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Tight closure in graded rings

By

Karen E. SMITH

In its  principal setting, tight closure is an operation perfomed on ideals in
a  commutative. Noetherian ring of prim e c h a ra c te r is tic . T h is  operation was
introduced by H ochster and  H uneke  in  [H H 1], and  h a s  h a d  applications to
several d ispara te  bu t classical problem s in  commutative algebra such as the
Syzygy problem, the local cohomological conjectures, and the Briancon - Skoda
th e o r e m s .  T ig h t  c lo s u r e  a p p e a r s  to  b e  g iv in g  in fo rm a tion  abou t the
singularities o f  a  lo ca l r in g . F o r example, with mild hypotheses, the property
th a t a ll id e a ls  o f  a  r in g  a re  tigh tly  c losed  im plies tha t r in g  i s  normal and
Cohen- M acaulay [HH1] a n d  even pseudo - ra tional [S1], w hich  am ounts to
rational singularities in  characteristic z e r o .  Tight closure also sheds light on
log  te rm ina l and  log  canon ica l s ingu la ritie s [w ] [ H ] .  However, a  serious
difficulty in  this theory remains: how does one compute the tight of closure of
a given ideal in a given ring?

T h is  p a p e r  a t ta c k s  t h e  p rob lem  o f com pu ting  t h e  t ig h t  c lo s u re  of
homogeneous ideals in  a  graded r i n g .  Because of the subtle information tight
closure provides about bo th  th e  r in g  a n d  th e  ideal, a n  actual algorithm  for
com pu ting  tigh t c lo su re  seem s m uch  too  to  hope  for. H o w e v e r , it  is  of
in te r e s t  to  a t  le a s t  n a r r o w  t h e  s e a r c h .  I n  t h i s  p a p e r ,  th e  problem  is
co n fro n ted  fro m  b o th  e n d s .  A  g e n e ra l lo w e r  b o u n d  o n  t h e  deg rees of
elements in  I * is proven (Theorem s 2.2, 2 .4): (w ith m ild assum ptions on  R)
any element in /*—/ must have degree strictly larger than the smallest degree
of any of the minimal generators for I. For an m - prim ary ideal /, two upper
bounds a re  given (Propositions 3.1, 3.3), such that elem ents exceeding this
degree a re  always in  /* : any element of degree larger than N  is a lw ays in  I * ,
w here  N  i s  t h e  sm alle r o f  t h e  su m  o f  t h e  degrees o f  a  m in im a l se t  o f
generators fo r  /  o r  o f  th e  d im e rs io n  o f  R  tim es th e  largest degree  o f  any
minimal generator for I .  T h e s e  b o u n d s  h av e  been  u se fu l to  th e  au tho r in
computing tight closures.

Section 2 deals w ith  th e  low er bounds. T hough  these  resu lts  a re  quite
useful in  practice, one of the main points of th is  section is to introduce a  new
method for studying  tigh t c losure . This method is differential operators.

In our setting, the union of the endomorphism rings of R as an RPe module,
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a s  e  ra n g e s  th ro u g h  a ll n o n -n e g a tiv e  in te g e rs , is  a  r i n g  o f  differential
operators on  R .  These operators operate o n  th e  equations that define tight
closure (see Definition 1.1), and can be used to manipulate these equations to
g re a t effect. T h e  au thor believes that th is "d ifferen tia l opera tor" point of
view  o n  tigh t c losure  w ill have fu rther applications, and hopes that deeper
cOnnections will eventually be revealed.

T here  is another m ethod fo r  proving som e o f  th e  re su lts  in Section 2,
which involves the  use  o f test elements fo r t ig h t c lo su re . The theory of test
elem ents is one  o f the  m ost im portant and deepest aspects of tight closure.
T o  illustra te  th is approach , th e  proof o f  T heorem  2 .4  is w ritten  using  test
e lem ents, though  it can  a lso  be  deduced  using  d iffe ren tia l opera to rs. The
differential operator po in t of view  is self - contained; it does not require test
elements, nor indeed, any knowledge of tight closure beyond the definition.

In section 3, Briancon - Skoda type theorem s a re  used  to  p rove  tha t a ll
forms of degree greater than a certain  constant (explicitly described in  terms
of the degrees of the generators of the ideal are in the tight closure of I, for
m -prim ary I. F or computational purposes, this is quite useful, since it gives
a n  upper bound  o n  th e  degrees o f  hom ogeneous elem ents that need to be
considered for inclusion in the tight closure of a p a rticu la r  id ea l. The results
in  th is  section actually give m ethods fo r  checking that all elem ents o f  high
enough degree a re  in  th e  "p lu s  closure" o f I. W hen R  i s  a dom ain, th is is
simply the ideal IR+ n R, where R+ i s  the  integral closure of R  in  an algebraic
closure of its  frac tio n  f ie ld . W hether o r  not the  p lus c losure is the  same as
the tight closure remains an open question, although this is the case for ideals
generated by param eters [S1] (see also [A b], w here the class of ideals where
th is  is  k n o w n  to  h o ld  is  e n la rg e d ) . T h e  w ork  in  th is paper w as partia lly
m otiva ted  by  th is question , and  the  re su lts  o f  S e c tio n  2  a n d  3  both offer
further evidence for the equality I * = n R.

Aside from their use in computing tight closures, the results of Sections 2
and 3  have several interesting consequences, which a re  recorded in the final
se c tio n  o f  th e  p a p e r . F o r  exam ple, we deduce a  sufficient condition for a
standard K -algebra to  have the property that all param eter ideals a re  tightly
closed in  terms of its a-invarian t alone; see Theorem  4.1. This ring property
is c a l l e d  F-rationality  b e c a u se  o f  its c lo s e  connec tion  w ith  ra tiona l
singularities; indeed, by the m ain result o f [S 3], we deduce the  same test for
pseudora tional rings, and  therefore  f o r  ra tiona l singu larities w hen  K  has
characteristic zero; s e e  4 .4 .  A n  immediate consequence is that F-rationality
and pseudorationality are equivalent for two-dimensional standard algebras in
all characteristics. T h e  characteristic zero  case  of this theorem  w as proved
f i r s t  b y  F e d d e r  [ F ] .  T h e  q u e s t io n  o f  w h e th e r  o r  n o t  F - ra tionality  is
equivalent to pseudorationality in  general has persisted since the  inception of
the theory of tight closure; see, for example, the nice summary of the progress
o n  th is  p rob lem  a s  o f  1 9 8 9  in  [F W ] . F o r  th e  (m o re  r e c e n t)  proof that
F-rational implies pseudorational for excellent local rings, consult [S3].
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improved the paper.

