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Regular points for the successive primitives
of Brownian motion

By

Aimé LACHAL

1. Introduction

Let (B(t))zo be the linear Brownian motion starting at 0. Denote by

Xa0) =5 [ =97 aB(s)

its n-fold primitive, and
U =B, X1 () ... X (1)).

The Gaussian process X, was first mentionned by Shepp [7]. Later,
Wahba used this process to derive a correspondance between smoothing by
spline and Bayesian estimation on certain stochastic models [8],[9]. See also
[1] where X, is equally introduced in describing some degenerate Gaussian
diffusions.

In the study of X, arises essentially the process U that will be shown to
be in fact a Markov process. Let us point out that the process
(B(t), X1(t)) 20 corresponding to the case n =1 has been used to describe the
movement of a particle driven by a Gaussian white noise ([5], [3]: see also
(4] for further references).

For the process U, we write a Wiener's test which allows to decide

whether a fixed point, say O, is regular or not for a certain set B in R™!, or
in other words, if 7=inf{t>0: U (t) €B}denotes the first entrance time in B,
then Po{tz=0}=1 or not.

Our main result can be stated as follows. Set for any x = (xo, x1 ..., Tn)
ER"+II

N 1
N (x) = max|x,|zF1
Osisn

x*=(xo, —x1, 22 .., (—1)"x,)
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and

Bi={x€B: 27 '<N(x) £27%
B*={rER"" r*€B}
Tr— Ts..

Theorem 1.1. Let B be a Borel set in R™! such that B* = B which
closure includes the origin Q. Then, O is a regular point for B if and only if the

=+ 00
series 2 Polty < +0) is divergent.
k=0

The method we have adopted is classical and is based on the potential
theory related to the process U (The reader may consult e. 9. [6] for an
exhibition of the classical Wiener's test for the space-valued Brownian
motion). However, we will not introduce the notion of capacity, which seems
difficult to be extended to that case. In contrast to this gap, an appropriate
martingale and a duality property associated to U will be effective in this
study.

Let us point out that replacing By by {x € B: 2¥<N (x) <2**!} yields an
analoguous test which tell us whether B is a recurrent set
(ie. Pol3 (ty)nzo/"+o0: Ult,) EB}=1) or not.

Next, we display two examples:

Theorem 1.2. Let f: (0, +0) — (0, +) a function such that
1
xx T wFf (x) is nondecreasing near 0 and set

n—1
T={x€R"" 1,20, 2 |x,»|2fi‘1 <flxn)?.
i=0

Then:
® if n=1, O is a regular point for T,
n2—2
X
® for n =2, O is a regular point for T if and only if the integral j; (@) d?I
L o+1

is diverdent.

Theorem 1.3.  Let f: (0, +0)— (0, +0) a function such that rH(%)
1s nondecreasing near 0, and set
n-=1
T'={x€R" 2,20, Zx?<f(x,)?.
i=0

Then:
® if n=1, O is a regular point for T';



Brownian motion 101
® for n=2, O is a regular point for T if and only if the integral j; *<(%))m
dxr 1s diverdent.

x

For instance, choose in theorem 1.2

1

‘ l4+e | ——
f(x) =xznl—+1 log%logz 1 . logk-1 1 <logk1> } "2

where logy =log logi-1. Then if €<0, O is a regular point for T and if €>0,
O is an irregular point for T.

It may be derived a similar test (with f** instead of f,.) for a function f
such that x'—*x"ﬁf (x) (resp. x7Y(x)) is nonincreasing near +o° that
allows us to decide whether the thorn T (resp. T’) is recurrent of not.

Now, we set out a brief sketch of the content of this paper. In section 2
are introduced some notations and basic properties of the process U. In
particular Markov and duality properties are explained, and some estimates of
the O-potential related to U are written. Section 3 is devoted to proving
theorem 1.1. Some geometrical facts such transience and polarity for the
process U are mentioned. Naturally, a classical extension of the
Borel-Cantelli lemma will also be used in order to study the series written
down in the theorem 1.1. Section 4 is concerned with the proofs of both
theorems 1.2 and 1.3. These results require some estimates about the hitting
probabilities of certain classes of parallelepipeds in R"*!. Finally, the last
part contains the proofs of several intermediate lemmas.

