Adjoint actions on the modulo 5 homology groups of E_{8} and ΩE_{8}

By
Hiroaki Hamanaka, Shin-ichiro Hara and Akira Kono

1. Introduction

Borel proved in [2] that the integral homology group of the exceptional Lie group E_{8} is not 5 -torsion free and

$$
H\left(E_{8} ; Z / 5\right) \cong \Lambda\left(x_{3}, x_{11}, x_{15}, x_{23}, x_{27}, x_{35}, x_{39}, x_{47}\right) \otimes Z / 5\left[x_{12}\right] /\left(x_{12}{ }^{5}\right) \text {, with }\left|x_{i}\right|=i,
$$

as algebra.
Araki showed the non-commutativity of the Pontrjagin ring $H_{*}\left(E_{8} ; Z / 5\right)$ in [1]. The whole Hopf algebra structure and the cohomology operations were determined by Kono in [6]. But it was due to the partial computation of Cotor ${ }^{H^{\star(}\left(E_{\mathrm{E}}: / 5\right)}(Z / 5, Z / 5)$, which was rather complicated. In [5], using secondary cohomology operations, Kane gave a general theorem to determine the Pontrjagin ring which is non-commutative and determined $H_{*}\left(E_{8} ; Z / 5\right)$ as a Hopf algebra over \mathscr{A}_{5}.

Also, for a compact, connected Lie group G, the free loop group of G denoted by $L G(G)$ is the space of free loops on G equiped with multiplication as

$$
\phi \cdot \phi(t)=\phi(t) \cdot \phi(t)
$$

and has ΩG as its normal subgroup. Thus

$$
L G(G) / \Omega G \cong G,
$$

and identifying elements of G with constant maps from S^{1} to $G, L G(G)$ is equal to the semi-direct product of G and ΩG. This means that the homology of $L G(G)$ is determined by the homology of G and ΩG as module and the algebra structure of $H_{*}(L G(G) ; Z / p)$ depends on $H_{*}(\mathrm{Ad} ; Z / p)$ where

$$
\text { Ad }: G \times \Omega G \rightarrow \Omega G
$$

is the adjoint map. Since the next diagram commutes where $\lambda, \lambda^{\prime}$ and μ are the multiplication maps of $\Omega G, L G(G)$ and G respectively and ω is the composition

$$
\begin{aligned}
& \left(1_{\Omega \mathrm{G}} \times T \times 1_{\mathrm{G}}\right) \circ\left(1_{\Omega \mathrm{G} \times \mathrm{G}} \times \mathrm{Ad} \times 1_{\mathrm{G}}\right) \circ\left(1_{\Omega \mathrm{G}} \times \Delta_{G} \times 1_{\Omega \mathrm{G} \times \mathrm{G}}\right),
\end{aligned}
$$

we can determine directly the algebra structure of $H_{*}(L G(G) ; Z / p)$ by the knowledge of the Hopf algebra structure of $H_{*}(G ; Z / p), H_{*}(\Omega G ; Z / p)$ and induced homology map $H_{*}(\operatorname{Ad} ; Z / p)$. See Theorem 6.12 of [4] for detail. Moreover, in [8], it is showed that provided G is simply connected, $H^{*}(\mathrm{Ad} ; Z / p)$ is equal to the induced homology map of second projection if and only if $H_{*}(G ; Z)$ is p-torsion free. Thus the case of $(G, p)=\left(E_{8}, 5\right)$ is non-trivial.

In this paper we determine $H_{*}(\mathrm{Ad} ; Z / 5)$ for $G=E_{8}$ and at the same time, we offer a more simple method for the determination of the coproduct and the cohomology operations on $H^{*}\left(E_{8} ; Z / 5\right)$ using the adjoint actions of E_{8} on ΩE_{8}. We also determine $H_{*}\left(\Omega E_{8} ; Z / 5\right)$ as a Hopf algebra over \mathscr{A}_{5}.

