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Regular points for the successive primitives
of Brownian motion

By

Aimé LACHAL

1. Introduction

L et (B ( t) ) to  be the linear Brownian motion starting at O . D enote by

X
1

n (t )= n i f
0t 

(t — S) n dB (s)

its n- fold primitive, and

(t) = (t), (t)  Xn (I)).

T he G aussian  process X „ w a s  f ir s t  mentionned b y  Shepp  [7 ]. Later,
Wahba used  th is p rocess to  derive  a correspondance between smoothing by
spline and Bayesian estimation on certain stochastic models [8] , [9]. See also
[1] w here X „ is equally  in troduced in  describing some degenerate Gaussian
diffusions.

In  the study  of X ,, arises essentially the  process U that w ill be shown to
b e  i n  f a c t  a  M arkov p r o c e s s .  L e t  u s  p o i n t  o u t  t h a t  t h e  process
(B (t) , X1(0) t-_o corresponding to the case n =- 1 has been used to describe the
movement o f  a  partic le  driven by a  Gaussian w hite  no ise  ( [5] , [3] ; see also
[4] for further references).

F o r  th e  p rocess U , w e  w rite  a  W iener's  te s t  w hich allow s to  decide
whether a  fixed point, say  0 , is regular o r  not for a  certain  set B  in  Rn+ 1 ,  or
in other words, if 7-B= inf{t >0: LT (i) EB) denotes the first entrance tim e in B,
then Po{ra=0} =1 or not.

Our main result can be sta ted  a s  fo llo w s . Set for any x (xo,
Rn+1 :

N  (x )= max Lril 2 i1+'
05i6n

*X =  ■Xo, — X1, X2 ( - 1 "xn)
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and

Bk =  X C B :  2 — k -1 ( X )  . - 2—k}

B * ={ x e R n ± i : x * EB}
rk =

Theorem 1.1. Let B  be a Borel set in itn + 1  such that B *  =  B which
closure includes the orig in  O . Then, 0  is a regular point for B if and only if the

+.0
series EPoIrk< + 0 0 ) is divergent,

k=0

T he  method we have adopted is classical a n d  is  based  o n  th e  potential
theo ry  re la ted  to  th e  p rocess U  (T he  reader m ay consult e . g . [6] for an
exhibition o f  t h e  c la ssica l W iene r 's  t e s t  f o r  t h e  space-valued Brownian
m o tio n ) . However, we will not introduce the notion of capacity, which seems
difficult to be extended to that c a s e .  I n  contrast to  th is gap, an  appropriate
m artingale  and  a  duality  property  associa ted  to  U w ill b e  effective in  this
study.

L et us point out that replacing Bk by { x  EB: 2k( x )  < 2 k 4 -1} yields an
analoguous test which tell us whether B is  a recurrent set

Po{ 3 (tn)no/ + 0 0 : U (tn ) B )  = 1 )  or not.
Next, we display two examples:

Theorem 1.2. Let f: (0 ,  + 0 0 ) (0, + 0 0 ) a  function such that „
x ) is nondecreasing near 0 and sel

T={xER." ± 1 : xn > 0 ,  n21 IX i . 212, -+ 1  f ( i n )  2 ).
i= 0

Then:
• if n=1, 0 is a yegular point for T;

n2-2

• for
,

0 is a regular point for T if and only if the integral dx

is divergent.

Theorem 1.3. Let f :  (0, + co) - -  (0, co) a function such that xl ' f  ( 1 . )

is nondecreasing near 0, and set

n - 1
T' = E R n + 1 ; xn E (xn)2)

i o

Then:
• if n=1, O is a regular point for T';



0 -2x)•  for 2, 0 is a regular point for T' if and only if the integral f ( 
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dx . .
7  is divergent.

For instance, choose in theorem 1.2

1_, 1 , 1 , 1 (, 1) 1 +6 1 1 2f (x) x 2n+ I log log2 y  logk-i —

x  
iogk

x

where logk = log logk_ 1. Then if  e. 0, 0 is  a  regular point for T and if s>0,
0  is an irregular point for T.

It may be derived a  similar te s t  (w ith  f instead o f  f i r )  for a  function f
 „

s u c h  t h a t  x  x  2 + 1 f( ( x ) )  i s  nonincreasing n e a r  +00 that
allows us to decide whether the thorn T  (resp. T ') is recurrent of not.

Now, we se t ou t a  brief sketch of the content of th is  pape r. In  sec tion  2
a re  introduced som e no ta tions and  basic  properties o f  th e  p rocess U .  In
particular Markov and duality properties are explained, and some estimates of
th e  0 -po ten tia l re la ted  to  U a r e  w r it te n . Section 3 is devoted to  proving
theorem  1.1. Som e geom etrical facts such transience a n d  po larity  for the
p r o c e s s  U  a r e  m e n tio n e d . N a tu ra lly , a classical . e x t e n s io n  o f  t h e
Borel-Cantelli lem m a w ill also be used in  o rd e r  to  s tu d y  th e  series written
dow n in  th e  theorem  1 .1 . Section 4 is  concerned  w ith  th e  proofs o f  both
theorems 1.2 and 1 .3 . These results require some estimates about the hitting
probabilities of certa in  c lasses of parallelepipeds in  R ''.±'. Finally, th e  last
part contains the proofs of several intermediate lemmas.