2. Preliminaries
The first noteworthy fact is the Markov property:
Proposition 2.1. U is a strong Markoy process.

Proof. Fix an instant t,=0. For each k€ {0,...,n) we have by Newton's
formula:

X (tott)= f t+(t° dB )+f1°+l(t+(t° )dB()
—Z Xk_;(to f (t daB(to+0')

and then
Utot+t) =W to, t) +U (to) ] (1)



102 Aimé Lachal

where we set

’ 2 n \
1 L =
n.
tn—l
0 1 ¢ (n—1)1
Ji= -2
0 0 1 n—2)1
\ 0 0 O 1/

and

W (to, t) = (j;’”(’t_kzﬁdﬂB (t0+0))05k5n

The previous stochastic integral is to be understood as being

t — ) k-1 k
O%B(lo-i-o)da—;—!B(to) (for k=1).

The classical Markov property of Brownian motion allows us to write

(B (toH0)) o (B (1o, 1) +B (10)) 130

where B (to..) is a new Brownian motion starting at 0, which is independant of
the o-field g{B (t), 0<t<t,}. Therefore

Wito = (20005t 0)) esran,

so that the process W (t,.) is a copy of U that is independant of the o-field
olu(t), 05t<to) = o{B (t), 0 <t <to}, and then (1) is surely a Markov
decomposition related to /. By replacing {, with a stopping time, it is easy to
see that U is in fact a strong Markov process.
Now write
bl ) dy=PAU () €dy}, = (o, x0), = Wo s Yn)

for the transition densities of the Markov process U.
Since U is a Gaussian process, we get an explicit formula for p, (x; y):

i j
Aij t* t*
pilriy) = tac+1exD[_ Z ti+jj+l (y"_‘ Z_l?_!xi"")<yj— Z;}%-;:)J @)
k=0 k=0

O0si,jsn

where the double of the matrix (ai;) osijs iS the inverse of the covariance
matrix of the random vector U,, namely:
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_ —1___> - 1
r ( G+i+ 1)1y osijsn and ¢ (27) #+v72 /et

-1 2
d= 2 mn+1)

The density (2) has the following matricial representation:

pelx;y) = tdilexp[— (y—x/) A (y—x) 7] (3)

where we put for all x= (x9 ..., x,) ER"*:

Xo

T—={ : = (%

x : and A; (tmﬂ)os‘,hn.
Xn

Set:

Oy = [ plw )t
D, (x: y) =f0"°° PAU®) €dy, <14} /dy.

These functions are respectively the O-potential and the O-potential of the

process absorbed when U hits the set A CR"*!,
Since U satisfies the following stochastic differential system

dXo(t) = dB(1)
dx,(t) = Xo()dt

dxX,(t) = X,_.(H)dt

it is easy to derive the differential generator associated to U (see e.g. [2]):

1 2
D=7 % +Z“ Brs

It is well known that
D0 (x;y)=—0(y—x). (4)
Finally, notice that each component of U has a scaling property such that
for any v>0:
law
(X« (V.))OSksn: W 2X5 (1)) osksn.

All scaling factors are different, so this leads us to change the Euclidean norm
on R"*! into the application N defined by:
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N (x) = max Ix.li»'%rT
0sisn

Proposition 2.2,

continuous over R\ {y}.

1) Lety € R
2)

The function x— @ (x; y) is

There are some positive constants &, 8 such that for any r €ER"*!

0@ ) >a min(lr,—y 24, min (2] VIy) 1)
0sisn—1

(5)
@ (x; y) <Bmin

i 4 g 4
l 1 +Z< -4 )“Z( lyi-i )
osisn||p;—y|7+1 e lei—yi
In particular:

: |1i_yi|
j=1

(6)

—

a . B
<O(r;0) < .
N(I) 2d (I ) N(l‘) 2d
The proof of proposition 2.2 is given in section 5.

(7)

In the proposition below is stated an important result which comes from
Ito’s rule as well as proposition 2.2
Proposition 2.3. Under Py, (@(U(t), y)) 20 is a local martingale with

respect to the Brownian filtration and if A is a Borel set in R™! such that x €A
and y €A, then (O(U(ATa), y)) 20 is a continuous bounded martingale.

Now, we introduce the dual process U™ of U, ie.
transition densities are defined as

the Markov whose

pi(x; y) =PHU*(t) €Edy}/dy:=p (y; x)

and we denote by @* and @F the related dual potentials similar to @ and @4
We set also

tE=infl{t>0: U*(t) EA}.