1. Preliminaries

This section can be used as a  reference for the rest of the paper.
T h ro u g h o u t  th is  p a p e r  R  a lw a y s  d e n o te s  an  N -g raded  K -a lgeb ra ,

R =e,EN R i, where Ro = K  is  a  f ie ld .  W e always assume that R is Noetherian,
a n d  if  w e  fu rther w ish  to  ind ica te  tha t R  is generated by its hom ogeneous
elem ents o f  d eg ree  o n e , w e  w i l l  s a y  t h a t  R  i s  s tan d ard . The unique
homogeneous maximal ideal of R, e ,> ,R i ,  is denoted by

Tight Closure. We summarize some definitions and  elementary facts
about tigh t c lo su re . W e  trea t he re  on ly  the  case  o f tight closure fo r ideals,
although it is more generally defined for modules as well [HH1].

Let A be any commutative, Noetherian ring of characteristic p>0.

1.1. Definition. T he  tight closure I *  o f  a n  ideal / OE A is th e  ideal
defined by

z E l *

if there exists som e c not in  any minimal prime of A  and  some non-negative
integer N such that

CZ lb e l E l [pet f o r  all integers e

where P e j denotes the  ideal of A  generated by the pet "  powers of the elements
(equivalently, the generators) of I.

Tight closure is a true closure operation in the sense that (I* ) * = I *  . We
re fe r  t h e  re a d e r  to  [H H 1 , Proposition 4.1 1 f o r  a  fe w  o f  its elem entary
properties.

Most questions about and applications of tight closure reduce easily to the
domain case . In  fac t, its very definition does:

(1.1.1) z E / *  if and only if z m o d Y E in
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fo r a ll minimal primes 35 o f  A  [HH1, Prop 6.25]. W e will therefore restrict
our attention primarily to domains throughout this p a p e r . In  th e  domain case,
the only restriction on the element c  in Definition 1.1 is that c  is non-zero, and
furthermore, in th is case, one may always take N  to be 0 [HH1, Prop 4.1c].

O u r  m a in  c o n c e rn  is  w ith  h o m o g e n e o u s  id e a ls  i n  g ra d e d  rings.
Fortunately, it turns out tha t the tight closure I * o f  a  homogeneous ideal I  in
the graded ring R is itself a  homogeneous ideal. In addition, for a graded ring
R, the  element c  in  Definition 1.1 can always be chosen to be homogeneous,
whether o r not I  and z  are  assumed to be homogeneous. Both these assertions
are proved in  [HH2, Theorem 4.2].

In  m a n y  se ttin g s , it  tu rn s  o u t th a t a c tu a lly  a  m u c h  (a priori) weaker
definition of tight closure is available in  many situations. In particular, this is
the case for graded rings.

1.2. Proposition. Let I be an arbitrary ideal in the graded ring R  and
let z  be an arbitrary element of R .  Suppose that for infinitely many e E N, there
exists some ce not in  any minimal prime and of fixed degree (i.e. ce depends on e
but its degree is a constant independent of e )  such that

CeZbe E p p e l.

Then z E l * .

Proof. T h is  is essentia lly  T heorem  6.9 o f  [HH1]. I n  o u r  case, the
concept of degree (of leading terms) replaces that of the "order of the norm".

2. Elements excluded from the tight closure
(an application of differential operators)

T h r o u g h o u t  th is  s e c t io n  w e  w ill  a ssu m e  t h a t  t h e  graded  a lgebra
R EN R, is  fin ite ly  genera ted  over Ro K , o f  characteristic p>  O. The
letters q, q', Q, et cetera, will denote various positive integer powers of p.

Remark. T h e r e  is  a  n o tio n  o f  tigh t c lo su re  f o r  finitely generated
a lg e b ra s  o v e r  a  f i e ld  o f  c h a ra c te r is t ic  z e ro , a s  w e ll:  s e e  [HH4]. The
definition is som ew hat involved, but is a  standard  application of the  idea of
reduction to characteristic p. W e d o  not sta te  th is defin ition  here , but the
reader fam iliar w ith it w ill recognize that all theorem s stated in  th is  section
are valid also in charac teristic  zero . This follows from the definition of tight
closure in  characteristic zero com bined, o f  course , w ith  th e  fact that these
theorems hold incharacteristic p.

Let I be an ideal generated by forms pi,f-12,•••„uk all of degree at least a.
W e seek restrictions on the degree of a non - zero homogeneous element z

which can be in the tignt closure I* of I. Quite trivially, for a  reduced graded
r in g  R ,  w e  s e e  th a t  t h e  degree  o f  z  i s  a t  l e a s t  5 .  O therw ise, f o r  any
homogeneous test element c, the equations
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czq (f4,4. • • ,rt%) R

would quickly yield a contradiction as q gets very large. Indeed, if deg z< 5 ,
then for q> 0 , the element czq is of degree

degc+q(degz)

Because q5 i s  the  degree o f the  generators for P I ,  the  element czq can not be
contained in  j iqi u n le ss  czq = O. S in c e  R  is reduced, th e  fac t tha t c  is  n o t  in
any minimal prime implies it is not a  zero - divisor, whence z= -0 . In fact,

2 .1 .  Proposition. A ny  hom ogeneous elem ent of  degree less than the
degree of  the generators o f  a hom ogeneous ideal I can not be in  I * u n le ss  it  is
nilpotent.

If  R  is not reduced, any elem ent z  e  /*  having degree sm aller than the
degrees of the generators of I  must be nilpotent, since z  is  in the tight closure
of the image of I  modulo every minimal prime, so that the preceding arugument
shows that z  is zero modulo every minimal prime.

We now prove a  much harder fact.

2 .2 .  Theorem. Let R be a normal graded domain finitely generated over
a perfect f ield K =R o . Let I be an  ideal generated by  form s all of degree at least
5. If  z  has degree 5 and is in I * , then z m ust be in  I itself .

T h is  theorem  has a n  am using corollary (w hich w e challenge th e  reader to
prove by elementary methods):

2 .3 .  Corollary. L et K  be a  perfect f ie ld  w ith algebraic closure K  and
suppose that R  is  a norm al N - graded domain over Ro = K .  L et Z  be any form of
positive degree in the graded dom ain k O K R. T hen the ring R [Z ] is not normal
unless Z  is in R.

Proof. Suppose Z = 22m2+••• 2 tm t where A , E K;  and  m, G  R  are
fo rm s  a ll o f  t h e  sam e  deg ree . D eno ting  R  [Z ] b y  S ,  w e  s e e  th a t  Z  e
( n i ,m 2 , • • • .m i ) S + (1 S C  (m l, ••• ,m t ) S* . By Theorem  2.2, Z  E  (oni,n12, ••• ,n it )  S,
whence Z  is a K  combination of the m ,. This forces Z  to  be in R.