2. Preliminaries

The first noteworthy fact is the Markov property:

Proposition 2.1. U is a  strong Markov process.

Proof. F ix  an instant to O .  For each k E {0 ..... n) we have by Newton's
formula:

x k ( t o + t )  f  
(t+ (N—s ) )

k dB (s) s ) )
 k  dB (s)

k !f o
to+ , ( t  kor  

= (to) + fot  ( t
 - -k1

6 )  k daB (l0+
1.

and then

u (to + t) = w (to, t) + u (to).1, (1)
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where we set

12

2

O i t

Jt=
0 0 1

0 0 0 1

t (t (T) k  

W (t0, t) = ki d a B

The previous stochastic integral is to be understood as  being

J
(t —a) k - 1 t kJ 1)1 B (10+ 6r)da — (to)k! (for kL. 1) .

The classical Markov property of Brownian motion allows us to write

law
(B (to + t ) ) 1 Z 0 = ( t 0 ,  I) +B  (to) ) t o

where :8*- -  (1- 0 , . )  is  a  new Brownian motion starting at 0, which is independant of
the a - field a{ B (t), 13 .t. to}. T h e re fo re

(t —  
k  

dun a ) ) 0 , 0 ,W(10 , t) --= (f 0 k!

so  tha t the  process W  (t o , .)  is  a  copy o f  U that is independant of the a - field
o- {U(t), =  a  {B  (t) , 0  1  to } ,  a n d  th e n  (1 )  is  s u re ly  a Markov
decomposition related to U. By replacing t o w ith  a  stopping time, it is easy to
see that U is  in fact a strong Markov process.

Now write

Pt (x; =Pi{U  (t) E d y } ,  x = y—  (yo

for the transition densities of the Markov process U.
Since U is  a  Gaussian process, we get an explicit formula for p f (x; y ) :

13, (x; y) = exp E  
t 1+.,+1 y, k x i _ k ) ( y . ,  Et xi_k)ik! k!

k=o k=0

and

(to+ 0. ) ) „ „ n

7

(2)

w here the double  o f th e  matrix (ai.i) osi,isn is the  inverse  o f  the covariance
matrix of the random vector U 1, namely:
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1 1 1
T = ( ( i +  I.+  I  ) iv ! )  , , and c=   d = n ,± 1 )2 -1 .

id5n (2g) (n± ""V d etr

The density  (2) has the following matricial representation:

pf(x; y) t d + 1 e x p [ —  — xJ,) A , (y — x.h) (3)

where we put for all x =- (xo xo) E  Rn+1 :

Set:

and A t
a i i

= ti+J+i)osi,isn.

0 (x; y ) =  f  Pt (x; y)dto
+00

C (x ;  y) = f  P x fu(t) E d y ,  t < T A Udy.
o

These functions a r e  respectively th e  0 - potential a n d  th e  0-potential of the
process absorbed when U hits the set A C  R ' .

Since U satisfies the following stochastic differential system

1 dX 0 (t) = dB (t)

dX 1 (t) =  X 0 (t) d t

dX n (t) =  X  n - i  (t)dt

it is easy to derive the differential generator associated to U (see e.g. [2]):
n

1   a2   _ 1a  0 ,--  9  n  2  - r-  E r k - 1  n
" '  UXO UX k .

k=1

It is well known that

Dx0 (x; y) = —5 (y — x ) (4)

Finally, notice that each component of U  has a  scaling property such that
for any v>0:

law
k (1 ) . ) )  0 5 k  < n =  ( v k+1 /2 x k

/

All scaling factors are different, so this leads us to change the Euclidean norm
on into the application N  defined by:



104A imé Lachal

„
N (x) = max lx i lYr-f.

°Si6J/

Proposition 2.2. 1) L e t y  e  Rn+1. The function x (x ; y )  is
continuous over Rn + 1 \ {y) .
2) There are some positive constants a, 48 such that for any x

e R n + 1 :

(x; y) m in(xn— yni2,4+1, m in ( z i l V I Y i l )  2i 
u
+1)

05i5J1-1
d i /

(r; y) 1 ,  2 a   +E(Ix AEIx1Y,Ly.',111iy ,
j=1 j=1

In particular:

a  ._ (1)(x; 0) 
N (x) 2dN  ( x )  2d •

The proof of proposition 2.2 is given in section 5.
In the proposition below  is stated an im portant result which comes from

Itô's rule as well as proposition 2.2:

Proposition 2.3. Under P x , (0 (U  (t) , y )) to  is a local martingale with
respect to the Brownian filtration and if A is a Borel set in R n n  such that x€EA
and y EA , then ( 0 ( 1(1A T A )  y )) t o is a continuous bounded martingale.

