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Limit theorems for local times of fractional Brownian
motions and some other self-similar processes

By

Narn - Rueih SHIEH

1. Introduction and Main Results

A  real - valued stochastic process X (t), 0, is called self-similar with ex-

ponent H  (H- ss for b rev ity ) if X (cl) =  c HX (t) for each c >O. It is called of sta-
d

tionary increments (si for brev ity) if X (t+ b ) — X(b) =X (t) — X (0) for each b>
d

0. The notation =  in  th e  above m eans th e  finite - dimensional equivalence of
two processes. In th is  paper, we consider the exponent H  : 0 <H<1, and thus
X (0) = 0. One m ay refer to Maejima (1989) and Vervaat (1987) for intensive
surveys on  self - sim ilar proccesses. W e a lso  assume th a t X  i s  o f  continuous
p a th s  o r  o f  cadlag p a t h s  (cadlag = right - c o n tin u o u s  w ith  le f t - limits
everywhere) . U nder a  m ain  assumption of "approximately independent incre-
ments", a s  w e shall see  in  §2, alm ost every path X  •  , a i) has regu lar local
times L(t, x, co), 0 and x  R. VVe consider the following functionals

F o (t, co) = L (t, 0, (0),
F 1 (t, w ) = supx  L (t, x, co),

(,u, t, o.)) = f IL(t, x, co) ii(dx) ,

F  t ,  co) = (t, x, 0)) f (x) dx = 1-(x cs, con ds,

where II is  a  finite Borel measure on  the  line and f  is  a  Lebesgue integrable
function on the line. The above functionals, regarded a s  continuous - paths pro-
cesses in  t, have their own self - similarity. In  th is  paper, we prove some limit

theorems for the  rescalings of these functionals. Let denote th e  weak con-
vergence in the law of the space of continuous functions, we have

Theorem 1. A s ,1 cc,

At)1
2 1 — H  j  t 2 0

W I
ttt (R) L (t, 0)),, 0 ,
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1 f  A l)   
t o f (x) dx • L (t, 0)1 ,

Let DT±  deno te  the right -  (resp. left - ) handed fractional derivative of o rd e r  y
(see §3), we have

Theorem 2. Let g ( x )  be a function with compact support and be Holder
continuous with order 130 = min (1, (1 — H) /2H) , and let y : 0<y</3 0 . A s 2—,•0  0 ,

IF(D r At) r.
i  

—Hg: ; + r )  j t o t j _ .f g  (x  d x  • Dr
+ L (t, • )1x=o} t ,„ •

Under an  additional assumption of "ergodicity" (see §2 also), w e have the fol-
lowing pathwise asymptotics for F i ( • ,w) , i= 0, 1. Let q denote the density of
X (1 ) a t 0, which we assume that q> 0 (The existence of q is  a  consequence of
the conditions of Proposition 2.1 below).

Theorem 3. A ssume the ergodicity of the process. Then there exist finite
positive constants k i(i=  0, 1) such that, for almost sure w,

1 f T d t F
'

i ( t  co) u r n
In T t t l -

moreover, k1k o  =  1 H .

In case X  is Brownian motion, in which H =  1/2, Theorem 1 appeared in
Darling - Kac (1957) , Theorem 2 appeared in  Yamada (1986) , and Theorem 3
appeared in  Brosamler (1973) . The resu lts of Darling - Kac and Yamada have
been extended by various authors ; we mention Ikeda - W atanabe (1989, p146),
Kasahara (1977), and Fitzsimmons - Getoor (1992). The resu lt of Brosamler is
recently  re la ted  to  a  c e r ta in  average - density  property  o f  some fractals, see
Bedford - F ish e r  (1992) . T he most important case in  our consideration is cer-
tainly the class of Gaussian ss s i processes which are just fractional Brownian
motions of  exponent H , i.e . continuous - paths, mean - zero G aussian processes
with covariance function

EX (s) X (t) = 1
5 1 2 H  +  tizn — WE ,

see  Samorodnitsky - Taqqu (1994, Chapter 7) . O ur re su lts  in  this paper hold
fo r  fractional B row nian motions; ye t they  a lso  ho ld  fo r  some non-Gaussian
case, including a - stable  Lévy processes o f  in d ex  a  > 1 a n d  some fractional
stable processes, see the illustration at the end of §2.