Before embarking on  the  proof of Theorem 2.2, w e first g ive  a  technical
im provem ent. Recall that a  K - algebra R  is  sa id  to  be  geometrically reduced if
R O K K -  is reduced, w here K -  i s  the perfect closure of K .  Since the  induced
m ap o n  sp e c tra  is  an isom orphism , it  fo llo w s  th a t i f  R  i s  a  geometrically
reduced domain, then in fact R O K K -  is a lso  a domain.

2 .4 .  Theorem. L et R  be a  geometrically  reduced graded domain aver
the f ield K = R o . A ssum e that K  is algebraically  closed in the fraction f ield of R.
Let I be  an  ideal generated by  form s all of  degree at least 6. I f  z  has degree 5
and is in I * , then z m ust he in  I itself.
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2 .4 .1 .  Remark. T he two hypotheses above, that R  is geometrically
reduced and that K  is algebraically closed in fraction field Frac (R ) together
a re  equivalent to  th e  assum ption that K c  F rac  (R ) i s  a  regular extension,
w here F rac  (R ) denotes the fraction fie ld  of R  [Z S  II, p226, p230]. Recall
that an extension of fields K L  is said to be a regular extension if

(1) L  is separable over K; and
(2) K  is algebraically closed in L.

Recall also that the extension KC Frac (R ) is  a  regular extension if and only if
ROKL is  a  domain for every field extension L  of K  [ZS II p 2 3 0 ]. Of course, if
R  is  a  finitely generated normal domain over a  perfect field, then K c Frac (R)
is trivially a  regular extension.

Proof of 2.4. T he map R- - 4 ROKK 0 0 S  is faithfully flat and S  is again a
dom ain. The inclusion z E/*  in  R  persists into S. If the theorem holds in  S,
then z e  IS  f l R  =I by  fa ith fu lly  fla tness. Note tha t if Ro =-- K is algebraically
closed in  the  frac tion  fie ld  of R , then So = IC  is a lgebraically  c losed in the
fraction field of S. Indeed, suppose th a t  s o m e  ̀±E  U 'S  w h e re  U c  S  i s  the
multiplicative system  o f  all non-zero - div isors o n  S  sa tisfies a n  equation of
in tegra l dependence  over K . This equation has the form

(2.4.2.) N+ri (1 )  N - 1 +  + r N=

where each ri G K " .  Because each element of S  has a qf h  pow er in R, equation
2.4.2 gives an equation

(2.4.3.)
,q, N +ag\ \

1)q ) " b g )

of integral dependence of f̀, over K .  Because K  is algebraically closed in the

fraction field of R , we conclude that  i s  in  K  =R o, w h e r e  E  K .  We may
therefore assume that without loss of generality that Ro =K  is perfect.

W e  w ill re d u c e  to  R  norm al, w hence Theorem  2.2 w ill  a p p ly . L e t S
denote th e  normalization of R .  Note that So =R o =K . F o r  if  a/b E So, then
a/b  w ould  sa tisfy  a  homogeneous equation o f  integral dependence over R.
The coefficients of this equation w ould all necessarily lie  in  Ro =K , whence
a/b  w ould lie  in  Ro = K  because o f the  assum ption that K  is  a  algebraically
closed in the fraction field of R.

Now suppose we have an inclusion zG ( g i ,
—

• ,,an )
* in  R where the p i and z

all have the sam e degree . This equation persists after expanding to S . where
all the hypotheses of 2.2 h o ld .  We conclude that z  (iii,..•„ten)S. But then

z=a Lui +a2p2+ • •• +  anun ,

where the a i , are homogeneous elements of degree zero in S. But then the a,
are actually in R, and we conclude that z ••,[tn)R.
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T h e  p ro o f  o f  T heorem  2.2 w ill  ocuupy m o st o f  t h i s  sec tion . T he
technique will be to consider the ring

D (R) = U HomRpe (R,R) .
eEN

Note tha t the  elements of R th a t are qt h  pow ers from  a  subring Rq of R, over
which we may consider R as a  m odu le . T he  ring  R I is a lso  a  graded algebra
over th e  perfect field / I=  K, and the Rq m odules Hoinivi (R,R) a re  graded le
m odu les . Since Rq cR Q fo r all we have that

HomRQ (R,R) c HomRg (R,R)

in  a  natural degree preserving way, so  tha t the ring D (R ) inherits natural Z
g rad in g . T h ese  inclusions also give u s  a  natural (increasing) filtration of R
by graded subrings which we call the Frobenius filtration on D (R)

T h e  r in g  R  i s  a  le f t D  (R ) m o d u le  in  a n  obvious w ay: each element
OE HomR g(R,R) acts on R .  T he reason fo r the  notation . D  (R) is  tha t th is  is
actually the ring of K linear differential operators on R  (see  [Y ]).

A lthough  it is  possible to conduct th e  ensuing analysis without explicit
re fe re n c e  to  d iffe re n tia l o p e ra to rs , th is  in te re s tin g  c o n n e c tio n  is  w o rth
pointing out; it m ay eventually yield future insight into tight closure. Som e
connections between tight closure and the structure  of a  ring as a  left module
over its ring of differential operators are discussed in  [S4].

We now established several lemmas.

2 . 5 .  Lemma. L et A  be a norm al Noetherian domain (of  characteristic
p> 0) w ith fraction f ield L, and let u CL —  {0) . If  u E  1,,NLP e  , then u is  a unit
of A.

Proof. Since u and ;T satisfy the sanie hypothesis, it is enough to show
that u EA.

Because A  is normal, we know

A = fl A .
gl° E S pecA

If u EA, we can therefore choose some height one Y) E SpecA such that u
D enote by v th e  valuation associated to th e  discrete valuation ring A .  B y
hypothesis, w e know  that for each e E  N, there exists som e y e E L  such that
u=4, where q = pe. It fo llow s that v(u ) = (ve )  fo r all q, whence v (u ) is
divisible by all g=p e . T his is impossible unlessh 1.)(u) =0, whence u

2 . 6 .  Lemma. Let R=ERENRi be a norm al graded K=R o algebra, where
K is  a perfect f ield of  characteristic p. Suppose that a  and 43 are two forms of R of
the same degree, linearly independent over K .  Then there ex ists a  (homogeneous)
differential operator
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0 E  D (R)

for which 0(a) = 0 but 0(3) *0.

O f c o u rse , th e  elem ent O  E  D  (R ) a r is in g  i n  Lem m a 2 .6  w il l  b e  in
HomR ,(R,R) for all g>0.

