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Limit theorems for local times of fractional Brownian
motions and some other self-similar processes

By

Narn-Rueih SHIEH

1. Introduction and Main Results
A real-valued stochastic process X (t), t=0, is called self-similar with ex-

d
ponent H (H-ss for brevity) if X (ct) = ¢#X (t) for each ¢ >0. It is called of sta-

d
tionary increments (si for brevity) if X (t+b) —X (b) =X (t) —X (0) for each b>
d
0. The notation = in the above means the finite-dimensional equivalence of

two processes. In this paper, we consider the exponent H : 0 <H <1, and thus
X (0) =0. One may refer to Maejima (1989) and Vervaat (1987) for intensive
surveys on self-similar proccesses. We also assume that X is of continuous
paths or of cadlag paths (cadlag = right-continuous with left-limits
everywhere) . Under a main assumption of “approximately independent incre-
ments”, as we shall see in §2, almost every path X (+, w) has regular local
times L (t, x, ), t20 and x €R. We consider the following functionals :

Folt, ) = L(t, 0, w),
Fi(t, w) = supy L(t, x, w),

Flutw) = [ Ltz o) ul),

Pl = [T Ltx ) f@a= [ 71X ) s

where g is a finite Borel measure on the line and f is a Lebesgue integrable
function on the line. The above functionals, regarded as continuous-paths pro-
cesses in ¢, have their own self-similarity. In this paper, we prove some limit

w
theorems for the rescalings of these functionals. Let — denote the weak con-
vergence in the law of the space of continuous functions, we have

Theorem 1. As A — o,

(Pl = @ o).,
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{M],ZO - {f_if(x)dx - Lt 0)},20 ,

ll—-H

Let DL denote the right- (resp. left-) handed fractional derivative of order 7
(see §3), we have

Theorem 2. Let g (x) be a function with compact support and be Holder
continuous with order Bo=min (1, (1—H)/2H), and let 7: 0<y<Bo. As A—0,

{I_’(_DM_}IZO e [f_‘: g(@) dr - DL LIt - )|x=0};g0'

/21—H(1+T)

Under an additional assumption of “ergodicity” (see §2 also), we have the fol-
lowing pathwise asymptotics for F;( + ), i=0, 1. Let ¢ denote the density of
X (1) at O, which we assume that ¢>0 (The existence of ¢ is a consequence of
the conditions of Proposition 2.1 below).

Theorem 3. Assume the evgodicity of the process. Then theve exist finite
positive constants k; (1=0, 1) such that, for almost sure w,

. 1 fTﬂFi(f,w)_ .
im 75F = ki

T oo tl—H
moreover, k) = ky = 1_E_H

In case X is Brownian motion, in which H=1/2, Theorem 1 appeared in
Darling-Kac (1957), Theorem 2 appeared in Yamada (1986), and Theorem 3
appeared in Brosamler (1973). The results of Darling-Kac and Yamada have
been extended by various authors ; we mention Tkeda-Watanabe (1989, pl146),
Kasahara (1977), and Fitzsimmons-Getoor (1992). The result of Brosamler is
recently related to a certain average-density property of some fractals, see
Bedford-Fisher (1992). The most important case in our consideration is cer-
tainly the class of Gaussian ss si processes which are just fractional Brownian
motions of exponent H, i.e. continuous-paths, mean-zero Gaussian processes
with covariance function

EX(s)X(t) = |s|? 4+ | t|# — |s — t[*H,

see Samorodnitsky-Taqqu (1994, Chapter 7). Our results in this paper hold
for fractional Brownian motions; yet they also hold for some non-Gaussian
case, including a-stable Lévy processes of index @ > 1 and some fractional
stable processes, see the illustration at the end of §2.

The rest of this paper is organized as follows. In §2, we describe a H-ss
si process by its canonical realization on the path space. We also introduce in
§2 the “approximately independent increments” assumption for the process
and discuss the consequent regularity of its local time. In §3, we prove
Theorems 1 and 2, and in §4, we prove Theorem 3. In the final section §5, we
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extend our results to multi-parameter and multi-dimensional cases.

2. Self-similar processes and local times

It is convenient for us to consider the following canonical realization of a
continuous-paths or cadlag-paths H-ss si process. Let the path space

RQ=lw:t—w(),t>0:w) =0 and continuous!,
resp. lw:t—=w(t),t=20; w(0) =0 and cadlag},
& = the o-algebra generated by cylinders.

