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High order Itô-Taylor approximations to
heat kernels*

By

Arturo KOHATSU-HIGA

1. Introduction

Let (Q, P )  be the canonical space of the  standard  m  dimensional Wiener
process W  =  (1/17 ', « , W m ). O n  this space, define X  as the solution of the
following SDE (stochastic differential equation):

jtX i -=x+ B,(Xs)d1/17!,± f B o (X s )ds, (1.1)
1 =1 o 0

where, x  E  R d a n d  Bi: i = , m  a r e  sm ooth vector fie lds with
bounded derivatives. It is know n that under the condition that

(det ax t) n L P (Q), (1.2)

X  t h a s  a  sm oo th  density , say  q(t; x , y ) .  H e re  6 F  denotes the Malliavin
covariance matrix of the random variable F.

T he purpose o f th is  artic le  is  to  find  w ays o f approximating q(t; x , y).
Recently, Hu-Watanabe [4] and Bally-Talay [1] , have obtained results on this
p rob lem . L et's  in troduce  these  resu lts . D efine  th e  following se ts  o f  vector
fields

Zo= (13] , j = 1, ••.,
E i={ [B k , V ]; V E E ;_ i,k =0 ,

w h e re  [• ,•]  d e n o te s  th e  L ie  b racke t. N ow  define  for 1 , th e  quadratic
forms

vA (x, n ):= E <1/ n>2
VE  E P - 1

and set

VA (x )  = 1 A  in f  VA (.1. , 7)) (1.3)
1771=1

Communicated by Prof. S. W atanabe, May 20, 1996
* T h is article w as w ritten w hile the author w as visiting the Department of M athematics at Kyoto
University w ith a JSPS fellowship



130 Arturo Kohatsu - Higa

It is  k n o w n  th a t VA(X)> 0  fo r  some A  N  im plies (1 .2) and  therefore the
existence and smoothness of q (t; x, y) .

Theorem 1.1 (Bally-Talay) Let A E  {1, 2, •-•} be s u c h  th a t
UA= tr; VA(r)>0) is non void and let x  and y  be in UA, so that

V A (x) A V A (y ) > O.

Then there exists a nondecreasing function K  (•), there exists some strictly positive
constants c , r, , r-  and  a function irt (x . y )  and for each n > l x - -2y1 , there exists a
function Irti (x, y )  such that the density of the perturbed Euler-M aruyama scheme

with uniform step-size n - 1  satisfies

q (t; x, y ) — q- '1 (t; x , y ) = - - 1 - 7rt(x, (x , y ) (1.4)

with

y) 1+11e1(X, y) I < K  ( t )  lx—yi2\
PTA  (x) ' VA (Y)r'' e

xp
C t ) (1.5)

The function K  (•) depends on the Lm (R d ) norms (for some integer m ) of a finite
number of partial derivatives of the function p o (• ).

Here 47 (x , y )  is the density of the sum of the Euler-Maruyama scheme at time
t  a n d  a n  independent random  variable w ith a  density  defined through the
function po ( fo r  details see [1]).

In  th is  article w e intend to  find an  expansion of the type (1.4) fo r high
order Ito-Taylor approxim ations, therefore  including th e  Euler-Maruyama
schem e. Furtherm ore w e w ill get rid of the conditions VA(y) > 0 and n>1„...%1.
N evertheless w e lose  th e  explic it expressions available  for the coefficient
functions in  th e  re su lt  o f  Theorem  1.1. B u t w e  w ill a lso  p ro v e  th a t the
coefficient functions satisfy inequalities similar to (1.5).

A nother resu lt o n  th is  top ic  has been  ob ta ined  u sing  Donsker's delta
fu n c tio n s  b y  H u -W a ta n a b e  [ 4 ] .  L e t  F n d e n o t e  t h e  s t r o n g  Itô-Taylor
approximation scheme of order 13 at time t  associated to a partition of size n '
(fo r  a  definition see [4] o r  [ 6 ] ) .  T h e  follow ing is a  sim plified version of
Theorem 3.2 in [4].

Theorem 1.2 (Hu-Watanabe). Assume (1.2). Then f or 5>0,

SUP (t; x , y)  — E ( , (Fn
—  y )))I (1.6)

where Or  (x ) denotes the density of  a d-dim ensional norm al randon variable with
mean zero and covariance matrix r2I d . d and  for a a m ulti-index , ar,  denotes the
high order derivative with respect to th e  coordinates indicated i n  a .  C  is  a
constant that depends on a but it is independent of  n and 5.
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T h i s  t h e o r e m  is  o b ta in e d  b y  a p p ly in g  s o m e  g e n e r a l  r e s u l t s  about
approx im ation  o f d e n s itie s  o f  ran d o m  v a r ia b le s  o n  W ie n e r  sp a c e , and
therefore is inspired in  strong approximation techniques. W e applied a  slight
m o d if ic a t io n  o f  w e a k  app rox im a tion  t e c h n iq u e s  t o  t h e  p ro b le m  of
approximating q  ( t ; x , y )  obtaining t h e  natura l im provem ent o f  r a te s  o f
convergence. For exam ple, in the case ,61 = 0.5, 0 . 5  (the Euler-Maruyama
scheme), we have improved the  ra te  in  (1.6) to Cn - 1 . The modification of the
w eak  approxim ation te c h n iq u e  th a t  w e  w ill a p p ly  i n  t h i s  a r tic le  can be
explained as follows.

Consider the weak approximation problem

IE m  (, t) f m  (X1 ) ) 1<C ("1)

ns
(1.7)

where 2 1 i s  a  high order Itô-Taylor weak approximation of order 13, stepsize +,
ti-m; m  E  N ) i s  a  sequence o f  sm ooth functions w ith polynomial growth at
infinity converging to th e  d e lta  func tion . T herefore  th e  idea to  obtain  our
results is centered in  proving that sup C(m ) < 0 0 . To prove this, one has to

o b ta in  v e ry  d e ta ile d  e x p re s s io n s  o f  th e  d ifference  i n  (1.7). T h is  will
invariably take us to consider derivatives of f m  w hich are undesirable if one is
to  p r o v e  boundedness o f  C ( m ) .  T h is  p ro b le m  is  s o lv e d  b y  u s in g  the
integration by p a rts  form ula of Malliavin c a lc u lu s . T h e n  to  finish one only
takes lim its w ith  respect to  m  i n  (1.7). D uring this procedure w e find the
problem  o f  th e  e x is te n c e  o f  densitie s  fo r 5j. . I n  o rd e r  to  o b ta in  s u c h  a
p ro p e rty  w e  p e rtu rb  J?  s lig h tly  w ith  a n  independent norm ally distributed
random  v a r ia b le .  T h e  id e a  o f  p e rtu rb in g  a  random  v a r ia b le  to  ob ta in
existence and smoothness o f  densities has been successfully used before by
Bally-Talay and  H u-W atanabe . T h is  method gives a  bound to  the  speed of
th e  w eak  convergence  o f the  approxim ation to q ( t ;  x ,  y )  .  T o  o b ta in  an
expansion o f  the  e r ro r  in  term s o f the  pow ers o f the  step  size  one uses the
above idea combined with the methodology developed by Kloeden, Platen and
Hoffmann in [7].

