Adjoint actions on the modulo 5 homology groups of E_8 and ΩE_8

By

Hiroaki HAMANAKA, Shin-ichiro HARA and Akira KONO

1. Introduction

Borel proved in [2] that the integral homology group of the exceptional Lie group E_8 is not 5-torsion free and

 $H(E_{8};\mathbb{Z}/5) \cong \Lambda(x_{3},x_{11},x_{15},x_{23},x_{27},x_{35},x_{39},x_{47}) \otimes \mathbb{Z}/5[x_{12}]/(x_{12}^{5})$, with $|x_{i}|=i$,

as algebra.

Araki showed the non-commutativity of the Pontrjagin ring $H_*(E_8;\mathbb{Z}/5)$ in [1]. The whole Hopf algebra structure and the cohomology operations were determined by Kono in [6]. But it was due to the partial computation of $\operatorname{Cotor}^{H^*(E_8;\mathbb{Z}/5)}(\mathbb{Z}/5,\mathbb{Z}/5)$, which was rather complicated. In [5], using secondary cohomology operations, Kane gave a general theorem to determine the Pontrjagin ring which is non-commutative and determined $H_*(E_8;\mathbb{Z}/5)$ as a Hopf algebra over \mathscr{A}_5 .

Also, for a compact, connected Lie group G, the free loop group of G denoted by LG(G) is the space of free loops on G equiped with multiplication as

 $\boldsymbol{\phi} \cdot \boldsymbol{\psi}(t) = \boldsymbol{\phi}(t) \cdot \boldsymbol{\psi}(t),$

and has ΩG as its normal subgroup. Thus

$$LG(G)/\Omega G \cong G,$$

and identifying elements of G with constant maps from S^1 to G, LG(G) is equal to the semi-direct product of G and ΩG . This means that the homology of LG(G) is determined by the homology of G and ΩG as module and the algebra structure of $H_*(LG(G);Z/p)$ depends on $H_*(\mathrm{Ad};Z/p)$ where

$$\operatorname{Ad}:G \times \Omega G \longrightarrow \Omega G$$

is the adjoint map. Since the next diagram commutes where λ, λ' and μ are the multiplication maps of ΩG , LG (G) and G respectively and ω is the composition

Received July 31, 1996

Partially supported by JSPS Research Fellowships for Young Scientists.

we can determine directly the algebra structure of $H_*(LG(G);Z/p)$ by the knowledge of the Hopf algebra structure of $H_*(G;Z/p)$, $H_*(\Omega G;Z/p)$ and induced homology map $H_*(\mathrm{Ad};Z/p)$. See Theorem 6.12 of [4] for detail. Moreover, in [8], it is showed that provided G is simply connected, $H^*(\mathrm{Ad};Z/p)$ is equal to the induced homology map of second projection if and only if $H_*(G;Z)$ is *p*-torsion free. Thus the case of $(G,p) = (E_8,5)$ is non-trivial.

In this paper we determine $H_*(\operatorname{Ad};Z/5)$ for $G = E_8$ and at the same time, we offer a more simple method for the determination of the coproduct and the cohomology operations on $H^*(E_8;Z/5)$ using the adjoint actions of E_8 on ΩE_8 . We also determine $H_*(\Omega E_8;Z/5)$ as a Hopf algebra over \mathcal{A}_5 .

This paper is organized as follows. In the next section we breifly see the algebra structures of $H^*(E;Z/5)$ and $H_*(\Omega E;Z/5)$ using the Serre spectral sequences. In the third section we determine the adjoint action of $H_*(E_8;Z/5)$ on $H_*(\Omega E_8;Z/5)$ which was introduced in [8]. It gives an easy computation of the Hopf algebra structures and the cohomology operations on them.