This paper is organized as follows. In the next section we breifly see the algebra structures of $H^{*}(E ; Z / 5)$ and $H_{*}(\Omega E ; Z / 5)$ using the Serre spectral sequences. In the third section we determine the adjoint action of $H_{*}\left(E_{8} ; Z / 5\right)$ on $H_{*}\left(\Omega E_{8} ; Z / 5\right)$ which was introduced in [8]. It gives an easy computation of the Hopf algebra structures and the cohomology operations on them.

2. Algebra structures

Let $n(j),(1 \leq j \leq 8)$, be the exponent of E_{8}, i.e.

$$
\{n(j)\}_{1 \leq j \leq 8}=\{1,7,11,13,17,19,23,29\}
$$

First we see $H^{*}\left(\Omega E_{8} ; Z / 5\right)$ for low dimensions. Let R be the algebra $Z / 5\left[a_{2 n(j)} \mid 1 \leq j \leq 8\right]$ with $\left|a_{i}\right|=i$. By Bott ([3]), the Hopf algebra $H^{*}\left(\Omega E_{8} ; Z / 5\right)$ is isomorphic to R as a vector space. There is a map q : $S U(9) \rightarrow E_{8}$ which induces an isomorphism of π_{3}. Then, $\Omega q: \Omega S U(9) \rightarrow \Omega E_{8}$ induces an isomorhpism of π_{2} and, as showed in [7], $(\Omega q)^{*} a_{2} \in$ $H^{2}(\Omega S U(9) ; Z / 5)$ is nontrivial and $\left((\Omega q) * a_{2}\right)^{5} \neq 0$ for the generator $a_{2} \in H^{2}\left(\Omega E_{8} ; Z / 5\right)$. Thus we have $a_{2}{ }^{5} \neq 0$. It follows that $H^{*}\left(\Omega E_{8} ; Z / 5\right)$ is isomorphic to R for $*<50$ as algebra. Next there is two possibilities (I): $a_{2}{ }^{25} \neq 0$ and (II) : $a_{2}{ }^{25}=0$. That is, we can assume it is isomorphic to (I): R or (II): $R /\left(a_{2}{ }^{25}\right) \otimes Z / 5\left[a_{50}\right]$, for $*<10 \cdot n(2)=70$, where $\left|a_{50}\right|=50$.

Consider the following Serre fibre sequences:

$$
\begin{gather*}
\widetilde{E}_{8} \stackrel{k}{\longrightarrow} E_{8} \stackrel{\iota}{\longrightarrow} K(Z, 3), \tag{1}\\
K(Z, 1) \longrightarrow \Omega \widetilde{E}_{8} \xrightarrow{\Omega k} \Omega E_{8}, \tag{2}\\
\Omega \widetilde{E}_{8} \longrightarrow * \longrightarrow \widetilde{E}_{8}, \tag{3}
\end{gather*}
$$

where c induces an isomorphism of π_{3}.
Let $\widetilde{R} \equiv Z / 5\left[\widetilde{a}_{2 n(i)} \mid 2 \leq i \leq 8\right]$ with $\left|\widetilde{a}_{i}\right|=i$. Computing the Serre spectral sequence associated to (2), we can see that, for $*<70, H^{*}\left(\Omega \widetilde{E}_{8} ; \mathrm{Z} / 5\right)$ is isomorphic to (I): \widetilde{R} or (II) : $\widetilde{R} \otimes \Lambda\left(\widetilde{a_{49}}\right) \otimes \mathrm{Z} / 5\left[a_{50}\right]$ according to the case: $a_{2}{ }^{25} \neq 0$ or $a_{2}{ }^{25}=0$. Let $\tilde{S} \equiv \Lambda\left(x_{2 n(j)+1} \mid 2 \leq j \leq 8\right)$ with $\left|\tilde{x}_{i}\right|=i$. Again computing the spectral sequence associated to (3), we have, for $*<71, H^{*}\left(\widetilde{E}_{8} ; Z / 5\right)$ is isomorphic to (I) : \widetilde{S} or (II) : $\widetilde{S} \otimes \mathrm{Z} / 5\left[\tilde{x}_{50}\right] \otimes \Lambda\left(\widetilde{x}_{51}\right)$ where $\left|\widetilde{x}_{50}\right|=50,\left|\widetilde{x}_{51}\right|=51$.