Now, w e in troduce th e  dual process U *  o f  U, i.e. the  M arkoy whose
transition densities are defined as

(x; y) = {U* (t) Edy}/dy: = p, (y; x)

and we denote by 0* and  0 :: the  related dual potentials sim ilar to 0 and A .

We set also

21-= inf tt > 0: Er* (t) E A } .

I n  th e  follow ing proposition, w e w rite  o u t  som e explicit relationships
between the processes U and U* :

Proposition 2.4. If x=  (x o x n )  e R n+1, p u t

x * = (xo, — x i, x2 ,..., ( - 1) nx n ) .  For all x ,  y  R " ' we have:

1-); (x; y) =Pt (x * ; Y * ) (8)
0* (x; y) =-0 (x * ; y * ) (9)

(x; 011(x*; y * ) (10)

(5)

(6)

(7)
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Therefore, the following identity holds:

law
(u *  ( t )  MO

=  (U(t) *) t40

Moreover:

Es  (4)(U(7/1); y )1{ ,-„ ,+ .))  = E :(4 )(x ; U* (71)) 1 (,-:<+-)) (11)

Proof. In view o f  (3) we have to verify that the following equality holds:

(y— xJ,)A t(y— x,h)T  (x* —y *Jt)At (x *  —y *It) r,

O r, equivalently:

L A X .=  — A-1. (12)

Let us compute (Jt A tJT) A Tij We have:

A 7 1 =  
(

-I-j +1) Joi,isn

The generic term of .g t AT 1 f_ t is

2tk+1+ , ,
(i - k ) !  k !l! (k ± l±1 ) (j — l)!

k,1

15 j

i + 1 2tii-l-F1 ( _ 1 )k +1

k+1+1 4A1)(.13)

1 It c an  b e  ea s ily  seen  th a t th e  last sum  ac tua lly  equals i +  j.+ 1  s o  t h a t  the

2 (— t) i + ) + 1  

left-hand side o f  (12) is equal to th a t  is  to  sa y  the generic1j! '
term of This proves (13) and the relations (8) a n d  (9) are satisfied.

The equality (10) can be checked by writing

+-
(x ,  y )=  l im  f  d tP x {e kE(1 ..... N - 1), U(--ik-'r t)■EA, ( t )  Edy}/dy

0

and by using the Markov property as well as the relation (8).
Now, since U is  a  strong Markov process we get:

0(x; y) — (x, y)
0

 d tP x { u ( t )  Edy, 77,1 t) /dy

=I dtE1(1{1AsoPu(,){co: 1/(t — rA , co) E d y } /d y )0

=Ex (1{ ,<+.01 p l — r,(U  ( rA ) , y )dt)

= E , ( 0  (ET (z - ,4 ) ;  y )1 ( ,< + ,-)) •
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W ork ing  w ith  th e  d u a l p ro c e ss  U* y ie ld s  th ro u g h  a  sa m e  w a y  f o r  any
x ,  y  E R n + 1 :

0 *  (y; — (Y; = E :(0 *  (U* (z- A ) ;  .X )1 (1 1 < + .))

=E : ( (x; U* (T A ))  lsil<+-)).
This proves (11).

3. Proof of theorem 1.1

Put P = P o . T he proof of theorem 1.1 hinges on  the  following propositions
(3.1) a n d  (3 .2 ) .  See Port and Stone [6].

Proposition 3.1. 0  is regular for B if  and only if  P (lim supko
{:z-

k < + 0 0 }) >0.

Proposition 3.2. There is a positive constant C such that for all integers
k, 1, if  lk—2 ,  then

P{7-
1,< ± co , r i < H -0 0 }  _C P{rk<+ 0 0 }P{1-1< ± œ }.

T o show proposition 3.1 it requires following two lemmas, proof of which is
given in section 5.

Lemma 3.1. The process U is transient, namely for all xE R " + 1 :

Px { Um I1U(t)11= + 0 0 )  =1.

Lemma 3.2. WI is a polar set for U, i.e. for all x E R"n:

Px( 3 t > 0: U(t) =0)=0.

Proof of proposition 3.1. •  If  0  is  regu la r for B, then  it is  easy  to  see
from the  definition o f  a  regular point th a t the  even ts (rk <  0 0 )  occurs i.o.
with probability one.

•  Conversely, suppose  P (lim sup k o {rk < 0 0 }) > 0. T h is  im plies in
particu lar tha t, w ith  a  stric tly  positive probability , there  exists a  sequence
(tk (0))) IcZO and an increasing sequence (nk)kao such that

V k  0, U (tk) EBnk

and then

PI tim U(tk) 0 } > 0 .

Since U is transient, th e  sequence (tk) k. c, is bounded w ith  a  strictly  positive
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p ro b a b ility . Let t=t (w ) be one of its limit p o in ts . We have P{U(t) =0} >O.
Seeing that { 0 } is polar, we get

Plt= 0} >0.