The rest of this paper is organized as  follows. In §2, we describe a  H - ss
si process by its canonical realization on the path space. W e also introduce in
§2 th e  "approximately independent increments" assumption fo r  th e  process
a n d  d iscuss  th e  consequent regularity  o f  i t s  lo c a l t im e . In  §3, we prove
Theorems 1 and 2, and in  §4, we prove Theorem 3. In the final section §5, we
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extend our results to multi-parameter and multi - dimensional cases.

2 .  Self-similar processes and local times

It is convenient fo r us to consider the  following canonical realization of a
continuous - paths o r cadlag-paths H-ss si process. Let the path space

= lo) : t w (t) , t 0 ; co (0) = 0 and continuous} ,
resp. lo) : t (t), t O; w (0) = 0 and cadlag} ,

=  the a-algebra generated by cylinders.

N ote  th a t  a i s  e q u a l  t o  B o re l a -a lg e b ra  o f  t h e  "local"-uniform topology
(continuous case), resp., the "local"-Skorohod topology (cadlag case). Let P be
a probability measure in  (Q, a) such that scaling transformation

( j a w )  ( t ) _  0.) (at)
a

H

and the translation transformation

(T,w) (t) : = w (t b) —  w (b)

a re  both P-invariant (m easure-preserving w.r.t. P )  fo r  a ll  a>  0 a n d  b> O.
T his means equivalently that the canonical process X  (t, :  w  ( t )  is  H- ss
si. W e  a lw a y s  assume H :  0 < H < 1. N o te  th a t  th e r e  c o r r e s p o n d s  a
P-invariant flow  (Ts-I-t = °  Z t)

Z s  :  =  „p (s ) , <  s  < 00.

W e call X to  be ergodic (m ix ing) if the flow Z , is  P-ergodic (P-mixing); this
terminology appeared in  Takashima (1989) , in  which several concrete exam-
ples were illustrated. Next, we call a  process X, not necessarily in the canonic-
a l  s e t t in g ,  t o  b e  (locally ) o f  approximately independent increments  (A IT  fo r
brevity) on a compact tim e-interval [a, h ] ,  if , fo r  any integer p 2, there ex-
ist positive 5i,, Ap and C ,, j = 1, •••, p , such that

E { e iE 11_,,e1cx(y - x(r1_1»1 A p111,?,...1 E [e i c i° i( X ( i i ) - X ( t 1 - 1 ) )

         

for all a ti <...<tp_<_b,  t 0 0, with tp — t i <5p.
The term inology All appeared in  N olan (1989) and  Kôno-Shieh (1993) . The
following basic  resu lt can  be  p roved  in  th e  sam e w ay a s  Keino-Shieh (1993,
§§4,5) w ith a  little more refined manipulation. The arguments in N olan (1988,
1989) are  equally applicable; actually all the argum ents in  these w orks trace
back to Berman (1973). For Gaussain or stable  processes, the A ll condition is
essentially equal to the loca l nondeterminism of the processes. See Nolan (1989,
Theorem 3.2).
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Proposition 2.1. Let X be an H-ss si process, 0 <H<1, which is All on
each compact [a, b], 0 <a <b < 0 0  , and assum e that the characteristic function 0
(0) of X (1) is decreasing in  0 rapidly enough so that

f I 0V I0(0)1 de < 00, for some e> 2.

Then, there exists S20c Q, P (Q0) =1, such that, for each co E Q0 there exists L (t,
x) =L (t, x, w ), 0  and x ER, which is jointly measurable i n  (t, x, w) and the
following holds for each WE D° . We suppress the eri notation in the statements.

(i) (t, x) L (t, x) is jointly continuous.
(ii) For each x, t L (t, x) is nondecreasing and is supported a n  t : X (t)

=  x  .
(iii) The occupation - density formula holds, i. e.

1. h (X (s))ds = f h (x) L (t , x) dx

for all t 0 and all bounded or nonnegative Borel function h (x) .
(iv) L (t, x) = 0 if I x  >  s u p  X (s)I : 0s .
(y) Let 0 : 0<  <  so : = min (1, — H) /2H) ; for each a  > 1, there is a

positive finite Ca =  C 0 (w), such that

sup IL (1/a, t, x ) —  L (1/a, t, Y) I Ca Ix — yI,x ,  y  e R,

where L (s, t, x) : =L (t, x) — L (s, x) , 0<s t.
(vi) For 0 < s t,

E l[sup x  L (s, t, x)] P i  < 00, vp :1 p < 00.