O u r  m a in  r e s u lts  a r e  T heorem  3 .1  a n d  T heorem  5.2. T heorem  3.1
expands th e  resu lt o f  Theorem 1.2 by proving  that the rates of convergence
f o r  t h i s  p r o b le m  c a n  b e  c o n s id e r e d  a s  w e a k  a p p ro x im a tio n  rates.
Furtherm ore a  generalization o f  th is  re su lt  (T h e o re m  4 .1 )  i s  one  o f the
ingredients in  the proof of Theorem 5.2. Theorem 5.2 proves the existence of
an expansion of the e rro r  in ternis of the stepsize of the approximation, under
the hypothesis that VA (x) > O, therefore improving on the resu lts of Theorem
1.1. Theorem 5.3 is  a  slight extension of Theorem 5.2. This extension deals
with the approximation of a heat kernel with a potential.

T hese  resu lts  cou ld  h a v e  a  variety of applications w hen coupled w ith
M onte Carlo m ethods in  o rde r to  s im u la te  approxim ations of heat kernels.
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Furtherm ore th e  development o f  t h e  e r r o r  o f  ap p ro x im a tio n  in  te rm s  of
powers of the step size provides a  way for constructing extrapolation methods.

2. Preliminaries

W e start by introducing som e notation mostly taken from Kloeden and Platen
[ 6 ]  .  O n  t h e  canonical m -dim ensional W ie n e r  s p a c e  l e t  9 t ( s , x ) ,  for
0 b e  th e  f lo w  d e fin ed  b y  th e  following stochastic differential
equation (sde):

rn et
(P f(s, x ) — x + Bt ((Pa (s, x))dWt.

t=0 s

where Hi: R d — >R d a r e  sm ooth functions with bounded derivatives for j = 0,
1 - . ,  m .  W e use the notation di41= d u .  W e then  have th a t X. =  9 t(0 , x ).
Let A n=  {(j 1, •••, jr); E  { 0 , • • • ,  m}, i E {1, 1), for 1=1, •-•1 U {v} where y
denotes the m ulti-index o f  le n g h t 0 . F o r  a m ulti-index a= ( j i ,  • • • , j i )  define
th e  length o f  a a s  1 (a )  = 1 , also define n (a )  a s  th e  num ber o f  zeros in  a,

— a= (j2, • - , j i )  and a —  =  (j 1, • • • , jr-1). Then for f: [0, x  Rd- Ai define the
following operators:

d

Lif (s, x) =  EB 11 (x) n
a f

k

 (s, x), j =1, • • • , m
k=1 OX

(s, x) x) + (x)  af (s, r) + 1 B (x )B (x )  3 a2h-
 ( S ,  X )

k=1 axk 2 kd=1 j=1 Xl

where v i  denotes the j - th  component of the vector y, j=  1, •••, d.
For a= (j i , •••, j 1)  define by induction

In the case tha t the function f  is not explicitly stated w e shall alw ays take it
to  b e  th e  identity function f ( t ,  x )  =  x .  A lso define th e  following Wiener
functionals for v : [0 , 7]  X  S2— > R d a n  adapted ca.dlag, L2 ( [0 , 7] )  integrable
w.p. 1 stochastic process:

l a [ V ( • )].5 ,t — {
; if

la s t  =  ía [1] s ,t. A l s o  le t T i3=- {a E  l i m ;  1 ( a )  • /9 )  and B (F s) =  {a E  Aim TB;
— a e r d .  W e also define multi-indexes for the derivatives in R d . For this,
let P i ='.Pf = {1, • • •, d}  1 , for V=(pi, , PI) EP,, define

al OP = , FP (Y ) =  H YP h.
Ya Y p 1 '•'0Y h=1

f ; if 1 = 0
f a = {

L i v

.

,  ;  i f 1 .

(2.1)

(t) if 1=0
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Now we introduce some basic tools from  Malliavin calculus that w ill be
used throughout th e  te x t . F o r  further reference see [9 ] .  Let C7 (R ") be the
s e t  o f  C " functions f :  R n m  R  w h ic h  a r e  bounded  a n d  h a v e  bounded
derivatives o f  a l l  o r d e r s .  T h e  c la ss  o f  rea l random  v a riab le s  o f  th e  form

wt n ), f E C77 (R ') ,  i s  d e n o te d  b y  i i .  D "  designates the  Banach
space which is the completion of .0  with respect to the norm:

{EIFIPFP+ [ { f 1iDisFi2ds}P/2
] ) "

,,
,

:1=1 0

where
n

Dis F =  E  (w 1,, • • •,
i = i  ax ii

Da.° is defined analogously and its associated norm  is denoted by 0'
Also, le t Dc" = n n D .  A s  w ith  4  w e w ill a lso  use the notation a ,  for

pcpri and 14,E [0, . By extension we denote IHIo.pmLiIp th e  norm in LP (Q).
N ow  w e w ill introduce the conditions associated w ith the existence and

smoothness o f  th e  la w  o f  the  so lu tion  t o  (1 .1 ). L et's define th e  Malliavin
covariance matrix of F  as 0 = <D E ', DP> 1.2to,Ti•

Let V A  defined a s  in  (1 .3 ). It is know n that  VA  (x) > 0 fo r  some A E N
im plies (1.2) and therefore one obtains the existence and smoothness of the
density of the law of the solution to (1 .1 ). W e will assume that VA (X) >0 for
some A EN throughout th e  r e s t  o f  th e  a r t ic le .  Furtherm ore Kusuoka and
Stroock [5] (Corollary 3.25) obtained the following estim ation for (det ax e)

11(det < M (1± H )( 2 . 2 )
V A (X) tx

w here  Mp, i , c  a n d  K  depend  on ly  o n  A .  W e  w i l l  u s e  t h i s  estimation
throughout the  text w ithout further m entioning. A lso, from  now  on  we will
use different notations for constants that may change from one line to the next
although we use the sam e sym bols. The dependence of these constants on the
different da ta  o f the problem  is explic itly  sta ted  a t each equation. W e w ill
consider from now on that d, m , A, 13EN, T E R ,  B i , i 0, 1, •••, m are  fixed
throughout the article.

3. Bound for the error of approximation

First w e in troduce th e  Ito - Taylor w eak approximation t o  (1.1) o f order
W e denote  it by  a t; tG [0, T] )  and it is defined as

- ; t = faCX- rn )Ia,„,t for rn+i,a er s
L=X.
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w h e r e  re: 0= vo < G • • • < z-N =  T  is a  p a r t i t i o n  o f  [0, 7] s u c h  t h a t
s u p  (ri+1. — ri) D efine n(t)= sup  {ri; 't- i t }  a n d  n (t) -= rt, as the

i=o... N -1

integer such that 7/ (t) = to ).  T o  s im p lify  notation we will use g n = g ,„  where
{g i ; t e  [0 ,  T ] } is  the  natura l filtration generated by W . In  th e  same spirit
we will do the same for processes, that is, x n --=x - r „, etc.

N ote  th a t a lth o u g h  s tro n g  a n d  w e a k  approxim ations are  d ifferen t in
nature one can still obtain the following properties:

X , E D  and
s u p  E  sup IDV7t — D"Xtl e _<C5", (3.1)

u. [0, nb te to, TI

where IT =4, c is  a positive constant that depends only on b E  ( 0, 1, • ••), 2

and  a E  P .  T h e  method of proof of these  assertions is th e  sam e as in  the
proof of Theorem 3.1 in  [4].

In  order to find an expression for the e rro r  in  powers of 5  w e first have
to prove that the rate of convergence of the scheme X, in the weak sense, is of
o rd e r  13. W e  w il l  p r o v e  th is  r e s u l t  a f te r  a  s e r ie s  o f  Lemmas. Define

c(S) = C 15* .