Proof. To ease the notation, fix any e E  N, and let S be the subring RQ

o f  R, w here  g = pe. Since R  i s  a  dom ain , R  i s  a  torsion - f re e  S  module.
Moreover, R i s  a  finitely generated S m odule, as one easily checks from the
fact that R is finitely generated over a  perfect field. Therefore, in  order to
prove the existence of 0, it suffices to find such a  0 after tensoring w ith the
fraction field F of S. T hat is ,  (abusing notation slightly idetifying R with its
image in FOsR), we seeky

E HOMF (F05R,F0sR)

such that 0 (a) = 0 but 0( 16)
A s FOsR i s  a  finite dimensional F  vector space , there  is an  F  module

splitting

0: FO s R— T
0: /3 1 .

The m ap 0  projects the  space spanned by 13 onto F, so that w e can choose 0
s u c h  th a t  (a) = 0 unless aE FS.

Therefore, the  only  w ay fo r Lemma 2.6 to  fa il is  if  fo r  every g=p e , the
fraction is  in the fraction field of R. B u t  according to Lemma 2.5, if fr i s  in
the fraction field of fe for all g, then i s  a  unit in  R, whence 1 E K  and a  and
S are not linearly independent over K after all.

We can now prove the main theorem of this section.

Proof of Theorem 2.2. W e  firs t u se  Lemma 2.6 to conclude something
even stronger about differential operators on R .  Let a be any homogeneous
element of R of degree d. W e claim that the only degree d elements of R that
a r e  a n n ih ila te d  b y  a ll  t h e  d iffe ren tia l opera to rs ann ih ila ting  a  a re  th e
K- multiples of a. In other words, the K vectorspace

AnnR (AnnmR)a) n RdCR

is exactly Ka. (Here A n n m R ) a  denotes that the left ideal in D (R) of elements
such  that 0 (a) = 0 ;  likewise fo r any left ideal Y CD  (R), AnnR Y  denotes the
set of elements of R annihilated by every element of Y.)

T o  e s ta b lish  th is  c la im , n o te  t h a t  th e  F ro b e n iu s  f iltra tio n  o n  D(R)
induces a  decreasing chain of K subvector spaces of R:

AnnR  (Ann D i a) D AnnR (Annp 2a) D • • • D AnnR (Annpuocr)

where De denotes the  subring HomRpe (R,R) of D (R ) .  Since the d forms of R
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form a finite dimensional K  vectorspace, this decreasing chain must eventually
stablize in each  particu lar degree . In degree d , th is stable vectorspace, which
clearly contains K a , i s  [AnnR  (AnnD(R)a)]d. Lemma 2.6 then implies that it is
exactly K a , for if 19 is any homogeneous element o f degree d  no t in  K a , then
Lemma 2.6 implies that some OED  (R ) kills a but not [3, so that

(2.6.1.) [AnnR (AnnD(R)a)] d  —Ka.

W e now use this fact to prove Theorem 2.2. Assume tha t the theorem is
fa lse  a n d  choose a n  ideal I  genera ted  by  th e m in im a l possible num ber n  of
elements, i1 tt2 , „tin (a ll d eg ree  6 ) , su c h  th a t  th e  idea l I  contradicts the
theorem . N ote  that n  is  a t lea st 2, since all principal ideas are  tightly closed
in a normal ring.

Observe th a t in order to prove theorem  2.2, the re  is  no loss of generality
in  assum ing that K  is infinite. For instance, K  can be replaced by the field
extension L  =  K  ( t )  - ,  t h e  pe rfec t c lo su re  o f  K  ( t ) .  A ll h y p o th e s is  are
preserved upon passing to the  faithfully flat extension R O R L . A nd because
ROERORL is faithfully flat, for any ideal I cR ,  we have that /(R OR L ) fl R I .

Let i v  b e  a  form  o f  degree 5  w hich  is  in  I * b u t  no t I. T here  ex ists  a
homogeneous element c such that for all q,

(2.6.2.) C i e  a iqta 4 -  a 2q, 2 anqp,n,

fo r some homogeneous a, C R, necessarily o f degree equal to the  degree of c,
which we assume to be d.

F irs t  suppose th a t fo r some fixed q, each = lei q c  for some k i g  E K .  In
this case, we could divicl out c from equation (2.6.2) to conclude that

(2.6.3.) =ki,,t4±k2,O+ • .• +14 74 ,

whence w=lef q p1+kh,u2+•••+leg q ,a ,c / ,  as K is  p e r fe c t . Thus, we may assume
that for each q, some ai a  in  not in the K-span of C.

Choose a  homogeneous OED (R ) vanishing on c but not vanishing on any
d - f o r m  n o t  i n  t h e  one - dim ensional vectorspace K c .  T h i s  is possible,
assuming K  is infinite, by 2.6.1 a b o v e . In particular, for all q » 0 , at least one
o f th e  elements 0 (aw) ,0 (a2q ) ,••• ,O (awl ) in  n o n -z e ro . T h u s  fo r  some fixed
in d ex  i, w e  m u s t  h a v e  t h a t  0  ( a , )  i s  non - z e ro , fo r  in f in ite ly  m a n y  q.
Changing notation if necessary, say i =1.

For all we apply 19 to equations (2.6.2.) to get

(2.6.4.)0 0 (a i g ) fil + 0 (a 2q) 1--d+ (ang)

and then rearrange to conclude that

0 (a iq ) tdE  (11/;•••,114); 0(d i g ) *0

for infinity many q  = p e . Since 0 (a i g )  has fixed  degree  ( =  d  degree0) , we
conclude, v ia  P ro p o s it io n  1 .2 , that (112, '•• ten) * • O u r  minimality
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assum ption thus forces p 1 i n t o  (122, ,pn) R , w hence / w as not m inim ally
generated by the n elements P1,P2, as assumed.

It is w orth  noting that the  assumption that R  is geometrically reduced is
necessary in  Theorem  2.4. O therwise, we could obviously have a relation as

in .equation (2.6.3.) holding, so  th a t  w  w o u ld  b e  i n  (pi, •" „un) R f l  R

(P1, — „un) * b u t not in  ([11,•••,,an) itself. In th is case, however, w — lefai1 +14,,u2

+••• +10% , is nilpotent in R O K IC°.
A lthough  T heo rem  2 .4  can  be  u sed  to  he lp  com pu te  tigh t c lo su re  in

non-domains (c f .  1 .1 .1 ) , th e  theorem  itse lf is  qu ite  fa lse  w hen  R  is  n o t  a
dom ain . If  R — i [

r7)
] , the  element 1 E  (x — y) *  but xE (x — y) R , a s  is easily

verified by killing the minimal primes.
W e prove a  sim ilar resu lt tha t is  usefu l fo r computing tight closures in

p rac tice . T heo rem  2 .7  can  be  deduced  easily  from  T heo rem  2 .2 , b u t  we
supply a  different proof using the existence of test elements.

