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High order Ito-Taylor approximations to
heat kernels*

By

Arturo KoHATSU-HicA

1. Introduction

Let (Q, #, P) be the canonical space of the standard m dimensional Wiener
process W= (W' -+ W™). On this space, define X as the solution of the
following SDE (stochastic differential equation):

m t . t
X,=x+ Zj;B,- (Xs)dwg+f030(xs)ds, 0<t<T, (1.1)
i=1
where, x € R? and Bi: R*—R? i=0,'-, m are smooth vector fields with
bounded derivatives. It is known that under the condition that
(det o) '€ N L2 (Q), (12)
p21

X: has a smooth density, say q(t x, y). Here or denotes the Malliavin
covariance matrix of the random variable F.

The purpose of this article is to find ways of approximating ¢q(t; x, y).
Recently, Hu-Watanabe [4] and Bally-Talay [1], have obtained results on this
problem. Let’s introduce these results. Define the following sets of vector
fields

Zo: {Bj.j=1, e, m}
2i={[Bw, V], VEZ, 1, k=0, -, m}, j =1,

where [+,*] denotes the Lie bracket. Now define for A>1, the quadratic
forms

Valx, p):= 2 Vix), np?

VEZ.

and set

Valx) =1/\!inf Valx, 1). (1.3)

nl=1

Communicated by Prof. S. Watanabe, May 20, 1996
* This article was written while the author was visiting the Department of Mathematics at Kyoto
University with a JSPS fellowship



130 _ Arturo Kohatsu-Higa

It is known that V4 (x) >0 for some A €N implies (1.2) and therefore the
existence and smoothness of ¢ (t; x, y).

Theorem 1.1 (Bally-Talay). Let A€{1,2, -} be such that
Ua=Ax; Valx) >0} is non void and let x and y be in Uy, so that

Valx) AValy) >0.

Then there exists a nondecreasing function K (), there exists some strictly positive
constants ¢, v, v, ¥ and a function m (x, y) and for each n> 757, there exists a
function R (x, y) such that the density of the perturbed Euler-Maruyama scheme

q" with uniform step-size n~" satisfies
v . 1 1
gtz y) = (ax, y)=— mlr y) +M—2R$’ (x, y) (14)

with
K(t) ( |:c—y|2)
— —c ) 15
PValx)" Valy)” PN (15)

7 (@, y) [ +H|R? (x, y)| <

The function K (+) depends on the L™ (R?) norms (for some integer m) of a finite
number of partial devivatives of the function po(*).

Here g7 (x, y) is the density of the sum of the Euler-Maruyama scheme at time
t and an independent random variable with a density defined through the
function oo (for details see[1]).

In this article we intend to find an expansion of the type (1.4) for high
order It6-Taylor approximations, therefore including the Euler-Maruyama
scheme. Furthermore we will get rid of the conditions Va(y) >0 and n> 2.
Nevertheless we lose the explicit expressions available for the coefficient
functions in the result of Theorem 1.1. But we will also prove that the
coefficient functions satisfy inequalities similar to (1.5).

Another result on this topic has been obtained using Donsker’s delta

functions by Hu-Watanabe [4]. Let F, denote the strong Ito-Taylor

approximation scheme of order B at time t associated to a partition of size ™!

(for a definition see [4] or [6]). The following is a simplified version of
Theorem 3.2 in[4].

Theorem 1.2 (Hu-Watanabe). Assume (1.2). Then for § >0,

supldy (g (; x, w) —E (§ (Fa—9))) | <05 (16)

where @, (x) denotes the density of a d-dimensional normal randon variable with
mean zevo and covaviance matvix Ylyxa and for & a multi-index, 0F denotes the
high order devivative with respect to the coordinates indicated in a. C is a
constant that depends on & but it is independent of n and 0.
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This theorem 1is obtaincd by applying some general results about
approximation of densities of random variables on Wiener space, and
therefore is inspired in strong approximation techniques. We applied a slight
modification of weak approximation techniques to the problem of
approximating ¢(t; x, y) obtaining the natural improvement of rates of
convergence. For example, in the case §=0.5, §=0.5 (the Euler-Maruyama

scheme), we have improved the rate in (1.6) to Cn™. The modification of the
weak approximation technique that we will apply in this article can bhe
explained as follows.

Consider the weak approximation problem

C (m)
e

|E (o (X0) = fon (X)) | < (1.7)

n

where f, is a high order [to-Taylor weak approximation of order (B, stepsize L

{fm; m €N} is a sequence of smooth functions with polynomial growth at

infinity converging to the delta function. Therefore the idea to obtain our

results is centered in proving that sup C(m) <oo. To prove this, one has to
m

obtain very detailed expressions of the difference in (1.7). This will
invariably take us to consider derivatives of f,, which are undesirable if one is
to prove boundedness of Cf(m). This problem is solved by using the
integration by parts formula of Malliavin calculus. Then to finish one only
takes limits with respect to m in (1.7). During this procedure we find the

problem of the existence of densities for X. In order to obtain such a

property we perturb X slightly with an independent normally distributed
random variable. The idea of perturbing a random variable to obtain
existence and smoothness of densities has been successfully used before by
Bally-Talay and Hu-Watanabe. This method gives a bound to the speed of
the weak convergence of the approximation to ¢(t x, y). To obtain an
expansion of the error in terms of the powers of the step size one uses the
above idea combined with the methodology developed by Kloeden, Platen and
Hoffmann in [7].

Our main results are Theorem 3.1 and Theorem 52. Theorem 3.1
expands the result of Theorem 1.2 by proving that the rates of convergence
for this problem can be considered as weak approximation rates.
Furthermore a generalization of this result (Theorem 4.1) is one of the
ingredients in the proof of Theorem 5.2. Theorem 5.2 proves the existence of
an expansion of the error in terms of the stepsize of the approximation, under
the hypothesis that V4 (x) >0, therefore improving on the results of Theorem
1.1. Theorem 5.3 is a slight extension of Theorem 5.2. This extension deals
with the approximation of a heat kernel with a potential.

These results could have a variety of applications when coupled with
Monte Carlo methods in order to simulate approximations of heat kernels.
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Furthermore the development of the error of approximation in terms of
powers of the step size provides a way for constructing extrapolation methods.