Thus, w ith  a  s tric tly  positive probability , there  is a  subsequence o f  (14) IcL.0,

sa y  (sk )k o, converging to 0 such that

V k  0, U (sk) EB.

As a result:

P {7,3=0} >0 .

S ince {TB 0)- i s  a  ta il e v e n t w ith  respec t to  th e  Brow nian filtration, the
Blumenthal zero-one law  asserts that in fact

P{T5=0} =1,

which completes the proof.

The proof of proposition 3.2 is based on some estimates which are  supplied
in the following lemmas:

Lemma 3.3.
integer k

n+1The following inequality holds for any x, y  E R  a n d  a n y

sup-eB4O (x ;  
Px{rk <

i n L
'
E B . 0 ( z ;  y )

Pytrk<±œ ).

Lemma 3.4. For all integers k, 1, if  lk — 11 2, then

sup (r,y) (x ; y)  < c ,

infreB 4O(x; 0) —

where C is the constant introduced in proposition 3.2.

The proofs of these lemmas are transferred to section 5.

Proof of proposition 3 .2 .  By the Markov property of U we get:

Plz-
k <d-co, r 1 <+œ}=

=P{z-k z-,<+00}+P i .{ri <r k <+00)
=E [1{,-,<+.1Pu(z-o{r1< +co)] +E [L,, , +-)Puu-d{z- k<+°°}]
_Iltrk <+0.0}sup P x {r1 < ±co }+ P {z - 1<±co}sup Px{rk<H - 0 0 ).

x E B , xE13,

Combining (14) w ith  (15) yields

sup P x {rr< +co} . C P1ri<+00)
r E B ,

and the same inequality holds also by exchanging k and 1.

(14)

(15)
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The proof of proposition 3.2 is complete.

I t  is  n o w  e a sy  to  a c h ie v e  th e  p roof o f  theorem  1 .1  by  invoking  the
following version of the Borel - Cantelli lemma (see e. g. [ 6 ] ) :
if

+.0

Ep(Ak)=+-
k=0

and if there is a constant c > 0 such that for all integers k, 1:

P(A k n A r) cP(A k ) P (A r )  when 2,

then:

P (lim sup Ak ) >0.
1( 0

4. Proof of theorems 1.2 and 1.3

W ith the  view of checking theorem 1.2 a s  well a s  thorem 1.3, we need some
estim ates a b o u t th e  h itting  probabilities o f  c e r ta in  parallelepipeds. These
ones a re  provided in  th e  follwing proposition, w hose proof is transferred to
the next section.

Proposition 4.1. 1) Set:

n -1
P (a, b, s) = H [ - 6 2,-o ,x  [a, b]

i=o
= { x E R " 1 :a_<_.x.

n b, V iC (0 ,...,n - 1),Ix i l
< E 2 i + 1 }

where a, b, E are some positive real num bers such that a <b and L=b — a .2 0 7± 1 .
Then, there are positive constants r, 5 such that

L E n 2-2  i f 2, T 2d

L y "if  n= i,

2) Set:

L a n 2 - 2  

{rp(a,b,e) <+° ° ) 6 2d  •a2,,+1
(16)

P' (a, b, s) = [— s, e]n x  [a, b]
{x E R ' :  a Sxn-b , V  E {0 ,..., n - 1), I x i I - s)

where a, b, E are some positive real num bers such that a <b and L = b — 2 .
Then, there are positive constants 7/ ,  5' such that
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if n - 2,

if n=1,

LE2r1+1
l '") {1- P'(a,b,E) <  + ° 9 }

5 ' 2d •
azn-Fi

(17)

    

Proof of theorem 1.2. •  Suppose a t f irs t th a t lim ," -x   (x ) > 0. I n
this case, the integral arising in theorem 1.2 is  d iv e rg e n t. On the other hand,
it can be found two positive constants f t ,  6  such that the set

n-1 2 2  

{ x  E R '':  x n  0 , N  (x )
i =0

is contained in  T .  Then

P { -t-T=0}>__P{TF =0 }=  in f in f PW (t)EF„,,I.
o<t<E2 0<t<e2

By scaling, we have for any f E  (0, e2 ): 

P I U ( t )  E  F) =P {1,7 (1) EF„A17} T(i) E F i ) >0.

Whence P{rr=0} >0, and in fact by the zero - one law

Ptz- T =0)=1.

Aa a  result 0 is regular for T  and the claimed assertion is true.
•  Assume now  that n_>_. 2 and lim.„0, x  2o1-1-1f  (X )  

=
0. L e t  u s  introduce the

parallelepipeds:

p k ,p (2 — (k +1 )(2 n +1 )  2— k(2n+ 1) 1 f(2— (k+ 1)(2n+ 1)) )
NW]

Q k ,pG 2— (k +1)(2n+1) , 2—k(2n+1) , f  (2-1c(2n+1)) )

and set:

T k =  n { x  E R ' :n+i : 2-k -1 < N  (x ) <2-k }

It may be seen that for sufficiently large k:

PkcTkOEQk•

On the other hand, according to (16), there are positive constants 7) ,  5', y", 5"
which can be expressed by means of T, 5 and n such that:

[2kf  (2—  (ki-1)(2n+1)) n 2- 2  < p { r p h  < co } < 5 ' [2 k f  (2—(k+1)(2n+1))] n 2-2 .