Recall the fact:

$$
\begin{equation*}
H^{*}(K(Z, 3) ; \mathrm{Z} / 5) \cong \Lambda\left(u_{3}, u_{11}, u_{51}, \cdots\right) \otimes \mathrm{Z} / 5\left[u_{12}, u_{52}, \cdots\right],\left|u_{i}\right|=i \tag{4}
\end{equation*}
$$

where $u_{11}=\mathscr{P}^{1} u_{3}, u_{12}=\beta u_{11}, u_{51}=\mathscr{P}^{5} u_{11}$ and $u_{52}=\beta u_{51}$.
Let $x_{i}=\iota^{*}\left(u_{i}\right)$, for $i=11,12,51$ and 52 , in $H^{*}\left(E_{8} ; Z / 5\right)$. By the spectral sequence associated to (1), we obtain, for $*<58, H^{*}\left(E_{8} ; Z / 5\right) \cong$ (I): $S \otimes \Lambda\left(x_{11}, x_{51}\right) \otimes Z / 5\left[x_{12}, x_{52}\right]$ or (II) $S \otimes \Lambda\left(x_{11}\right) \otimes Z / 5\left[x_{12}\right]$, where $S \equiv \Lambda\left(x_{2 n(j)+1} \mid 1 \leq j \leq 7\right)$ with $\left|x_{i}\right|=i$.

As $\operatorname{dim} E_{8}=248$, we can conclude that the possible case is (II) and $x_{12}{ }^{5}=0$. Moreover, the generators $\left\{x_{i}\right\}$ are enough to generate $H^{*}\left(E_{8} ; Z / 5\right)$. We have determined the algebra structure.

Theorem 1. There is an algebra isomorphism:

$$
H^{*}\left(E_{8} ; Z / 5\right) \cong \Lambda\left(x_{2 n(j)+1} \mid 1 \leq j \leq 7\right) \otimes \Lambda\left(x_{11}\right) \otimes Z / 5\left[x_{12}\right] /\left(x_{12}{ }^{5}\right)
$$

In $H^{*}\left(\tilde{E}_{8} ; Z / 5\right)$, we can chose \tilde{x}_{50} and \tilde{x}_{51} such that $\tau^{\prime} \tilde{x}_{50}=u_{51}$ and $\tau^{\prime} \tilde{x}_{51}=u_{52}$, where τ^{\prime} is the transgression. Then $\tau^{\prime} \mathscr{P}^{1} \tilde{x}_{51}=\mathscr{P}^{1} u_{52}=\mathscr{P}^{1} \beta \mathscr{P}^{5} u_{11}=$ $\mathscr{P}^{6} \beta u_{11}=\mathscr{P}^{6} u_{12}=u_{12}{ }^{5}$. So we can chose \tilde{x}_{59} as $\mathscr{P}^{1} \tilde{x}_{51}$. Thus we have

Proposition 2. There is an isomorphism for $*<71$:

$$
H^{*}\left(\widetilde{E}_{8} ; Z / 5\right) \cong \Lambda\left(\widetilde{x}_{2 n(j)+1} \mid 2 \leq j \leq 8\right) \otimes Z / 5\left[\widetilde{x}_{50}\right] \otimes \Lambda\left(\widetilde{x}_{51}\right)
$$

and

$$
\mathscr{P}^{1}\left(\tilde{x}_{51}\right)=\tilde{x}_{59} .
$$

Because that \widetilde{a}_{i} is transgressed to \widetilde{x}_{i+1} and $(\Omega k){ }^{*} a_{i}=\widetilde{a}_{i}$ for $i=50,58$, the next proposition is obtained.