2. Preliminaries

We start by introducing some notation mostly taken from Kloeden and Platen
[6] . On the canonical m-dimensional Wiener space let (s, x),

0 <s <t <T, be the flow defined by the following stochastic differential
equation (sde):

os.2) =2+ 5 ['Bilgu(s.2)awl,

where Bj: R*—R? are smooth functions with bounded derivatives for j =0,

1+-+, m. We use the notation dW%=du. We then have that X,= ¢,(0, x).
Let Mu=1{(1, >+, 71): i €10, ==, m}, i€ {1, -+, 1}, for I=1, ---} U {v} where v
denotes the multi-index of lenght 0. For a multi-index = (j, ***, j,) define
the length of a as I(a) =1, also define n(a@) as the number of zeros in «,
—a=(j3, -+, 71) and @a—= (1, ***. j1=1). Then for £:[0, T] X R*—=R define the
following operators:

Lr(s, 1) = £B @) 2G5, 2), =1,
L% (s, x) =%(s, x)+§136‘(x)—f—(s x)+ % Zi: .'3_;3 () Bl (x) 2L 6x 6 ~(s, z)

where v/ denotes the j th component of the vector v, j=1, -+, d.
For a= (71, -+« j;) define by induction

f Jif1=0 ‘
fa=1 . (2.1)
L“f—a ;ilel.

In the case that the function f is not explicitly stated we shall always take it
to be the identity function f(t, x) =x. Also define the following Wiener
functionals for v: [0, T] X Q— R? an adapted cadlag, L?([0, T]) integrable
w.p. 1 stochastic process:

o) L if 1=0
’"[”(')]“zlj:'fa_[v(-)]s,udwi’ Lif 11,

Tast =Ia[1]ss. Also let Is={a€M,; | (@) <B} and B([) = {a € My — [5;
—a€<Tl,}. We also define multi-indexes for the derivatives in R% For this,

let P[EP?= {1, AN d}l. for p= ({Jl, o p;) € Py, define

1 I
9 Fy(y) = My

=5,
Y ay,,~~-0y,,, h=1
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Now we introduce some basic tools from Malliavin calculus that will be
used throughout the text. For further reference see[9]. Let C¥ (R™) be the

set of C* functions fi: R™— R which are bounded and have bounded
derivatives of all orders. The class of real random variables of the form

f(Wy, =+, W.,), fECy (R™), is denoted by JS. D designates the Banach
space which is the completion of 8 with respect to the norm:

IFlh= tElE) v+ GE L DiFasy»=)) v,
i=1 0
where

ir=5 5%<w,,. oo, Wo ) Lioa (s)

D*? is defined analogously and its associated norm is denoted by °|a,p.

Also, let D*= N N D*?. As with 0/ we will also use the notation D% for
p2laz1

pEPI and € [0, T]'. By extension we denote [*[lo, =], the norm in L? (Q).

Now we will introduce the conditions associated with the existence and
smoothness of the law of the solution to (1.1). Let's define the Malliavin
covariance matrix of F as 0¥ =<{DF*, DF') ;20.7).

Let V4 defined as in (1.3). It is known that V,(x) >0 for some A EN
implies (1.2) and therefore one obtains the existence and smoothness of the
density of the law of the solution to (1.1). We will assume that V4 (x) >0 for
some AEN throughout the rest of the article. Furthermore Kusuoka and

Stroock [5] (Corollary 3.25) obtained the following estimation for (det ox,) ™.

M, 1+ |x])*

det ax,) Y, <
I (det ax,) ", V)

(2.2)
where M,, ¢, ¢ and k£ depend only on A. We will use this estimation
throughout the text without further mentioning. Also, from now on we will
use different notations for constants that may change from one line to the next
although we use the same symbols. The dependence of these constants on the
different data of the problem is explicitly stated at each equation. We will
consider from now on that d, m, A, BEN, TER,, B;, i=0, 1, ---, m are fixed
throughout the article.

3. Bound for the error of approximation
First we introduce the It6-Taylor weak approximation to (1.1) of order B.
We denote it by {X;; t€ [0, T]) and it is defined as

-)?tz 2 fa ()?r,,)la,r,,.l for T, <t < Tyy,

aerg

X():l'.
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where m0=r,<7,<:-+<ty=T is a partition of [0, T] such that

sup (Tis1 — 7)) <6. Define n(t)= sup {r;; =<t} and n(t) =n, as the
i=0,...,N—1

integer such that 7 (t) =tu. To simplify notation we will use #,=%,, where
{F,; t€ [0, T]} is the natural filtration generated by W. In the same spirit
we will do the same for processes, that is, X,=Xy,, etc.

Note that although strong and weak approximations are different in
nature one can still obtain the following properties:

X,€D" and X, — X Jbe <CO*,
sup E sup |DEX,—D2X,|°< o7, (3.1
welo, 71 telo,T]

where 8°=%, C is a positive constant that depends only on b€ {0, 1, ---}, e>2

and a € P}. The method of proof of these assertions is the same as in the
proof of Theorem 3.1 in [4].
In order to find an expression for the error in powers of 0 we first have

to prove that the rate of convergence of the scheme X, in the weak sense, is of
order B. We will prove this result after a series of Lemmas. Define

Theorem 3.1. Assume that Valx)> 0, C:> 0 and t> 0. Then for
pEMa, n(p) =0, we have that there exists positive constants M, ¢, & and c that
depend only on the multi-index p and therefore all the constanls are independent of
z,y. t, 0 and the partition T such that

suplOE [pewr (Xi—y) 1 —0fq (t: z, y)| 3%5‘9,
Y AL

where ¢, (x) denotes the density of an d-dimensional normal random variable with
mean zero and covaviance matvix Plaxa. q(t; x, y) denoles the density of X, at
yER

From now on we assume that p € My, n(p) =0. Also to make the future

notation easier let ¢ (0) =C5‘g‘, h(5) =K&% such that e (8) = JK*+C? 5% with
C>0 and K=0. Note that due to their different nature there should be no
confusion between ¢ (J) and e used in (3.1).