2. Algebra structures

Let n(j), $(1 \le j \le 8)$, be the exponent of E_8 , i.e.

$$\{n(j)\}_{1 \le j \le 8} = \{1, 7, 11, 13, 17, 19, 23, 29\}.$$

First we see $H^*(\Omega E_8;\mathbb{Z}/5)$ for low dimensions. Let R be the algebra $\mathbb{Z}/5[a_{2n(j)}|1 \le j \le 8]$ with $|a_i| = i$. By Bott ([3]), the Hopf algebra $H^*(\Omega E_8;\mathbb{Z}/5)$ is isomorphic to R as a vector space. There is a map q: $SU(9) \rightarrow E_8$ which induces an isomorphism of π_3 . Then, Ωq : $\Omega SU(9) \rightarrow \Omega E_8$ induces an isomorphism of π_2 and, as showed in [7], $(\Omega q)^* a_2 \in H^2(\Omega SU(9);\mathbb{Z}/5)$ is nontrivial and $((\Omega q)^* a_2)^{-5} \neq 0$ for the generator $a_2 \in H^2(\Omega E_8;\mathbb{Z}/5)$. Thus we have $a_2^{-5} \neq 0$. It follows that $H^*(\Omega E_8;\mathbb{Z}/5)$ is isomorphic to R for * < 50 as algebra. Next there is two possibilities (I): $a_2^{25} \neq 0$ and (II): $a_2^{25} = 0$. That is, we can assume it is isomorphic to (I): R or (II): $R/(a_2^{25}) \otimes \mathbb{Z}/5[a_{50}]$, for $* < 10 \cdot n(2) = 70$, where $|a_{50}| = 50$.

Consider the following Serre fibre sequences:

$$\widetilde{E}_{8} \xrightarrow{k} E_{8} \xrightarrow{\ell} K(Z,3), \qquad (1)$$

$$K(\mathbf{Z},1) \longrightarrow \Omega \widetilde{E}_{\mathbf{8}} \xrightarrow{\mathbf{Z}^{\mathbf{A}}} \Omega E_{\mathbf{8}}, \tag{2}$$

$$\Omega \widetilde{E}_8 \longrightarrow * \longrightarrow \widetilde{E}_{8}, \tag{3}$$

where ι induces an isomorphism of π_3 .

Let $\tilde{R} \equiv Z/5 [\tilde{a}_{2n(i)} | 2 \le i \le 8]$ with $|\tilde{a}_i| = i$. Computing the Serre spectral sequence associated to (2), we can see that, for * <70, $H^*(\Omega \tilde{E}_{8};Z/5)$ is isomorphic to (1): \tilde{R} or (II): $\tilde{R} \otimes \Lambda(\tilde{a}_{49}) \otimes Z/5 [a_{50}]$ according to the case: $a_2^{25} \ne 0$ or $a_2^{25} = 0$. Let $\tilde{S} \equiv \Lambda(x_{2n(j)+1} | 2 \le j \le 8)$ with $|\tilde{x}_i| = i$. Again computing the spectral sequence associated to (3), we have, for * <71, $H^*(\tilde{E}_{8};Z/5)$ is isomorphic to (I): \tilde{S} or (II): $\tilde{S} \otimes Z/5 [\tilde{x}_{50}] \otimes \Lambda(\tilde{x}_{51})$ where $|\tilde{x}_{50}| = 50$, $|\tilde{x}_{51}| = 51$.

Recall the fact:

$$H^*(K(Z,3);Z/5) \cong \Lambda(u_{3,u_{11},u_{51},\cdots}) \otimes Z/5[u_{12,u_{52},\cdots}], |u_i| = i,$$
(4)

where $u_{11} = \mathcal{P}^1 u_3$, $u_{12} = \beta u_{11}$, $u_{51} = \mathcal{P}^5 u_{11}$ and $u_{52} = \beta u_{51}$.

