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Tight closure in graded rings
By

Karen E. SMITH

In its principal setting, tight closure is an operation perfomed on ideals in
a commutative, Noetherian ring of prime characteristic. This operation was
introduced by Hochster and Huneke in [HH1], and has had applications to
several disparate but classical problems in commutative algebra such as the
Syzygy problem, the local cohomological conjectures, and the Briancon-Skoda
theorems. Tight closure appears to be giving information about the
singularities of a local ring. For example, with mild hypotheses, the property
that all ideals of a ring are tightly closed implies that ring is normal and
Cohen- Macaulay [HH1] and even pseudo-rational [S1]., which amounts to
rational singularities in characteristic zero. Tight closure also sheds light on
log terminal and log canonical singularities [W] [H]. However, a serious
difficulty in this theory remains: how does one compute the tight of closure of
a given ideal in a given ring?

This paper attacks the problem of computing the tight closure of
homogeneous ideals in a graded ring. Because of the subtle information tight
closure provides about both the ring and the ideal, an actual algorithm for
computing tight closure seems much too to hope for. However, it is of
interest to at least narrow the search. In this paper, the problem is
confronted from both ends. A general lower bound on the degrees of
elements in I* is proven (Theorems 2.2, 2.4): (with mild assumptions on R)
any element in [*—I must have degree strictly larger than the smallest degree
of any of the minimal generators for I. For an m-primary ideal I, two upper
bounds are given (Propositions 3.1, 3.3), such that elements exceeding this
degree are always in I*: any element of degree larger than N is always in I*,
where N is the smaller of the sum of the degrees of a minimal set of
generators for I or of the dimersion of R times the largest degree of any
minimal generator for I. These bounds have been useful to the author in
computing tight closures.

Section 2 deals with the lower bounds. Though these results are quite
useful in practice, one of the main points of this section is to introduce a new
method for studying tight closure. This method is differential operators.

In our setting, the union of the endomorphism rings of R as an R”® module,
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as ¢ ranges through all non-negative integers, is a ring of differential
operators on R. These operators operate on the equations that define tight
closure (see Definition 1.1), and can be used to manipulate these equations to
great effect. The author believes that this “differential operator” point of
view on tight closure will have further applications, and hopes that deeper
connections will eventually be revealed.

There is another method for proving some of the results in Section 2,
which involves the use of test elements for tight closure. The theory of test
elements is one of the most important and deepest aspects of tight closure.
To illustrate this approach, the proof of Theorem 2.4 is written using test
elements, though it can also be deduced using differential operators. The
differential operator point of view is self-contained; it does not require test
elements, nor indeed, any knowledge of tight closure beyond the definition.

In section 3, Briancon-Skoda type theorems are used to prove that all
forms of degree greater than a certain constant (explicitly described in terms
of the degrees of the generators of the ideal I) are in the tight closure of I, for
m-primary I. For computational purposes, this is quite useful, since it gives
an upper bound on the degrees of homogeneous elements that need to be
considered for inclusion in the tight closure of a particular ideal. The results
in this section actually give methods for checking that all elements of high
enough degree are in the “plus closure” of I. When R is a domain, this is
simply the ideal IR* N R, where R* is the integral closure of R in an algebraic
closure of its fraction field. Whether or not the plus closure is the same as
the tight closure remains an open question, although this is the case for ideals
generated by parameters [S1] (see also [Ab], where the class of ideals where
this is known to hold is enlarged). The work in this paper was partially
motivated by this question, and the results of Section 2 and 3 both offer
further evidence for the equality /*=IR* NR.

Aside from their use in computing tight closures, the results of Sections 2
and 3 have several interesting consequences, which are recorded in the final
section of the paper. For example, we deduce a sufficient condition for a
standard K-algebra to have the property that all parameter ideals are tightly
closed in terms of its a-invariant alone; see Theorem 4.1. This ring property
is called F-rationality because of its close connection with rational
singularities; indeed, by the main result of [S3], we deduce the same test for
pseudorational rings, and therefore for rational singularities when K has
characteristic zero; see 4.4. An immediate consequence is that F-rationality
and pseudorationality are equivalent for two-dimensional standard algebras in
all characteristics. The characteristic zero case of this theorem was proved
first by Fedder [F]. The question of whether or not F-rationality is
equivalent to pseudorationality in general has persisted since the inception of
the theory of tight closure; see, for example, the nice summary of the progress
on this problem as of 1989 in [FW]. For the (more recent) proof that
F-rational implies pseudorational for excellent local rings, consult [S3].
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1. Preliminaries

This section can be used as a reference for the rest of the paper.