Theorem 3.1. A ssum e tha t VA (x )>  0 , C i> 0 an d  t>  O. T h e n  for
p E n (p) -= 0, we have that there exists positive constants M, jt, ic  and c that
depend only on the multi-index p and therefore all the constants are independent of
x, y , t, 5 and the partition it  such that

y)1<114 (1+14"  5 ,6suplat,E [Sbe(a) (-: ; t — y )] (t; x,
1K VA (X) c

where Or (x) denotes the density of an d-dimensional normal random variable with

mean zero and covariance matrix r2 I d x d . q  (t ;  x ,  y )  denotes the density of X, at
y E  R d

.

From  now  o n  w e  assum e tha t p E  .41d, n (p) = 0. A lso  to  m ake  the future

notation easier let g (5) = C51 , h  (5 ) =  K e  such that e (5) „/K2 ± —2 o i  with
> 0 and O. Note th a t due to  their d ifferent nature  there  should  be no

confusion between e (5 )  and e used in  (3.1).

Lemma 3.1. e2 (5) = h 2 (5) + g 2 (5) implies that

5t,E[oe(5)(k- t— y)] = ap,E [0 g ta) (,1? t -  h  (5 ) W  r y )] (3.2)

where {TV; t E  [0 , T D  is a d- dimensional Wiener process independent o f  W . E
denotes the expectation on the extended sample space supporting (1/ V, W)

The proof of this Lem m a is obtained by a  d irec t integration o f W  in the

r ig h t s id e  o f  (3.2). T o avo id  excessive nota tion  w e w ill stop  using  t h e  F
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notation in the future assum ing that is understood that we are  considering the
extended sample space supporting (IV, 'W ).  W e will keep using the notation
{5f t; t e  [0, 7 ] )  to denote the filtration generated by {W s ; sE [0 , 7 ] ).

T he next lem m a is an application of the integration by parts form ula in
the version that we will frequently use in our calculations.

Lemma 3.2. L et s  < t .  L et U  and  Z  b e  Rd an d  R  valued random
variables respectiv ely , that belong to D .  T h e n  th e re  e x is ts  positive integer
constants a l ,  a2, C, p', e, b, that depend only on p such that

supIE [aN g (a) ((pt (s, +h  (5) W  T  y) Zi

Cil (d e t a  0 u) „ (2) W 'MIicot (s + h (6) W

The proof of this lem m a is sim ple and involves applying integration by parts
1 (p) +d - tim es. Then one applies standard inequalities.

T he next lemma provides a  bound for Il (d ets-e- ( , 0  +  h  (2) Wr ) l ily fo r some
particular values of U .  The basis of this Lemma can be traced back to [8].

Lemma 3.3. The following inequality is satisfied for any p'EN, K> 0

m(1+1/1) sup Ii (det a fp, L',) + I I  (2)
t ) e  tP.s r2s-26)V A  ( X )  tx

where U, is equal to either of  the following processes: )?',, + (:Vn —
n-1+ 0 (q)n (rn-1, Y fl - )  k -

- f l - )  o r (Pn(Tn-1, n - 1 ) ,  f o r < rti+1 where
OE [0 , 1 ]  is a parameter in  [0 , 1 ]. Here M, i ,  c  and IC are positive constants that
depend only on p', and in particular do not depend on x, I, 0, 71' or 5.

Proof. A s  i n  L em m a 2.1  in [4 ] ,  le t 's  d e n o te  H6 =det a q„(s.cr +),(a)w„
H =det
Then one obtains that

EH- P' + (E11 - 4 k )
i  
221  ̀(E lli 2 P') Ii(E (H6 —H) 4 ') ( 3 . 3 )

for any k EN  . In any of the cases considered we have the following estimates

E r i v y (p ')h  (5 ) - 4y(d+m) ,  E  4 -6 H ) 4 k <  (k ) 52(k) (3.4)

w here 9(k) is a positive increasing function of k, such that 13(k ) Î 0 0  a s  k- 0 0 .
F or exam ple, to  prove (3.4) in  the  case  U =2", one h a s  th a t fo r  any vector
v E R d ,

V
T

0-0,(s, (a)(:(,,t) h (5) 2 Tliv112

Note tha t a s  det (infittl=ivTCv)d+M for a n y  (d +m)  X  ( d + m )  matrix C, the
proof o f  (3.4) fo llo w s . T he  proof o f the  Lem m a is obtained by taking k big
enough in  (3.3).
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The next lemma deals with one aspect of the problem we are interested in
so lv in g . T h a t is , th e  particular case when the approxim ation is  the  process
itself.

Lemma 3.4. Let sC  [0, 7 ] an d  Z be R2 valued random variable that is
,.7" - m easurab le (s E N ) such that ZED". Furthermore, let G: Rd x R2 R  be a
smooth function with polynomial growth at infinity. Then f or TE  N

at,E [175e(d) (Xt — y) G (Xs, Z)] — at, (q(t; x, y) E (G (Xs, Z) / X 1-=  y)) =
te (5) 2 A (s, t; x , y) } +B (s, t; x, y , 5). (3.5)

2 ) s- r

such that for r , there exists function Ai: [0, 7 ] 2  X  (R d
)  

2
 — >R, Br :  [0, T] 2  X

(Rd) 2 x  R+ --eR positive constants M, u, c,K that depend only on p with

SUPIA.i (S ,  t; Y)
<111(1±14 

V A  (X ) c

Br (s, t; X , y, (3)  i< M(1 - Fix1)̀  ̀

Furthermore the following estimate is satisfied

supl (g(t; x , y) E (G (X X t= 
0 ) 1 ‹  m  (1 + lx 1 )

( 3 . 8 )
VA (X) c r

In particular, note that the constants above do not depend on x, y, t, 5 or s.

Sketch of  the Proof. W e w ill d o  th e  proof fo r  y  2 ,  d = 1. L e t a >  0,
n E  N . Define (x i )  =  On-a ((Pi (X) + x  —  y) G (ços (r ),  .  Then using
Lemma 3.1 and Taylor's formula for F one obtains:

E [F (e (5) 1 / T) — F (0)] E [  E ( F (0) (e (d) T )  j )

Wr) 3dudvifollovdd:rI F tne 1(41 e
d
(
x
5

1;

The residue  B  is  de fined  a s  th e  last te rm  in  th e  above  equation . Note that
F (0 ) and its derivatives are  g t - m easurable . Therefore  by the  independence

between W and 1-47- , one finds that all the odd order term s in  the  first term  on
th e  r ig h t o f  th e  above equation have expec ta tion  O . F rom  th e  even order
terms one d e f in e s  A . For example,

T(s, t; x , y) -= 2  E
[ d 2

 d y 2 O n - . (Xt — Y) G (X s , 41.
Using (2.2) and Lemma 3.2 with n  playing the  role of g  (5) and s =0, K = 0,
one  o b ta in s  th a t  (3 .6 ) is  sa tis f ie d  w ith  A "  in s te a d  o f  A .  N ote th a t  the
constants do not depend on n.

supl 55(r+1/2)—  
V A  (X ) c tx

( 3.6)

(3.7)
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Then by taking lim its w ith respect to n  one obtains (using, e.g., Theorem
2.1 in  [4 ])  that the above converges uniformly in  y  to  a function of A1 defined
as

T   d 2 ,
A l (s, t; x , y )  =  2  d y 2 x ,  y )E(G  (Xs, Z ) /X t=y ) ) .

Similarly, E[F (e (5) 1/V F ( 0 ) ]  converges to th e  te rm  o n  th e  le f t s id e  of
(3.5).