In the following proposition, we write out some explicit relationships
between the processes U and U™:

Proposition 2.4.

If x= (x0,... xx) ER™ put
x¥= (xo, —x1, X2, (—1)"xs). Forall x, y ER™" we have:

pr (x; y) =p: (& y™) (8)
O* (x; y) =0 (x* y*) 9)
Of (x; y) = Q4 (x*; y™*) (10)
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Therefore, the following identity holds:

(U* ) rz0= (U(0)®) 120

Moreover:

E.(®(U(4); y) lict+o) =EF (@ (x; U*(1F)) Lizz<to0)) . (11)

Proof. In view of (3) we have to verify that the following equality holds:
(y—x/)Aily—x]) "= *—y* DA *—y ™) T,
or, equivalently:
JeAJT=—A_. (12)
Let us compute (J,A,J7)*=JT, A7']_.,. We have:

-1 (L’“)
b\ +1) Josigsn

The generic term of JT, A7 J_, is

’Z (_t) i—k Qpktitl (_t)i—l _ (_1) i+j2ti+j+1 (_1)k+l (2) (Jl)

G—r)! R (e+14+1) (G—D1 ! r+i+1
r< Vs (13)
[&9) I1<j

. 1
It can be easily seen that the last sum actually equals ] so that the

2 (—p) i1

i (i+5+1)

term of —AZ}. This proves (13) and the relations (8) and (9) are satisfied.
The equality (10) can be checked by writing

left-hand side of (12) is equal to — that is to say the generic

. oo k
q)A(x,y):umfo dtPAvVeEEl,., N—l},U(ﬁt>€EA,U(t)Edy}/dy

N—+oo

and by using the Markov property as well as the relation (8).
Now, since U is a strong Markov process we get:

O(x; y) —Palr, y) =j;+w dtP AU (t) Edy, t4<t}/dy
=j;+°° thz(l(nSl)PU(u){wZ U(t_TA, (L)) Edy}/dy)

+oo
=E‘t<1(n<+°°)j:_ bt-2 (U (TA); y)dt)
=E. (D (U(74); y) Lira< +o0)).
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Working with the dual process U* yields through a same way for any
T,y eRn+l:
O*(y; x) = OF (y; ) =EJF (@* (U*(74); ) Lict <))
=E}X(@(x; U*(t4)) Lici<+ool).
This proves (11).

3. Proof of theorem 1.1

Put P=Po. The proof of theorem 1.1 hinges on the following propositions
(3.1) and (3.2). See Port and Stone [6].

Proposition 3.1. O is regular for B if and only if P (lim supiso

Proposition 3.2. There is a positive constant C such that for all integers
k1 if [k—1|>2, then

P{Tk< —}—OO' T1<+OO}£CP{T;,<+OO}P{T1<+OO}

To show proposition 3.1 it requires following two lemmas, proof of which is
given in section b.

Lemma 3.1. The process U is transient, namely for all x €ER":

P.{lim |U(t)[|=+o}=1.

t— 400

Lemma 3.2. {O} is a polar set for U, ie. forall x ER™
P.{3t>0. U(t) =0} =0.

Proof of proposition 3.1. @ If O is regular for B, then it is easy to see
from the definition of a regular point that the events {7, <+ %} occurs i.o.
with probability one.

® Conversely, suppose P (lim supizo {74 <+ })> 0. This implies in
particular that, with a strictly positive probability, there exists a sequence
(tx (W) ) k20 and an increasing sequence (1y) k2o such that ‘

VkZO, U(tk) EBﬂk

and then

P{lim U(t,) =0} >0.

k—+o

Since U is transient, the sequence (fy) ¢z0 is bounded with a strictly positive
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probability. Let t=t (w) be one of its limit points. We have P{U (t) =0}>0.
Seeing that {0} is polar, we get

P{t=0} >0.

Thus, with a strictly positive probability, there is a subsequence of (th) K=o,
say (sx) k20, converging to O such that

VE>0, Ul(sk) €B.
As a result:

P{rz=0} >0.

Since {tp =0} is a tail event with respect to the Brownian filtration, the
Blumenthal zero-one law asserts that in fact

P{TBZO} =1,
which completes the proof.