[2 k f  (2-k(2n+1)) n2-2‹ p T (2 k < 0°)  5 v [2kf (2 2 n + 1 ))  n 2-2 .

Thus the following series
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p r p k  <  0 0 p  k  <  c o  E p { ,r T k  < + c o },[2 k f  ( 2 - k  ( 2 n + 1 ) )  ]  n 2 - 2

simultaneously converge o r diverge.
Since the  function x l->x  2 .+1f  (x ) does not decrease, the convergence of

this last series is equivalent to the convergence of the integral
)n 2 -2

f  (x)d x
7  and  we get the desired result with the aid of theorem 1.1.

• Finally, when n = 1  and li mx -o. f (x )  =0 , we get from (16)

P { rr ,< + c o }  P { 7 -p, <H- 0 0 } _7-(1 - 2- 2 n- 1 ) 2" > 0

so  that the  series EP{rT,<+ oo}diverges and 0  is therefore a  regular point
for T.

Proof o f theorem 1 . 3 .  Let us introduce the parallelepideds:

= (2- ( k + 1) (2n+ 1) 2-k(2n+1) ,f  ( 2 - ( k + 1 ) ( 2 n + 1 ) )  )

Q 'k = (0 -  (  k  -1 -1 )  (2 n  +1 ) 2 -  k (2 n +1 )
,

 f  ( 2- k  (2n+1)) )

where /.1 is  a constant which will be explained thereafter, and set:

T'k = T ' fl { x RE  n +i :( x )

W e will see that we have for large enough k:

Y kc'rkc(sik•
• Indeed, if x cP‘k  then:

i) E
n--1 2

X i
<

j
,-)-(k +1)(2n+1)) 2  < f (

x )
n■ 2

i=0 _  since f  does not decrease, and then x  T " .
1 ii) 2-k-1 <

i n  12”- Fl < N  (x) 12- k  V max0 n -1[.,;;T. f (2- k (2n+1))I I

By assumption, we know that the  function (x )  is bounded from above
near z e r o .  Therefore, for all large k:

max f  (2-
k ( 2 n + 1 ) )  2 i + 1  

<constant x 2 - ' -r t 7 --+ 1  =o (2-
k ) as h Ca.

Thus N (x ) if k  is sufficiently large. A s  a  result: x E T .
• Now, if x E V ic then

i )  x n <N  (x )2n+1<2-k(2n+1) .

x.f . f ( x . )  2 (2 -k (2 n+1 )) 2

and this implies for each i E {0 ,..., n - 1}
 

I xi I <f  (2-

k ( 2 n + 1 ) )

iii) Since N  (x) it  c a n  b e  fo u n d  a n  in d e x  io  c  10 such that

ixiol >2-(k+D(2i0+o>2-(k+i)(2n+1). Hence

n-1
2-2( k +1) (2n+1) E - f ( x )  

2 .

:=0



Brownian motion 111

This can be rewritten as follows:

- F f ( x n )  2 >2-2(k+1)(2n+1)

Since f (x) constant x x  when x- - 40+ , it is c lear tha t there  is a constant tt > 0
such that if k is  large enough, x n ,u2-

( k + 1 ) ( 2 n + 1 ) .  
A s a result: xEC2lt•

The proof of theorem 1.3 can now be achieved as follows: the three series
o f th e  hitting probabilities associated to  th e  collections o f  s e t s  (6 )  ,  (Qic)
(T i) a r e  simultaneously convergent o r divergent with the series

ff (2-2(k+1)(2n+1)
 2,, +I2-2(k+1)(2n+1)

or, equivalently, with th e  integral displayed in  theorem 1.3 and  the  proof is
complete.

5. Proof of lemmas 3.1, 3.2, 3.3, 3.4 and proposition 4.1

We begin to exhibit a set of general results which will be useful thereafter.

Lemma 5.1. Let A, A1, A 2C Rn+ 1 be some Borel sets.
1) For any positive measure m on A  and any x E R n + 1 \A we have:

5A(1) (x; y)m (dy) < p ‹ ± „ . 0 ) <  f A ( X ,  y)m (dy) 
sup,EaA fA (z; y)m (dy) x inf,EaA .L40(z; y)m (dy) .

In particular, if x  R n + 1  \ A  and y EA:

Px{rA < + o e }
(x; y) 

in f ,a A  (z; y )

2) If  A— i n A 2 =  ,  then for all x E Itn+i and all y EA 2:

Px { TA, < + co, T A ,0 0 ! Sllp ,e 't1 ,0 (Z ;  y) 
4.'12 V., UT I f

in fyE aA ,0 y) .