Note that § is equal to Borel o-algebra of the “local”-uniform topology
(continuous case), resp., the “local”-Skorohod topology (cadlag case). Let P be
a probability measure in (£, §) such that scaling transformation

(L) () = = 9_%11
a

and the translation transformation
(Tyw) (t) : =w(lt+b) —wb)

are both P-invariant (measure-preserving w.r.t. P) for all a>0 and 5> 0.
This means equivalently that the canonical process X (t, w) : = w(t) is H-ss
si. We always assume H:0 < H <1 Note that there corresponds a
P-invariant flow (Ts4, = T, © Ty)

is L= Aexp(s), —o0 <5 < 00,

We call X to be ergodic (mixing) if the flow T is P-ergodic (P-mixing); this
terminology appeared in Takashima (1989), in which several concrete exam-
ples were illustrated. Next, we call a process X, not necessarily in the canonic-
al setting, to be (locally) of approximately independent increments (All for
brevity) on a compact time-interval [a, b], if, for any integer p = 2, there ex-
ist positive 0, Ap and Cj;, 7 = 1, ==, p, such that

E [eiZlﬁézle,wxu,)—xu,_l))] ‘ < Apr-l ‘ E [ez’c,-a,-(xu,-)—xu,-m] ’

for all a<t,<...<tp<0, t,=0, with t,—t, <J,.

The terminology AIl appeared in Nolan (1989) and Kono-Shieh (1993). The
following basic result can be proved in the same way as Koéno-Shieh (1993,
§§4.5) with a little more refined manipulation. The arguments in Nolan (1988,
1989) are equally applicable; actually all the arguments in these works trace
back to Berman (1973). For Gaussain or stable processes, the All condition is

essentially equal to the local nondeterminism of the processes. See Nolan (1989,
Theorem 3.2).
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Proposition 2.1. Let X be an H-ss st process, 0 <H<1, which is All on
each compact [a, b], 0<a<b<oo, and assume that the characteristic function @
(0) of X(1) is decreasing in 6 rapidly enough so that

f_m | 61 |p(0)| db < oo, for some € > 2.

Then, there exists 2, 2, P(8o) =1, such that, for each w € Qy there exists L (t,
x) =Lt x, ), t=0 and x ER, which is jointly measurable in (t, x, ) and the
following holds for each w € 8. We suppress the w notation in the statements.
(i) (t,x) = Lt x) is jointly continuous.
(i) For each x, t = L (t, x) is nondecreasing and is supported on {t : X (t)
=x}.
(i) The occupation-density formula holds, 1. e.

j;'h(X(s))ds=j;h(:r)L(t,r)d:r

for all t=0 and all bounded or nonnegative Borel function h (x).

) Lt x)=0iflx]l > supl|XG)]:0<s <4,

(v) Let B:0<B<fBo:=min(l, 1—H)/2H) ; for each a > 1, there is a
positive finite C; = Cqu(w), such that

sup IL(1/a, t, ) —L(1/a, t, y)| < Colx — ylf, ¥V 2,y ER,

where L(s, t, x) . =L(t, x) —L(s, x), 0<s<t.
(vi) For 0 <s <'t,

E{[sups L(s, t, x)]* < oo, ¥Vp:1<p< o0,

Finally, if the AIl assumption is true on each time-interval la, b] including a=0,
then L (t, x) itself satisfies the assertions (v) and (vi) (i.e. we do not need to be away
from the initial time).

As usual, L (, ) in Proposition 2.1 is called the local time of X (*) at x
on the time-interval [0, t]. The following scaling property of L is the key in-
strument for our limit theorems.

Proposition 2.2. The §2 in Proposition 2.1 is Ag-invariant : @ € 2o =
Aaw € £0, VY a>0. Moreover,

L (at, ax, )
al—H

(2.1) L(t, x, dgw) = Jorallt 20, x € Rand w € £

To proceed a proof of Proposition 2.1, we can mostly follow the argu-
ments in the proof of Kéno-Shieh (1993, Theorem 5.2, with p t ©© and » = 0 at
there). To obtain the uniform Hélder continuity (v), which is not mentioned
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explicitly there, note that we may take any y<J : = in p.63 and then apply
Koéno’s lemma cited there. Note that the condition (5.11) in p.63 there is now
satisfied, by our integrability assumption on the characteristic function ¢ (6).
The arguments yield (i), (i) & (v) ; in (v), we may consider L (¢, x) itself if our
AIl assumption includes the initial time a = 0. The (ii) & (iv) are consequences
of (i) & (i) (see Geman-Horowitz (1980, §6)); note that, although it is not men-
tioned explicitly in §6 there, the path continuity/cadlaguity is actually needed
to ensure (ii) & (iv) (simply to consider a nowhere bounded measurable path,
we cannot ensure anything about its path property even though we know the
path has a regular local time; in Kéno-Shieh (1993, §4) such a mistake should
also be corrected) . Since the arguments leading to (v) are of Kolmogorov
~criterion type, the last (vi) follows consequently. Moreover, the moment formu-
lae for the local times given in Berman (1985, Lemma 2.1) also hold: for each
x, 0<¢t; <ty and positive integer p,
P