The proof of proposition 3.2 is based on some estimates which are supplied
in the following lemmas:

Lemma 3.3. The following inequality holds for any x, y ER" and any
integer k=0:
sup.es @ (x; 2)

< 2ub:EB &
Prln <+eols inf.es®@(z; y) Py{z <+l (14)

Lemma 3.4. For all integers k, 1, if |[e—1]=2, then

supepes<s®(x; y)
infres®(x; O)

<c (15)
where C is the conslant introduced in proposition 3.2.
The proofs of these lemmas are transferred to section 5.

Proof of proposition 3.2. By the Markov property of U we get:

P{r, <4, ;< +00}=
=P{r, <7, <+ 0} +P, {1, <7, <+ 0}
=E [1<rk<+oo)PU(r,‘){T1< +°°}] +E [1(r,< +°°’PU(1,) {Tk< +°°}]
<P{r,<+oo}sup P {r;<+ o0} +P{r; <+ }sup P{r, <400},

T E€By €8

Combining (14) with (15) yields
sup P ir, <+ 00} <CP{r, <+ 0}

r€B,

and the same inequality holds also by exchanging k and [.
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The proof of proposition 3.2 is complete.

It is now easy to achieve the proof of theorem 1.1 by invoking the
following version of the Borel-Cantelli lemma (see ¢. 9. [6]):
if

iPMQ=+w

k=0
and if there is a constant ¢ >0 such that for all integers k, I:
PA,NA;) <cPUA)P(A) when |e—1]>2,
then:
P (lim sup A,) >0.
k20
4. Proof of theorems 1.2 and 1.3

With the view of checking theorem 1.2 as well as thorem 1.3, we need some
estimates about the hitting probabilities of certain parallelepipeds. These
ones are provided in the follwing proposition, whose proof is transferred to
the next section.

Proposition 4.1. 1) Set:
n—-1 X .
P(a, b, 8) — H [_62‘+1, €Zl+l] X [a' b]
i=0
={reR™ a<x,<b, Vi€{0,. n—1}, |x]<et}

where a, b, € are some positive real numbers such that a <b and L=>b—a =21,
Then, theve ave positive constants 7, 0 such that

n2—2
if n=2, rLEZd
bZu+1 Lsrﬂ-—z
SP{Tp(a,b_s)<+oo}S 5 - (16)
L\2/3 aztl
in=1. (})

2) Set:

P la, b, e)=[—¢, e]"X [a, b]
={xeR" a<z,<b, V;€1{0,. . n—1}, |z |<e}

where a, b, € are some positive veal numbers such that a <b and L =b—a = 2¢.
Then, there are posilive constants 7', 0 such that
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n'=2
nm+1
ifnzz’ fLEZd n'—2
ba+1 Lew+1
SP{T}V(a,b,E)<+°°} < 5,—24- (17)
L\2/3 az+1
yn=t 7(5)

1
Proof of theovem 1.2. @ Suppose at first that lim,.*x "%+if (x) >0. In
this case, the integral arising in theorem 1.2 is divergent. On the other hand,
it can be found two positive constants g, € such that the set

n—-1 2 _2
Fue={x €R"" 2,20, Zlxi|lzF <px? ™, N(x) <e}
i=0

is contained in T. Then

Plr;=0}>2P{rp,c=0}= inf Plrpe<t}< inf P{UG) EF,.).

0<t<e2 0<t<e?
By scaling, we have for any t€ (0, ?):
P{Ut) € Fud =P{U(1) EF et ZPU1) EF,1) >0.
Whence P{z+=0} >0, and in fact by the zero-one law
Plrr=0}=1.

Aa a result O is regular for T and the claimed assertion is true.
1
® Assume now that n=2 and limg_p-x ~%+1f (xr) =0. Let us introduce the
parallelepipeds:

= - 2 - 1 _
Pk—P<2 (k+1)('7n+1)’ 2 k(2n+l)v Wf(z (k+1)(2n+1)))

kap(%z—(k+l)(2n+1) 9—k(2n+D f(2—k(2n+l)))
and set:
T«=TN{x R 271N (x) <274},
It may be seen that for sufficiently large k:
P CT CQy.