Finally, if  the All assumption is true on each time - interval [a, b] including a= 0,
then L (t, x) itself satisfies the assertions (y) and (vi)(i.e. we do not need to be away
from the initial time).

A s usual, L (t, x) in  Proposition 2.1 is called the local time of X ( • ) at x
on the time - interval [0, t] . The following scaling property of L  is  the  key in-
strument for our limit theorems.

Proposition 2.2. T he ,S20 in  Proposition 2.1 is Aa -invariant : euE S20
A0 coe,S20, V a>0. Moreover,

L (at, aH x , (o) 
(2.1) L (t, x, Z10(.0) =

a
t_ff , for all t 0, x  E  R and (.1.) E Q0.

To proceed a  proof of Proposition 2.1, w e can m ostly follow  th e  argu-
ments in the proof of Kôno-Shieh (1993, Theorem 5.2, with p t œ and r  =  0  at
there) . To obtain the  uniform Holder continuity (y) , which is not mentioned
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explicitly there, note that we may take any r<  : =go in  p.63 and then apply
Kôno's lemma cited there. Note tha t the condition (5.11) in  p.63 there is now
satisfied, by our integrability assumption on the characteristic function 0 (0).
The arguments yield (i), &  ( y )  ;  in (y), we may consider L  (t, x ) itself if our
AN assumption includes the  initial time a  = 0. The (ii) & (iv) a re  consequences
of (i) & (iii)(see Geman-Horowitz (1980, §6)); note that, although it is not men-
tioned explicitly in  §6 there, the  path continuity/cadlaguity is actually needed
to ensure (ii) & (iv) (simply to consider a  nowhere bounded measurable path,
we cannot ensure anything about its path property even though w e know  the
path has a  regular local time; in Kôno-Shieh (1993, §4) such a  mistake should
also be corrected) . Since the argum ents le a d in g  to  (v )  are of Kolmogorov
- criterion type, the last (vi) follows consequently. Moreover, the moment formu-
lae for the local times given in  Berman (1985, Lemma 2.1) also hold: for each
x , 0<t1<t2, and positive integer p,

1-1 2 12

(2.2) E 1[L (ti, t2, x)] p i  =  j  
t i

P (si," • , S p ,  X,•", .X)d.S1 —  dsp,

where P(si, •••, sp, x i ,  •••, xp) denotes the jo in t density functiori of X(si) ••-,
x ( s )  a t  (x1, •••, x p ) .  (The existence and the continuity o f the  jo in t density
functions are consequences of our assumptions on the integrability of the char-
acteristic function o f  X (1 ) and the  A ll  ;  th e se  tw o  a n d  th e  self-similarity
together imply that the joint characteristic function of X (t1), •••, X  (tp) is also
integrable  over R P) T he finiteness of the m ultiple integral i n  (2.2) is  a  con-
sequence o f A ll assum ption  (cf . Geman-Horowitz (1980, §25)) . W e may in-
clude t1 =0 in  (2.2) whenever the multiple integral in  (2.2) is finite w ith t1 =0
there; in particular

E  ( 1 ,  0 ) }  =  1
q

 H

where q is the density of X(1 ) at x-=0.
A s  f o r  t h e  p r o o f  o f  P ro p o s it io n  2.2, e lem en ta ry  ca lcu la tions on

occupation-density fo r the  pa th  daw show  th a t  (2.1) holds fo r  Lebesgue - a.e.
x , for each t > O. The equality extends to all (t, x ) since both sides are  known
to be jointly continuous in  (t, x).

Now, we illustrate specific examples. Propositons 2.1 a n d  2.2 a re  known
to be applicable to  the following.

1
Brownian motion, 11=-- —

2  ;

• a-atable Levy process, I<  a< 2 and H = 1/a ;
• fractional Brownian motion of exponent H, 0 < 11<1, see Berm an (1973);
• linear fractional a -s ta b le  process o f exponent H, 1 <a < 2  a n d  1/a <H

<1, see Kôno-Shieh (1993);
• (rea l)  harmonizable fractional a - stable process of exponent H ,  1  cr<2

and 0 <H<1, see Nolan (1989).
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W e remark that, except a - stable Levy process which is of cadlag paths, other
cases in  the above illustration are of continuous paths. W e also remark that,
except harmonizable fractional stable process w hich is not ergodic (see Cam-
banis et a ! .  (1987)), o th e r  c a se s  in  th e  above illu stra tion  a re  mixing (see
Takashima (1989)).