P roperties (3.6) a n d  (3 .7) are  obtained by taking lim its. R epeating the
above argument one obta ins (3.8). That is, note that the first term  on the left
side o f  (3.5) is also bounded by the expression on the right o f  (3.8) where the
constants do not depend on n. Now using the triangular inequality a n d  (3.5)
one obtains (3.8).

T h e  s te p s  to w a rd  t h e  p roof o f T heorem  3 .1  a r e  s im ila r  to  th o se  in
Theorem  14.5.2 i n  [6] . T h ere fo re  w e  w ill a lso  n eed  a  resu lt s im ila r to
Lemma 5.11.7 in  [6].

Lemma 3.5. W ith the definitions above we have:

(i) E ( (x n—  Çon(Tn-i, L -1 ) )  k/ )

t 1 5 2
ELf . ((1).si (rn-i, X n-1))/gn-ildsr ''ds8+1,

w ith  a*= (0 , ••• 0 ,) w ith  1 (a * ) — 13+ 1 -

(ii) E (F p (L  — L-1) F p  (q )n  (rn -  L 1 )  L - 1 )  n - 1 )

v l
dv l d f

=
1

4.■ Tri — r n )  / g 1 2 - 1 )r=1 r ! k i  ,.. kr =1

whereI c i ...  r r n )  — qFp• 2 n - 1 )  H ( (P n ( r n - l i  L - 1 )  • k n ) k '• (3 .1 1 )
1=1

For some qE { 1, • •• ,l(p)}  and p' E  P 10)-r which are functions of p  and r.

(H. ) I n  (3.11) for r= 1  we have that for some q and p ' as above,

n ; ; „
F  k

= E  I a [ A ( (P s i ( rn - l•  X n -1 ) )  J n-1,n1 IC/ f r ( s ,  A n -1 )  d W i
s l (3.12)

«EB (rd3 = 0  rn-1

For the definition of Pp,  se e  (5.11.12) an d  (5.11.13) in  [6].
Furthermore there exists constants M , st,i that depend on b C  (0, 1, •••}, 2, p  and
r such that for r>...1 or l(p') 2, we have

111 (ç o n (rn -1 , k- n-1) — fen) k iF p ' —LE (1 -1 )  / fn - l) 11b,e (1+14 4' 6 1 3 + 1

1=1

(3.13)

(3.9)

(3.10)

for Z =5e n , (-n -1 , •kn-1 ) •
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Note that F4,,  (s, L -1 )  always satisfies that rn-i Tn.

Proof. (3.9)- (3.12) h a v e  b e e n  p r o v e n  i n  L em m a 5 .11 .7  of [6].
Therefore, w e only prove (3 .1 3 ) . T he  proof is done by  c a s e s .  W e w ill do

the proof in the case b = 1, r=1, i (p) 2, Z = Rn . The proof in the other cases
i s  s im ila r .  In  th is  c a se  b y  (3 .12) w e  o n ly  n e e d  to  c o n sid e r  for
1(a) -- =13+ 1, r= 1, • • •, d

D E  (Ia (c0s 1 ( rn -1 , k - n )) ]n -1 ,n i I n ( s ,  Rn-1) d Wj
s / g n-1)

rn-1
=E (Ia [DTK r( .9, ( -n-i, ,Rn))1] n- in

(s, Xn _i)dVV,s + Ia L1 ( ( p s , ( r n — i ,  n ) ) ]  n-1 ,n

f Tn

( S ,  j j f l - i )  } d .
n-i t

Here we have u sed  (3.1) and that 4.(s, c D-  fo r  all j ,  p ,  uniformly in  s
and n. Furthermore there exists M and r depending on p', e and b such that

sup111?1, ( s, Rn-1)111,,e M  +ixOr

W ith this property and Lemma 5.7.2 in  [6 ] the result follows.

T h e  follow ing Lem m a w ill be th e  b ase  f o r  proof of Theorem  3 .1  and
Theorem 5.2. Its proof resem bles th e  proof of 14.5.2 i n  [6]. From  now  on
we will assume without loss of generality that t- E7r.

Lemma 3.6. There ex ists m easurable functions G (I, p , 1 , w ,  n, x, 5)
w , n, z, x, o), w  Q, x, zE lid , such that

,±1,
E (y5e(s) (R1 —  y) 95e(s) (X 1 — y )) = E ELE [a g03)i:06 ( 0  (7 - )_„ t

n=1 1=1

+ h (5) WT —  y) G (t, p, 1, W , n, x, (5)]) +E (Rn,0 +Rn,5 (u 2 ) ) ) (3.14)

where

ER,,,,s? = E ( I  • aly ( ( p ,  ern, z 0, +h (5) W T— Y)
1 f  32

0 0

and  P 1 = U Pi, Z (0, = 0(U — in - i ) .  Furtherm ore G and satisfy fo r
i=1

o r U 2  gOn ( r n -1 ,  Z -1 ) and e,

11G p, 1, • , n, x , 5 )111,e+ ±11J (t, p, , n, Z (6 1, , x, 5)11:.e M (1+14 u5
5
+1 ,

1, 13,0+1,

J(1, p , w, n, Z  (0 ,0  ,  x, 5 )d  eds2 . - dsvs+1))

i i

(3.15)
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w here M, and tt depend on ly on  p, 1, e and b.

Proof. Let u (s, z) = E (g5e(a) ((Pt (s, z) y ) ) .  Then u (t, z) Oe(j) (-Z y)
and e u  (s, z) = 0 for s<t, z  E  R d . Now we calculate, using Itô's formula and
Taylor's expansion:

E.006)()?t — Y) — 0e(a)(xt — y)) = _ E (  { (u ern, —u (rn-1, L i ) )
n=1

- ( rn, (iOn (in -1 , L-1)) —u ern_1, ;v- n_i)) })

= E(_Ln

{ (u ( i n , L )  —14 (in, L -1 ))
n=1

— (14 ( rn, 9n ( rn-1, i ) ) )  U  (rn, L - 1 ) ) ) )

= E [ (
n± ( 2 1 - 1  1

(  z lafi, 7-n, n_
—

(F X n– 1)
n=1 \ 1=1 11 p e p ,

—Fp (9 n  (in -1 , R n - 1 )  L - 1 )  )  + R ,  ( L )  R  n ,13  (9n R n - 1 )  ) ]

(3 .16 )

where

(3.17)

The idea in  the  re st of the proof to follow is to consider each term  in  (3.16),
apply th e  definition o f u  a n d  define G  and G. T h e n  w e  u se  Lemma 3.5 to
prove that the random variables G and J  obtained in  this form  satisfy (3.15).
We divide the calculation in parts.

1. B y  th e  definition o f  u  a n d  Lemma 3.1, w e  h a v e  tha t there  ex ists
polynomials of degree less than I (p) , Pp ,  such that

a  U (in , Rn-1) afE (0e (3) (9 t ( rn, L - 1 )  y) / )

= E ((O r 0,(6)) (91(rn, + h (o) W  T  y )
P
p p , (d i çot ( rn, Z-1)= 1 ,  • •  •  ,  i ( p ) ) / g n ) , (3.18)

dx)

w h e re  t h e  s e t  p' p ,  i s  c o m p o s e d  b y  a l l  possible indices p ', I (p') E
{ 1 ,  • • •  ,  1(p)}  , se lec ted  from  p  i n  t h e  sanie o r d e r  a s  th e y  a p p e a r  in  p.
Obviously, Pp, (

d ' t ! " - ')  j = 1, • • • , 1 (p )) E D-  an d  furthermore for a E n - E r n

s u p  E (  s u p  IM P y
(cP(ptern,,k-n-1) 

1  • • •  /  ( 0 ) 1 e )—
uE[o,rib tEtz-n ,Ti dxi

(3.19)
where M and tt depend only on p , e and b. W e w ill apply (3.19) to 2 .  and 3.