Lemma 3.1. e2(0) =h*(8) +92(d) implies that
OLE (e (X,—y) 1 =02E ¢y X +h(®)Wr—y)] (3.2)

where {W,; t€ [0, T1} is a d-dimensional Wiener process independent of W. E
denotes the expectation on lhe extended sample space supporting (w, w).

The proof of this Lemma is obtained by a direct integration of W in the
right side of (3.2). To avoid excessive notation we will stop using the E
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notation in the future assuming that is understood that we are considering the

extended sample space supporting (W, W). We will keep using the notation
{F,;t€ [0, T]} to denote the filtration generated by {Ws; s€ [0, T]}.

The next lemma is an application of the integration by parts formula in
the version that we will frequently use in our calculations.

Lemma 3.2. Let s <t. Let U and Z be R* and R valued random
variables respectively, that belong to D®. Then there exists positive integer
constants @y, s, C, p’, e, b, that depend only on p such that

suplE [0 ¢gs) (@i (s, U) +h (6) Wr—y) Z]|

SC” (det Ty (. u)+h(5)ﬁ/,) ‘1||?‘||<pr (S. U) +h (5) WT“?,%”Z”b,e-

The proof of this lemma is simple and involves applying integration by parts
I(p) +d-times. Then one applies standard inequalities.

The next lemma provides a bound for ||(det Oo s 1) +niaw.) ly for some
particular values of U/. The basis of this Lemma can be traced back to [8].

Lemma 3.3. The following inequality is satisfied for any p EN, K >0

_ M (1 +]x])*
sup ” (det Gy, vy +1 o) W.) 1”»'£_|;L,)(—
s, €0, t]s2r25—28) Valx)t
where U is equal to either of the following processes: Xz, X nor + 0 (Xp— Xne1),

J{’n—1+0(§0n(fn—ly /‘Yvn—l) _Xnﬂ) or Qon(Tn—l- ai;m—l) , Sor T ST<Tuq  where
6€ [0, 1] is a parameter in [0, 1]. Here M, i, ¢ and & are positive constants that
“depend only on p’, and in particular do not depend on x, t, 0, T or 0.

Proof. As in Lemma 2.1 in [4], let's denote Hsz=det O (s, 1) +5 (5) W
H=det Ox,.
Then one obtains that
1
EH3? <277 EH + (EH-%) 322 (EH;#) 2 (E (1, —H) )%, (33)
for any kEN. 1In any of the cases considered we have the following estimates
EHF? <C(p')h (8) ~#"4™  E(H;—H)*<C (k) §5%, (34)

where B8(k) is a positive increasing function of k, such that B(k) T o as k—co.

For example, to prove (3.4) in the case U= X, one has that for any vector
vERY,

010, 2y +ne v 2h (6) 2Tl 2.

Note that as det C= (infj,=,w7Cv) ¢*™ for any (d +m) X (d+m) matrix C, the
proof of (3.4) follows. The proof of the Lemma is obtained by taking % big
enough in (3.3). O
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The next lemma deals with one aspect of the problem we are interested in
solving. That is, the particular case when the approximation is the process
itself.

Lemma 3.4. Let s€ [0, T) and Z be R valued random variable that is
F r-measurable (e EN) such that ZED®. Furthermore, let G: R XR*—R be a
smooth function with polynomial growth at infinity. Then for YEN

OLE [per Xi—y) G (X5, 2)1 =02 (q(t; x, ) E(G (X, Z) /X =y)) =
2 e (0)%A;(s, t,x, y) Y +B, (s, t; x, y, 0). (3.5)
1<j<r
such that for 1<j <7, there exists function Az [0, T]*X (R%)*—R, B;: [0, T]*X
(R?%)?2x R, —R positive constants M, t, ¢,k that depend only on p with

Sl;p|Aj(s, iz, y)l S% (36)
supl s iz . O <MUCEEL” (37)

Furthermore the following estimate is satisfied
suplof g i 2,y E(G 1, 2)/x=y)) S MIEEDE g

Valx)et
In particular, note that the constants above do not depend on x, y, ¢, 0 or s.

Sketch of the Proof. We will do the proof for y =2, d =1. Let a> 0,

n € N. Define F(x)) = 0f¢na(@ (x) +x1 — y)G(ps(x), Z). Then using
Lemmna 3.1 and Taylor’s formula for F one obtains:

EIF(e() We) —FO]=E] & (L F(0) (@) Wr)’)
d.l’l

1<j<2 7+

L P 7) G 01 )

The residue B} is defined as the last term in the above equation. Note that
F(0) and its derivatives are &,~measurable. Therefore by the independence
between W and W, one finds that all the odd order terms in the first term on
the right of the above equation have expectation 0. From the even order
terms one defines A7. For example,
n — T d_z )4 e
Al b, y) = =5 E[- 5 0f$na(X,—y) G (X, 2) |.
dy

Using (2.2) and Lemma 3.2 with »™¢ playing the role of g (§) and s =0, K=0,
one obtains that (3.6) is satisfied with A” instead of A. Note that the
constants do not depend on #.
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Then by taking limits with respect to »n one obtains (using, e.g., Theorem
2.1 in [4]) that the above converges uniformly in y to a function of A; defined
as

Asls, bz y)= —1%65(4 (tx, y)EGXs, Z2)/Xi=y)).
2 dy

Similarly, E[F(e(8) W) — F(0)] converges to the term on the left side of
(35).

Properties (3.6) and (3.7) are obtained by taking limits. Repeating the
above argument one obtains (3.8). That is, note that the first term on the left
side of (3.5) is also bounded by the expression on the right of (3.8) where the
constants do not depend on n. Now using the triangular inequality and (3.5)
one obtains (3.8). O

The steps toward the proof of Theorem 3.1 are similar to those in
Theorem 14.5.2 in [6] . Therefore we will also need a result similar to
Lemma 5.11.7 in [6].