Throughout this paper R always denotes an N-graded K-algebra,
R=€D,exR:, where Ro=K is a field. We always assume that R is Noetherian,
and if we further wish to indicate that R is generated by its homogeneous
elements of degree one, we will say that R is standard. The unique
homogeneous maximal ideal of R, D, >R;, is denoted by m.

Tight Closure. We summarize some definitions and elementary facts
about tight closure. We treat here only the case of tight closure for ideals,
although it is more generally defined for modules as well [HH1].

Let A be any commutative, Noetherian ring of characteristic p>0.

1.1. Definition. The tight closure I* of an ideal IC A is the ideal
defined by

zE*

if there exists some ¢ not in any minimal prime of A and some non-negative
integer N such that

cz? €1 for all integers e>N

where I denotes the ideal of A generated by the p*" powers of the elements
(equivalently, the generators) of I.

Tight closure is a true closure operation in the sense that (I*)*=I* We
refer the reader to [HHI1, Proposition 4.1] for a few of its elementary
properties.

Most questions about and applications of tight closure reduce easily to the
domain case. In fact, its very definition does:

(1.1.1) z€TI* if and only if zmodg’E(I%)* in -‘;7
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for all minimal primes % of A [HH1, Prop 6.25]. We will therefore restrict
our attention primarily to domains throughout this paper. In the domain case,
the only restriction on the element ¢ in Definition 1.1 is that ¢ is non-zero, and
furthermore, in this case, one may always take N to be 0 [HH1, Prop 4.1c].

Our main concern is with homogeneous ideals in graded rings.
Fortunately, it turns out that the tight closure I* of a homogeneous ideal I in
the graded ring R is itself a homogeneous ideal. In addition, for a graded ring
R, the element ¢ in Definition 1.1 can always be chosen to be homogeneous,
whether or not I and z are assumed to be homogeneous. Both these assertions
are proved in [HH2, Theorem 4.2].

In many settings, it turns out that actually a much (a priori) weaker
definition of tight closure is available in many situations. In particular, this is
the case for graded rings.

1.2. Proposition. Let I be an arbitrary ideal in the graded ving R and
let z be an arbitrary element of R. Suppose that for infinitely many e €N, there
exists some c. not in any minimal prime and of fixed degree (ie. co depends on e
but its degree is a constant independent of e) such that

o2 €19,
Then zET*.

Proof. This is essentially Theorem 6.9 of [HH1]. In our case, the
concept of degree (of leading terms) replaces that of the “order of the norm”.

2. Elements excluded from the tight closure
(an application of differential operators)

Throughout this section we will assume that the graded algebra
R=@,cxR; is finitely generated over Ro = K, of characteristic p> 0. The
letters ¢, q', Q, et cetera, will denote various positive integer powers of p.

Remark. There is a notion of tight closure for finitely generated
algebras over a field of characteristic zero, as well; see [HH4]. The
definition is somewhat involved, but is a standard application of the idea of
reduction to characteristic p. We do not state this definition here, but the
reader familiar with it will recognize that all theorems stated in this section
are valid also in characteristic zero. This follows from the definition of tight
closure in characteristic zero combined, of course, with the fact that these
theorems hold incharacteristic p.

Let I be an ideal generated by forms gtz " ttx all of degree at least 0.

We seek restrictions on the degree of a non-zero homogeneous element z
which can be in the tignt closure I* of I. Quite trivially, for a reduced graded
ring R, we see that the degree of z is at least 0. Otherwme for any
homogeneous test element ¢, the equations
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cz'€ (ulpd - ui) R

would quickly yield a contradiction as q gets very large. Indeed, if deg 2<9,
then for ¢ >0, the element cz? is of degree

degc+q (degz) €46.

Because ¢° is the degree of the generators for I', the element cz? can not be

contained in I'" unless cz?=0. Since R is reduced, the fact that ¢ is not in
any minimal prime implies it is not a zero-divisor, whence z=0. In fact,

2.1. Proposition. Any homogeneous element of degree less than the
degree of the gewmevators of a homogeneous ideal I can not be in I* unless it is
nilpotent.