R n ,8  ( Z )  = E  f  • • • I  R n - 1  + (Z —  k- n-1))deds2. • •ds2 (13+ D.-Pp L-1 )
s2

„ p a s , ,  o
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b e lo w . In  th e  re s t of this proof w e w ill denote such a polynomial by Pp, to
simplify the notation.

Now, we can define G as appropriate sums of terms of the type

( P t  ( r n ' , /(P))E E(Fp(f —
dx '

— F p((Pn(Tn-1, k n -1 ) — - f l / - ] .

is defined analogously. Now we will prove that they satisfy (3.15).
2. W e  n o w  s tu d y  t h e  f i r s t  t e r m  o n  t h e  r ig h t  o f  (3 .1 6 )  in  p a rts .

Consider

A =  E O N  ern, E (Fp ()7n — ,k- n- 1) — Fp(çon(rn - 1, Z - 1 )  —  Z - 1 )  n - 1 )  1,

for n=1, •••, n t ,p E P I , 1=1 , • - • ,  2,8+1.
2 .a  In the case 1= 1, we have p = (k) , therefore by (3.9)

S2

A = ••• ( i n ,  X
-

n - 1 ) .4 * (
(
Ps1ern-1 ,

rn-i

with a* -= (0 , ••• , 0 ) with I (a*) = s + 1 .  Applying step 1 . to A , we have that
the above expression can be written as finite sums of term s of the type

f r n
 •  " f  s '  E  [a k 0 (0 (rn , , - -Y-n-1 ) +h (5) vT7  T — Y) P pr111,* ( s (rn- 1, .kn-i))]r r n _ iy  g ( 5 )  ,  t  

d S i. 
-

dS 8+1.

Furtherm ore, using (3 .1 ) and properties of the flow (pt w e  have that there
exists M  and p  depending only on p, h, e and b such that

sulAPYA* ((Ps (rn-1, )712-1))lib ,e lf f  (
1

± IX I )  U .

2 .b  In the case 2 , r  = 1 , w e u se  (3 .10 ) a n d  (3 .12 ) to  obtain  that the
following is one of the summands of A  (the other summands are considered in
2.c)

-
E (a lit ( rn, -k71 -1) E (ia [ficcx ( ( P s  i n - 1 ,  X n - 1 ) )  in -1 ,n  f  b ip" X n, -1) d W is/ g n-1)) ,

r12-1

(3.20)

for k  = 1, • • • , d , a  B (F8) , Pi - Y and j = 0, •••, m. A s  i n  2.a, here we also
find from 1. a n d  (3 .13) th a t  (3 .20) can be written in terms of

E  ( ô ' g o ((pt ("rn, je n-1) +h  ( 5 )  W T  y )  P (I aLecfr ( St

frn-1 
trip- (s, X n-i) d WV g n-0) ,

and that there exists constants M  and f t  depending only on p, I, e  and b  such
that for
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(ia (gos, n_i,„f rn F)1,- cs, r(n-OdW is/ gn-1)116,e
rn-1

M  (1+1 4  "5 8 '

2 .c  Now we consider the case, that involves

E o p u e z - „, ( fk i kr (rn-1 , rn) /  • 7n-1)) •

Considering (3.11), one obtains that for p - E P I - r

( H ((On Z-1) — Z) NE'," / gn -1 ) + lxi) g55 +1

=I

where M  and g  depend only on p, I , e  and  b. T he  above inequality follows
from  (3.13) and 1.

By considering the  calculations in  1. and 2. w e have finish the proof of
th e  f ir s t  p a r t  o f  th e  L em m a. N ow  it only  rem ains to  consider th e  residues

R , 5 ( L )  and Rn.B ( ( PrnZ - 1 ) )  •

3. B y  (3.17) it  is  e n o u g h  to  p ro v e  th a t fo r  Z n ,  (Pr n (rn — I, k-  n- 1),
PEP2o+D

(z—Z-1) Ilb,e M (1 + 1x1) g5B+1,

for some constants M  and g  depending only on p ,  1, b and e. A s before, this
inequality also follows from  Lem m a 3.5 a n d  1.. Note th a t  in  th is  case Pp ,

denotes a polynomial like in  (3.18) with ,V,i _1+ (Z — Z_ 1 )  instead of L-1.
Putting together all the steps from 1. through 3. the result follows.

Now, we are ready to give the proof of Theorem 3.1.

Proof  o f  Theorem 3.1. F irst by  L em m a 3.4 f o r  G =  1 , w e reduce our
consideration to

y) —aNe(5)(x- i—o]
Now we apply Lemma 3.6 to  ob ta in  an expression l ik e  (3.14). We analyze
each term as we did in the proof of Lemma 3.6.

First w e apply Lem m a 3.2 to  th e  rem ainders. W e then  find  tha t these
terms are bounded by an expression of the form

n  2
E  EC ( i )  SUP (II (det (5) -iedia ( z (0, w)11,,,ew,(1-., z (0, ui))11g,i),

n=11=1 lie10,11

fo r some positive constants a l , a2, q , b , e , C ( i ) .  Then using Lemma 3.3, the
estimate in  (3.15) and classical methods to find stochastic derivatives of sde's
we obtain that this term is also bounded by a term of the type m

i .(,;,+ ( x
li ):5B.

The only term  left in  (3.14) can  be  handled  sim ilarly . In fact, this term
is bounded by
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2,9±1

C(1) (det a <p,(r„, 1)d-h(5 )1 ,Tir )  
1 11̀»IIGIlb,elk 0 t (rn, fen-1)

n = 1  1 = 1  p eP t

fo r  some positive constants a l ,  a 2 ,  q ,  b , e ,  C ( 1 )  and  G  i s  th e  function that
appears in  Lemma 3.6 w ith  11G ib,e M  (1 + laC #58 + 1 ,  where M  and a  depend
only on /, p ,  b, and e. Then by Lemma 3.3 the result follows.

4. An extension of Theorem 3.1.

Before we start to develop the error of approximation in term s of the stepsize
5  w e  w ill w o rk  o u t a n  e x te n s io n  o f  Theorem  3.1 th a t w ill b e  u se fu l to
understand a finite inductive argument to be used in the proof of Theorem 5.2.

F o r  t h i s ,  w e  e x p a n d  th e  n o ta t io n  o f  P p  t o  t h e  fo llow ing  case

Ft,(f a , ( y ) ) =  H  (fa, (y )) fo r a l ,  •••, a 1 E  ./lim and p  =  ( I i , 3.1). We also

need to introduce some new no ta tion . L e t a E  { 1 ,  • • • ,  N I and define

P P =  {(Tto , • • T 1 ) ;  a , • • ', j o E •* * , N 1 , Tin , • • •. E  TC, 0  r i a  < • • • <"Ti o t } .

F o r  r=  (r j a , ••-, rj o ) e P ' j t d e f i n e  t h e  p ro je c tio n  7 4  f o r  b _<a as rct (r)  =

(Via ,T j 3 -1). Also let

(rja, ••-, 710 , t) ; if Tj o < t

; if ri e =t.