12 tz

@2 ElLG a2l = [ [T Pl s e s
where P (sy, ***, sp, X1, ***, Xp) denotes the joint density function of X (sy), ***,
X (sp) at (xy, =+, xp). (The existence and the continuity of the joint density
functions are consequences of our assumptions on the integrability of the char-
acteristic function of X (1) and the AIl ; these two and the self-similarity
together imply that the joint characteristic function of X (t;), *--. X (t,) is also
integrable over R?) . The finiteness of the multiple integral in (2.2) is a con-
sequence of AIl assumption (¢f. Geman-Horowitz (1980, §25)). We may in-
clude t;=0 in (2.2) whenever the multiple integral in (2.2) is finite with t;=0
there; in particular

EILQ O} =755,
where g is the density of X(1) at x=0.

As for the proof of Proposition 2.2, elementary calculations on
occupation-density for the path 4,w show that (2.1) holds for Lebesgue-a.e.
x, for each t>0. The equality extends to all (¢, x) since both sides are known
to be jointly continuous in (¢, x).

Now, we illustrate specific examples. Propositons 2.1 and 2.2 are known
to be applicable to the following.

. . 1
* Brownian motion, H=7 ;

+ a-atable Lévy process, 1<a<2and H=1/a ;

+ fractional Brownian motion of exponent H, 0<H<1, see Berman (1973);

- linear fractional a-stable process of exponent H, 1 <a <2 and 1/a<H
<1, see Kono-Shieh (1993);

+ (real) harmonizable fractional a-stable process of exponent H, 1 <a <2
and 0<H<1, see Nolan (1989).
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We remark that, except a-stable Lévy process which is of cadlag paths, other
cases in the above illustration are of continuous paths. We also remark that,
except harmonizable fractional stable process which is not ergodic (see Cam-
banis et al. (1987)), other cases in the above illustration are mixing (see
Takashima (1989)).

3. The proof of Theorems 1 and 2

To prove Theorem 1, we consider the case F (u#, ¢t) and the case F (f, t)
can be obtained parallelly. For 0 <t; <--- <t;, by the scaling property L
(Proposition 2.2) and the P-invariance of 4, (H-self-similarity),

{-/;eR ML,‘ILR:”L(d—Il—]wmmu

= {LERL(L x-”x)u(dx)}

from which the finite-dimensional convergence in Theorem 1 follows. As for
the tightness of the scaled processes, we note, w.p.1l, firstly that the integra-
tion in F (g, t) is taken over x € Support L (t, * ), which is a compact subset of
R, and secondly that, for t; <tp,

S [P 2t = F (n a)] =

t=tiy stk

1
A-H

; fL (tl, ta, /{_Hl)ﬂ(dlf)

f L (b, Aty 2) p(dx)

The last integral tends to gz (R)L (¢, t, 0) w.p.1 as A tends to . Thus, the
general criterion for tightness in Billingsley (1968, Theorem 12.3) is applic-
able.

Remark. In case X is fractional Brownian motion, a weaker form of
Theorem 1 is announced, without proof, in Kéno (1995) recently.

To prove Theorem 2, we mention that Yamada's Brownian result (1986)
have been extended to the stable Lévy process case by Fitzsimmons-Getoor
(1992). The arguments in the latter work can be adapted well to more general
self-similar case, which we proceed as follows. Fix € : 0<e<1, by Proposition
2.1(v), for each t>€ x—L(t, ) . =L (€ t, x) is uniformly Holder continuous
in x with order as close as to 8o : =min (1, (1—H)/2H); thus for any 7: 0<7y
<y, the right-handed y-derivative (more precisely, the fractional derivative
of order 7) of x—L.(t, x) is defined, for each fixed t>¢, via

DLL )l = F(I_T) j;w L(t'1'+3;>1+7 Liz) dy.