3. The proof of Theorems 1 and 2

To prove Theorem  1, we consider the case F t )  and the case F ( j ,  t)
can  be  ob ta ined  parallelly. F o r  0  < t i  < •••  < tk , b y  th e  scaling  property  L
(Proposition 2.2) and the P - invariance of 41(H - self - similarity),

L (2t, x),tt (dx)
( f e l l

d

ff ( t ,  2 -1 1X),u(dx)}xell
from which the  finite - dimensional convergence in Theorem 1 follows. As for
the  tightness of the  scaled processes, we note, w.p.1, f irs tly  tha t the  integra-
tion in F  t )  is taken over x E  Support L (t, • ) , which is a compact subset of
R, and secondly that, for ti < 1-2,

[F (1.1, 2t 2) F (tt, Ât i ) ]  =  2 ,1_11 f L (Âti, 2t2, x)ii(d.x)

d
=  f t2, A x )  ( d i )

T he last integral tends to  ,tt (R) L (1 1 , t2, 0) w.p.1 a s  2  tends to  0 0 . Thus, the
general criterion fo r  tightness in  Billingsley (1968, Theorem  12.3) is applic-
able.

Remark. In case X  is fractional Brownian motion, a weaker form of
Theorem 1 is announced, without proof, in Kôno (1995) recently.

To prove Theorem  2, w e mention that Y am ada's Brownian result (1986)
have been extended to th e  s tab le  Lévy process case b y  Fitzsimmons - Getoor
(1992). The argum ents in the latter work can be adapted well to more general
self - similar case, which we proceed as follows. Fix c : 0 < c<1, by Proposition
2.1 (v), for each t > c, x—■L E (t, x) : = L (E, t, x) is uniformly Wilder continuous
in x  with order as close as to 130  :  =m in (1, (1 — H)/2H); thus for a n y  r :  0 < r
</30 , the  right - handed y- derivative (more precisely, the  fractional derivative
of order y) of x—■Le (t, x ) is defined, for each fixed t > c, via

1 r -  L (t, x+y) — L (t, x) 
D r

+  L (t, ' )1x : dy.(— r) Jo

1 
2 1_,H

In the above and in the below, we will suppress the c from L E fo r the  notation-
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al convenience. (We may allow c=0 if our AIT assum ption includes the initial
time a= 0) . Note that x - 01 (t, x) is compactly supported (Proposition 2.1 (iv)),
and thus we need only to consider y = 0 +  where the Header continuity of x —•
L (t, x) is applied. The g (x )  in  Theorem 2 is  a  compactly supported function
o n  R  a n d  is  W ild e r  c o n tin u o u s  w ith  o rd e r  P o  ;  th u s ,  t h e  left - handed
y-derivative of g (x )  can also be defined:

1 g  —  y )  —  g  ( x )   dy.Dr_ g (x ) : = F( - 1) 

r-
- r) Jo

The proof of Theorem 2 is based on the following identity

J. g (x) L (t, x)dx =- f g (x) Dr+ (t, )Ix  d x ,

w h ic h  is  th e  "sw itching identity" fo r  th e  right-handed and

y- derivatives, se e  F .-G . (1992, (2.15)) . W riting  rif +)
(t, • ) Ix , by the scaling of L we have

(r+, Aaw) ( r + ,  co) w E  Q 0 .
a
1--Ho.+T)

th e  left-handed
instead  o f  Dr+L

d

Again, the P-invariance of A 2 then asserts that H t (y+) Â1--n(1+ r )H rx  ( y + )

a s  a  random function o f  t, fo r  each Â> 0  and  each x e  R. T h is  proves the
finite - dimensional convergence. As for tightness, by the fact that x —*L(t, x ) is
HOlder continuous and compactly supported, we see that, for each a>1 and 13 :
T</3<13o

s u p  1Hf(y-1-) — (y+)1 Ca.13,r I X  — X'113 - 7 , V X , x '  e R.
f<ts,,

Thus, the  tightness argum ent in  the above proof o f Theorem  1 still ho lds in
the present case, note that w e have assumed that g (x ) is of compact support.

Remark. T h e re  is  a n  analogous result in  case  f ( x )  i s  the H ilbert
transform of g (x) . W e omit this result here and refer to Yamada (1986), F.-G.
(1992) for the parallel derivation.