2 .7 .  Theorem. Let R  be a domain finitely  generated over a f inite field
K, and assum e that K is algebraically closed in the fraction field o f  R . Let I be a
homogeneous ideal of R . F ix  an integer 5 and write I as 1=1 1 +1 2 where I t i s  the
ideal generated by  all the elements of I whose degree is strictly  less than 5, and 12

is  the ideal In  ED, >6 R, of elements of I of degree 5 or more. Then

EI*1 6 =7 UP] 6 +  [I21  6 .

T hat is, any element of degree d in  I*  is actually  in the (a priori sm aller) ideal
+/2 .

Proof. W e first reduce to the case where R  is a normal d o m a in . Let S
denote th e  normalization o f  R ; reca ll from  th e  p roof o f  Theorem  2.4 that
S0 =R 0 ) K .  Suppose that z E R  has degree 5 and that z E R has degree 5 and
th a t z  E  +  12 )  *  in  R .  T h is  a lso  holds in  S , so assum ing th e  re su lt for
normal domains, we have z C (I1S) * +I 2 S. W rite z  as z ' +w  w here z' E (11S) *

and w E 12S a re  hom ogeneous. Since all th e  generators of 1 2  h a v e  degree at
le a s t a s  la rg e  a s  th e  degree o f  z , w  i s  a  K  = S o = R o  com bination of the
generators of 12 . T h is means that w ER so z' E R .  It is easy  to  check tha t in
general, (/S )* n R = I * fo r  any ideal of a Noetherian domain R  and any integral
extension domain S  of R .  T hus z' E  I t  in  R .  This argum ent shows that we
can assume without loss of generality that R is normal.

Now because R  i s  a  norm al garded  dom ain , the  defining ideal f o r  its
non - regular locus is a  homogeneous ideal of height at least tw o. Because R  is
norm al, w e can  find  a  regular sequence cl, c2 contained in  this height tw o
ideal. R e p la c in g  the ci by pow ers, if necessary, the elements c l  and  c2 may be
assumed to be test elements for R , by [HH3, 6.2], since Rc i  i s  a  regular ring.
This means that if z E /* , then c fz qE/ 1q1 fo r  all q.
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Suppose that zE  /* where I  is generated by forms p 1,P2.•••,pk. Using the
same sort of arguments described at the beginning of th is  section, we see that
if  p i h as  deg ree  s tr ic tly  g rea te r than  5 ,  then  th e  homogeneous tight closure
equations

czq= a id .4 -1-a2gf.d+ • • •± akg1.1%

reveal that the coefficients a ,  of p l must all be zero for large q. Thus we are
im m edia te ly  reduced  to  th e  c a s e  w h e re  /  is generated by hom ogeneous
elements p i a ll of degree less than o r equal to 5.

Assume th a t z  is  n o t  in  th e  tigh t c losure  o f  any  idea l genera ted  by  a
proper subset of the p i 's , and that some p i ,  say p i ,  has degree 5. For each q,
we have a homogeneous equations

c i zq -=a1 ,0 ± a 2 ,„u1+  •  - 1- ak g 14,
c2zg = bi g gi+ 1)40+ • • • ± b W it

where a i g ,  bi g h a s  the same degree as c i. F or each q, we multiplying the first
of these equations by bi g and the second by ai g  to achieve an equation

(c i bi g  — c2ai g ) z q  E

There are several cases to  conside r. F irs t, if cibi g
— c2ai g is  no t zero, then

because the degree of this element is constant in q, w e  see that z E (P2,• /4) *

as in the proof of 2.2. In th is case the proof is now complete by induction.
O n the other hand, suppose that ci b1 g —c 2a l ,  is  z e r o .  Consider indices 1

where p i are  the generators for I ,  a l l  of degree the same as the  degree
of z. If any coefficient a i g bi g —b i g a i ,  is non-zero for infinitely many q, then we
have

(azgbig—bigaig)14E ( td ,•  •  • 4 4 )  ,

so that pi E (tti, — ,Cer,"•,110 * . This says that z E  ( 1 2 1 ,• • • , f i t ," • „t1 k ) * ,  and again
we are done by induction on k.

Finally, we must consider the case where for all i, 1

(2.7.1.)
 

a iq blq=  b i q a l q

and  also c i bi g  =  c z ai g . Because c i ,  c2 form  a  regular sequence and have the
same degree, we can find Ag  E  K  such that b i g =  2 q c 2  a n d  a i g = 2,c i . Plugging
these into the equations 2.7 .1  and again using the fact that c i , c 2 form  a  regular
sequence, find that w e can w rite each a i g  a s  Àj g c i  f o r  some /La e  K .  We get
equations of the form

Cl (zq 2141-11— ••• — /Irq/4) a r -1-1 4 / 4 + 1 +  • ± ak q ti qlc•

T h u s ci —  2 1 r7 g lii  • • •  —  2 ,-T f ir )  g  i s  in  /1q1 f o r  infinitely  m any q. Now,
assum ing that K  is  f in ite , th e re  m ust be  som e  r - tu p le s  o f  elem ents in  K,
21,•••,2r that appears infinitely often among the r - tu p le s  — 2 4 1 ,•••, - 24g , so we
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get an  element z + .1 it ii+ •• •± 2 ,-P ,E / '. W e conclude that z  is  in  /1 + / t, and
the proof is complete.

Remark. Presum ably, t h e  a ssu m p tio n  th a t K  is  f in ite  a b o v e  is
unnecessary, but I do not know an argument for an arbitrary perfect field K.

3. Elements forced into the tight closure

In th is section we record some useful observations about the tight closure
of homogeneous, m p rim a ry  id e a ls . Let I  be  an m  prim ary ideal o f a  graded
a lg e b ra  (R ,m ) . Assum e th a t  I  is  gene ra ted  by  fo rm s a ll o f  degree 5. Of
course, since I * is a lso  m primary, every element of sufficiently high degree in
R  w ill be in  /*. For com putational purposes, it is useful to know explicitely
what "sufficiently h ig h "  is . In  this section we derive bounds on this degree.

The method is to use the Briancon - Skoda th e o re m . The Briancon - Skoda
theorem  asserts that th e  integral closure of the  n t h  p o w er o f  an  n - generated
ideal I  is contained in /4% se e  [H H 1 ]. It is quite elementary to prove directly
from the definitions.