In the case z-j o <t, we understand that V1 1 t.
For s ria _ i  and jE  N  define

( Pr (S, X) ( Ph-1(Th ,  ( P t i - 1 ( T t y , •  •  (Via , q ) t a -1 ( S ,  x ) ) " • ) ,

 ço,(s, x) , (V, , • ))((p ., _ 1 (7, •-• z- , ço, x ) ) • • . ) .ax' ax, 0 1 1 2 (' (1' _ i (s • a

In  th e  particu lar case  tha t w e  consider ço,t o r  ç o ,  f o r  yi t  w e  w ill then
replace  z

-
50 _,, b y  t  o r  y  in  t h e  above  defin ition  respec tive ly . T hat is ,  for

example:

gor, ( s ,  x )  =  t  ( r i o - i, (p i o- i ( z -il, •  "  (rta , ÇOia -1 (s , X ) )  " • )

L et u,
°
5 (s, = E  [at, Oe(S) ( (P t  (S, 2 .)  —  y ) ] .  Then define inductively for

sequences r
-
E nt, (Pa, —, Po) E  

(/ ) a + 1  and aitE.4/ for i =1 , 1 (h ) ; j=0 , a.

(s, = (V ia, z ) )F 5 3 (fa l ( (P ia -1 (S ,  z ) ) ) ]

I t  is  c le a r  th a t  u  a s  defined above also depends on y E  R d . To simplify the
notation we have not written this dependence explicitly in the notation.

The purpose of this section is to give the analogous of Theorem 3.1 for 0
for fixed a. Here we will only give the  analogous Lemmas as in  the  previous
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se c tio n s . T h e ir  p ro o fs  a r e  s im ila r  to  t h e  o n e s  i n  t h e  p rev ious section.
Therefore w e w ill not give them  here. W e start w ith a  representation for 0 .

From now on we consider that a EN, T E P ,  (Pa, •••, Po) E  
(15. ) a+1, al, EX for

i = 1 , •••, i ( p , ) ;  = 0 , • • • ,  a  are fixed unless explicitly stated otherwise.

Lemma 4.1. There exists finite sets of multi-indices Q k, k= 0, • • • , a and
polynomials P a (x ) for qEQk such that for and a_0 ,

Ur (S, =
q ...... qa ,a€Qa

E[aN g (s)((Prt (s, + h  (d) Wr —  Y)Pa( -— k(dor (r )(s, z), k 1, • • • , a+1;ar , t

a
j  

=
0, • • *, 1 (Q a )) 

k

in {Fp, (fak, (Th+1, • ) z))1 (4 .1 )

Here 1(Qa)=Inax11 (q); qcQa).

Lemma 4 .1  i s  the  equivalen t to  the  definition fo r u  in  Lemma 3 .6  a n d  it is
proven by inductin.

Lemma 4.2. The following inequality is satisfied f or rE n r ,  K > 0

{(s.,i)E[0, VA (X) C t K

where UA is equal to either of the following processes: RA, X j –i + 

-'' fa+1-1 +  
0

 ( 9  ja +1 a+i-1 , 6 a ,-1-1 ) O r  ./01-1 (Z ia .c.17 ia + i -1 )  for ria+1 <  ria ,1+ 1

where 0E  [0 , 1 ] is a fix parameter and j a + 1 =0, •••, j a
- 1. Here M, p, c and IC are

positive constants that depend only on p '  and a, and furthermore do not depend on
0,7C or 5.

Lemma 4.3. For TE N  and j a n E  {0, •••, l a
 — 1} , we have

E[&atil(ri a , 9Ja -1(Thi+1 , Xia . 1-1))Ep a Val(cPia -1.( , , ,  x 1a „1-1 ))) ] 0319 (t; x, y)
qq qa,9eQa

E (P g ( L ( p i a _,(1-
J a _,,,,,•) (X i a _k+1 ), k=1, •••, a + 1 ;  j= 0 ,I  (Q  a ) )

ONFP,(fa(clok(*,•)))1(rk , X 0iX t= 01)=  E  {e (5) 4( r t ;  x ,  y ) }  +.14(7-t; x, y, ô).
k=0

such  tha t for there exists functions AI: [0, T]a +1 X  (Rd ) 2

M : [0 , T]a +1  X  (Rd ) 2 X  R +  — 4 1  and positive constants M, p, c, K such that they
depend only o n  (Pa, • .  Pa) ( i ". ) a + 1 ,  al E  A for i =1, ••• , 1(1)1); j= 0, • • • , a and
a E N with

suplA V rt; x , y ) I < "( 1 +1.4 " 
VA (x) c

suplBr (nr; x, y , 6)  I <A1 (1+1.TH 
y  I 5 5 ( r+ )V A  ( r ) c e  •

sup 11(det aos. )d-h (5)1v,)



p a e l3 2 ,„ ,,

da  (V ia , Pa, 11), ja+i, Z (0, x, 5) d Ods 2 . • .dsz(84-1))

(u) = E(f • •• (Via, Z (0, u )))
i s 2

0 0
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Furthermore the following estimate is satisfied

a
••.,a+1; j  = 0, • • • , I (Qa))sup E la; (q(t; x, y)E (P,

'

q( ax
 ( P1a-k(Tia-k,4 ,• ) (X 1a-k+1) , k  = 1 ,
1

0) i<  M (1±1X1)11 

y  4,0,...,9a4EQa

X k, , — t
=

11 aik {F p k(r. ,
; ((p k (. ,.)))) (1- k, ) / x (4.2)

k=0V A  ( X )  c tx

Here the set Qa  is  the set obtained from Lemma 4.1 . A lso note that in particular
the constants M, p, c and lc are independent of 5 , r t and the partition 7r.

Lemma 4.4. There exists measurable functions Ga (ri a , Pa, 1, co, ja+i, x, 5),
ja  (1-, Pa, CO, ja+ i, z, x, 5) 0E1 -2, x, zE R d , such that

ia - 1 2 , 9 + 1
E (ug (Via , 56 a _ i ) —0 (Via , X ja - i ) )  =  E ItE EE [OPaug (ria , (Pia (r)„„, _kia * ,-1))

ja+1=1 1=1 NET',

G  (Via , Pa, 1, ja+i, x, 5)]) + E (1? (u1) + R./a  ,8 (u 2 )))

where

and P i = U P,, Z (0, LI) = 0 (U — 10+1 _1 ) . Furthermore G and 5 satisfy
i= 1

for U1=2:z a +i , or (I2=- k T i , , - 1) and fixed e, bEN:

IlGa(1-10 , Pa, 1, • , x, a (1, Pa, • , z(0, x, 0) 111,0 1■4 (1- F1x1)"5
$

+ i ,
i=1

where M, and p depend only on pa , 1, e and b.

Theorem 4.1. For 0 and C1> 0, there exists positive constants M, p,
C, 1C such that they depend on  (N, •••, pa ) E  -15 .) a n

,  cr( E  X  for i =1, ••• , I (pi );
j=0, •••, a and a E N with

lE[alaug(ri a , 56a -i) F0 Va1(5 6a -1) a tatig (7' X )F  (f (X ja i ) ) 5 4
1a- 1 P a cra, a -1 —

(X )c

To prove the above theorem one has to go through a similar calculations as in
Lemma 3.6 and Theorem 3.1. The dependence of the constants upon a will be
unimportant fo r fu tu re  developments a s  a  w ill be alw ays sm aller than a  fix
positive integer.