Proposition 3. There are isomorphisms for $*<70$:

$$
\begin{gathered}
H^{*}(\Omega \widetilde{E} ; Z / 5) \cong Z / 5\left[\widetilde{a}_{2 n(j)} \mid 2 \leq j \leq 8\right] \otimes \Lambda\left(\widetilde{a}_{49}\right) \otimes Z / 5\left[\widetilde{a}_{50}\right], \\
H^{*}\left(\Omega E_{8} ; Z / 5\right) \cong Z / 5\left[a_{2 n(j)} \mid 2 \leq j \leq 8\right] /\left(a_{2}^{25}\right) \otimes Z / 5\left[a_{50}\right]
\end{gathered}
$$

with $\mathscr{P}^{1}\left(\widetilde{a}_{50}\right) \equiv \widetilde{a}_{58}$ and $\mathscr{P}^{1}\left(a_{50}\right) \equiv a_{58}$ (modulo decomposable).
By the use of a Rothenberg-Steenrod spectral sequence ([10]):

$$
E_{2} \cong H^{* *}\left(H_{*}\left(\Omega E_{8} ; Z / 5\right)\right) \equiv \operatorname{Ext}_{H_{*}\left(\Omega E_{*}: Z / 5\right)}(\mathrm{Z} / 5, \mathrm{Z} / 5) \Rightarrow E_{\infty}=\mathscr{G}_{r}\left(H^{*}\left(E_{8} ; Z / 5\right)\right)
$$

it is easily seen that
Theorem 4. There is an algebra isomorphism:

$$
H_{*}\left(\Omega E_{8} ; Z / 5\right) \cong Z / 5\left[t_{2 n(j)} \mid 1 \leq j \leq 8\right] /\left(t_{2}^{5}\right) \otimes Z / 5\left[t_{10}\right]
$$

Remark. The algebra was determined first in [9].
Let σ denote the homology suspension. Examining the spectral sequence, we have the following proposition.

Proposition 5. $\sigma\left(t_{2 n(j)}\right),(1 \leq j \leq 7)$, and $\sigma\left(t_{10}\right)$ are nontirivial primitive elements in $H_{*}\left(E_{8} ; Z / 5\right)$.

3. Coproducts, cohomology operations and adjoint actions

Let ()* denote the dual as to the monomial basis of $\left\{x_{i}\right\}$ and put $y_{i}=\left(x_{i}\right)^{*}$.
We recall the adjoint action which was mentioned in [8]. Let ad:G×G \rightarrow G and Ad: $G \times \Omega G \rightarrow \Omega G$ be the adjoint actions for the Lie group G. Consider the induced maps of homlogy groups:

$$
\begin{aligned}
& \mathrm{ad} *: H_{*}(G) \otimes H_{*}(G) \rightarrow H_{*}(G), \\
& \mathrm{Ad}_{*}: H_{*}(G) \otimes H_{*}(\Omega G) \rightarrow H_{*}(\Omega G)
\end{aligned}
$$

Put $y * y^{\prime}=\operatorname{ad}_{*}\left(y \otimes y^{\prime}\right)$ and $y \cdot t=y t=\operatorname{Ad}_{*}(y \otimes t)$.
Our result is the following.
Theorem 6. In $H_{*}\left(E_{8} ; Z / 5\right)$, there are $y_{2 n(j)+1},(1 \leq j \leq 7), y_{11}$ and y_{12} satisfying that

y_{i}	y_{3}	y_{11}	y_{12}	y_{15}	y_{23}	y_{27}	y_{35}	y_{39}	y_{47}
$y_{12} * y_{i}$	y_{15}	y_{23}	0	y_{27}	y_{35}	y_{39}	y_{47}	0	0
$\mathscr{P} * y_{i}$	0	y_{3}	0	0	y_{15}	0	y_{27}	0	y_{39}
$\beta_{*} y_{i}$	0	0	y_{11}	0	0	0	0	0	0

All y_{i} are primitive and $y_{12} * y_{i}=\left[y_{12}, y_{i}\right]=y_{12} y_{i}-y_{i} y_{12}$.
Remark. This result coincides with that of $\S 46-2$ of [5].
From now on, we prove this theorem combining the adjoint actions on $H^{*}\left(E_{8} ; Z / 5\right)$ and $H^{*}\left(\Omega E_{8} ; Z / 5\right)$.