4. The proof of Theorem 3 and a ratio ergodic property

Note tha t the  assum ption is that X  is  an  H-ss si p rocess, defined in the
canonical setting, which is ergodic in the sense given in  §2 and to which Prop-
ositions 2.1 and 2.2 are applicable. Our basic idea of proving Theorem 3 is to
make use of the scaling low and the ergodicity. Let us begin with the setting:

Do the full subspace of Q(path space) in Proposition 2.1,
= the restriction of cylinder c-algebra a to Q0.

S2' = :  (t, x)— .).)(t, x), t 0 and x E  R  1 .)(0 , x ) =  0, jointly  con-
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tinuous in  (t, x), and supx v(t, x)1 < co for each t > 01.
=  the cylinder a-algebra on Q'.

Define L: w  E Lw E  ,S2' by

(Lw) (t, x) = L (t, co).

W e show that L is (no, a') - measurable. In fact, for each  (t, x) and Borel A c

iwES20: (Lw) (t, = x, co) E.,4 ERo,

since  it is sta ted  in Proposition 2.1 that L is jointly m easurable i n  (t, x, co) .
This ensures L - 1 (S) E 0 fo r  each S  :  f ,x= v : v  (t, x) E A }  , and hence for
each cyclinder : v(t„ x5) EA,5 V i=1,.• - , k and j=1, —, I .
Now, we define the scaling transformation da o n  (Q', W) by

v (at, a l ix) (1 14 (t, =

Then, by Proposition 2.2, we have

(L (Jaw )) (t. x )  =  (j a  (L ai))  (t, x ) ,  V  ( t,  x ) .

T h is  "homeomorphism" property , toge ther w ith  th e  ergodic assum ption on
P-measure, en su re s  th a t the  im age m easure Q o f P  o n  (SY, W ) u n d e r the
measurable mapping L  is  a lso  ergodic. This "factor theorem " can be seen in
Cornfeld-Fomin-Sinai (1980, p230). Set

ts  =  dexP(s), <  S  <  CO,

Applying Birkhoff's individual ergodic theorem  to  ( g ,  a', Q, , we then
have

lim f f  G ds = EQ  [G] Q-a.s.t o

whenever G [ ] , ,  is  in L l (dQ). Pulling back to (Q, a, P, Z x ), we have

lim t G [L (Z s co )]d s  =  E [G L ] P - a.s, co.
t _co t

To obtain the assertions of Theorem 3, w e take G [I ]  =  (1 , 0) and G [I ] =
supx v (1, x) respectively ; then we take a  logarithmic change. Note that ko=E P

[L (1, 0 )] and k1—E'" [supxL (1, x ) ]  are both finite positive and ko=q/ (1 - 1-1),
by the moment formula for local times stated in  §2. Note: It would be interest-
ing if we can prove that k 1 —k0 , which is true in the Brownian case.

In the end, we state and prove the following ratio ergodic property of our
process; unfortunately we can only prove the result in the weaker convergence
in probability, not in the stronger a.s. convergence.
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Proposition 4. 1. Under the conditions of Theorem 3,

m  F  T ,  co) 
L (T, 0, co) =  ( R )

Proof. F irstly , w e  note th a t, for P-a.s. co E S20, L (T, 0 , w ) >  0  w hen T  is
sufficiently large. In fact, let E = w E Q0 : L (t, 0, w ) >  0 for some t=t(w ) >
0 L  then E is Lia - invariant : d a ( E ) c E  a> 0, which follows from Proposition
2.2. Thus P (A) =0 or 1 by the ergodic assumption. By the moment formula for
local times again,

E L  (l, 0 )  =  • tl-H _  H  >  0, for each t > 0.

Thus, P (E) =1. Now, for fixed E >0 and T> 0, let

ET (RF) w) = 1,„ E  S20 : 1 >

ET'a =- Lia i W,W EETI .

Since Liai i s  P-invariant, P(ET) = P ( E r  . W riting w="1,2(d a -i co), by Prop-
osition 2.2, we have

F T, Act (Lia-i a ) ) )  I  L (aT , aH x , A a -1 CO) tt (dX ) 

(R )  •  L(T, 0, da(Zia-i (0)) [L(R) • L (aT, 0, Ja-i CO •

Thus, w ith a= in the above, we have

in probability.

P (ET) = E  S20 : 1 f  (1, T - Hx, co) (dx) 
(R ) • L (1, 0, co) > El ,

  

which tends to  0  as T  t  co , by  the continuity of x L (1, x) . This proves
the assertion.