T h is  m e th o d  p ro d u c e s  e v e n  s tro n g e r  re su lts . N a m e ly , w e  p ro d u c e
elements in the plus closure of I, not just the tight closure. G iven any dom ain
R , the  ring R +  denotes the  integral closure of R  in  an  algebraic closure of its
fra c tio n  f ie ld . If  R  happens to  be graded, w e m ay consider a  homogeneous
version: the subring R + "  of R +  consisting of all those elements which can be
considered homogeneous o f  in tegra l o rder in  th e  sense  tha t they  sa tisfy  an
integral polynom ial of the fo rm  U N  r i u N-1 r 2  uN -2 + w here r i  is
homogeneous of degree id, for some non - negative integer d. It is easy to see
that IR + fl R C I * (resp . / + " f l  R C  I* in  th e  graded case ) fo r all ideals, b u t it
has been a long standard open question w hether or not the  converse is  true.
T h is  is  k n o w n  to  b e  th e  c a se  fo r  ideals genera ted  by  p a r t  o f  a  system  of
param eters (in  an  excellent local or graded dom ain) [ S i ] ,  [ S 2 ] .  A ll of the
elements we produce in the tight closures of ideals in th is section are actually,
a s  w e show , in  the  p lus closure, further evidence (though fa r  from a  proof)
that I * =IR + gr n R  for all ideals.

3 .1 .  Proposition. Let I c R  be an m - primary ideal generated by forms
of degree less than or equal to 5 in  the graded algebra R  of dimension d. Then
any element z  of degree greater than or equal to d 5 is in the idea l I*. If  R  is a
domain, and Ro =K  is infinite, then z E n ?  fl R .  If R  is not a domain, but is
eqvtidimensional, then this holds modulo every minimal prime of R.

Proof. Suppose that I  is  genera ted  by  th e  form s p1„u2, ••• gx , each of
degree at most 5. Let S  be the graded subring K [ 1 1 1 , 1 2 2 , • - „ u k ]  C R . S in c e  I  is
m - prim ary, the extension S - 4  R  is  in te g ra l. A n y  z E  R  therefore satisfies a
homogeneous equation of integral dependence:
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(3.1.1.) zN-1-aiz-N-1--ka2zN-2±•••-i-aN_iz-FaN

o v e r  S. Since th e  equation is hom ogeneous, th e  degree  o f  a i i s  e q u a l  to
x degz, so  th a t dega i ic / c 5 .  Since a i i s  a polynomial in the  ii , , this implies

that

a, E •./.4) i d .

It follows that Equation 3.1.1 forces

z E  ( p i , . • - , p k ) d ,

the  integral closure o f the  cr h p o w er o f  th e  ideal I. B y th e  Briançon - Skoda
theorem (Theorem 5.1 of [III -11]), we conclude that  z  / * .

Asum e th a t  R  i s  a  d o m a in . T h e  assum ption  tha t K  =  R o  is  in f in ite
guaran tees tha t I  h a s  a  reduction  genera ted  by  a  homogeneous system of
parameters, for R . (The assumption that K  is infinite is unnecessary
if this is otherwise known to be the case.) Thus

Z E  ( p i , — , p k ) d =  (x i,. • •,x d )d

which puts z G  x d ) * .  B y [S2], zE  (x i ,••-,xd)R + grn R.
I f  R  i s  equidimensional, th e  xi, '•• , Cd w i l l  b e  a  system  o f  parameters

module every m inim al prim e, so  th a t  th e  re su lt ho ld s modulo each  minimal
prime as claimed.

The next Lemma gives a  better result when R  is generated by a  system of
p a ra m e te rs . T his result w ill be used to prove the  sanie bound even when the
ideal is not generated by a system of parameters.

3 .2 . Lemma. L et x,,••• ,.r d  be a  homogeneous system of parameters for
the graded ring R  and assum e that R  is  equidimensional. I f  degz  E l= idegx i ,
then z E  (X I, • , X d )  * .  Consequently, z E  (Xi,• • • ,X d )  S  n R, where S  is some graded
integral extension domain of f, where P is any  minimal prime of R.

Proof. W e prove th e  f in a l statem ent first: if  z E  (X i,  • ,X d )  * ,  w hy is
zE  (xl.,•••xd)S n R ?  T h e  reason  is  tha t z  w ill b e  in  the  tigh t c losure  of the
id ea l (x1,..•,.rd) fo r every  minimal prime of R , and the im age ideal is still
generated by a  system  o f  p a ra m e te rs . W e  th e n  u s e  [S 3 ] , to conclude that
zE  (xi,•••,xd)R + g r n R ,  so  th a t  z G  (xi, ••• ,xd) S f l  R , w here S  is some graded
integral extension dom ain of . Therefore, th e  proof o f the  p roposition  is
complete, once we have shown that z E  (X i," '- id ) .

If the  X ,  a l l  h a v e  th e  sa m e  d e g re e , th is  is  ju s t a  specia l case  of the
previous theorem . W e reduce to this case.

Let t, be the degree of x, and let t = f l 1 t , .  C o n s id e r  the product
W 1 t  t

W = X i i x 2X d td Z
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and the ideal
t  t  _1 - - 1= ,• • • ,x  tri d ) R .

T he  ideal I  is generated by elem ents all o f  degree t  an d  th e  element w  has
degree

d d

degz+Eti (t/ti — 1) =degz+E(t_t,).

Since degz Ef=1. (t i ) ,  w e see  that degw._ td , and therefore w E I * . We then
u s e  t h e  "colon - cap tu rin g "  p ro p e rtie s  o f  t ig h t  c lo su re  to  c o n c lu d e  th a t
z e  (x1, — ,xa)

* . (S ee  [HH1, Thorem 1.15a] fo r  th e  b a s ic  theorem  o n  colon-
capturing.)

3 .2 .1 .  Remark. A n  a lte r n a t iv e  (b u t  le s s  e le m e n ta ry )  p ro o f  of
Lemma 3.2 has becom e part o f the  "fo lk lo re" o f tigh t c losure  and uses the
machinery local cohomology and the notion of tight closure for m odules. The
tight closure of the zero m odule in the local cohomology module (R )  of an
equidimensional excellent local ring (R ,m ) of dimension d is well-understood:
according to [Si, 2 .5 ], it is precisely the  largest proper submodule of (R)

w h ic h  is  s ta b le  under th e  na tu ra l action of Frobenius on ( R ) .  In  the
graded case, the Frobenius action on (R )  multiplies degrees by p, so that
th e  non-negatively  graded p a r t  o f  th e  lo c a l  Hg, ( R )  i s  s ta b le  u n d e r  the
Frobenius action, and hence contained in  th e  tight closure o f  z e r o . T h a t is,

(R)] > o c 01, ( R ) . B y  u s in g  the  Koszul complex on  a  system of parameters
x i,•••,x d  to represent elements of 'FL (R ), elements of %II fR ) may be represented
b y  inclusions of elements z  E Xd) 'K f a c t  t h a t  [1 Ig  (R )] 0  c (R)
transla tes in to  th e  statem ent o f  Lemma 3.2. T h is  is carefully  explained in
Section 2 o f  [Si].