Let $x_i = \iota^*(u_i)$, for i = 11, 12, 51 and 52, in $H^*(E_8; \mathbb{Z}/5)$. By the spectral sequence associated to (1), we obtain, for * < 58, $H^*(E_8; \mathbb{Z}/5) \cong$ (1): $S \otimes \Lambda(x_{11}, x_{51}) \otimes \mathbb{Z}/5[x_{12}, x_{52}]$ or (II): $S \otimes \Lambda(x_{11}) \otimes \mathbb{Z}/5[x_{12}]$, where $S \equiv \Lambda(x_{2n(j)+1}|1 \le j \le 7)$ with $|x_i| = i$.

As dim $E_8 = 248$, we can conclude that the possible case is (II) and $x_{12}{}^5=0$. Moreover, the generators $\{x_i\}$ are enough to generate $H^*(E_8;\mathbb{Z}/5)$. We have determined the algebra structure.

Theorem 1. There is an algebra isomorphism:

 $H^*(E_{8};Z/5) \cong A(x_{2n(j)+1}|1 \le j \le 7) \otimes A(x_{11}) \otimes Z/5[x_{12}]/(x_{12}^5).$

In H^* (\tilde{E}_{8} ;Z/5), we can chose \tilde{x}_{50} and \tilde{x}_{51} such that $\tau'\tilde{x}_{50} = u_{51}$ and $\tau'\tilde{x}_{51} = u_{52}$, where τ' is the transgression. Then $\tau'\mathcal{P}^1\tilde{x}_{51} = \mathcal{P}^1 u_{52} = \mathcal{P}^1\beta\mathcal{P}^5 u_{11} = \mathcal{P}^6\beta u_{11} = \mathcal{P}^6\mu_{12} = u_{12}^5$. So we can chose \tilde{x}_{59} as $\mathcal{P}^1\tilde{x}_{51}$. Thus we have

Proposition 2. There is an isomorphism for * < 71:

$$H^*(\tilde{E}_{8;\mathbb{Z}}/5) \cong \Lambda(\tilde{x}_{2n(j)+1}|2 \le j \le 8) \otimes \mathbb{Z}/5[\tilde{x}_{50}] \otimes \Lambda(\tilde{x}_{51}),$$

and

$$\mathcal{P}^1(\widetilde{x}_{51}) = \widetilde{x}_{59}.$$

Because that \tilde{a}_i is transgressed to \tilde{x}_{i+1} and $(\Omega k)^* a_i = \tilde{a}_i$ for i = 50,58, the next proposition is obtained.

Proposition 3. There are isomorphisms for * < 70:

$$H^*(\Omega \widetilde{E}; \mathbb{Z}/5) \cong \mathbb{Z}/5[\widetilde{a}_{2n(j)}|2 \le j \le 8] \otimes \Lambda(\widetilde{a}_{49}) \otimes \mathbb{Z}/5[\widetilde{a}_{50}],$$

$$H^*(\Omega E_8; \mathbb{Z}/5) \cong \mathbb{Z}/5[a_{2n(j)}|2 \le j \le 8]/(a_2^{25}) \otimes \mathbb{Z}/5[a_{50}].$$

with $\mathscr{P}^1(\widetilde{a}_{50}) \equiv \widetilde{a}_{58}$ and $\mathscr{P}^1(a_{50}) \equiv a_{58}$ (modulo decomposable).

By the use of a Rothenberg-Steenrod spectral sequence ([10]):

$$E_2 \cong H^{**}(H_*(\Omega E_{8}; \mathbb{Z}/5)) \equiv \operatorname{Ext}_{H_*(\Omega E_*; \mathbb{Z}/5)}(\mathbb{Z}/5, \mathbb{Z}/5) \Longrightarrow E_{\infty} = \mathscr{G}_r(H^*(E_{8}; \mathbb{Z}/5)),$$

it is easily seen that

Theorem 4. There is an algebra isomorphism: $H_*(\Omega E_{8;Z/5}) \cong Z/5[t_{2n(j)}|1 \le j \le 8]/(t_2^5) \otimes Z/5[t_{10}].$

Remark. The algebra was determined first in [9].

Let σ denote the homology suspension. Examining the spectral sequence, we have the following proposition.