5. Multi -parameter and multi -dimensional extensions

F o r  a  real-valued N- parameter process X  (t) , t E W.Y_ and 2 , the
d

self-similarity is defined exactly as one - parameter case, namely X (ct) =cHX(t)
for all c > O . F or the stationary - increm ents property, it is assum ed that X (t)
is  invariant not only under translations but also under rotations; thus the dis-
tribution of X  (t) — X  (s) depends only o n  lit — s i  where II •  H denotes the
N-dimensional Euclidean norm. Now let X = (X1, •••, X a), X i=X i (t) and t
IV,f, takes values in R d  s o  t h a t  X  i s  an N-parameter, d-dimensional-valued
vector field (w e call it a n  (N, d) f ie ld  for brevity). W e assume tha t the com-
ponents Xi are independent and each X i i s  H ,-ss si (for si, i t  i s  in the above
stronger sense). The exponents 111 are assumed to be 0 <H1< 1 and the sample
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func tions t X i (t) a r e  a s s u m e d  to  b e  c o n tin u o u s . T h u s , w e  h a v e  a
continuous - p a th s  (N ,d) field X (t) w hich is o f stationary increm ents (in the
above stronger sense) and is self - affine, by which we mean

d

X  (C O  = (C 111)(1, (t) , • • • , cH dX d  (t) ) , V c  > 0,

regarded a s  th e  equivalence in  distribuation of two d - dimensional processes.
The canonical setting for X is then to consider the path - space

=  w  = cod) : coi =  co, (t) , t e R_I
F̀
r, continuous and co.; (0) =OL

- -  cylinder a - algebra,

a n d  a  probability  m easure  P  o n  (D , a) s u c h  th a t  t h e  sca ling  and  the
strong - translation transformations

(Jaw ) (t) wi (at)c o d  (at) 
a

Hi
a " ), a > 0

(Joito) (t) : = w (OA), : rigid - body motion on R N ,

are both P - invariant and moreover that the component processes coi, j=1,••., d,
are P - independent, we call X to be ergodic if any A G a which is Zia -invariant
( j aA CA V a >0) i s  of P (A ) = 0 o r  1. T his definition indicates that, for each

fixed t, the one - parameter stationary process defined by s X
(est)

 '  scR, is
e s H  

ergodic. W e assume that each X , is  AII on every compact box Jc R N  bounded
a w a y  f r o m  t h e  origin ( t h e  d e f in itio n  of A l l  f o l l o w s  t h e  previous
one-parameter case, with some attentions on the ordering of the parameters t,
see Pitt (1978) and Nolan (1989)). Assume that

Let f (x ) , xeR d , be a  Lebesgue integrable function on IV with nonzero ff (x) dx,
and let the field F (f, t ) , be defined by

rN
F(f , t )  =  fo • •• 

f
0 f (X  (s )) ds, t = (t 1, •••, tN )  G

T h e  fo llo w in g  tw o  re su lts  c a n  b e  p ro v e d  i n  t h e  s a m e  w a y  a s  th e
one - parameter case in §3, 4.

Theorem 4. As 2 — . 0 0 ,

t, 21s Hi j t

converges in the law of the space of continuous N - parameter (N- variable) functions
to
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i ff (x )dx  • L (t, 0 ) t.

Theorem 5. Assume that X is ergodic, then almost surely

. 1  r  dt s u p x L ( (t ,  •••, t), =  E sup L ,1) , .In T J1 t

In the above, L (t, x ), t E  R I,v_ and x E  R d , denotes the local time of X ( • ) at
x on the box [0, te], t= (ti, •••, tN). W e remark that, fo r  th e  (N, d) field X,
w e  h a v e  th e  e x te n s io n  o f  P ro p o s it io n  2.1, w h e n  i t  is  u n d e r  s u i ta b le
parameter - dim ension modifications a n d  w e  a lso  h a v e  th e  following scaling
property of L (t,

L (at, (a f f ix 1 ,  • • • ,  al i d xd) , co)L (t, x, Jaw) =
a

N -

The most im portant case in the above consideration is fractional Brownian
vector f ield, in  w hich  each  X , is a  mean - zero G aussian fie ld  w ith  covariance
function

EX  (s) X i ( t )  =  s 1 2Ht ±  t 11 2 1 1 tt  —

T he regularity  of local tim es fo r  th is  im portant vector fie ld  w as studied by
Pitt (1978); Theorems 4, 5 then show  a certain limit behavior of this Gaussian
local time.
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