In the above and in the below, we will suppress the € from L¢ for the notation-
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al convenience. (We may allow €=0 if our AIl assumption includes the initial
time a=0). Note that z—L (t, x) is compactly supported (Proposition 2.1(iv)),
and thus we need only to consider y =0+ where the Holder continuity of x—
L (t, x) is applied. The g (x) in Theorem 2 is a compactly supported function
on R and is Hélder continuous with order B ; thus, the left-handed
y-derivative of g (x) can also be defined:

o) = iy [ B el

The proof of Theorem 2 is based on the following identity

[ ore@it iz = [ g@Di L)l aa,

which is the “switching identity” for the right-handed and the left-handed

r-derivatives, see F.-G. (1992, (2.15)) . Writing Hf (y +) instead of D}L
(t, * )|« by the scaling of L we have

a"x
H (4. Agw) = Ha” Ut @) e o

)
al —H0+r

d
Again, the P-invariance of A4; then asserts that Hf, (y+) = A HUDH o (44)
as a random function of ¢, for each 4> 0 and each x € R. This proves the
finite-dimensional convergence. As for tightness, by the fact that x—L (¢, x) is
Holder continuous and compactly supported, we see that, for each ¢>1 and 8 :

7<B<Bo
sup [H¥(y+) — HY (1) £ Capr |l x — 2'1#77, V2, 2" € R.

e<t<a
Thus, the tightness argument in the above proof of Theorem 1 still holds in
the present case, note that we have assumed that g (x) is of compact support.

Remark. There is an analogous result in case f(x) is the Hilbert
transform of g (x). We omit this result here and refer to Yamada (1986), F.-G.
(1992) for the parallel derivation.

4. The proof of Theorem 3 and a ratio ergodic property

Note that the assumption is that X is an H-ss si process, defined in the
canonical setting, which is ergodic in the sense given in §2 and to which Prop-
ositions 2.1 and 2.2 are applicable. Our basic idea of proving Theorem 3 is to
make use of the scaling low and the ergodicity. Let us begin with the setting:

Qo = the full subspace of £2(path space) in Proposition 2.1,
&Fo = the restriction of cylinder c-algebra § to £,
Q={v: tx)—=v(t,x),t 20and x € R: v(0, ) = 0, jointly con-
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tinuous in (t, x), and supx |v(t, z)| < o for each t > 0}.
& = the cylinder o-algebra on £

Define L : w € 20— Lw € & by
(Lw)tx) =Ltz 0.

We show that L is (§o, &) -measurable. In fact, for each (¢, ) and Borel AC
R

lw € Q: Lw) t,x) EAl = {lw:L (t,x, w) €Al € Fo,

since it is stated in Proposition 2.1 that L is jointly measurable in (¢, x, w).
This ensures L7'(S) €F, for each & : &,,= {v: v (t x) €A}, and hence for
each cyclinder 8=&,,,...xpees= 1V 1 V(t;, ;) EA; Vi=1, kandj=1,- 1}.
Now, we define the scaling transformation 44 on (£, §) by

(4v) (t 1) = viat, ax)
JEET I

Then, by Proposition 2.2, we have
(L(4ew)) (t.2) = (ds Lw)) (t,2), V (¢, 2).

This “homeomorphism” property, together with the ergodic assumption on
P-measure, ensures that the image measure Q of P on (£, §) under the
measurable mapping L is also ergodic. This “factor theorem” can be seen in
Cornfeld-Fomin-Sinai (1980, p230). Set

is = Zexp(s). —o0 <5 < o,

Applying Birkhoff's individual ergodic theorem to (£, §, Q, T) . we then
have

lim - f " CIEwlds = EA[G] Q-as. v
0

t—oco

whenever G[v], vE R, is in L'(dQ). Pulling back to (2, &, P, T,), we have

{im % j;' GIL(T;w)lds = EP[G°L] P-as. w.
To obtain the assertions of Theorem 3, we take G[v] =v (1, 0) and G [v] =
supsv (1, x) respectively; then we take a logarithmic change. Note that ko= E”
[L(1,0)] and ky=E?[supsL (1, z)] are both finite positive and ko=g/ (1—H),
by the moment formula for local times stated in §2. Note: It would be interest-
ing if we can prove that k; =k, which is true in the Brownian case.

In the end, we state and prove the following ratio ergodic property of our
process; unfortunately we can only prove the result in the weaker convergence
in probability, not in the stronger a.s. convergence.
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Proposition 4. 1. Under the conditions of Theorem 3,

lim Pl L) _ (g

. it
r—w L(T,0, ®) wn probability

Proof. Firstly, we note that, for P-as. w € 2o, L (T, 0, w) > 0 when T is
sufficiently large. In fact, let E= {w€ 20 : L(t, 0, @) > 0 for some t=t(w) >
0}, then E is Ag-invariant : 4,(E) CE Y a>0, which follows from Proposition
2.2. Thus P(4) =0 or 1 by the ergodic assumption. By the moment formula for
local times again,

t‘-H
1—H > 0, for each t > 0.