If R is not reduced, any element z € I* having degree smaller than the
degrees of the generators of I must be nilpotent, since z is in the tight closure
of the image of I modulo every minimal prime, so that the preceding arugument
shows that z is zero modulo every minimal prime.

We now prove a much harder fact.

2.2. Theorem. Let R be a normal graded domain finitely generated over
a perfect field K=R,. Let I be an ideal genevated by forms all of degree at least
0. If z has degree O and is in I*, then z must be in I itself.

This theorem has an amusing corollary (which we challenge the reader to
prove by elementary methods):

2.3. Corollary. Let K be a perfect field with algebraic closure K and
suppose that R is a normal N-graded domain over Roy=K. Let Z be any form of

positive degree n the graded domain K QkR. Then the ring R [Z] is not normal
unless Z is in R.

Proof. Suppose Z = Aymy+ Ama+ - Am, where 4, €K and m; ER are
forms all of the same degree. Denoting R [Z] by S, we see that Z €
(mymg,m) St NS C (my, -+ m;) S* By Theorem 2.2, Z € (mymg, - m;) S,
whence Z is a K combination of the m;. This forces Z to be in R.

Before embarking on the proof of Theorem 2.2, we first give a technical
improvement. Recall that a K-algebra R is said to be geometrically reduced if
R® kK> is reduced, where K= is the perfect closure of K. Since the induced
map on spectra is an isomorphism, it follows that if R is a geometrically
reduced domain, then in fact RQxK™> is also a domain.

2.4. Theorem. Let R be a geometrically reduced graded domain over
the field K =R, Assume that K is algebraically closed in the fraction field of R.
Let I be an ideal gemerated by forms all of degree at least 6. If z has degree 0
and is wn I*, then z must be in I itself.
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2.4.1. Remark. The two hypotheses above, that R is geometrically
reduced and that K is algebraically closed in fraction field Frac (R) together
are equivalent to the assumption that K C Frac (R) is a regular extension,
where Frac (R) denotes the fraction field of R [ZS 1I, p226, p230]. Recall
that an extension of fields K CL is said to be a regular extension if

(1) L is separable over K; and

(2) K is algebraically closed in L.

Recall also that the extension K CFrac(R) is a regular extension if and only if
RQkL is a domain for every field extension L of K [ZS II p230]. Of course, if
R is a finitely generated normal domain over a perfect field, then K CFrac (R)
Is trivially a regular extension.

Proof of 2.4. The map R—RQxK* =S is faithfully flat and S is again a
domain. The inclusion z€I* in R persists into S. If the theorem holds in S,
then z €IS N R =1 by faithfully flatness. Note that if Ro=K is algebraically
closed in the fraction field of R, then So= K~ is algebraically closed in the

fraction field of S. Indeed. suppose that some § € U™!S where UCS is the

multiplicative system of all non-zero-divisors on S satisfies an equation of
integral dependence over K*. This equation has the form

(2.4.2) (BN (H) N1y =00,
b b

where each 7;€K”. Because each element of S has a ¢'* power in R, equation
2.4.2 gives an equation

(2.4.3) (‘;—Z>N+ (r) T (S) N1 ey =0,

b

of integral dependence of Z~ over K. Because K is algebraically closed in the

fraction field of R, we conclude that % is in K =Ry, where § €K*. We may
therefore assume that without loss of generality that Ry=K is perfect.

We will reduce to R normal, whence Theorem 2.2 will apply. Let S
denote the normalization of R. Note that So=Ro=K. For if a/bE S, then
a/b would satisfy a homogeneous equation of integral dependence over R.
The coefficients of this equation would all necessarily lie in Ry =K, whence
a/b would lie in Ry = K because of the assumption that K is a algebraically
closed in the fraction field of R.

Now suppose we have an inclusion z€ (g, **.¢tn) * in R where the g; and z
all have the same degree. This equation persists after expanding to S, where
all the hypotheses of 2.2 hold. We conclude that z€ (g;,**,¢t») S. But then

z=onp+ Qaptyt e+

where the @;, are homogeneous elements of degree zero in S. But then the a;
are actually in R, and we conclude that 2€ (u;,"** ) R.