3 )  For any x  RŒ  n + i  A U 2 )  and any y EA 1 U  2 such that infcaA (z; y) >
inLE5A,0 (z; y )  we have:

(x; y) — inf,eaA, (z; y) Px{z- A, 1- A2) in t E aA N)(z ;  y )  - (Z ; y )  • (21)

Proof. 1 )  Proposition 2.1 and Doob's optional sampling theorem lead to
the following identity, which is valid for any y EA:

0(x; y) — Ex(O(U(TA); Y) l(r,<+.°)) •

(18)

(19)

(20)

Hence



112 A im é L achal

IA 0 (x; y)m(dy) =Ex[L , , , , - )L 0 ( u (1- A ); y )m (d y )]

which makes clear (18).
2) (20) m ay be  easily  deduced  from  (19) th a n k s  to  th e  strong

Markov property.
3) A p p ly  a g a in  Doob's th e o re m  to  t h e  continuous martingale

(0 (U (t A TA, A T A 2 )  y )) tk O . We get:

0(x; y ) =  E  (0 (E/ (TA') y ) 1 tr ,)) +Ex (0 (U. (r /12) ; y )1 > ))
inf 0(z; y )P{ T A l 2} +  inf 0(z; y) ( 1 — I )

 { TA' I 'M } )
z E a a , z E  OA,

T h u s  (21) ensues.

Lemma 5.2. Let a o , a 1 ..... a  be some real numbers, a 00 .  The
following inequality holds (with the convention

r
o

+.0

td+1exp t i
) a t  constant x 1 

2d/  . (22)
2

la0121+1
L-

1J a 0
i=i

Proof. Suppose t_ im in i6  ilao/ar l , so that Then:

E a it i
i=0

Now, the integral in question is bounded from above as follows:

f o +

.  
exp

1  
t2i+1( a j e )   td+1

: =0

2 1 • „ ,  I  /j

d+1

1-4.j1 
e 

_ i cy 2 /t2i+1

0
4 0/

/ 1 d t 

+- d t  
td+i•

Since
, 11„,26.2i+1  d t 

e  4 (AO u
f 1

4a
2 j
0/

a i + i   d t  
t

d
 + 1

—< constant x laor 2i+1
1 •

td+1 0

and

r+- d t 
d + 1  

constant x max
• t3 1 6 j6 i

the inequality (22) is immediately obtained.

da  7

ao

Lemma 5.3. Let a o ,..., a„ , go ,..., sn-, be non zero real numbers. The
following inequality holds:
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1

2.3 ;))r + dt
exp ai+1 td+1i=0 J=1

, 2d 2 d  
>  constant x min(lanr , m in  (lail V

1

) 2i+1). (23)
05i5n-1

P r o o f .  W rite first

(

2

ai+ D i_ i tl _ co n s ta n t x  al +EI3Vi t2)

so that

E 2 2

n

(cri+ - .Es,t  1

l i constant x cr
+1

' t +  f i-j--
t 2,,, t2f+1

i=0 i=1 i=0 j=1

<

 n - 1

Constant X  

E 
a i+ 1 31  ±   a l ,(

i=0

where we set

<  constant x E(i)
2 i + 1

i=o

, 2 1 ,  2  
r=max(la n 12, , +1, m a x  (lailV O i l )  + 1 ).

06i6n-1

It is then easy to derive (23).

Proof of proposition 2 .2 .  1 )  Fix y E R , '  and let 
r o E R 7 + 1  

{O .  There is
a  small Euclidean ball B (Xi, e i n + 1 )  w ith  centre xo and  rad ius E 8In+1>  0
not containing y. Choose R> 0 la rg e  enough so that B (xo, ,s/n+1) Œ B  (0,
R) W e a re  g o in g  to  p ro v e  th a t 0  (x ; y )  i s  in  fact continuous in  B (x o ,E
.1n-1- 1)

One can find an index io (0 ,..., n) such that Ix 1 0 — , Y 1 0 1 > E .  W e  have also
for all index i E (0 ,...,

O n  th e  o th e r  h an d , s in c e  th e  m a tr ix  (aii) osi,isn th a t  a p p e a rs  in  the
definition (2 ) of the transition density pt (x ; y ) is positive-definite, it is clear
that there exist some positive constants Ai  and  /12 such that:

E
1.0 O ,j n i=0

(24)

t2i+1 t2n+1

Therefore
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pt(x ; y)

n i

td+l e x P 21 E t2i
1+1 Y

tk
li xt-ke!

E,  

1=0 k=0
io , 2

< C
t d + l

e x p ( i
A_  1  _ .0 V  rx i o

t2i0+1 Y ,L  k! —k .

) 2 )

k=0

e  1

Put a' =a( —

R
)

2

'  where a  will be chosen later. Then for t_<a',

vkc  {0  ,..., t_ct[Y -10 x i°
X 10- k

and

Yio 
E  t

k

k!
X  i o - k

k=0

ik T 1°  n k
ixio -ki-E-e (1  a"

k=1 k=1

where a"= E (2 — e a )  (with the convention E °k=i= 0). So, we will pick a  less
than  log 2 (so that a ">  0 ). W hen t a', pt (x ; y )  is bounded from above by

td+1 .