Thus, P(E) =1. Now, for fixed é>0 and T>0, let

EFL(,0) =

r_ Ay F (uTw) |
E_[‘“G'Q”‘ g ®R) - L(T,0 w)l

T = (A, 0 €EETY.

1

-

Since Ag-1 is P-invariant, P(ET) = P(EI*®). Writing w=A4, (4, w), by Prop-
osition 2.2, we have

F(u T, 4,41 w)) _ JL@T, a"x, Apy w) p(dx)
u@R) +L(T,0, 4;(4s @) ~ @) «L@T, 0, dgr w) -~

Thus, with a=7T"" in the above, we have

JLQ, T, w) pldx) |
¢R) -L(1,0, w) |

which tends to 0 as T 1 oo, by the continuity of x — L (1, x). This proves
the assertion.

1._

P(ET) =P[a) € Q:

>e],

5. Multi-parameter and multi-dimensional extensions
For a real-valued N-parameter process X (t), t € RY and N> 2, the

d
self-similarity is defined exactly as one-parameter case, namely X (ct) =c7X (t)
for all ¢>0. For the stationary-increments property, it is assumed that X (t)
is invariant not only under translations but also under rotations; thus the dis-
tribution of X (t) — X (s) depends only on ||t —s]|| where || * || denotes the
N-dimensional Euclidean norm. Now let X= (X;, ***, X,4), X;=X;(t) and t€
RY, takes values in R? so that X is an N-parameter, d-dimensional-valued
vector field (we call it an (N, d) field for brevity). We assume that the com-
ponents X; are independent and each X; is H;-ss si (for si, it is in the above
stronger sense). The exponents H; are assumed to be 0<H;<1 and the sample
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functions t — X;(t) are assumed to be continuous. Thus, we have a
continuous-paths (N,d) field X (t) which is of stationary increments (in the
above stronger sense) and is self-affine, by which we mean

a
Xt) = X, (), -, cPX, (1), Ye >0,

regarded as the equivalence in distribuation of two d-dimensional processes.
The canonical setting for X is then to consider the path-space

Q= w= (W, ws) : w; = w;(t), t €RY, continuous and w;(0) = 0},
& = cylinder o-algebra,
and a probability measure P on (£, §) such that the scaling and the
strong-translation transformations

(tg) (0 1 = (@lat) .. @alab)

aHl aHa

(Asw) (t) : = w (Bt), ® : rigid-body motion on R”,

are both P-invariant and moreover that the component processes wj, j =1,+**, d,
are P-independent, we call X to be ergodic if any A €F which is Ag-invariant
(A,ACAYa>0) is of P(4) =0 or 1. This definition indicates that, for each

. . . X (et .

fixed t, the one-parameter stationary process defined by s — (seH ) ,sER, s
e

ergodic. We assume that each X; is AlIl on every compact box JCR" bounded

away from the origin (the definition of AIl follows the previous

one-parameter case, with some attentions on the ordering of the parameters {,

see Pitt (1978) and Nolan (1989)). Assume that

d
N > ZH,-.
i=1

Let f(x), XERY be a Lebesgue integrable function on R? with nonzero [f(x)dx,
and let the field F(f, t), be defined by

Fie) = [ [T 6)as t= (1) € RY,

The following two results can be proved in the same way as the
one-parameter case in §3, 4.

Theorem 4. As A—>00,

[ F(f, At) }t

RN—E"L] Hi

converges in the law of the space of continuous N-parameter (N-variable) functions
to
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[[reax- L o).

Theorem 5. Assume that X is ergodic, then almost surely

; Tdt sup,L ((£, t) x) _ L
?21 lan e z,ﬂ =Esup L((11),%).

In the above, L (t, x), t € RY and x € R, denotes the local time of X ( *) at

X on the box ITY, [0, t;], t= (t;, **-, ty). We remark that, for the (N, d)field X,
we have the extension of Proposition 2.1, when it is under suitable
parameter-dimension modifications and we also have the following scaling
property of L (t, x)

L{at, (a"'xy, . a xa) a))
alV- 2

L (t, X, Aaa)) -

The most important case in the above consideration is fractional Brownian
vector field, in which each X; is a mean-zero Gaussian field with covariance
function

EXi(s) Xi(®) = |Is|P# + ([t =t — s}

The regularity of local times for this important vector field was studied by
Pitt (1978); Theorems 4, 5 then show a certain limit behavior of this Gaussian
local time.
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