Lemma 3.5. With the definitions above we have:
(i) E((Xa—@n(tar, Xut))*/Fucr)
= —f;_l---j::E[fﬁ*(cosl(rn_l. Xn-1))/Fnildsi -dsgen, (3.9)
with  a*=(0, -+ 0,) with I (a*) =B+1.
(i) EFy(Xn—Xno1) =Fp(@n (s, Xnot) =Xu1) /Fnc)
=—§l, S By (T, )/ Fn) (3.10)

=1V kb=t

where ﬁkl ky (Tn—ly Tn) :qu, (Xvn_‘?n—l) H ((pn (Tn—l» )?n—l) _)?n) by, (311)

j=1

For some g€ {1, =+, 1(p)} and p € Pipy -y which are functions of p and r.
(iii) In (3.11) for ¥=1 we have that for some q and p’ as above,

Fo={ 2 1l G B Losa) |08 75 6 Rudaw). 312)

a€B(ly)

For the definition of by see (5.11.12) and (5.11.13) in [6].
Furthermore there exists constants M, y that depend on b€ {0, 1, ==}, =2, p and
v such that for r=21 or 1(p') 22, we have

”E (Hl (ﬁon (Tn—l, )?n—l) _/?n) kin’ (Z_/{;n-—l) /gn—l) “b,e <M (1 + |I|) “gh+!
j=

(3.13)
for Z=X~n, ©n (Tnoa, iu—l)-
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Note that b} (s, X,—1) always satisfies that T <s<7.

Proof. (3.9)-(3.12) have been proven in Lemma 5.11.7 of [6].
Therefore, we only prove (3.13). The proof is done by cases. We will do

the proof in the case b=1, r=1, 1 (p) =2, Z=Xn. The proof in the other cases
is similar. In this case by (3.12) we only need to consider for t<t7,_;,

I(a)=B+1, r=1, -, d +m:
~ Tn ~ ~ .
DIE (Io UZ ((03, (Tn—l. Xn) ) ] n—l,nj; bp (S. Xn—l)d W{s/gn—l)
=E (Ia [Df{ffi ((Psl (Tn—l. ‘gn) ) }] n—1,n
_/; ’ I;}'J’ (3. Xn—l)dm—f—la [f(l.cl ((,05, (Tn——l, in) ) ]n—l.n

Tn —~ ~ .
f D{{bé' <S, Xvn—l) }d W]g/gn—l) .
Tn-1

Here we have used (3.1) and that bh (s, X,-,) €D* for all j, p, uniformly in s
and #n. Furthermore there exists M and » depending on p’, ¢ and b such that

suplled (s, Xuon) e <M Q1 +]z])”.
S

With this property and Lemma 5.7.2 in [6] the result follows.

The following Lemma will be the base for proof of Theorem 3.1 and
Theorem 5.2. Its proof resembles the proof of 14.5.2 in [6]. From now on
we will assume without loss of generality that tEm.

Lemma 3.6. There exists measurable functions G(t, p, I, w, n, x, 0),
G, p, wnzx 0, wEQ, x, zERY, such that

- n, 28+1 -
E (¢e(5> (Xp—y) — Qe (Xz—y)) = 2 {[ > 2E [a,fgbg(o) ((,0:<Tn, Xu-1)

n=1 ’=1p65,

+r (O Wr—y)G U, p. L w m, x, 5)” +E (Rug (U1) +Rng (Uz))] (3.14)

where

ERns ) = £ E( [ 00w (91 (50 2(6, 1)) +1(8) Wr—y)

PEPugan

G(l, P. w, n, Z(l9,U), X, 5)d0d82"'dS2(3+1)>

-1 - ~ ~
and Pr=UP;, Z(0, U) =Xnu1+60(U—X,_1). Furthermore G and G satisfy for

i=1

Ur=Xn, or U= @u (Ty-1, Xn_1) and ¢, bEN:

2 .
GG p, 1, +n, 2, 0) et NG G py v ma Z(6, Ui) ., x, 0) lne SM (1+]x]) #6541,
i=1
(3.15)
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wheve M, and ( depend only on p, 1, e and b.

Proof. Let u(s, z) =E (e (@i (s, 2) —y)). Then u(t, 2) = ¢osy (2 —y)
and L% (s, z) =0 for s<t, zER?. Now we calculate, using Itd's formula and
Taylor’s expansion:

Eduor (F=y) —ean (X)) =B( £ (0 T) = (5001, Tama))
- (u (Tn' On (Tn—l, xgn—l)) _M(Tn—l, Xn—l))}>

:E< nz { (1'1« (Tn, )‘En) —u (Tny )?n—l))

n=1

- (14 (Tn, (Pn(Tn—l. fn—l)) —u (Tn. Xn—l))}>

=£[2(X L= {otu (5 £uc) (Fy (BT

n=1"1[=1 I pEP,

—Fy(9n (Trr, Bad) = Fa)) | )+ R (F0) =R (0 (r, £u)) ).
(3.16)

where

. 1 Sy ~ ~ ~
Rus(Z)= 2 fj; 02u (T, Xu1 H0(Z—Xuo1) )dBdsy - dsagenF» (Z— Xn-1).
PE Pagens
(3.17)

The idea in the rest of the proof to follow is to consider each term in (3.16),
apply the definition of u and define G and G. Then we use Lemma 3.5 to

prove that the random variables G and G obtained in this form satisfy (3.15).
We divide the calculation in parts.

1. By the definition of #u and Lemma 3.1, we have that there exists
polynomials of degree less than [(p), P, such that

azpu (Tn. )‘(vn—l) = 6sz (¢e(6) (gDI (Tn -?n—-l) - )/gn)

= > Ef (ap ¢g(6)) (Qot (Tn Xn- 1) +h (5) )
P —p
Pp'(M%j‘M. ]21, ccty, l(p))/gn). (318)

where the set p° <»p, is composed by all possible indices p’,1(p') €
=+, 1(p)}, selected from p in the same order as they appear in p.