Tight closure in graded rings 41

The proof of Theorem 2.2 will ocuupy most of this section. The
technique will be to consider the ring

D(R) = | Homgse (R.R).

¢EN

Note that the elements of R that are ¢'* powers from a subring R? of R, over
which we may consider R as a module. The ring R? is also a graded algebra

over the perfect field R§ =K, and the R’ modules Homg« (R,R) are graded R?
modules. Since RCRY for all ¢=Q, we have that

Homge (R,R) CHomg« (R,R)

in a natural degree preserving way, so that the ring D (R) inherits natural Z
grading. These inclusions also give us a natural (increasing) filtration of R
by graded subrings which we call the Frobenius filtration on D (R).

The ring R is a left D (R) module in an obvious way: each element
€ Homge(R,R) acts on R. The reason for the notation D (R) is that this is
actually the ring of K linear differential operators on R (see [Y]).

Although it is possible to conduct the ensuing analysis without explicit
reference to differential operators, this interesting connection is worth
pointing out; it may eventually yield future insight into tight closure. Some
connections between tight closure and the structure of a ring as a left module
over its ring of differential operators are discussed in [S4].

We now established several lemmas.

2.5. Lemma. Let A be a normal Noetherian domain (of characteristic
p>0) with fraction field L, and let uEL—{0}. If u € N, cxL?, then u is a unit
of A.

Proof. Since u and + satisfy the same hypothesis, it is enough to show
that u€A.
Because A is normal, we know
A= m Ag.
P ESpecA
ht®P=1

If u€& A, we can therefore choose some height one % € SpecA such that u € Ag.
Denote by v the valuation associated to the discrete valuation ring As. By
hypothesis, we know that for each ¢ €N, there exists some v, € L such that
u=v}, where ¢ =p° It follows that v (u) =qv (v.) for all g, whence v (u) is
divisible by all g=p®. This is impossible unlessh v () =0, whence u EAs.

2.6. Lemma. Let R=D,exR; be a normal graded K =R, algebra, where
K is a petfect field of chavacteristic p. Suppose that a and 3 are two forms of R of
the same degree, linearly independent over K. Then there exists a (homogeneous)
differential opemtor
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6E€D(R)
for which 6(a) =0 but 6(B) #O0.

Of course, the element 6 € D (R) arising in Lemma 2.6 will be in
Homg. (R,R) for all ¢>>0.

Proof. To ease the notation, fix any e €N, and let S be the subring R?
of R, where ¢ = p®. Since R is a domain, R is a torsion-free S module.
Moreover, R is a finitely generated S module, as one easily checks from the
fact that R is finitely generated over a perfect field. Therefore, in order to
prove the existence of 6, it suffices to find such a 6 after tensoring with the
fraction field F of S. That is, (abusing notation slightly idetifying R with its
image in FQsR), we seeky

¢ €EHomp (FQsR,F&sR)

such that ¢ (a) =0 but ¢ (8) #0.
As FQsR is a finite dimensional F vector space, there is an F module
splitting

¢: FQsR—F
¢: Bl
The map ¢ projects the space spanned by 8 onto F, so that we can choose ¢
such that ¢ (@) =0 unless ® €EFf.

Therefore, the only way for Lemma 2.6 to fail is if for every ¢=p° the
fraction £ is in the fraction field of R%. But according to Lemma 2.5, if £ s in
the fraction field of R? for all ¢, then 5 is a unit in R, whence gEK and a and
B are not linearly independent over K after all.

We can now prove the main theorem of this section.

Proof of Theorem 2.2. We first use Lemma 2.6 to conclude something
even stronger about differential operators on R. Let a be any homogeneous
element of R of degree d. We claim that the only degree d elements of R that
are annihilated by all the differential operators annihilating & are the
K-multiples of . In other words, the K vectorspace

AnnR (Annmma) N RdCR

is exactly Ka. (Here Annpwa denotes that the left ideal in D (R) of elements 6
such that 6 (a) =0; likewise for any left ideal £ €D (R), Anng¥ denotes the
set of elements of R annihilated by every element of £.)