Dualizing the properties of ad* and Ad^{*} stated in [8], we have
Proposition 7. For $y, y^{\prime}, y^{\prime \prime} \in H_{*}(G)$ and $t, t^{\prime}, t^{\prime \prime} \in H_{*}(\Omega G)$
(1) $1 * y=y, 1 \cdot t=t$.
(2) $y * 1=0$ and $y \cdot 1=0$, if $|y|>0$.
(3) $\left(y y^{\prime}\right) t=y\left(y^{\prime} t\right)$.
(4) $y\left(t t^{\prime}\right)=\sum(-1)^{\prime \prime \prime}|t|\left(y^{\prime} t\right)\left(y^{\prime \prime} t^{\prime}\right)$, where $\Delta_{*} y=\sum y^{\prime} \otimes y^{\prime \prime}$ is the coproduct.
(5) $\phi(y \cdot t)=\Delta_{*}(y) \cdot \phi(t)$, where ϕ is the coproduct and

$$
\left(y^{\prime} \otimes y^{\prime \prime}\right) \cdot\left(t^{\prime} \otimes t^{\prime \prime}\right)=(-1)^{\left|y^{\prime \prime \prime}\right|\left|t^{\prime}\right|}\left(y^{\prime} t^{\prime} \otimes y^{\prime \prime} t^{\prime \prime}\right)
$$

(6) $\sigma(y \cdot t)=y * \sigma(t)$, where σ is the homology suspension.
(7) If y is primitive then $y * y^{\prime}=\left[y, y^{\prime}\right]$,

$$
\text { where }\left[y, y^{\prime}\right]=y y^{\prime}-(-1)^{\left|y \cdot y^{\prime}\right|} y^{\prime} y \text {. }
$$

(8) If t is primitive then $y \cdot t$ is also primitive.
(9) $\mathscr{P}_{*}^{n}\left(y * y^{\prime}\right)=\sum_{i} \mathscr{P}_{*}^{n-i} y * \mathscr{P}_{*}^{i} y^{\prime}$ and $\mathscr{P}_{*}^{n}(y \cdot t)=\sum_{i} \mathscr{P}_{*}^{n-i} y \cdot \mathscr{P}_{*}^{i} t$.

Remark. In our case, $|t|$ and $\left|t^{\prime}\right|$ are always even.
So $y\left(t t^{\prime}\right)=\sum\left(y^{\prime} t\right)\left(y^{\prime \prime} t^{\prime}\right)$ and $\left(y^{\prime} \otimes y^{\prime \prime}\right) \cdot\left(t^{\prime} \otimes t^{\prime \prime}\right)=\left(y^{\prime} t^{\prime} \otimes y^{\prime \prime} t^{\prime \prime}\right)$.
To state the non-commutativity of $H_{*}\left(E_{8} ; \mathrm{Z} / 5\right)$, we need only the fact:
Lemma 8. $\left[y_{12}, y_{3}\right] \neq 0$.
Proof. Suppose that $\left[y_{12}, y_{3}\right]=0$. Then $H_{*}\left(E_{8} ; Z / 5\right) \cong \Lambda\left(y_{3}, y_{11}, y_{15}\right) \otimes$ $Z / 5\left[y_{12}\right]$ for $*<23$. Let $\left\{E_{r}^{\prime}\right\}$ be the Rothenberg-Steenrod spectral sequece conversing to $H^{*}\left(B E_{8} ; Z / 5\right)$. Then we have

$$
E_{2}^{\prime} \cong Z / 5\left[s\left(y_{3}\right), s\left(y_{11}\right), s\left(y_{15}\right)\right] \otimes \Lambda\left(s\left(y_{12}\right)\right)
$$

for total degree <24. Since $E_{2}^{\prime}=E_{\infty}{ }^{\prime}$ in these degrees, there are indecomposable elements z_{4}, z_{12}, z_{16} and z_{13} in $H^{*}\left(B E_{8} ; Z / 5\right)$ corresponding to $s\left(y_{3}\right), s\left(y_{11}\right), s\left(y_{15}\right)$ and $s\left(y_{12}\right)$, respectively. Especially, $z_{4} z_{13} \neq 0$. It is a contradiction. (For detail, see Lemma 5.3 and 5.4 of [6].)

Therefore $\left[y_{12}, y_{3}\right]$ is the nontrivial primitive element. So we may define y_{15} by that.