On the other hand, according to (16), there are positive constants 7, &, 77, 0"
which can be expressed by means of 7, 0 and » such that:

T' [Zkf (2—(k+1)(2n+1)) ] n2—2 SP{TP,‘ <+ OO} < 5' [2kf(2—(k+l)(2n+1)) ] n2—2.
T" [2kf(2—k(2n+1)) ] ni-2L P{Tok <400} <L [Zkf (2—k(2n+l)) ] n2-2.

Thus the following series



110 Aimé Lachal

2ZP{rp,<+oo}, ZP{rg, <+ 0}, ZP{ry, <+oo}, 2 [2k (27 kEn+D) -2

simultaneously converge or diverge.
. . 1
Since the function x=x ~Z+1f (x) does not decrease, the convergence of
this last series is equivalent to the convergence of the integral

f (f(x) ) ?I and we get the desired result with the aid of theorem 1.1.

X2n+1

® Finally, when n=1 and limz—o x"%f(:c) =0, we get from (16)

P{TT,‘< +00} 2P{Tp,‘< +OO} Z-r(]_—z—Zn—l) 2/3>0

so that the series 2P {rs, <+ o} diverges and O is therefore a regular point
for T.

Proof of theovem 1.3. Let us introduce the parallelepideds:

P;:P, (2—lk+l)(2n+l)‘ 2—k(2n+l)' %f(z—(k+l)(2n+l)) )

:P’ (#2—(k+1>(2n+1) 2—k(2n+l) f(Z—k(ZrH-l)) )
where ¢ is a constant which will be explained thereafter, and set:

T =T N{xrER™"L 27 1<N(x) <27},
We will see that we have for large enough &:

Pi,CTyCQu.
) Indeed if x €P} then:

i) i X< (2@t 2 L (2 V2 gince f does not decrease, and then x € T

i) 27 1< 2 [T <N (1) <275V maxosisn: [ f(2'k‘2"+1’)]m.

By assumption, we know that the function x—x~'f (x) is bounded from above
near zero. Therefore, for all large k:

max f(27¥@*1) 557 <constant X 2° B =0(27%) as k —+ oo,
0=ign—1
Thus N (x) <27%if k is sufficiently large. As a result: x € T}.
® Now, if x €T} then
i) xn<N(I')2n+1<9—k(2n+l)
11) Z‘ "o X2 <f(xn 2<f(z-—k(2n+l))2
and this implies for each i€{0 ...,n—1} : | x; | <fF(27FE+D)
iii) Since N (x) > 27%7! it can be found an index ic € {0,..,n} such that
|xil>2—(k+l)(2io+1)22—(k+1)(2n+1) Hence
ol — .

n—1
2 - £ - N2n+1 2
x’zlzz 2(k+1)(zn+1)_z 1%22 2(k+1D)(2n )_f(l'n) .

i=0
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This can be rewritten as follows:
xfl'i‘f(x,,)222'2“‘””2”“’.

Since f(x) <constant X x when x—0%, it is clear that there is a constant g#>0

such that if # is large enough, x, =2 **V@ D Agq 3 result: x €Q;.
The proof of theorem 1.3 can now be achieved as follows: the three series

of the hitting probabilities associated to the collections of sets (Pi), (Qk),
(T%) are simultaneously convergent or divergent with the series

F(Q2kHDCAED Y o
9-2(k+D) 2n+D) ]

or, equivalently, with the integral displayed in theorem 1.3 and the proof is
complete.

5. Proof of lemmas 3.1, 3.2, 3.3, 3.4 and proposition 4.1

We begin to exhibit a set of general results which will be useful thereafter.

Lemma 5.1. Let A, Ay, A;CR"! be some Borel sets.
1) For any positive measure m on A and any x ER™N\A we have:

Ja® (z; y)m (dy) o Ja® (z; y)m (dy)
sup.eas 4D (z; y)m (dy) SPoira<teo)< inf.eon Ja®@(z; y)m (dy) " (18)

In particular, if x ER™\ A and y €4

< Pxiy)
PI{TA< +oo}_inf‘~EGAq)(Z; y) . (19)

2) If A, ﬂ/D12= @, then for all r ER™ and all yE;lzz

Pz, <400, 74, 00,,4<+oo}s.s—”9ﬂyl. (20)
' lnszaAz@(z; y)

3) For any xER"“\(;ll U;lg)and any ye/mh U/ciz such that inf.ca, P (z; y) >
inf.co4, D (2; y) we have:

D (x; y) —inf.c0a, @ (z; y)
inf.c00, 0 (2; y) —inf.can. @ (z; y)

Pz{TihSTAz}S (21>

Proof. 1) Proposition 2.1 and Doob's optional sampling theorem lead to
the following identity, which is valid for any y € A:

@(.r; y) =E1(@(U(TA>; y) 1(r,.<+°°))~

Hence
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Lq)(x; y)m (dy) =Ez[l(n<+m)L(p(U(7A); y)m(dy)]

which makes clear (18).