To establish this claim, note that the Frobenius filtration on D (R)
induces a decreasing chain of K subvector spaces of R:

Anng (Annp,a) D Anng (Annp,a) D+ D Anng (Annppa)

where D, denotes the subring Homgee (R,R) of D (R). Since the d forms of R
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form a finite dimensional K vectorspace, this decreasing chain must eventually
stablize in each particular degree. In degree d, this stable vectorspace, which
clearly contains Ka, is [Anng (Annpma)]s. Lemma 2.6 then implies that it is
exactly Ke, for if B is any homogeneous element of degree d not in K, then
Lemma 2.6 implies that some #€D (R) kills a but not 8, so that

(261) [AnnR (AnnD(R)a)]JZKa.

We now use this fact to prove Theorem 2.2. Assume that the theorem is
false and choose an ideal I generated by the minimal possible number n of
elements, g2, *** tn (all degree &), such that the ideal I contradicts the
theorem. Note that »n is at least 2, since all principal ideas are tightly closed
in a normal ring.

Observe that in order to prove theorem 2.2, there is no loss of generality
in assuming that K is infinite. For instance, K can be replaced by the field
extension L = K (t) =, the perfect closure of K (t). All hypothesis are
preserved upon passing to the faithfully flat extension R@xkL. And because
RCRQkL is faithfully flat, for any ideal /CR, we have that [ (R®xL) NR=1.

Let w be a form of degree & which is in I™ but not I. There exists a
homogeneous element ¢ such that for all g,

(2.6.2.) cw' =a i+ azdt - tanl

for some homogeneous a;; € R, necessarily of degree equal to the degree of c,
which we assume to be d.

First suppose that for some fixed ¢, each a;; = kic for some k;; € K. In
this case, we could divid out ¢ from equation (2.6.2) to conclude that

(2.6.3) W= kygttFRogutd o Fkp el

whence w=k?,,u1+k§quz+---+k§qun61, as K is perfect. Thus, we may assume
that for each g, some a;; in not in the K-span of c.

Choose a homogeneous 8€ D (R) vanishing on ¢ but not vanishing on any
d-form not in the one-dimensional vectorspace Kc¢. This is possible,
assuming K is infinite, by 2.6.1 above. In particular, for all ¢>0, at least one
of the elements 6 (ay,) .0 (az,) ,** .0 (ang) in non-zero. Thus for some fixed
index i, we must have that 6 (ai) is non-zero, for infinitely many g¢.
Changing notation if necessary, say 1=1.

For all ¢=Q, we apply 6 to equations (2.6.2.) to get

(26.4.) 0="01(ai) pi+ 0 (az) g+ + 0 (an,) s,

and then rearrange to conclude that

0 (a1 1€ (b, 1l); Blar) #0

for infinity many ¢ =p°. Since 60 (a;;) has fixed degree (=d + degreef)), we

conclude, via Proposition 1.2, that g1 € (g2, *=* t»)*. Our minimality
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assumption thus forces g1 into (g2, *** u») R, whence I was not minimally
generated by the n elements u1,42,°**,i», aS assumed.

It is worth noting that the assumption that R is geometrically reduced is
necessary in Theorem 2.4. Otherwise, we could obviously have a relation as

in equation (2.6.3.) holding, so that w would be in (u, *** tx) RiNERC
1 1
(1,7, ten) * but not in (gt1,7,¢tw) itself. In this case, however, w—kfu + ko

+~-~+k§qun is nilpotent in RQxK ™.

Although Theorem 2.4 can be used to help compute tight closure in
non-domains (cf. 1.1.1), the theorem itself is quite false when R is not a
domain. 1f R="E4 the element € (x—y)* but € (x —y) R, as is easily
verified by killing the minimal primes.

We prove a similar result that is useful for computing tight closures in
practice. Theorem 2.7 can be deduced easily from Theorem 2.2, but we
supply a different proof using the existence of test elements.

2.7. Theorem. Let R be a domain finitely genevated over a finite field
K, and assume that K is algebraically closed in the fraction field of R. Let I be a
homogeneous ideal of R. Fix an integer 0 and write I as 1 =1,~+1, where I, is the
ideal generated by all the elements of I whose degree is strictly less than 0, and I,
is the ideal IN€D;>5 R; of elements of I of degree & or more. Then

(I*]s=[If] s+ (L] 5.