Obviously, Py (ﬂ';‘;’}"l j=1, ==+, 1(p)) €ED> and furthermore for a € P{*"

)Q ,1‘: — P
sup E( sup |D3Pp'<d oz ~Xn 2 J=1 l(p))|e>SM(l+|x|)”,

uel0,T1®  Mtelr,,T) dx’

(3.19)
where M and g depend only on p, e and b. We will apply (3.19) to 2. and 3.
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below. In the rest of this proof we will denote such a polynomial by Py to
simplify the notation.
Now, we can define G as appropriate sums of terms of the type

p(Felanta oy 1) )ELF, (Ry— o)
—F 5 (@n (Tu-1, )?n—l) "/i;n—l))/gn—l]-

G is defined analogously. Now we will prove that they satisfy (3.15).
2. We now study the first term on the right of (3.16) in parts.
Consider

A _.:E{azpu (Tn, Xn—l)E (Fp (-fn_)?n—l) —F, (§0n (Tn—l. fn—l) _X:n—d) /gn—l) },
for n=1, ==, n, pEP,, I1=1, -+, 2B+1.
2.a In the case [=1, we have p= (k), therefore by (3.9)

Tn S2 ~ ~
A== " [ B0k (0, Fa) o (90, (Trs, Ko Vasiovdsson,
n-1 n-1
with a®*= (0, .-+, 0) with [ (a*) =8+1. Applying step 1. to A, we have that
the above expression can be written as finite sums of terms of the type

Tn

L7 [ E0 a0 (0 (T, Ba) +1(8) Wr—y) Pyftn (s, (7ar, To)]

dSl'"dS,g-H.

Furthermore, using (3.1) and properties of the flow ¢, we have that there
exists M and u¢ depending only on p, k, ¢ and b such that

SUD”Pp'ffr* (§0s (Tn-1, Xn—l) ) “b.e <M (1 +|I|)".
N

2.b In the case 122, v=1, we use (3.10) and (3.12) to obtain that the
following is one of the summands of A (the other summands are considered in
2.c)

E (azpu (Tn. X~n—1)E (Ia D(Z (QDS, (Tn—I, ):;n—l) ) ] n—l.nj-:n I;};;n (Sv )?n—l)d W’é/?n—1> ) ,
(3.20)

for k=1, »-,d, x€BI%),p €Pi—y and j=0, -*-, m. As in 2.a, here we also
find from 1. and (3.13) that (3.20) can be written in terms of

E (ayp,¢g(6) (QDt (Tn. X;n—l) +h (5) WT_y)Pp’E (Ia [ffr (Qosl (Tn—ly )‘Zn—l) ) ]n-l,n
L7 B s Rac)a Wi/ F ),

and that there exists constants M and g depending only on p, [, ¢ and b such
that for p” €P;—,,
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”Pp'E (Ia [fr’.‘r ((Psl (Ta-1, )?n—l) ) J n-l,nj; i 1’7?)" (S, /?n—l)dwfe/?n—l) Ilb,e
<M (14+|x])#o8+!

2.c Now we consider the case, ¥=2, that involves

Considering (3.11), one obtains that for p” €P,_,

"Pp’E(H ((Pn (Tn—l. )?n—l) _)Z:n) k’qFP” (fn_in-l) /gn—l) "b.eSM(lJ‘_lxl)uaBH
=1
where M and g depend only on p, I, ¢ and b. The above inequality follows
from (3.13) and 1.
By considering the calculations in 1. and 2. we have finish the proof of
the first part of the Lemma. Now it only remains to consider the residues

Rus (Xn) and R ((or,, (Tn—l, )z;n—l) ) .

3. By (3.17) it is enough to prove that for Z =X, @, (Ta-1, X 1),
PEPag+1

1Py Fy(Z—Xno1) e <M (14|x]) 268+,

for some constants M and g depending only on p, I, b and e. As before, this

inequality also follows from Lemma 3.5 and 1.. Note that in this case Py

denotes a polynomial like in (3.18) with X,_1+6(Z—X,_;) instead of X,_,.
Putting together all the steps from 1. through 3. the result follows.

~ Now, we are ready to give the proof of Theorem 3.1.

Proof of Theorem 3.1. TFirst by Lemma 34 for G = 1, we reduce our
consideration to

|E[02Gesr (Xi—y) — 08 Pecsr (X, —y) 1.

Now we apply Lemma 3.6 to obtain an expression like (3.14). We analyze
each term as we did in the proof of Lemma 3.6.

First we apply Lemma 3.2 to the remainders. We then find that these
terms are bounded by an expression of the form

ny 2 ~ N

iz )aSlllp] (I{det Gy, 26 vy +n@ ) " IEIG (Z (6, U)) ls.ele (za, Z (6, U ) [152),
n=1i=1 (0,1

for some positive constants @i, @, ¢, b, e, C(i). Then using Lemma 3.3, the

estimate in (3.15) and classical methods to find stochastic derivatives of sde’s

we obtain that this term is also bounded by a term of the type M+le)* 55

V()€
The only term left in (3.14) can be handled similarly. In fact, this term
is bounded by
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n 28+ ~
2 Z (l M (det 04,0 2,1+ w,) “NENGHs.el0r (Tn, Xno) 1152,
n=1 I=1

for some positive constants @i, &z, g, b, e, C(I) and G is the function that

appears in Lemma 3.6 with |G [p. <M (1+ |z|) 6%+, where M and g depend
only on [, p, b, and e. Then by Lemma 3.3 the result follows. ]

4. An extension of Theorem 3.1.

Before we start to develop the error of approximation in terms of the stepsize
0 we will work out an extension of Theorem 3.1 that will be useful to
understand a finite inductive argument to be used in the proof of Theorem 5.2.

For this, we expand the notation of F, to the following case

!
Fo(fa, ) =10 (o, () 7, for an, =, &y € My and p= (5, =+, j;). We also
i=1

need to introduce some new notation. Let a€ {1, -, N} and define
T ={(t;, =, Tip) i Jar 0 JoEL0, =, N}, Ty oo, T3, €, 0575, <o+ <175, <t}

For = (zj, ', 7j) €EP¥ define the projection m, for b<a as m,(7) =
(Tip =" Tigy) . Also let

(Tip e, Tip 1) 5 if 7, <t
= i
T Jif 7, =t

In the case 7j,<t, we understand that 7;_,=¢t.
For s<7j,-1 and jEN define

901-(8v x) = Qjy— 1(le, 90;‘1—1(1';'2, "'(Tja. (Pj,,~1(S, x))),
] 0’
Zeels 2= 2 o (5 D) @rer (T (G @t (5, 2)) ).
In the particular case that we consider ¢ or ¢, for v & T we will then
replace 7j-1 by | or v in the above definition respectively. That is, for
example:

@z, (s, 1) = @i (Tjo-1, Qio—1(Tip, = (Tip Qigmr (s, ) ) ")
Let u (s, 2) =E [02¢es (@r (s. 2) —y)]. Then define inductively for
sequences TEPY, (pg, ***, po) € (P)®* and al €M for i=1, -+ 1(p;);7=0

u§*' (s, 2) =E102us (ti,, @1a-1(5, 2) ) Fp, (fae (@ip-1(s, 2))) ]

It is clear that u$ as defined above also depends on y €R? To simplify the
notation we have not written this dependence explicitly in the notation.