5. Expansion of the error in powers of the step - size

In  th is  section w e w ill develop  the  approximation e r ro r  in  ternis of  5 r  for
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y = 18, •-•, p - 1, p  /3 ± 1, p E N, f ix ed . W e  w ill s ta te  the  theorem  first for
p  213 and after a  preparatory Lem m a w e w ill give its proof. Then w e w ill
sta te  the m ain theorem fo r the  general c a se . T h is  se c tio n  resembles Section
14.6 in [ 6 ] .  W e assume th a t the partition  7E,  is  uniform, th a t  is  Tn— rn-i=
for all n=1, •••, N.

Theorem 5 .1 . A ssum e the sam e conditions as  in  Theorem 3.1. Then
there exists functions Or (t, X, y ) , r = s ,  • • • ,  2 g -1  and constants M, p, K ,  c that
depend only on p. In particular, the constants are independent of  t, x , y , 5 and the
partition 71. . The functions O r  are  independent of  5  and the partition 7E. The
constants and the functions Or satisfy

y
1

2B-1
supl [q5e(6) ()?, —y)] (t; x, y) — E (t, x,

) 5 7

I

1<  m  (1+ lx1) 62t3 ( 5 .1 )
re V A (X) Cr=13

where Or  (t, x , y )  satisfies

supkbr(t..r, y)
m(1+1;c1)°

( 5 . 2 )r V A (X) e

Lemma 5 .1 . For u (s, z) = EN5e(.5)(ç or (s, z) — y)] w e  Ahl a( i:e+ Ix 1 ) ,,

2 116E[aN(rn, xn_i)Fp(fa,(xn-i))]- 5r f rn E(W r(S , X s ) )d S  

528+1

1 —
r=0 rn-t V A V

for some measurable functions T .,  and some positive constants M, p, K  and c. W r ,
that depend only  on p an d  th e  a i 's. In  particular they  do not depend on the
partition  r. Furthermore E (T .,, (s, X s )) satisf ies

S U p lE  (  (S „V s))  I < M  (1 + 1 4  

r.s tK VA (X ) c
(5.3)

Proof. Here, w e  w ill on ly  sketch  the  proof a s  it  is  v e r y  s im ila r  to  the
proof of Lemma 14.6.2 in [6]. In  general consider w (s, x )  a  smooth function
w ith  polynomial g row th  a t in fin ity . A pp ly ing  th e  Ito-T aylor expansion we
have

E [ f  
m n 

w (s, X s )ds —  ( rn-i) w ( r n - 1 ,  X n - 1 ) ]
Tn-i

20-1
(Tr/ —  r

r+1
ri-1/r - r „

=  E  E ( (i.°)rw ( rn -1 , x n -1 ))
( r + 1 ) !

+ E  ( j  /a* [wa* (-, X.))] rn ,s ds) ,
r=1 mn-1

with 1(a *) . Now we use the above expansion repeatedly for each (0  rw
in place of w, which proves the existence of constants Cr, B r  such that

E [ f

Tn 2 0 -1  r r„
w(s, Xs ) ds —  (7n —  rn_i)w (rn-1, xn-1) — E j Cr (e)rw (s, xs)ds ern( r +

1.
1T 1.

)
 7 . 1

r=1 tn-A

=E (I'frn B ii«;.[«12) i - l w ) ( • , X.)] -cn_,,s ds ( r n— r
i

n
1

- 1 )  — 1 ) (5.4)
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Here 1 (at) = 213— i + 1. Now we replace w (s, z) = (afu (s, z)) Pp (fa, (4) and
prove that th e  term  o n  th e  righ t side  above is o f o rd e r  5213+1 • In  fa c t , n o te
that as in the previous section, E [ ( ( 0 i - 1 11)) (s, X s ) ]  can be written in terms of
expressions like in  (4.1), because eu  (s, z) =0 for s<t, z E  R d

.

From  here one only needs to apply Lem m a 3.2, (2.2) and  classical flow
estimates to obtain bounds of the type "1„(,;+ (

l
z1): .

Now one uses the same argum ent as in  (14.6.8) in  [6 ] and Lemma 3.2 to
conclude that

2P-1 rrn

(aï14 (rn, X n-1)Fp(fa,{ X n--1))) 6 rj E ( ( Or W ) (s , X s))dSI
r=0

M (1 +11 1)  525+1
t ) V A  (X ) C

where is  a  differential operator in  z. T h a t is  one proves using Taylor's
expansion that

2 p - 1  ( ( ), 51
I5Ew (rn, Xn-1) 5E1i) Xn - 1) 5 E E (Ta-1, Xn-1 ) I

1 , 1d S

<
M(1-1- lx1) i

6 2 5 + 1 ,

tx  VA  (x) c

and uses the fact that L'u (s, z) =0 for s<t, ze R d .
N e x t  u s e  t h e  defin ition  o f  w  a n d  u  t o  o b ta in  an  ex p re ss io n  fo r

E (Or  w (s, Xs ) ) .  This calculation, a s  in  (4.1), shows that this expectation can
be written in terms of

E  Efa:Sbe(s)(Xt — y)pg ( ' (s ) (X s ), j =0, • •., 1(Q_D)OPFp(fa ,(•)) (X5 )]. (5.5)
Si ,

H e re  Q_I i s  a  s e t  o f  m u lt i- in d ic e s .  A pplying Lem m a 3 .4  t o  t h e  above
expression gives a  5 - free function that can be used to define W . The estimate
(5.3) for such a function is obtained v ia  (3.6) -  (3.8).

Proof of Theorem 5.1. Following the same rationale of Theorem 3.1. and
Lemma 3.6 (which we will use repeatedly), we have from  (3.16):

YE[a 0iNeo,(Ï1 — ] — E[aNeca)(Xt — Y ) ]= E [ {  ( E aPu(rn (F5 (-)7n—  5
C;  n-1)

n=1 1=1" peP,
Fp ((Pn ( 1

- n- 1, X7n- 1) X _ 1 )  ) ) -Rn,25(k R , 2 5  ( n n  — 1 )  ) ) ]  . ( 5 . 6 )

Let's define for z-n_i x<rn

s (X ) E  f  a (X ) I
crE

That is, ri is the weak approximation of order starting from x  at time
As in Lemma 3.6, we will divide the study o f  (5.6) in cases.
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a. T he residual term s Rn,25 Cke n ) and Rn,25 (g g n  7( -n-1, k- n-1) are of order
5 4 8 + 1  a s  proved in Lemma 3.6.

b. W e w ill divide the  differences in  ( 5 .6 )  of the type Fp (k  
-

F (q 1  (v _ ,X n - i )  in t w o .  The first is

E [a fu (rn, L - 1)E (Fp (17n (L - 1) — L - 1) — Fp( (vn- 1, fen- 1) — Z - 1) /97 n- 01.