Proposition 5. $\sigma(t_{2n(j)})$, $(1 \le j \le 7)$, and $\sigma(t_{10})$ are nontrivial primitive elements in $H_*(E_8; \mathbb{Z}/5)$.

3. Coproducts, cohomology operations and adjoint actions

Let ()* denote the dual as to the monomial basis of $\{x_i\}$ and put $y_i = (x_i)^*$.

We recall the adjoint action which was mentioned in [8]. Let $ad:G \times G \rightarrow G$ and $Ad:G \times \Omega G \rightarrow \Omega G$ be the adjoint actions for the Lie group G. Consider the induced maps of homlogy groups:

ad*: $H_*(G) \otimes H_*(G) \rightarrow H_*(G)$, Ad*: $H_*(G) \otimes H_*(\Omega G) \rightarrow H_*(\Omega G)$.

Put $y * y' = ad_*(y \otimes y')$ and $y \cdot t = yt = Ad_*(y \otimes t)$. Our result is the following.

Theorem 6. In $H_*(E_8; \mathbb{Z}/5)$, there are $y_{2n(j)+1}$, $(1 \le j \le 7)$, y_{11} and y_{12} satisfying that

У i	y_3	y_{11}	y_{12}	y_{15}	y_{23}	$y_{\scriptscriptstyle 27}$	$y_{ m 35}$	$y_{ m 39}$	Y 47
$y_{12} \star y_i$	y_{15}	Y 23	0	y_{27}	$y_{ m 35}$	y_{39}	Y 47	0	0
$\mathcal{P}^1_{*}y_i$	0	y_{3}	0	0	y_{15}	0	y_{27}	0	$y_{ m 39}$
$\beta_{*}y_{i}$									

All y_i are primitive and $y_{12} * y_i = [y_{12}, y_i] = y_{12}y_i - y_i y_{12}$.

Remark. This result coincides with that of §46-2 of [5].

From now on, we prove this theorem combining the adjoint actions on $H^*(E_{\mathbf{g}};\mathbb{Z}/5)$ and $H^*(\Omega E_{\mathbf{g}};\mathbb{Z}/5)$.

Dualizing the properties of ad* and Ad* stated in [8], we have

Proposition 7. For $y, y', y'' \in H_*(G)$ and $t, t', t'' \in H_*(\Omega G)$

- (1) $1 * y = y, 1 \cdot t = t.$
- (2) y * 1 = 0 and $y \cdot 1 = 0$, if |y| > 0.
- $(3) \quad (yy')t = y(y't).$
- (4) $y(tt') = \sum (-1)^{|y''|t|} (y't) (y''t')$, where $\Delta_* y = \sum y' \otimes y''$ is the coproduct.

172

- (5) $\phi(y \cdot t) = \Delta_*(y) \cdot \phi(t)$, where ϕ is the coproduct and $(y' \otimes y'') \cdot (t' \otimes t'') = (-1)^{|y''||t'|} (y't' \otimes y''t'')$.
- (6) $\sigma(y \cdot t) = y * \sigma(t)$, where σ is the homology suspension.
- (7) If y is primitive then y * y' = [y,y'], where $[y,y'] = yy' - (-1)^{|y|-y'|}y'y$.
- (8) If t is primitive then $y \cdot t$ is also primitive.
- (9) $\mathscr{P}^n_*(y * y') = \sum_i \mathscr{P}^{n-i}_* y * \mathscr{P}^i_* y' \text{ and } \mathscr{P}^n_*(y \cdot t) = \sum_i \mathscr{P}^{n-i}_* y \cdot \mathscr{P}^i_* t.$

Remark. In our case, |t| and |t'| are always even. So $y(tt') = \sum (y't) (y''t')$ and $(y' \otimes y'') \cdot (t' \otimes t'') = (y't' \otimes y''t'')$.