Consequently:

Vt> 0, V  x EB (x o , EA /n+1) , Pt(x; y) (t)

where

a7 t0 +1 1q  ( I )  =   C  
td +1  \.1, + . . ) ± 1(0,e1 (t)e — t 2

)  .

The function q  does not depend on x  and is integrable w ith respect to  t  over
(0, - I- -

 0 0 )  so  th a t the  desired result derives from  the  dominated convergence
theorem.

2 ) The inequalities (5) a n d  (6) can be easily obtained through (22) , (23)
and the relationship (9).

Proof of lem m a 3 . 1 .  Set

SR  — E ltn n : N (x )  .1•21

ScR R '\  S R
AR =  ( 9  ( tk ) C ° :  N ( U ( t k ) ) .

Let us apply  (20) a n d  (7):

Px(AR) + 3 N  (U  (0 ) <R }  < ,  , n )in. asR u., z; aR2d
suptŒs„ (z;0) 

L e t R-- *  ±  00 . W e get  P x (A R )_0 O. N otice th a t  t h e  fa m ily  (AR) R>0 is
increasing so that, in fact:

1
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V  R >O ,P ,v (AR) =0,

that is to say, for any x  RE  n+i :

P,x { urn Ilu(t)11= +00}=1

as desired.

Proof of lemma 3.2. •  Suppose at first x * 0  and introduce s, R>0 such
that E<R and xESC1 S R .  W e have from  (7) a n d  (21) that:

0(x; 0 ) R2°

Px Crs,

Let s—>0+ . This yields:

Px {r{o} 1 4 )
 = 0.

Letting R-0 0  then leads to

Px {r {0,< + 0 0 } =0.

•  Suppose now x = 0 .  We can successively write

P,, -(z-
{oi <+co}= limP o { t> E: ( i )  =  = (Pu(e){1- f o  <  cc)}

s  0+ s 10,

Since U(E) *0 a.s., according to the previous case we can conclude that
Pu(E){z-{0}<  co} as. a n d  then

P 0 ( -t- {o < + 0 0 ) =0.

Proof of lemma 3.3 . Lemma 3.3 is  an easy consequence o f  (11). Indeed,
the first member o f  (11) is bounded from below by

inf0 (z ; y )P x {rA <  +  0 0 }
zEA

and the second one is bounded from above by

sup0(x; 4P:(21<+ 0 0 ).

Since B *  B  (which im plies 1 1 <  c o }  =  P  (z- k 001) , th e  previous
remarks lead to the inequality (14).

Proof of lemma 3.4. Denote by B1,1,  i  e  (0 ,...,n), the  subsets of B1 defind
as being

B1,1= {xEBI 1(21+1)}2-(1-1-1)(21+1>
< < 2 -

a  _  a •
ezd R ' - '

We get:
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6.131,i= B 1.
i=o

Fix two integers k, 1 such that k - 1. 2  an d  le t (x, y ) EBkx Br. There is
an index i E {0 ,..., n) such that y  E B i ,  Thus:

Iy (1+1)(21+1) _2-k(V+1)
i

and for all index jE  {0 

yjj < 2-1(2)+1).

These inequalities and the upper bound (6) provide the following ones:

2, 2 _1(21_2t+1) d )
0 4 ;  y )  < s 12-(1+1)(2i+1)_2-k(2i+1) I 2 1 + 1( ± El 2 - (1+1)(21+1) 2-k(21+ 1)

:1=1
I 221+1 7,<  (,6  2 (1+1), 0 _ 2 _ ( ,i+ u ) 2 ,2d+ 1 + E (

1 _ 2 _ ,2 i± ,)  

)

j=1

Whence:

s u p  0 4 ; y ) 221(1

(.1.,y) eR ,

for an appropriate constant /3'. On the other hand, thanks to  (7):

inf (x; 0)
re f3,

0f o r  a n o th e r  constant a '.  C o n se q u e n tly , t h e  r a t i o  sup cr,y).Bk x B, ( x ; y )  
infreB4O (x; 0)

bounded.

Proof of proposition 4 .1 . Part one. Put P= P (a, b,
•  Assume at first L/ (28 2n+1)  is an  integer, say L=202"+1, and next

introduce the decomposition

q-1
P= UP ( i )

j=0

into q  "N-cubes" P ( j ) defined as being

p(j) = n111 H e 2i+1 , s2 1+1-11 [a - 1- 2j e n "" , a +  2 j + 1 ) E2n+9
i=0

=  { x  R n + 1 : N(x — y (i ) )

w here yu) = (0 ,..., 0, a  + (2j ± 1) 62))+1'‘ - s) the m iddle point of the segm ent
{ 0} n  X  [a + 2jei+ 1, a ± 2 (j +  1) 62 1] .