Proposition 9. $\left[y_{12}, y_{3}\right]=y_{15}$.
Since $\sigma\left(y_{12} t_{2}\right)=y_{12} * \sigma\left(t_{2}\right)=y_{12} * y_{3}=\left[y_{12}, y_{3}\right]=y_{15}, y_{12} t_{2}$ is the indecomposable element. Thus we may assume that

$$
\begin{equation*}
t_{14}=y_{12} t_{2} . \tag{5}
\end{equation*}
$$

Then t_{14} is primitive and $\sigma\left(t_{14}\right)=y_{15}$.
Let ϕ be the coproduct of $H_{*}\left(\Omega E_{8} ; Z / 5\right)$ and $\bar{\phi}(t)=\phi(t)-t \otimes 1-1 \otimes t$. ()* denotes the dual as to the monomial basis of $\left\{t_{2 j}\right\}$. Multiplying a_{i} and t_{i} by nonzero scalars or moving them modulo decomposable if we need, we may assume that $a_{2 n(j)}=\left(t_{2 n(j)}\right)^{*},(1 \leq j \leq 8), a_{2}{ }^{5}=\left(t_{10}\right)^{*}$ and $a_{50}=\left(t_{10}{ }^{5}\right)^{*}$. As t_{10} is dual to $a_{2}{ }^{5}$, it is easily verified that

$$
\begin{equation*}
\bar{\phi}\left(t_{10}\right)=4 t_{2}{ }^{4} \otimes t_{2}+3 t_{2}{ }^{3} \otimes t_{2}{ }^{2}+3 t_{2}{ }^{2} \otimes t_{2}{ }^{3}+4 t_{2} \otimes t_{2}{ }^{4} . \tag{6}
\end{equation*}
$$

$\mathscr{P}^{1} a_{2}=a_{2}{ }^{5}$ implies $\mathscr{P}_{*}^{1} t_{10}=t_{2}$. Define $t_{22}{ }^{\prime}$ by $y_{12} t_{10}-t_{2}{ }^{4} t_{14}$. Then by (6) and Proposition 7, $\bar{\phi}\left(t_{22}{ }^{\prime}\right)=\Delta^{*}\left(y_{12}\right) \phi\left(t_{10}\right)-\phi\left(t_{2}\right)^{4} \phi\left(t_{14}\right)=t_{22}{ }^{\prime} \otimes 1+1 \otimes t_{22}{ }^{\prime}$. On the other hand, since $\mathscr{P}_{*}^{1} y_{12}$ and $\mathscr{P}{ }_{* t_{14}}^{1}$ are trivial, $\mathscr{P}_{*}^{1} t_{22}^{\prime}=y_{12} \mathscr{P}_{*}^{1} t_{10}=y_{12} t_{2}=t_{14}$. So $t_{22}{ }^{\prime}$ is nontrivial and primitive. Put $t_{22}=t_{22}{ }^{\prime}$. Now we obtain the following
equations.

$$
\begin{gather*}
y_{12} t_{10}=t_{22}-t_{2}{ }^{4} t_{14}, \tag{7}\\
\mathscr{P}_{*}^{1} t_{22}=t_{14} . \tag{8}
\end{gather*}
$$

Using Proposition 7 and $y_{12}{ }^{5}=0$, we can compute $y_{12}{ }^{4} t_{22}$, that is,

$$
y_{12}{ }^{4} t_{22}=y_{12}{ }^{4}\left(y_{12} t_{10}+t_{2}{ }^{4} t_{14}\right)=y_{12}{ }^{5} t_{10}+y_{12}{ }^{4}\left(t_{2}{ }^{4} t_{14}\right)=y_{12}{ }^{4}\left(t_{2}{ }^{4} t_{14}\right)
$$