The purpose of this section is to give the analogous of Theorem 3.1 for u}
for fixed a. Here we will only give the analogous Lemmas as in the previous
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sections. Their proofs are similar to the ones in the previous section.

Therefore we will not give them here. We start with a representation for u°.

From now on we consider that a €N, TEP, (pg, ***, po) € (Po) **!, i€ M for
 1(p;);7=0, **+, a are fixed unless explicitly stated otherwise.

Lemma 4.1. There exists finile sets of multi-indices Qy, k=0, -+, a and
polynomials Py (x) for g€ Qy such that for s<tj,—, and a >0,

W5.2)= T E[0in (s, Hh 0 Fr—y)P (2

j
Qor---142:9€Q, 6

].:O’ el (Qa)) ﬁ aft” {Fpk (fa",. ((pik-l (Tjk+1y')))} ((pn'a—k—l(t) (3. Z))] (4-1)

2 A (S Z) k= 1‘ e a+1;

Here 1(Q.) =max{l(q);: ¢EQa}.

Lemma 4.1 is the equivalent to the definition for # in Lemma 3.6 and it is
proven by inductin.

Lemma 4.2, The following inequality is salisfied for TEP;', K>0

Ly o MH])*
Sup I (det O, U +1(5)W,) l"pfﬁ(—lrl?‘
(s, D) €0, 7,1 5222525} Valx)et

’

where Uy is equal to eilher of the following processes: Xa, Xjp,-1+ 0 (X5, — Xj00-1).
‘?ja+r‘1 + 0 ((pfaﬂ (Tl'aﬂ—l' ‘)(jml"l) _‘¥ja+1—1) 0" Qjga (Tjaﬂ"l’ ’Yfaﬂ'l) ’ fO’V Tign Sx < Tigar+1
where € [0, 1] is a fix parameter and j,+1=0, ***, jo—1. Heve M, tt, ¢ and K are
positive constants that depend only on p" and a, and furthermore do not depend on
0,1 or 0.

Lemma 4.3. For YEN and jo11 €10, -+, jo— 1}, we have

E[0244 (T30 @it (Tigur Xigurm1)) Fpa faa (@it (g Xjg-) )] = 2 <6;’ {q (tx, y)

90....4a.9€Qa

B 2501 () (i) B0, a1 =0, 1(Q0))

1108, 1)) (0, X0/X=0) | )= 3 (0(8)%43 (2, 4)) +B8 (7 2. . 0).

1<i<r

such that for 1<y,  there exists functions A% [0, T]**'x (R?)?—R,
B2: [0, T]o*' x (RY) 2X Ry —R and positive constants M, p, ¢, k& such that they
depend only on (po, **+, pa) € (Po)®™, b E M for i=1, -+, 1(p;): =0, -+, a and
a €N with
M +|x])*

Valo)or
|Br(Tr x,y, )| MA+|z)*

y S5+ | Valr)r

sup|A,4(Tz; x, y) <
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Furthermore the following estimate is satisfied

sup queolaé’(q(t;x. y)E(P (aaj,tpf,,- (Tigoprr®) Kigopn) k=1, 000, 0+ 1;5=0, - '-.I(Qa))
kl(joa“rl"{FﬁkVa'?<¢k("°>))}(Tk,Xk>/Xt=y))|SM‘_/(th—££ciz_” (4.2)

Heve the set Qq is the set obtained from Lemma 4.1. Also note that in particular
the constants M, tt, c and K are independent of 0, T; and the partition 7.
Lemma 4.4. There exists measurable functions Ga (i, pa, I, @, ja+1, x, 8),
Go(t, pa, @, jas1, 2,7, 0) WEQ, x, zERY, such that
ja=1  28+1

E (u% (Tja, gja—l) —u‘é (Tja, Xja—l)) = Z {{ Z Z_E[Oé’“u% (Z‘ja, PDig (Tjaﬂ, )?jaﬂ—l))

jasi=1  I=1p€EP
Ga(Tip par 1, jasr, x, O) I} TER;,,, 6 (U +Rj,,,.6(Usz)))
where

ERypsW) = E E([ - [“otug (2, 206, 1))

Pa€Pran)

éa(Tj,,y Pa, W, Ja+1, Z(@, U), X, 5)d0d82"'d32<3+1)>

and P;= UP,, Z(6, U)=X,,, 1+0(U—X,,. -1). Furthermore G and G salisfy

for U= X,M, or Us= @j,,, (Tigur-1, Xj,o1) and fixed e, bEN:
2
"Ga (Tja, ba L, " farns T, 6) ||b.e+ Z“Ga (t' Da, *\ Jas1s Z(ﬁ, Ui), X, 6) "o.eSM(l +‘x[)u53+l’
i=1

where M, and p depend only on pg, I, e and b.

Theorem 4.1. For a=0 and C1>0, there exists positive constants M,

¢, k& such that they depend on (po, ***, pa) € (Pu) ®*, i €M for i=1, -, 1 (p,);
7=0, >, a and a €N with

1+lx|
Valz)®

To prove the above theorem one has to go through a similar calculations as in
Lemma 3.6 and Theorem 3.1. The dependence of the constants upon a will be
unimportant for future developments as a will be always smaller than a fix
positive integer.

|E (828 (5, Xj,-1) Fy, (faa ( Xj-1)) = 02oud (z;,, Xo-1) Fp, (faa (X;,-0) ]\_

5. Expansion of the error in powers of the step-size

In this section we will develop the approximation error in terms of d” for
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r=B -, 0—1, p=2B+1 pEN, fixed We will state the theorem first for
0 =2 and after a preparatory Lemma we will give its proof. Then we will
state the main theorem for the general case. This section resembles Section
146 in[6]. We assume that the partition 7, is uniform, that is Tpy—Tp_1 =0
for alln=1, ---, N.