There a re  two advantages to using the  Briancon-Skoda theorem to prove
Lemma 3.2. The obvious one is that it avoids the introduction of the technical
tools of local cohomology, tight closure of m odules in an overmodule, and the
re-interpretation of properties of local cohomology in  term s o f properties of
p a ram e te r  id ea ls . B u t m ore  im portantly, in  add ition  to  its  sim plic ity , th is
argument immediately generalizes to arbitrary m- primary ideals, a s  the  next
result shows.

3 .3 .  Proposition. Let R  be a graded ring and suppose that I is  any
m - prim ary  ideal of R  generated by the homogeneous elements •14 .  Let z  be
any form of degree greater than or equal to Ec - i degg i . Then z  E  J . In fact, if
R  is  a domain, then z e i l e g r n R , where R + gr denotes the graded integral closure of
R in an algebraic closure of its fraction field.

Proof. In  light of the  remarks following Definition 1.1, we may assume
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that R  is a domain.
L et S  b e  th e  graded  subalgeb ra o f R  generated over K  b y  pi,g2,•••

Since th e  ideal I  i s  m -p rim ary , R  is  in teg ra l o v e r  S ,  so  th a t  z  sa tisfies a
homogeneous equation of integral dependence of the form

a 2 zN - 2 +•••+aN _ i z +aN =0

where each a; is a polynomial in the p i 's  of degree j  X  degz.
Let //1,U2,•••,Uk, Z  be indeterm inates and define the quotient ring

T K[Ui,U2,—,Uk,Z] =
Z N +A i Z N - 1 + ••• +A N

where A ; is the same polynomial in the U 's  th a t  a; i s  in the p i 's. Note tha t T
is  a  graded Cohen-Macaulay K - a lgeb ra , w ith  th e  degree of U i defined to  be
the  same a s  th e  degree of p i, and  the  degree of Z  defined to  be equal to  the
degree of z. T he elements Lf1,U2,•••,Uk clearly form  a sop. f o r  T , whence it
follows from the previous corollary that

Z E  (UI,U2,•••,Uk) *  i n  T.

Because T  i s  equidim ensional, the  im ages of the  elements UI,U2,••• ,U k  are  a
system o f  param eters in  the  quo tien t T‘ o f  T  b y  a n y  o f  i t s  minimal primes.
Identifying elem ents o f  T  w ith  th e ir  im ages in T ,  w e  t h u s  h a v e  that

Z E (UI,U2,•••,Uk) *  i n  f . If  we denote by T'gr+ the  graded integral closure of

T' in an algebraic closure of its fraction field, we recall that

(IL,U2, - ••,/A )T * = (Ui,U2,•••,I1k) r " n  T

(This is  the main theorem o f  [S 3 ]; the  non - graded version is Theorem 5.1 of
[S2] )

W e have an obvious map of T  to R  sending Z  to z  and Ui to It,. Since R
is a domain, the map passes to  a  well defined map of 7' to R .  The map T---.1?

extends to a  map rg r- - .R + gr. Therefore the inclusion Z E  (UI,U 2 ,•••,uk ) f+ " n
T.  m aps to an inclusion

z E  (tti„a2 ,"•,[10R +grn  R.

Since JR + " C l R c J *  fo r all ideals J  of an arbitrary domain R , we conclude that

z E (p 02, • ' • „tik) * i n  R.

This completes the proof.

4. Applications

T he  re su lt o f  preceding tw o sections have been useful to  th e  au thor in
computing tight closure o f  homogeneous ideals, or fo r  simply understanding
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better the  s truc tu re  o f a  graded r in g . T h e  re su lts  in  th is  p ap e r a re  no t an
algorithm fo r  com puting tight closure! H ow ever, because they give partial
information about the  tight closure o f  ideals in  graded rings and  bound the
deg ree  o f  e le m e n ts  th a t m u s t  b e  ch eck ed , i n  p ra c tic e  th e y  a r e  helpful.
Because tight closure can be useful for determining whether a  particular ring
h as  ra tio n a l s in g u la ritie s  o r  is  Cohen-Macaulay, these  resu lts m ay a lso  be
used as a  tool for these purposes.

Example: Two Dimensional Rings. Let R  be  any  standard normal
ring of dimension 2 over a  perfect field. S u p p o s e  th a t x ,y  is  a  linear system
of param eters (i.e. of degree 1). Then

(x ,y) * =(x ,y ) -  IEDR

the ideal generated by all forms of degree 2 and the original elements x  and y.
Indeed, from Proposition 3.3, one sees that all homogeneous elements of degree
two o r  more a r e  in  (x,y) * ,  whereas no  element o f degree one not already in
(x ,y ) can be in  (x,y) * , by Theorem 2.2.

From this example, we gain insight into the structure  of two dimensional
graded E -rational r in g s . In  p a r tic u la r , w e see that the  id e a l (x ,y ) is tightly
closed if  and  only if  R 2  C ,y) R .  In  th is  case, the  multiplicity o f the  ideal
(x ,y )  is  5  —  1 , a n d  th e  H ilb e rt Function o f  R  i s  H (n): = length i f  (R n)

n (5 - 1) +1, where 5 -=- lengthic (RI) is the embedding dimension of R. I n  this
case the H ilbert function agrees w ith its Hilbert polynomial right from n = 0.
T h is  exam ple m ay be interpreted a s  a  tigh t c losure  analogue of M . Artin's
results for rational singularities; see Theorem 4 o f  [A r ] .  T h e  reason for this
similarity is illuminated by Corollaries 4.3 and 4.4 below.

E v e n  in  h ig h e r  d im ensions, one  o b ta in s  s im ila r  ( b u t  not complete)
inform ation for standard graded rings th a t  a re  F - ra t io n a l. F o r  example, in
dim ension 3, w e  w ould  see  tha t R 3  C  (x,y,z) R2, where x ,y ,z  i s  a  system  of
param eters all of degree o n e .  W e see again that the H ilbert function agrees
w ith  its polynomial right from  the  start, so it is completely determined by its
values a t  n = 1  and 2.

W e now  apply  th e  re su lts  o f the  previous tw o sections to  th e  study  of
F -ra tiona l and  pseudora tiona l rings. R ecall that a  r in g  is  F -ra tio n a l i f  all
param eter ideals a re  tig h tly  c lo sed . F o r a  loca l (o r g raded) domain, th is is
equivalen t to  th e  p roperty  tha t som e idea l genera ted  by  a  (homogeneous)
system of param eters is tightly closed. Pseudorationality is a  characteristic-
free analog of ra tional singularities. For the formal definition, see [LT].