Here, since $y_{12} t_{j}(j=14,26,38)$ is primitive, there exists $\rho_{j} \in Z / 5$ such that $y_{12} t_{j}=\rho_{j} t_{j+12}$, where $t_{50}=t_{10}{ }^{5}$. Note that $y_{12}\left(t_{10}{ }^{5}\right)=0$. Therefore modulo the ideal $\left(t_{26,}, t_{38}, t_{10}{ }^{5}\right)$, we have

$$
y_{12}{ }^{4}\left(t_{2}{ }^{4} t_{14}\right) \equiv 4 y_{12}{ }^{3}\left(t_{2}{ }^{3} t_{14}{ }^{2}\right) \equiv 12 y_{12}{ }^{2}\left(t_{2}{ }^{2} t_{14}{ }^{3}\right) \equiv 24 y_{12}\left(t_{2} t_{14}{ }^{4}\right) \equiv-t_{14}{ }^{5} .
$$

But, since $y_{12}{ }^{4} t_{22}$ is primitive, we obtain $y_{12}{ }^{4} t_{22}=-t_{14}{ }^{5}$. This means that $y_{12}{ }^{i} t_{22},(1 \leq i \leq 4)$, are nontrivial primitive elements. Therefore we can define the generators so that

$$
\begin{equation*}
t_{22+12 i}=y_{12}{ }^{i} t_{22}, \quad(1 \leq i \leq 3) \tag{9}
\end{equation*}
$$

Next we will observe $y_{12}{ }^{i} t_{14},(1 \leq i \leq 3)$. Since $\mathscr{P}_{*}^{1} t_{58}$ is primitive, there is $\epsilon \in Z / 5$ such that $\mathscr{P}_{*}^{1} t_{58}=\epsilon t_{10}{ }^{5}$. On the other hand, from Proposition 3, $\mathscr{P}^{1} a_{50} \equiv a_{58}$ (up to non zero coefficient and modulo decomposable). Dualize it, then we can see $\epsilon \neq 0$. Re-define t_{58} by $\epsilon^{-1} y_{12}{ }^{3} t_{22}$. We have

Proposition 10.

$$
\begin{align*}
y_{12}{ }^{3} t_{22} & =\epsilon t_{58}, \tag{10}\\
\mathscr{P}_{*}^{1} t_{58} & =t_{10}{ }^{5} . \tag{11}
\end{align*}
$$

From this, $y_{12}{ }^{3} t_{14}=y_{12}{ }^{3} \mathscr{P}_{*}^{1} t_{22}=\mathscr{P} \mathscr{P}_{*}^{1}\left(y_{12}{ }^{3} t_{22}\right)=\mathscr{P}{ }_{*}^{1}\left(\epsilon t_{58}\right)=\epsilon t_{10}{ }^{5}$. So we can fix

$$
\begin{equation*}
t_{14+12 i}=y_{12}{ }^{i} t_{14},(1 \leq i \leq 2) \tag{12}
\end{equation*}
$$

By $\mathscr{P}_{*}^{1}\left(y_{12}{ }^{i} t_{2 k}\right)=y_{12}{ }^{i} \mathscr{P}_{*}^{1} t_{2 k}, \mathscr{P}_{*}^{1}$ is determined on all $t_{2 k}$.
We summarize the results.
Theorem 11. In Therem 4, we can chose the generators satisfying the following table:

$t_{2 j}$	t_{2}	t_{10}	t_{14}	t_{22}	t_{26}	t_{34}	t_{38}	t_{46}	t_{58}
$y_{12} t_{2 j}$	t_{14}	$t_{22}-t_{2}{ }^{4} t_{14}$	t_{26}	t_{34}	t_{38}	t_{46}	$\epsilon t_{10}{ }^{5}$	ϵt_{58}	$-\epsilon^{-1} t_{14}{ }^{5}$
$\mathscr{P} * t_{2 j}$	0	t_{2}	0	t_{14}	0	t_{26}	0	t_{38}	$t_{10}{ }^{5}$

All $t_{2 k},(k \neq 5)$ are primitive and

$$
\bar{\phi}\left(t_{10}\right)=4 t_{2}^{4} \otimes t_{2}+3 t_{2}{ }^{3} \otimes t_{2}^{2}+3 t_{2}{ }^{2} \otimes t_{2}{ }^{3}+4 t_{2} \otimes t_{2}{ }^{4}
$$

Proof of Theorem 6. Put $y_{2 n(j)+1}=\sigma\left(t_{2 n(j)}\right),(3 \leq j \leq 7)$. Theorem 6 is an
immediate consequence of Theorem 1, Theorem 4 and Proposition 5 with Proposition 7.