To state the non-commutativity of $H_*(E_8;Z/5)$, we need only the fact:

Lemma 8. $[y_{12}, y_3] \neq 0.$

Proof. Suppose that $[y_{12},y_3] = 0$. Then $H_*(E_8;Z/5) \cong \Lambda(y_3,y_{11},y_{15}) \otimes Z/5[y_{12}]$ for * < 23. Let $\{E_r'\}$ be the Rothenberg-Steenrod spectral sequece conversing to $H^*(BE_8;Z/5)$. Then we have

$$E_{2} \cong \mathbb{Z}/5[s(y_{3}), s(y_{11}), s(y_{15})] \otimes \Lambda(s(y_{12}))$$

for total degree <24. Since $E_{2}' = E_{\infty}'$ in these degrees, there are indecomposable elements z_4 , z_{12} , z_{16} and z_{13} in H^* ($BE_{8;Z}/5$) corresponding to $s(y_3)$, $s(y_{11})$, $s(y_{15})$ and $s(y_{12})$, respectively. Especially, $z_4z_{13} \neq 0$. It is a contradiction. (For detail, see Lemma 5.3 and 5.4 of [6].)

Therefore $[y_{12},y_3]$ is the nontrivial primitive element. So we may define y_{15} by that.

Proposition 9. $[y_{12}, y_3] = y_{15}$.

Since $\sigma(y_{12}t_2) = y_{12} * \sigma(t_2) = y_{12} * y_3 = [y_{12}, y_3] = y_{15}$, $y_{12}t_2$ is the indecomposable element. Thus we may assume that

$$t_{14} = y_{12}t_2. \tag{5}$$

Then t_{14} is primitive and $\sigma(t_{14}) = y_{15}$.

Let ϕ be the coproduct of $H_*(\Omega E_8; \mathbb{Z}/5)$ and $\overline{\phi}(t) = \phi(t) - t \otimes 1 - 1 \otimes t$. ()* denotes the dual as to the monomial basis of $\{t_{2j}\}$. Multiplying a_i and t_i by nonzero scalars or moving them modulo decomposable if we need, we may assume that $a_{2n(j)} = (t_{2n(j)})^*$, $(1 \le j \le 8)$, $a_2^5 = (t_{10})^*$ and $a_{50} = (t_{10}^5)^*$. As t_{10} is dual to a_2^5 , it is easily verified that

$$\overline{\phi}(t_{10}) = 4t_2^4 \otimes t_2 + 3t_2^3 \otimes t_2^2 + 3t_2^2 \otimes t_2^3 + 4t_2 \otimes t_2^4.$$
(6)

 $\mathscr{P}^1 a_2 = a_2^5$ implies $\mathscr{P}^1_* t_{10} = t_2$. Define t_{22}' by $y_{12}t_{10} - t_2^4 t_{14}$. Then by (6) and Proposition 7, $\overline{\phi}(t_{22}') = \Delta^*(y_{12})\phi(t_{10}) - \phi(t_2)^4\phi(t_{14}) = t_{22}' \otimes 1 + 1 \otimes t_{22}'$. On the other hand, since $\mathscr{P}^1_* y_{12}$ and $\mathscr{P}^1_* t_{14}$ are trivial, $\mathscr{P}^1_* t_{22}' = y_{12} \mathscr{P}^1_* t_{10} = y_{12}t_2 = t_{14}$. So t_{22}' is nontrivial and primitive. Put $t_{22} = t_{22}'$. Now we obtain the following

equations.

$$y_{12}t_{10} = t_{22} - t_2^4 t_{14}, \tag{7}$$

$$\mathcal{P}_*^1 t_{22} = t_{14}. \tag{8}$$

Using Proposition 7 and $y_{12}^5 = 0$, we can compute $y_{12}^4 t_{22}$, that is,

$$y_{12}^{4}t_{22} = y_{12}^{4}(y_{12}t_{10} + t_{2}^{4}t_{14}) = y_{12}^{5}t_{10} + y_{12}^{4}(t_{2}^{4}t_{14}) = y_{12}^{4}(t_{2}^{4}t_{14})$$