2) (20) may be easily deduced from (19) thanks to the strong
Markov property.

3) Apply again Doob’s theorem to the continuous martingale
(@WUUNATHATA); y)) 0. We get:

D y) = E(@WU(ta); y¥) Licwse) TE (@ (U (Ta); y) Licy>ea)
> inf @z y)Plea,<ta} + inf @(z; y) 1 —Plra<7a)).

z€0A, zE0A.

Thus (21) ensues.

Lemma 5.2. Let oy, Qy,..,; be some real numbers, &y ¥ 0. The
following inequality holds (with the convention >1=0):

i 2 i
oo 1 j dt 1 a
f exp | —— 7 Zajtj 2o Sconstant X 2,, +Z =+
0 1A I |a0

i
o > (22)
o 24 o

24}

Proof. Suppose ¢ <3min,gjsilae/a;|", so that |aj|# <37|a|. Then:

i
Za’,-t’
j=0

Now, the integral in question is bounded from above as follows:

{ 2 1.3 . |17 o dt
e 1 i dt 3m1n1515t|a0/a]| —lag/tz’” +
f:, exp (‘ 2l (th’) ) S J; ¢! 4
o

oo dt

é—mims;‘si|ao/aj|l/j A

i i
> ool = Y lagl'=laol (1 ) 3 2 Ha
j=0 j=1

Since
f%mimsfsi|ao/aj|“ ’e_%ag/tziﬂ%g f R s ddt < constant X |ato| 71
. ; o t4+1
and
+oo dt Qi
%mimsjst|ao/a;‘| W pa+1 = constant irsl?;: ol ’

the inequality (22) is immediately obtained.

Lemma 5.3. Let ag,...,n, Po..., Bu1 be non zero veal numbers. The
following inequality holds:
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»/:)erexl)(_i t21+1<a‘+2'8"jt1)2> pd+1

> constantXmm(lanl‘ﬁT min (lai| V|B) ~ z,+1> (23)
0sisn—1

Proof. Write first

i 2 i
(ai+ ZBi_jtj> <constant X <a,z+ Z,Biz_;th)

j=1 j=1

so that

2 n s i
a? I
el (a,'f- 2.3: ;t’> constant X Z(ﬁf“ + th,-ﬂ )

i=0 i=1 = =
n—1
ad+g | o
< constant X Z( f2i+1 +t2n+l
i=0
n 2i+1
< constantxz<%>

i=0

where we set

r= max(la,,lﬁ, max (lail V|Bil) ‘277?1)

0sisn-1

It is then easy to derive (23).

Proof of proposition 2.2. 1) Fix y €ER™! and let £o€ER*'\{y}. There is
a small Euclidean ball B (xo, e¥/#n+1) with centre xo and radius eyn+1>0
not containing y. Choose R>0 large enough so that B (xo, e+/n+1) CB (O,
R). We are going to prove that @ (x; y) is in fact continuous in B (xroe
SnF1).

One can find an index 1, € {0 ..., n} such that |x;,—yi|>e. We have also
for all index i€{0,...,n}: |z <R.

On the other hand, since the matrix (a;) osijsn that appears in the
definition (2) of the transition density p, (z; y) is positive-definite, it is clear
that there exist some positive constants A, and A, such that:

A Zr, Z ,;r,x,<222n:x, (24)

0si,jsn i=0

Therefore
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n i 2
¢ 1 t
pelaiy) < tmeer(“Zthz,H <y:— Zk_/;xi—k) )
i=0

k=0
i

2
c 1 t*
ja+1XP _/IIF;M__l Yio™ ) %ok | )
k=0

<

_1
Put a/za(%y”l where a will be chosen later. Then for t<a’,
VEED .., ig) t<q| YLk
io—k

and

ig
tk
Yio™ ngio-—k

k=0

io lk io ak )
Z'yi°_‘r‘°|_2 Elrio—klze I—Z? >a
k=1 k=1

where a” =¢ (2 —¢%) (with the convention S¢-1=0). So, we will pick a less
than log 2 (so that a">0). When t=a’, p; (x; y) is bounded from above by
4

td+l

Consequently:

Vi>0, VX E€B(xy, evnt1), plx; y) <qt)
where

q(t) =;f—+‘1“ (Ligr 4000 (1) 10071 (£) @77 120%T)

The function ¢ does not depend on x and is integrable with respect to ¢ over

(0, + ) so that the desired result derives from the dominated convergence
theorem.

2) The inequalities (5) and (6) can be easily obtained through (22), (23)
and the relationship (9).

Proof of lemma 3.1. Set

Sg = {x€R"™“N(x) <k}
SR — Rn+l\ SR
Ar =

{3 (ti) kzo/+0: N(U (ty)) <R}.
Let us apply (20) and (7):

P, (Ag) <P,izs <400 31576 N(U()) <R) < Supeesn®(20) B

inf.e05,P(2; O) ~ qp2d’

Let R— + . We get P,(Ag)— 0. Notice that the family (Ag) gso is
increasing so that, in fact:
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VR>0, P.(Ar) =0,

that is to say, for any x ER"*%:

P.{lim|[U(t)|=4+}=1

t—+c0

as desired.

Proof of lemma 3.2. @ Suppose at first z# O and introduce ¢, R>0 such
that e<R and x€S:NSk. We have from (7) and (21) that:

?(z; 0) —75
Pl <to) S—5—
eza de

Let e—0* This yields:
P {70, <75} =0.
Letting R— + 0 then leads to
P {70, <+ o0} =0.
® Suppose now xr=0. We can successively write

PO{T(O)< +0°} = limPo{ At>e U (t) :0} = lim EO (PU(E){T(0;< +0°})

elo* elo+

Since U(e) #O as., according to the previous case we can conclude that
Pyolrioy<+o}=0 as. and then

PO{T(O)< +°°} =0.
Proof of lemma 3.3. Lemma 3.3 is an easy consequence of (11). Indeed,
the first member of (11) is bounded from below by
inf@ (z; y) Pz <+ o0}

€A

and the second one is bounded from above by

sup® (x; 2) PF{cf <+oo}.

€4
Since B* =B (which implies P§ {r <+ oo} =P, {r; <+ }) , the previous
remarks lead to the inequality (14).

Proof of lemma 3.4. Denote by By, i € {0,..., n}, the subsets of B; defind
as being

BI = {.’EEBI . 2—(I+1)(2i+1) S ,xi| SZ—I(ZI’+1)}

We get:
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n
UB,,;=B,.
i=0

Fix two integers k, | such that k/—1>2 and let (x, y) €Bx X B;. There is
an index 1€ {0 ,..,n} such that yE€B,;. Thus:

|yi _xil > 2—(l+1)(2i+1) _Z—k(2i+1)

and for all index j€{0 ..., n}:
|yj| SZ—I(Z,H-I).

These inequalities and the upper bound (6) provide the following ones:

i oioi d
O (x:y) <B |2—(I+l)(2i+l)_9-k(2i+l)I—;Zj_—l__l_ZI 21D [7
Y= “ o [o-u+
j=1

1)(2i+1)_2-k(2i+1)l

<p (20eme(1 —pmemn) g (2]
B 1_2—(2i+1) .
j=1

Whence:

sup O(x;y) <p2

() EBX By

for an appropriate constant 8. On the other hand, thanks to (7):
inf @ (xr; O) 2a'2%

r€B;

Sup(u‘r,y)EBkXB:@ (33; y)
infres®(x; O)

for another constant «’. Consequently, the ratio is

bounded.

Proof of proposition 4.1.  Part one. Put P=Pa, b, €).