Fix the basis of $H_{*}\left(E_{8} ; Z / 5\right)$:

$$
\left\{\prod_{j=1}^{7} y_{2 n(j)+1}{ }^{\epsilon 2 n(j)+1} y_{11}{ }_{11}^{\epsilon 11} y_{12}{ }^{e} \mid 0 \leq \epsilon_{i} \leq 1,0 \leq e<5\right\} .
$$

Let () * be the dual with respect to the above basis. We may assume that $x_{2 n(j)+1}=\left(y_{2 n(j)+1}\right)^{*},\left(2 \leq_{j} \leq 7\right)$. Let φ be the coproduct of $H^{*}\left(E_{8} ; Z / 5\right)$ and $\widetilde{\varphi}(x)=\varphi(x)-x \otimes 1-1 \otimes x$. Then the following theorem is easily obtained by dualizing Theorem 6 .

Theorem 12. In Theorem 1, we can chose the generators satisfying following tables:

x_{i}	x_{3}	x_{11}	x_{12}	x_{15}	x_{23}	x_{27}	x_{35}	x_{39}	x_{47}
$\mathscr{P} 1 x_{i}$	x_{11}	0	0	x_{23}	0	x_{35}	0	x_{47}	0
βx_{i}	0	x_{12}	0	0	$x_{12}{ }^{2} / 2$	0	$x_{12}{ }^{3} / 3!$	0	$x_{12}{ }^{4} / 4!$

x_{i}	$\bar{\varphi} x_{i}$
x_{15}	$x_{12} \otimes x_{3}$
x_{23}	$x_{12} \otimes x_{11}$
x_{27}	$x_{12} \otimes x_{15}+x_{12}^{2} / 2 \otimes x_{3}$
x_{35}	$x_{12} \otimes x_{23}+x_{12}^{2} / 2 \otimes x_{11}$
x_{39}	$x_{12} \otimes x_{27}+x_{12}^{2} / 2 \otimes x_{15}+x_{12}^{3} / 3!\otimes x_{3}$
x_{47}	$x_{12} \otimes x_{35}+x_{12}^{2} / 2 \otimes x_{23}+x_{12}^{3} / 3!\otimes x_{11}$

Remark. In [6], $x_{2 n(j)+1},(4 \leq j \leq 7)$, are chosen as our $2 x_{27}, 2 x_{35}, 3!x_{39}$ and $3!x_{47}$ respectively.

Department of Mathematics
Kyoto University
Nagaoka University of Technology
Department of Mathematics
Kyoto University

References

[1] S. Araki, On the non-commutativity of Pontrjagin rings mod 3 of some compact exceptional groups. Nagoya Math. J., 17(1960), 225-260.
[2] A. Borel, Sur l'homologie et la cohomologie des groupes de Lie compacts connexes. Amer. J. Math., 76 (1954). 273-342.
[3] R. Bott, The space of loops on Lie group. Michigan Math. J., 5(1955). 35-61.
[4] H. Hamanaka, Homology ring mod2 of free loop groups of exceptional Lie groups. J. Math. Kyoto Univ., to appear.
[5] R. M. Kane, The Homology of Hopf Spaces. North-Holloand Mathematical Library 40 (1988).
[6] A. Kono, Hopf algebra structure of simple Lie groups, Journal of Mathematics of Kyoto University, 17-2 (1977), 259-298.
[7] A. Kono, On the cohomology $\bmod 2$ of E_{8}, Journal of Mathematics of Kyoto University, 24-2
(1984), 275-280.
[8] A. Kono and K. Kozima, The adjoint action of Lie group on the space of loops. Journal of The Mathematical Society of Japan, 45-3 (1993), 495-510.
[9] T. Petrie, The weakly complex bordism of Lie groups. Ann. Math., 88 (1968), 371-402.
[10] M. Rothenberg and N. Steenrod, The cohomology of the classifying spaces of H-spaces, Bull. Helv., 45 (1961), 211-264.