Theorem 5.1. Assume the same conditions as in Theorem 31. Then
there exists functions ¢, (t, x, y), v=PB, ***. 2B—1 and constants M, p, k, ¢ that
depend only on p. In particular, the constants are independent of t, x, y, 0 and the
partition w. The functions ¢, are independent of 0 and the partition . The
constants and the functions @, satisfy

M (1+]x])®

SuplafE[ﬂl"e(a)()?e_y ] a,fq(t X, y)_ Z¢r(t Ly 6T|< PV (x )c

5% (5.1)

where ¢, (t, x, y) salisfies

t"V (x )C
Lemma 5.1. For u(s, z) =E [pew (@1 (s, 2) —y) ] we have

SUDI(/’r(t z )| <M

28-1 1+ u"
92084 (5 X Py )] = £ [ B0, ) ML
Tn-1 th,q (I)c
for some measurable functions ¥, and some positive constants M, y, k and c. T,
that depend only on p and the ai's. In particular they do not depend on the
partition . Furthermore E (W, (s, X)) satisfies

Y, (x)‘ (5.3)

suplE (T, (s, Xs)
7.8
Proof. Here, we will only sketch the proof as it is very similar to the
proof of Lemma 14.6.2 in[6]. In general consider w(s, x) a smooth function
with polynomial growth at infinity. Applying the It6-Taylor expansion we
have

B wls X)ds = (6 tuedw (Bt X))

= S w0 X)) OB ([ foaien (-, X)) 0d5),

Tn-1
with I (@*) =2B. Now we use the above expansion repeatedly for each (L°) "w

in place of w, which proves the existence of constants C,, B, such that

3 : %l (ta—=Tu1)
L[ wts. X5ttt Xan) = 2 [ Cole s x5 T2

—E<Z B[a,[ (L% 1) ( X)]T,,,sds(—ﬁ‘—)'——). (5.4)

i=1 il
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Here [ (af) =2B—i+1. Now we replace w(s, z2) = (8%u (s, 2)) Fy (fa,(2)) and
prove that the term on the right side above is of order d%*!. In fact, note
that as in the previous section, E [ ((L%)'w) (s, Xs)Jcan be written in terms of
expressions like in (4.1), because L% (s, z) =0 for s<t, zER®.

From here one only needs to apply Lemma 3.2, (2.2) and classical flow

estimates to obtain bounds of the type %—(fﬁlf)”—

Now one uses the same argument as in (14.6.8) in [6] and Lemma 3.2 to
conclude that

|5E (azpu (Tny Xn—-l) Fp (fa,- (Xn—l) ) ) - BZ: 0" T" E ( (®r w) (3. Xs) )dsl

r=0 Tn-1

< M(1+|~T|)u525+1
PValx)®

’

where @ is a differential operator in z. That is one proves using Taylor’s
expansion that

|6Ew (Tn, Xnor) — OFw (Tuor, Xn1) B; <( >w(2‘n 1, Xn- 1))5:

gM_(_l_—tﬁl_azﬂﬂy
thA (1‘) ¢

and uses the fact that L% (s, z) =0 for s<t, zER".

Next wuse the definition of w and u to obtain an expression for
E(®,w (s, Xs)). This calculation, as in (4.1), shows that this expectation can
be written in terms of

0’ NP
3 E[a8fam 00 P 25061 (10,720, 1020 a9 () (6], (55)
0,4,€Q-,
Here Q-1 is a set of multi-indices. Applying Lemma 34 to the above
expression gives a 0-free function that can be used to define ¥. The estimate
(5.3) for such a function is obtained via (3.6)-(3.8). 1

Proof of Theorem 5.1. Following the same rationale of Theorem 3.1. and
Lemma 3.6 (which we will use repeatedly), we have from (3.16):

4ﬁ+l

E[02¢en Xi—y)] —E[02¢es) (X, —y)] =E [%{( )y T ﬂ%ayu(fn, wet) (Fy (Xy—Xpt)

_Fp ((pn(fn—l. X;n—l) Xn l))) +Rn 7B(¥n> Rn,ZB ((pn(Tn—-l' fn—l))}]~ (56)
Let's define for 7,01 <s <7,

Ms (1‘) = Z fa (1') Ia,‘r,,_l.$~

aE Ly

That is, 1 is the weak approximation of order 28 starting from x at time T,-,.
As in Lemma 3.6, we will divide the study of (5.6) in cases.
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a. The residual terms Rys (X,) and Ruzs (@n (Tuey, Xno1)) are of order

0%*! a5 proved in Lemma 3.6.

b. We will divide the differences in (5.6) of the type Fp (X, —Xn_1) —
Fp (@, (Tnoy, Xn-y) —Xn_1) in two. The first is

E[azpu (Tn. Xn—l)E (Fp (nn (/{;n—l) —t?n—l) _Fp (¢T,, (Tﬂ—lv Xn—l) _)?n—l) /ajn—l)l

This term is also of order 0**! as proved in Lemma 3.6, 2., because 7, is a
weak approximation of order 28.
c. Let’s consider the term left from b.: Assume that p= (5, ***, j,)

E (Fp ()?n_/{;n—l) “Fp (nn (x;(-n—l) _)‘En—l) /gn—l)
= EI: (_l)m Z Z E(ﬁ (fi&’, (Xn—l)[a;,rn-l,rn) FI)’ (7771 (Xn—l> _Agn—l) /gn—l>~

m=1 kb qelp—T, i=1
where the first sum runs over all ky, ***, by taken without replacement from
the set {j1, ***, j} and p’ is the same index as p with the indices ki, ***, km
removed. Define

g (a, ay, Qg Tn_fn—l) :E(la,rn_l,rn HIa,»,r,,_l,rn/gn—l).
i=1

for a€ly—Tgand a;i€ETy— W} for i=1, -+, 1 —1 and {k, k1, =+, ko) =
{1, =+, 3. It is known (for example apply the same method as in Theorem
4.1 [2]) that g is a polynomial function in T,— Tn—1 =0 of the type a;0°* + ---

+a135(1+1)3‘
Therefore we only need to consider terms of the type

E[02u Ty, Xno1) Fp (fa, (X)) 19 (@, @y, *+, @ic1, Tw—Toer) . (5.7)

Then we apply Theorem 4.1 for a =0 to prove that is enough to consider
instead of (5.7):

E [azpu (Tn, Xn—l)Fp (fa,- (Xn—l) ) ]g (a, ay, o, Ao, Tn— Tne1) (5.8)
The proof finishes by applying Lemma 5.1 to (5.8). O

Now we will give the analogous of Theorem 5.1. in the case where an
expansion of higher powers of g is desired.