® Assume at first L/ (2¢®**!) is an integer, say ¢=1: L=2¢e®**!, and next
introduce the decomposition

q—1
p=UpY
=0
into ¢ “N-cubes” P¥ defined as being

~1
P(i)znl'[ [_€2i+l' £2i+l] X I:a_’_2]~£2n+ly a+2(j+l)62"“]

i=0
={xrER"™": N(x—y?) <¢}

where y = (0,..,0, a + (2j +1) é#*') is the middle point of the segment
03" X [a+27e¥, a+2(G+1) e+,
In order to get the upper bound of the probability in question we use
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(18) in which m is chosen to be 0o (o ,.... xa—1) &the Lebesgue measure on
la, b]. We have:

[0 may=["00; ©..0aw<p[-<pL @5
4 ¢ Y+l azn+1

and if r€0PY:
a+2(j+1emtt du

f(D(x; y)m (dy) _>_a-/;+2jew, N@x—1(0,..,0,u))*

(the equality @ (x; y) = @ (r —y; O) holds when y € {0}” X R). But, when
xE€PY and u € [a+2/e*, a+2(j+1)e¥*!] we get:

|lxn—ul <262 and for every i€ {0 ,..,n—1}: |z, <2+
Then
N(x=10,.,0 1)) <e2mer
and there is a@” >0 such that:

D (x; y)m (dy) >qemmti-u="E (26)

6n2—2

The upper bound of P {rp <+ }in (16) is obtained by dividing the last
members of (25) by (26).
Now, let us check the lower bound of P{rp<+}. Choose this time

-1
m =§:6,m.
i=0

Similar arguments yield:

g—1
f(D(O; y)m(dy) ZaZN(y“)) ‘2"2*9—2?,— (27)
i=0 b:u+1

and if x€0PY then:

fq)(x; y)m (dy) SBZN (x—y) -2

It can be seen that for all i, j€{0,..,g—1},

Nz—y?) > (||j—,'|—]|ﬁ\/l)8.
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Now, it can be found a constant & such that

q
K 2
f@(x; y)m (dy) Sng Tt T, (28)
k=1
Since
L 24 constant ifn=2
Zk“mg s .
= constant X¢g "~ if n=1

and ¢ =L/ (2¢®*') | the desired lower bounds in (16) are acquired through
dividing (27) by (28).

® Consider now the general case. Let ¢ = [L/ (2¢”*')]> 1 be the
greatest integer less than L/ (2e?"*'), and set:

n—-1
RI: l'[ [_€2i+1' 821+1:| X [a’ a+2(q+l)82”“]
i=0
n-1 . )
Rzz H [_821+1, EZH-I] X [b—ZqEZ'H'l, b]
i=0

Since R;CPCR; and seeing that proposition 4.1 is true for the parallelepipeds
R, and R,, we get:

Plrp< +00) <Plrp<+o0} <26(g+1) e 2
azn+1

P{rp<+o0} 2P{rg, < + 00} 2274e™*! £

b2n+l

so that proposition 4.1 remains true by replacing another constants since:

2L
2gH1) <dgs 0 and 292 F1205 0

Proof of proposition 4.1. Part two. The proof of the second part of
proposition 4.1 is quite similar to that of the first part. So we will only point
out some modifications made in that of the second paart.

In the case where L =2g¢’ for a certain integer ¢=1, we shall decompose
P (a, b, € as follows:

q—1
Pla. b, e)=UpPY

j=0

where
PP=[—¢ e]"X [a+2je, a+2(G+1)e].

In order to evaluate infrearv J2@ (x; (0,.,0, u)) du, we write down the
following inequality which is valid for any x €adP’ ¥
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a+2(j+1)e’ du

a+2je’ N (x"‘ (O oy 0, M) ) 2d

qu)(x; (0,.,0, u))du>«

When x€0PY and u € [a+2j¢’, a+2(G+1)€’] we have:
lzn—u|<2¢ and for all i€{0 ..., n—1}: |xi| <e.
Then

Na—(0..0 1) <( max e5i) V (26) 51 < (26) 50T

0sisn—1
and that is @” >0 such that:

b \ T B 1
f Dx: (0,..,0, u))du=>”e " ari=a”¢ " omrI,
a

The remainder of the proof is now omitted.

Remark 1) We have not been able to extend the test in theorem 1.1 to
the case where O is replaced by another point out of the line {0} X R.

2) It seems difficult to derive estimates on the hitling probabilities of
parallelepipeds such {r ER™" a <z, <b, Vi#Fk|x:|<e®*'} for k€0,..,n—1}
and we do not know whether an integral test may be written for the sets
{rER"™. 2,>0, Xivil xi |T-2+-1Sf(xk)2}‘ k{0, n—1)}.
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