Recall that the a-invariant [G W ] of a graded r in g  (R ,m ) is the integer

a (R) = max„Ez { [HZ' (R)] n*0).

4.1 . Theorem. Let R  be graded Cohen - Macaulay domain over a f ield K
such that the fraction f ield of  R is a regular extension of K, and assum e that R has
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a system of parameters consisting of one - f orm s (at least after possibly extending the
ground f ie ld  K ) . I f  th e  a - invariant a (R ) — d w here is the dimension of R,
then R  is F - rational.

4 .1 .1 .  Remark. T he assumption that R  h a s  a  system  of parameters
o f  degree one  after extending th e  ground fie ld  is  a lw ays sa tisfied  f o r  any
standard  graded d o m a in . T h e  assum ption that the  frac tion  fie ld  o f R  i s  a
regu la r ex tension  of K  is  e q u iv a le n t to  th e  assum ption  tha t R  rem ains a
dom ain after any extension of the ground field K , a n d  is therefore trivially
satisfied when K  is algebraically closed. See 2.4.1.

Proof. Let x i,•••,xd be a  system of param eters (s.o.P.) of one - forms. (If
necessary, we make the faithfully flat base change R  LOKI? extending K  to  a
fie ld  extension L ; a ll hypo thesis , a s  w e ll a s  t h e  p resum ed  fa ilu re  of the
conclusion, are p rese rved). W e need  on ly  check tha t the  ideal generated by
x i, ••• xd is  t ig h t ly  c lo s e d . Suppose th a t  z  i s  a  homogeneous element in
(xi,•••,xd) *  b u t  no t i n  (x 1 ,•••,xd) R. Recall that H'in (R )  is isom orphic to  the
d ire c t lim it  lim (

R „  w here  th e  m aps a r e  g iv e n  b y  multiplication b y  the

products of the x i 's. W hen R  i s  Cohen - Macaulay, these m aps are injective,
and the element )7 [z+ (xi,• • ,xd )]  E 1-1g, (R) is  non - z e r o .  T hus 77 necessarily
has degree less than o r  equal to  1 — d, which forces the degree of z  to be less
than o r  equal to 1. Theorem 2.2 then implies that z EE ( x i , • • • , X d )

* un less it is
already in  (xi, — ,xd)R.

Theorem 4.1 has an amusing consequence.

4 .2 .  Corollary. A  g rad e d  C o h e n - M ac au lay  d o m ain  R  o v e r an
algebraically closed f ie ld  w hich adm its a  system  of  param eters of  degree one is
normal if  a(R)

Proof. F-rational rings are normal.

4 .3 .  Corollary. L et R  be a graded Cohen - Macaulay domain over a field
K  such that the fraction f ield of  R  is  a  regular extension of  K , and assume that R
has a  system  of  param eters of  degree one (at least af ter possibly  ex tending the
fround f ield). T h e n

(1) If a (R) where d  is  the dimension of R, then R is pseudorational.
(2) If a (R) _ 1 — d and the ground f ield is  of characteristic zero, then R  has

rational singularities.

Proof. T h is  i s  a n  immediate consequence o f  Theorem  4 .1  above and
th e  m a in  theorem s o f  [ S i] ,  th a t  lo c a l ly  exce llen t F - ra tio n a l r in g s  a re
pseudorational ( in  cha r p )  a n d  th a t F - rational type  a lgebras have rational
singularities (in characteristic zero).

4 .3 .1 .  Remark. If R  is actually generated by its elem ents of degree
one, then the  assumption that a (R) is w ell understood. Indeed, in  this
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case, a(R ) is a t least — d, and it is exactly — d if and only if R is  a polynomial
r in g .  I f  a (R ) = 1 —  d, th e n  th e  degree o f the  p ro jec tive  scheme ProjR is
precisely n —  d  1, w here n is the dim ension of [R ]i (w hich is one more than
d im e n sio n  o f  th e  am bient projective sp a c e ) . T h e se  so - ca lled  varieties of
m in im al d eg ree  a r e  c o m p le te ly  c la s s if ie d :  th e y  c o n s is t  o f  quadric
hypersurfaces, cones over Veronese surfaces, and rational normal sc ro lls  [Ha,
p 4 8 ] .  T h e  c o n e s  o v e r  a ll o f  th e se  v a rie tie s  a r e  e a s ily  c h e c k e d  to  have
ra tional singularities. Indeed , the ir coord inate  r in g s  a re  all e ither quadric
hypersurfaces (which are Gorenstein and F-rational by 4.1) or toric  varieties
(which are direct summands of regular rings), so in fact, these rings have the
property that all ideals are tightly closed in all characteristics.

This corollary immediately yields the following.

4 . 4 .  Corollary. A t w o - dimensional g r a d e d  a l g e b r a  of p rim e
characteristic which admits a system of parameters of degree one is  F - rational if
and only  i f  it is  pseudorational. A  tw o dim ensional graded algebra of
characteristic zero which admits a system of parameters of degree one is F - rational
type if and only if it has rational singularities.

Proof. It s u f f i c e s  t o  v e r i f y  t h e  charac teristic  p  s ta te m e n t. The
characteristic zero analog is explained in [S1].

F-rational implies pseudorational in general [S1], so suppose that R  is  a
tw o dim ensional pseudorational ring. P se u d o ra tio n a lity  is preserved upon
te n s o r in g  w ith  t h e  in f in ite  f ie ld  e x te n s io n  L =K  ( X ) ,  w h e re  X  i s  an
indeterm inate. Therefore, it suffices to show that P & L  is F - rational, since
R— >ROKL is faithfully flat. W e henceforth assume that R  is graded over Ro,
an infinite field.

L e t x i ,  x 2  b e  a  homogeneous s op . fo r  R  o f  degree  o n e .  Since R  is
p se u d o ra tio n a l, it  is  norm al and C ohen - M acaulay, w ith  a (R ) <0  [FW].
Therefore, a (R) — 2, and R  is F-rational by Corollary 4.1.

T he  equivalence of pseudorationality and F - rationality has been studied
b o th  b y  F e d d e r  a n d  b y  W a ta n a b e . In  pa rticu la r, F edder proves that tw o
dim ensional g raded  r in g s  w ith  ra tio n a l s in g u la r it ie s  a re  F - ra t io n a l ( in
characteristic zero) using different methods.

DEPARTMENT O F  MATHEMATICS,
MASSACHUSETTS INSTITUTE O F  TECHNOLOGY,
CAMBRIDGE, MA 02139, U.S.A.
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