T his term  is a lso  of o rd e r  5 2 '6 + 1  a s  proved in  Lemma 3 .6 , 2., because 77„ is  a
weak approximation of order 213.

c. Let's consider the term left from b.: Assume that p= (j,, •••, j i )

E (F L - 1 )  FP (rin(k-rn-1) L - 1 )  g n - 1 )

= ( — I)" E  E  E ( I I  (Iaii (X.-1)1a,,rn_,,rn ) Fp' (17,7(jjn_1) — Z -1 ) /gn-1)
m=1 k,,/fa,erv-r, 1=1

where the  first sum  runs over all k1, ••• , km  taken  w ithou t replacement from
th e  set {.7. 1, • • • ,  j r )  and p' i s  th e  sam e index a s  p w ith  the indices k 1 , •-• ,
removed. Define

1-1
g (a, a l ,  •••• a1-1, rn — rn-1) — E 1)

1=1

for a G r2/3 FR and a i  E  F20 {v} for i  = 1 , • • • ,  1 1 a n d  {k, k1 , • -• , k1_1}  =
"•, jr). It is know n (for exam ple apply the  same method a s  in  Theorem

4 .1  [ 2 ] )  that g  is  a polynomial function in  z-
- r 1 of the type a i 5 3 + 1 - 1-  •••

±a/ B 5 "+ " 9 .
Therefore we only need to consider terms of the type

E[aPu(z -
n , F P (fa,(,1?-n- i) )]g  (a, a l ,  •••• rn— rn-i)• (5.7)

Then w e apply  Theorem  4 .1  fo r a  =  0  to  prove that is enough to  consider
instead o f  (5 .7 ) :

E [aPu(rn , xn - 1) FP Va, (Xn- 1))]g (a, a l , a1 - 1, r i7 -1 )  . (5 .8)

The proof finishes by applying Lemma 5 .1  to  (5 .8 ).

N ow  w e w ill give th e  analogous of Theorem 5.1. in  the  case  w here an
expansion of higher powers of 5 is desired.

Theorem 5.2. A ssum e the sam e conditions a s  in  Theorem 3.1. Then
there exists functions Or  (t, x , y ), r=/3. •  • •  ,  p - 1 and positive constants M, i , ie , c
that depend only  on p. In  particular the constants are independent of  t ,  x ,  y,
and the partition 7r. The functions (,b, are independent of  5  and  the partition 7r
and they satisfy

s11Plaiy)E kbe(5)(je — (t ;, x  y ) y) d r I<M  (1+ LTV  5 ,

r= tx V A  (X ) c
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where Or  (t, x , y )  satisfies

sup l ( t , x , Y) I < M(1 -I- Ixl) 
txvA(r)c

In  o rde r to  p rove  th e  above one  a lso  needs a  generalization o f  Lemma 5.1.
From now on  w e restric t a  introduced in Section 4  to  a [ ]  — 1, w here  [•]
denotes the greatest integer function.

Lemma 5.2.

I E 5 aE [ON% ( F  (fa. (X ia - i )  ) ]  -2 - 1

rEP'P r= 0

10

,3 2

E (T r,(si, •••, sa, Xs,, X sa))dsr-dsal<M tx (v1 A+(lx1):5fir"'

for some measurable functions Tr' and positive constants M, ir and c  that depend
o n l y  o n  p ,  ( p o, p a )  E  (T. ) a+1, a c  N  an d  th e  E  for i 1, •-•,1(p,);
=0, •••, a. In particular the constants do not depend on the partition it, 6, t, x  or

y  and the functions Tr,' do  not depend on  the  partition TC o r 5. Furthermore
E(W r

a  (si, •••, sa, X s,, '••, X sa) )  satisfies

s u p  1E ( Wra• ' • ,  sa, X s 1 ,• • • , X sa l I t1 VA  (.x) c

Note th a t a ll the  n 's  tha t appeared  in  th e  Lemma 5.1  a n d  Theorem 5 .1  and
their proofs become Jo in  th e  present s itu a t io n . Sim ilary u  becomes u°. The
general idea of the proofs of Lemma 5.2 and Theorem 5.2 is to repeat the same
argument a t im e s .  The iteration of the argum ent in the proof of Theorem 5.2
gives the indices ji, •••, l a.

In fact, the proof of Lemma 5.2 is obtained by performing finite induction
o n  a .  T h a t is , one repeats th e  steps in  Lemma 5.1 a  tim es in  a  conditional
form (also replacing 213 by p).

S k etch of  the proof o f  Theorem 5 . 2 .  T h e  genera l case  is  ob ta ined  by
iteration of the  argum ent in  the  proof o f Theorem 5.1, a s  in  [7]. W e have
already proved the result for p  2 48 .

Consider in general the difference (for definitions see Section 4)

E[u% x i 0 -1-1)] ( 5.9)

The proof of Theorem 5.1 can  be  used  up  to  (5.7). Then we get that instead
o f (5.7) and  (5.8), we have to compare

E [a l'aug a , )? F pa (fa?() a - in ]  E [aPul(r, o , xio —i)Fpo V e(x, o _i))].

N ote th a t  p a  a n d  cr` determ ined  above  do  no t depend  on Jo, ••• , la. By
Theorem 4.1, this difference converges to 0  a t  a  ra te  0  (O/3). T his gives an
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expansion of the difference (5.9) in terms of 5J , j=f 3 , •••, 2$ .
Now consider p 3/3. T h e  proof of Theorem 5.1 can  be  used  up  to  (5.7)

replacing 2/3 by p. By the previous argument for a= 0, the difference between
(5.7) a n d  (5.8) has a expansion in term s o f Oi, j  = S , • • • , 2 S . Therefore the
resu lt fo llow s. The rest of the proof follows by finite induction.

Note th a t  the  function O r can  be w ritten  explic itly  fo llow ing th e  above
proof carefu lly . In fact for r= 1 the function 01 is explicitly stated in  [1].

W ith  th e  sam e m ethodology used here o n e  can actually achieve other
generalizations. For exam ple, in the case that the heat kernel to approximate
is associated with the operator

L y (s , x ) =cy(s, x) + v (x ) f  (s, x)

f o r  V : R dR  a  sm ooth  bounded function  w ith  bounded derivatives, an
extension o f Theorem 5.2 can  be  p roved . L et's  first in troduce  a m iddle step
in th is genera liza tion . The following result extends Theorem 14.6.1 in  [6].

Corollary 5.1. L et f  be a  smooth function with polynomial growth at
infinity. T hen there ex ists a positive constant C and functions (P r ,  r =0+1, •••,
p - 1 independent of 5, such that for

IE [exP (I  :17 s (fen(s))ds)f ()7t)] -exp (1 .:V (X e ) ds) f (X t ) PE1Or (t, x) on C 5 °.

Here the approximation is is defined as

V t (x) E  V  a (x )  a .r„,t
aer8 _,

W ith a  slight modification of the technique shown in th is  article one can also
prove the following result.

Theorem 5.3. A ssum e the sam e conditions as in Theorem 3.1. Then
there exists functions Or (t, x, y )  r= 13, p - 1  and positive constants M, p,  ,  c
depending only on p satisfying the equation below. In particular the constants are
independent of t, x, y , 5 and the partition 7. The functions Or  are independent of
5 and the partition 7E.

ps u r d  E[exp  ( J  17 .5 (X17(s)) ds) 95e(s) - y ) ]  - 0 : i f  (t: x, y) - ( P r  (t, y)5 /
r=0

M ( 1±IXI) "  < OP
tX  VA (X ) C

where 0, (t, x, y )  satisfies

suplOr (t, x, < M(1±IXI)" 
tX VA (X )  C

 •

where IT (t, x, y) =E (exp  (fo V  (Xs) ds) / X t=---  y) q ((; x, y).
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T h e  in tro d u c tio n  o f  th e  te rm  exp ( f 16V(Xs )d s ) d o e s  n o t  b r in g  a n y  major
complication to  the m ethodology applied here. The only point tha t one has to
be careful about is that w hen one is w orking w ith the form ula (3.16) and its
subsequent analysis one finds terms of the following type

apu (rn, 5-6i) fr"1 ( 17 s( - n) O s (rn , i-1-6 t ) ) d s .
vn

where u (s, z) =E (exp ( ft V (g9,, (s, z))dv) 95,(5)((p, (s, z) — y ))
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