Here, since $y_{12}t_j$ (j = 14,26,38) is primitive, there exists $\rho_j \in \mathbb{Z}/5$ such that $y_{12}t_j = \rho_j t_{j+12}$, where $t_{50} = t_{10}^5$. Note that $y_{12} (t_{10}^5) = 0$. Therefore modulo the ideal $(t_{26}, t_{38}, t_{10}^5)$, we have

$$y_{12}{}^{4}(t_{2}{}^{4}t_{14}) \equiv 4y_{12}{}^{3}(t_{2}{}^{3}t_{14}{}^{2}) \equiv 12y_{12}{}^{2}(t_{2}{}^{2}t_{14}{}^{3}) \equiv 24y_{12}(t_{2}t_{14}{}^{4}) \equiv -t_{14}{}^{5}.$$

But, since $y_{12}^{4}t_{22}$ is primitive, we obtain $y_{12}^{4}t_{22} = -t_{14}^{5}$. This means that $y_{12}^{i}t_{22}$, $(1 \le i \le 4)$, are nontrivial primitive elements. Therefore we can define the generators so that

$$t_{22+12i} = y_{12}{}^{i} t_{22}, \ (1 \le i \le 3). \tag{9}$$

Next we will observe $y_{12}{}^{i}t_{14}$, $(1 \le i \le 3)$. Since $\mathscr{P}_{*}^{1}t_{58}$ is primitive, there is $\epsilon \in \mathbb{Z}/5$ such that $\mathscr{P}_{*}^{1}t_{58} = \epsilon t_{10}{}^{5}$. On the other hand, from Proposition 3, $\mathscr{P}^{1}a_{50} \equiv a_{58}$ (up to non zero coefficient and modulo decomposable). Dualize it, then we can see $\epsilon \neq 0$. Re-define t_{58} by $\epsilon^{-1}y_{12}{}^{3}t_{22}$. We have

Proposition 10.

$$y_{12}{}^{3}t_{22} = \epsilon t_{58}, \tag{10}$$

$$\mathcal{P}_{*t_{58}}^{1} = t_{10}^{5}. \tag{11}$$

From this,
$$y_{12}^{3}t_{14} = y_{12}^{3}\mathcal{P}_{*}^{1}t_{22} = \mathcal{P}_{*}^{1}(y_{12}^{3}t_{22}) = \mathcal{P}_{*}^{1}(\epsilon t_{58}) = \epsilon t_{10}^{5}$$
. So we can fix

$$t_{14+12i} = y_{12}{}^{i}t_{14}, \ (1 \le i \le 2). \tag{12}$$

By $\mathscr{P}_*^1(y_{12}{}^it_{2k}) = y_{12}{}^i\mathscr{P}_*^1t_{2k}$, \mathscr{P}_*^1 is determined on all t_{2k} . We summarize the results.

Theorem 11. In Therem 4, we can chose the generators satisfying the following table:

t 2j	t_2	t_{10}	t14	t_{22}	t_{26}	t_{34}	t_{38}	t46	t 58
$\overline{\begin{array}{c} y_{12}t_{2j} \\ \mathscr{P}^1_{*}t_{2j} \end{array}}$	$\begin{vmatrix} t_{14} \\ 0 \end{vmatrix}$	$t_{22} - t_2^4 t_{14}$ t_2					ϵt_{10}^{5}		$\frac{-\epsilon^{-1}t_{14}{}^5}{t_{10}{}^5}$

All t_{2k} , $(k \neq 5)$ are primitive and

$$\overline{\phi}(t_{10}) = 4t_2^4 \otimes t_2 + 3t_2^3 \otimes t_2^2 + 3t_2^2 \otimes t_2^3 + 4t_2 \otimes t_2^4.$$

Proof of Theorem 6. Put $y_{2n(j)+1} = \sigma(t_{2n(j)})$, $(3 \le j \le 7)$. Theorem 6 is an

174

immediate consequence of Theorem 1, Theorem 4 and Proposition 5 with Proposition 7.