In  o rd e r  to  g e t th e  upper bound o f  th e  probability in  question w e  use

is
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(18) in  which m is chosen  to  be  5(o} (xe,...,xn-i) Othe Lebesgue measure on
[a, b] . We have:

f  ( O; y)m (dy)
a  

0(0; (0 ,..., 0, u)) du
a

d u   <  L  
— P  2 4 (25)

 it2n+1 a2n-1-1

and if x E
a+2(j

f  ( r; y )  m  ( d y ) a
a+ve-

du

 

N (x —  (0 ,..., 0, u)) 2 d

(the equality 0 (x; y ) =  (x — y; 0) holds when y E {0} n  X . But, when
xE apw  and u E  [a +2j 2' 1, a + 2  ( j+ 1 )6 ' 1]  we get:

ixn— uI-2E 2 n + 1  and  for every i E (0 n
< E 2 i + 1 .

Then

N (x — (0 ,..., 0, u))

and there is a" >0  such that:

f
a" y )m  ( d y )  a " E 2 n + 1 - 2 d _   a"

E n 2 - 2 ' (26)

T h e  upper bound o f  P frp +  00) i n  (16 ) is  ob ta ined  by  d iv id ing  th e  last
members o f  (25) b y  (26).

Now, let us check the lower bound of P {rp< ± 0 0 }•  Choose this time

q-1

E5y (i).

Similar arguments yield:

q-1

f (0; y)m (dy) (0 ) )  - 2 d a ,q
1=0 62,7+1

(27)

and if x E apw  then:

q-1

f (x; y) m (dy) - (x— y " ) ) '
1=0

It can be seen that for all i, JE  (0 q — 1} ,

N  (x — y )J i 1 1 2 ” 1-1-1V1)e.
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Now, it can be found a constant K  such that

f  (x; y)m (dy) ic
2d

Since

Ek 2.2+ constant if iq. 2
1 <

constant X q i i 3  if Tt =1

and q (2E2n+1 ) th e  desired low er bounds i n  (16) a re  acquired through
dividing (27) b y  (28).

•  C onsider now  th e  genera l c a s e .  L e t  q  =  [L /  (2E2 ' ) ] 1  b e  the
greatest integer less than L/ (26 2 1) , and set:

n-1H [ _e2i+1, [a, a + 2 (q+ 1) 
6 2 n + 1 ]

i=0
n - 1riR2 = [ _  2i+1 2 1-I-1] [b_2qe2n+1, b] .

i=0

Since R2 c P c R 1 and  seeing that proposition 4.1 is true for the parallelepipeds
R1 and  R2, we get:

P{Tp< +o0) _P{I-R1.<  + 00} 25 (q+ 1) E 2" -1
e n2 2

2 d  
a 2, +1

p t z.p <  + c o ) . .._p {, z_R2 .< + 00 } > 2 7,w 2n+1

so that proposition 4.1  remains true by replacing another constants since:

2 (q +1) 2L 
 and 2q q-Fl_.

e
2n+1 252n+1.

Proof of proposition 4 .1 .  Part two. T h e  p ro o f o f  th e  s e c o n d  p a r t  o f
proposition 4.1 is quite sim ilar to that of the first p a r t .  So we will only point
out some modifications made in that of the second paart.

In the case where L  =2qe' for a  certain  integer 1, we shall decompose
P' (a, b, e) as follows:

q -1

P' b, e) =  UP' w

i= 0

where

p.0=  [— E , E] n x [a + 2js' , a+ 2 (i +1) s']

In  o rde r to  eva lua te  infrEap-,  f S cl ( x ;  (0 ,..., 0, n ) )  du, w e w rite  dow n  the
following inequality which is valid for any x ear, ' w:

(28)
k=1

k=1
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f •ab ra+2 ( i+l) s '
CX; , . . . ,  0, u))du

a+2jef

du 
N (x — (0 ,..., 0, u)) 2 d .

When x c a P ) and  u  [a+ 2j , a l - 2(j +1) E l we have:

and for all i  E  ..... n — 1): Ix...... e.

Then

N (x— (0  ,..., 0 , u )) (  m ax  E2+1) V (2E') 2,+1 < (2E') 2:4 - 1
06i6n-1

and that is a" > 0  su c h  that:

f a b 2d„ ■r" -2  
( i ;  (0 ,..., 0, ) du en- 2,1+ 1  = - E 21?

The remainder of the proof is now omitted.

Remark 1 )  W e have not been able to  extend the  test in  theorem 1 .1  to
the case where 0  is replaced by another point out of the line {O}n X R.

x,
2 )  It seem s d ifficu lt to  derive  estim ates o n  th e  h itt in g  probabilities of

parallelepipeds such {x E R ' :  a V i * k  l E2H-1} fo r  k E  10 n - 1)
a n d  w e d o  not know  w hether a n  in tegral te s t  m ay b e  w ritten  fo r the  se ts

G  Rn+i : x k Ei*k1 x i 12,2+1 (r k ) 2 1, kE JO n — 1).
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