Theorem 5.2. Assume the same conditions as in Theovem 3.1. Then
there exists functions ¢, (t, x,y), 7=PB. -, 0—1 and positive constants M, U K, c
that depend only on p. In particular the constants are independent of t, x, y, 0
and the partition m. The functions ¢y are independent of 0 and the partition m
and they satisfy

M QA+ .,

~ =1
sup|02E [geor (X, —y) 1 —0fq (8, 2, y) — X b, (t, x, y) 67| <= ;
y r=8 Va(x)
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where ¢, (t, x, y) salisfies

M((1+|x|)®

sliplfl)r(t, x, y)|$ V4 ()

In order to prove the above one also needs a generalization of Lemma 5.1.
From now on we restrict a introduced in Section 4 to a < [ﬁ] —1, where [+]
denotes the greatest integer function.

Lemma 5.2.

-1 t
| S §9E [azﬁaug (TjaY Xja_l)F,, (fa;r(Xja—l))] - Zd'j;
= r=0

M(1+Ix|)uap+l

S2
a <
j:) E (qf,(sl, , Sa, XSlv ’ Xsa) )dSl dSa' - t"VA (.’L')c '

for some measurable functions W and positive constants M, 1, k and ¢ that depend

O’Vlly on p, (Po' R pa)e(ﬁw>a+l, (IEN and the a!{E,/%fori=l, ., l(pl>'
7=0, «*-, a. In particular the constants do not depend on the partition m, 0, t x or

y and the functions U2 do not depend on the partition T or 0. Furthermore
E(W (s1, =", sa, Xspy o0, Xs,,)) salisfies

"
sup |E(Wra(81, o, Sa, Xyt Xsa))lgM(1+x)

7,810-18g ’ thA(x>c .

Note that all the #’s that appeared in the Lemma 5.1 and Theorem 5.1 and
their proofs become jo in the present situation. Similary u becomes u°. The
general idea of the proofs of Lemma 5.2 and Theorem 5.2 is to repeat the same
argument ¢ times. The iteration of the argument in the proof of Theorem 5.2
gives the indices jj, ***, Ja.

In fact, the proof of Lemma 5.2 is obtained by performing finite induction
on a. That is, one repeats the steps in Lemma 5.1 a times in a conditional
form (also replacing 2 by 0).

Sketch of the proof of Theovem 5.2. The general case is obtained by
iteration of the argument in the proof of Theorem 5.1, as in [7]. We have
already proved the result for p<28.

Consider in general the difference (for definitions see Section 4)

Eu$ (7, )Z;a_]—x) —u§ (T Xigy-1) ] (5.9)

The proof of Theorem 5.1 can be used up to (5.7). Then we get that instead
of (5.7) and (5.8), we have to compare

E[02u8 (Tja, Xj,,—-l) Fy, (faf (Xja—l) )1 —E[02°u$ (z‘,-a, Xj,,—l) Fyp, (et (Xj,,—1> )1

Note that p, and af determined above do not depend on jo °**, js. By
Theorem 4.1, this difference converges to 0 at a rate O(df). This gives an
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expansion of the difference (5.9) in terms of &7, j=8, :*-, 2.

Now consider p<3B. The proof of Theorem 5.1 can be used up to (5.7)
replacing 283 by p. By the previous argument for a=0, the difference between
(5.7) and (5.8) has a expansion in terms of &, j=p, +--, 28. Therefore the
result follows. The rest of the proof follows by finite induction.

Note that the function ¢, can be written explicitly following the above
proof carefully. In fact for y=1 the function ¢; is explicitly stated in [1].

With the same methodology used here one can actually achieve other
generalizations. [For example, in the case that the heat kernel to approximate
is associated with the operator

Lf(s, x) =L%(s, x) +V(x)f (s, x)

for V: R®— R a smooth bounded function with bounded derivatives, an
extension of Theorem 5.2 can be proved. Let’s first introduce a middle step
in this generalization. The following result extends Theorem 14.6.1 in [6].

Corollary 5.1. Let f be a smooth function with polynomial growth at
wfinity. Then there exists a positive constant C and functions ¢, y=8+1, -,
0—1 independent of 0, such that for 0= 3

Elexp ([ Vs R ds)f (F)] —exp (v (X ds)r () _Zf: o, (¢ x) 67 <Co°.

Here the approximation V(x) is defined as
Vt (x)= 2 Va (x)la.r,,,t T <t Tpyr.
a€ly.,
With a slight modification of the technique shown in this article one can also
prove the following result.

Theorem 5.3. Assume the same conditions as in Theorem 3.1. Then
theve exists functions ¢, (t, x, y) v=PB, -, p—1 and positive constants M, u, £, ¢
depending only on p salisfying the equation below. In particular the constants are
independent of t, x, y, 0 and the partition . The functions ¢, are independent of
0 and the partition T.

t o ~ . ~ -1
sup| 0ZE [exp (fo Vs (Xnio)ds) pewr (X~ )1 =027 (6 . y) — 2 O:(t, x, y) 0l
y r=8
<M+ x|)”5,,
T PVa()e
where ¢, (t, x, y) satisfies

u
supldfr(t 2 y)|<M MA+|e])"

PValx)©

where q (t, x, y) =E (exp (_/:V(Xs)ds)/XFy)q(t; x,y).
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The introduction of the term exp(fBV(Xs)ds) does not bring any major
complication to the methodology applied here. The only point that one has to
be careful about is that when one is working with the formula (3.16) and its
subsequent analysis one finds terms of the following type

Tml(

afu (Tn' Xn)f ‘75 (Xvn) - V(Qos (Tn, )?,J))ds

Tn

where u (s, 2) =E (exp ([5'V (¢, (s, 2))dv) ey (1 (s, 2) —y)).
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