Fix the basis of $H_*(E_8; \mathbb{Z}/5)$:

$$\{\prod_{i=1}^{7} y_{2n(i)+1} \epsilon_{2n(i)+1} y_{11} \epsilon_{11} y_{12} e | 0 \le \epsilon_i \le 1, 0 \le e < 5\}.$$

Let ()* be the dual with respect to the above basis. We may assume that $x_{2n(j)+1} = (y_{2n(j)+1})^*$, $(2 \le j \le 7)$. Let φ be the coproduct of $H^*(E_8; Z/5)$ and $\tilde{\varphi}(x) = \varphi(x) - x \otimes 1 - 1 \otimes x$. Then the following theorem is easily obtained by dualizing Theorem 6.

Theorem 12. In Theorem 1, we can chose the generators satisfying following tables:

x_i	x_3	x_{11}	x_{12}	x_{15}	x_{23}	x_{27}	x_{35}	x_{39}	x_{47}				
$\mathcal{P}^{1}x_{i}$	x_{11}	0	0	x_{23}	0	x_{35}	0	x_{47}	0				
βx_i	0	x_{12}	0	0	$x_{12}^2/2$		$x_{12}^{3}/3!$		$x_{12}^{4}/4!$				
	x_i	$ \bar{\varphi}$	<i>r</i> _i										
	x_{15}	x_1	$x_{12} \otimes x_3$										
	x_{23}	x_1	$x_{12} \otimes x_{11}$										
	x_{27}	$x_{12} \otimes x_{15} + x_{12}^2 / 2 \otimes x_3$											
	x_{35}	$x_{12} \otimes x_{23} + x_{12}^2 / 2 \otimes x_{11}$											
	<i>x</i> 39	$x_{12} \otimes x_{27} + x_{12}^2 / 2 \otimes x_{15} + x_{12}^3 / 3! \otimes x_3$											
	x_{47}	$x_{12} \otimes x_{35} + x_{12}^2 / 2 \otimes x_{23} + x_{12}^3 / 3! \otimes x_{11}$											

Remark. In [6], $x_{2n(j)+1}$, $(4 \le j \le 7)$, are chosen as our $2x_{27}$, $2x_{35}$, $3!x_{39}$ and $3!x_{47}$ respectively.

DEPARTMENT OF MATHEMATICS KYOTO UNIVERSITY NAGAOKA UNIVERSITY OF TECHNOLOGY DEPARTMENT OF MATHEMATICS KYOTO UNIVERSITY

References

- S. Araki, On the non-commutativity of Pontrjagin rings mod 3 of some compact exceptional groups. Nagoya Math. J., 17 (1960), 225-260.
- [2] A. Borel, Sur l'homologie et la cohomologie des groupes de Lie compacts connexes. Amer. J. Math., 76 (1954), 273-342.
- [3] R. Bott, The space of loops on Lie group. Michigan Math. J., 5(1955), 35-61.
- [4] H. Hamanaka, Homology ring mod2 of free loop groups of exceptional Lie groups. J. Math. Kyoto Univ., to appear.
- [5] R. M. Kane, The Homology of Hopf Spaces, North-Holloand Mathematical Library 40 (1988).
- [6] A. Kono, Hopf algebra structure of simple Lie groups, Journal of Mathematics of Kyoto University, 17-2(1977), 259-298.
- [7] A. Kono, On the cohomology mod 2 of E₈, Journal of Mathematics of Kyoto University, 24-2

(1984), 275-280.

- [8] A. Kono and K. Kozima, The adjoint action of Lie group on the space of loops. Journal of The Mathematical Society of Japan, 45-3 (1993), 495-510.
- [9] T. Petrie, The weakly complex bordism of Lie groups. Ann. Math., 88(1968), 371-402.
- [10] M. Rothenberg and N. Steenrod, The cohomology of the classifying spaces of H-spaces, Bull. Helv., 45 (1961), 211-264.