bogbgbs T basbsbabo.

Since by is primitive, yazo * bis = bas or 0. Also Sqk (Y20 b1a) =y13* by =
bis?. This implies
Y20 % b1s = bag, Sqk bas = bis®.
In the similar way we apply Sa% to ys * bas. Sq% to Y12 * baz, Sq% to yiz * by

and Sq% to ya0 * bg. and see that the followings are determined as the state-
ment :

Yo % bas, Y12 ¥ bz, Y12 ¥ bas, Y20 * bas, Sqk bas, Sak bas.
From the above result we can deduce that
Sa% bas = Sak (yzo * boe) = yiz ¥ bz = bss.
Also as Ax Sq% bas = Sqk b2s=0, we have Sq% b =0. In the similar way we
have
sat v = 0tor (n) < (G50 036 (358, (159

Using the above result we can compute Sq% (y18% b3g) as
Sq;‘k Yis * by = Yis X b3y = b%e,

while yis * bsg=bgs® or 0. This implies y1s* bss=b3s. In the similar manner, ap-
plying Sqk to Y10 % bas, Sa%k to Y10 ¥ bzs, Sqk to ye * bae, Sqk to Y1z % bas, Sk to
Y24 ¥ b1g and Sqk to Yz * by, the followings are determined :

Y10 * bas, Ys * bas, Ys * bys Y12 * bas, You * bia, You * bos

as in the table in Theorem.
Moreover by applying Sa% to yio%* bss, Sq% to Y12 % bss and Sqk to yao % bss
we have that
Y10 ¥ bss = bas?,
Y12 ¥ bag = bss,
Y20 * bsg = bss,
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Since y1a2 * bzs = 0, we can see
Y18 ¥ (Y1 * bag) = yis * (b1s® ba + bas) = bis* + y1s ¥ beg = 0.
Therefore yi1s% bss=b1e". In this way we compute y122 % bz, y24> % by to obtain

Yz ¥ by =0,
You K bag = bael.

Also we can compute yz4 ¥ b3 as
Y24 ¥ bag = y2a ¥ (yzo % bre) = yao ¥ (yau * bra) = yao * bag = bss.

The rest we have to do is to determine ye¢ % bss, Y10 bss and y1s * bss.
By applying Sq% to yzo * bss, we have

Sak bss = Sa% (Y20 * bsg) = yis * bzg = bys’.
Thus by applying Sq% to yi12* bss, it follows that
0 = Sqk (Y12 * bss) = y10 ¥ bsg + y12 ¥ b’ = y10 % bss T b3

Therefore y10 % bsg = bss®>. We apply Sqk to yio % bss and Sqk to yis * bss to
obtain

Yo ¥ bss = bis',
Yis ¥ bsg = bss”.

Now we obtain the all entries of the tables in Theorem 4. 1.
Q. E. D.
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