That is, any element of degree 0 in I* is actually in the (a priovi smaller) ideal
IF+1,

Proof. We first reduce to the case where R is a normal domain. Let S
denote the normalization of R; recall from the proof of Theorem 2.4 that
So=R,) =K. Suppose that zER has degree 0 and that zER has degree § and
that z€ (I; +1,) * in R. This also holds in S, so assuming the result for
normal domains, we have z€ (I;S) *+1,S. Write z as 2’ +w where 2 € (I,S) *
and w € [,S are homogeneous. Since all the generators of I; have degree at
least as large as the degree of z, w is a K = Sy = Ry combination of the
generators of [,. This means that wER so z €R. It is easy to check that in
general, (IS)*NR=I* for any ideal of a Noetherian domain R and any integral
extension domain S of R. Thus 2 €If in R. This argument shows that we
can assume without loss of generality that R is normal.

Now because R is a normal garded domain, the defining ideal for its
non-regular locus is a homogeneous ideal of height at least two. Because R is
normal, we can find a regular sequence c;, ¢z contained in this height two
ideal. Replacing the ¢; by powers, if necessary, the elements ¢; and ¢, may be
assumed to be test elements for R, by [HH3, 6.2], since R, is a regular ring.

This means that if zEI*, then ¢2? €I'” for all g.
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Suppose that zE€I* where I is generated by forms g1z, * ¢x. Using the
same sort of arguments described at the beginning of this section, we see that
if u; has degree strictly greater than 4, then the homogeneous tight closure
equations

cz"=aruftagudt Farud

reveal that the coefficients a;q of ¢f must all be zero for large q. Thus we are
immediately reduced to the case where [ is generated by homogeneous
elements g, all of degree less than or equal to 4.

Assume that z is not in the tight closure of any ideal generated by a
proper subset of the g;'s, and that some ;, say ti, has degree 6. For each g¢,
we have a homogeneous equations

12 = argttas it Farud,
Co2q= blqﬂ1+b2qﬂg+ e +bkqﬂ1ﬁ

where ayq, big has the same degree as ¢ci. For each g, we multiplying the first
of these equations by bi, and the second by ai4 to achieve an equation

(c1brg—c2a10) 27 € (8,+++ 1)) .

There are several cases to consider. First, if ¢1b1,—c2a1, is not zero, then
because the degree of this element is constant in ¢, we see that 2€ (gg,**,itx) *
as in the proof of 2.2. In this case the proof is now complete by induction.

On the other hand, suppose that ¢;b;; —c2a14 is zero. Consider indices 1
<i<r where y; are the generators for I;, all of degree the same as the degree
of z. If any coefficient a;eb1q —biga1q is non-zero for infinitely many ¢, then we
have

(aiqbla—biqalq) we (#?,“',ﬂi."',ﬂi) ,

so that #; € (g, ;- ux) *.  This says that z€ (g, -+ fds,"+* u) ¥, and again
we are done by induction on k.
Finally, we must consider the case where for all i, 1<i<r,

(2.7.1.) Aigb1g=biga1q

and also c¢i1big = coa14. Because ¢y, ¢2 form a regular sequence and have the
same degree, we can find A, € K such that bj; = A,c2 and a1, = A,c1.  Plugging
these into the equations 2.7.1 and again using the fact that ¢y, ¢, form a regular
sequence, find that we can write each aj, as Ajc; for some A;;, €EK. We get
equations of the form

a1 (2= gl — = Apaptd) =apprqptinr - ol
Thus ¢ (z — AL — = — Ag%u,) @ is in I¥¥ for infinitely many g. Now,
assuming that K is finite, there must be some 7r-tuples of elements in K,

A+, A, that appears infinitely often among the r-tuples — A1+, — A%, so we
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get an element z+ Ayu;+ o+ A,u, €IF. We conclude that z is in I; +17, and
the proof is complete.

Remark. Presumably, the assumption that K is finite above is
unnecessary, but I do not know an argument for an arbitrary perfect field K.

3. Elements forced into the tight closure

In this section we record some useful observations about the tight closure
of homogeneous, m primary ideals. Let I be an m primary ideal of a graded
algebra (Rm). Assume that I is generated by forms all of degree 4. Of
course, since I* is also m primary, every element of sufficiently high degree in
R will be in I*. For computational purposes, it is useful to know explicitely
what “sufficiently high” is. In this section we derive bounds on this degree.

The method is to use the Briancon-Skoda theorem. The Briancon-Skoda

theorem asserts that the integral closure of the n'* power of an n-generated
ideal I is contained in I*; see [HH1]. It is quite elementary to prove directly
from the definitions.

This method produces even stronger results. Namely, we produce
elements in the plus closure of I, not just the tight closure. Given any domain
R, the ring R™ denotes the integral closure of R in an algebraic closure of its
fraction field. If R happens to be graded, we may consider a homogeneous

version: the subring R*” of Rt consisting of all those elements which can be
considered homogeneous of integral order in the sense that they satisfy an
integral polynomial of the form UM +nU""! + U2+ «-« + 7y, where 7; is
homogeneous of degree id, for some non-negative integer d. It is easy to see
that IRY N RCI* (resp. I" N RCI* in the graded case) for all ideals, but it
has been a long standard open question whether or not the converse is true.
This is known to be the case for ideals generated by part of a system of
parameters (in an excellent local or graded domain) [S1], [S2]. All of the
elements we produce in the tight closures of ideals in this section are actually,
as we show, in the plus closure, further evidence (though far from a proof)

that I*=IR™" N R for all ideals.

3.1. Proposition. Let ICR be an m-primary ideal genervated by forms
of degree less than or equal to 0 in the graded algebra R of dimension d. Then
any element z of degree greater than or equal to d O is in the ideal I'*. If R is a
domain, and Ry =K is infinite, then zEIR™ N R. If R is not a domain, but is
equidimensional, then this holds modulo every minimal prime of R.

Proof. Suppose that I is generated by the forms g,uz, - tr, each of
degree at most 0. Let S be the graded subring K [y pto, st ©R. Since I is
m-primary, the extension S—R is integral. Any z € R therefore satisfies a
homogeneous equation of integral dependence:
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(311) ZN+(112N_1+a22N—2+“'+aN_1Z+dN

over S. Since the equation is homogeneous, the degree of a; is equal to
i X degz, so that dega;=1d0. Since a; is a polynomial in the g; this implies
that

a; € (#1,"'.#k) "
It follows that Equation 3.1.1 forces

zZE (,Ul.'“,/lk) 4

the integral closure of the d" power of the ideal I. By the Briancon-Skoda
theorem (Theorem 5.1 of [HH1]), we conclude that zE€I*.

Asume that R is a domain. The assumption that K = R, is infinite
guarantees that I has a reduction generated by a homogeneous system of
parameters, x1,*** x4, for R. (The assumption that K is infinite is unnecessary
if this is otherwise known to be the case.) Thus

= (ﬂl,"',#k)d: (-rl,"',-l'd)d

which puts z€ (xy,"-xa)*. By [S2], 2€ (x1,xs) R*" NR.

If R is equidimensional, the xj, **- s will be a system of parameters
module every minimal prime, so that the result holds modulo each minimal
prime as claimed.

The next Lemma gives a better result when R is generated by a system of
parameters. This result will be used to prove the same bound even when the
ideal is not generated by a system of parameters.

3.2. Lemma. Let xi,***,.xq be a homogeneous system of parameters for
the graded ring R and assume that R is equidimensional. If degz=> 2 ¢-idegx;,
then 2€ (x1,*xa) *.  Consequently, z€ (xy,*** xa) S NR, where S is some graded
ntegral extension domain of % where P is any minimal prime of R.

Proof. We prove the final statement first: if 2 € (x1,*** xa) ¥, why is
z€ (x1,'xa) SNR? The reason is that z will be in the tight closure of the
ideal (r1,***.x4) %, for every minimal prime of R, and the image ideal is still
generated by a system of parameters. We then use [S3], to conclude that
2€ (x1, xa) R¥ NR, so that z € (xy, " .x4) SN R, where S is some graded
integral extension domain of . Therefore, the proof of the proposition is
complete, once we have shown that z€ (x,, **.xq) *.

If the x; all have the same degree, this is just a special case of the
previous theorem. We reduce to this case.

Let t; be the degree of x; and let t=[]%,t;, Consider the product

Loy £ £y

w=xft xf ex} oz
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and the ideal
Ly 4 o
I= (xfl l’xéz l,...xérl I)R

The ideal I is generated by elements all of degree t and the element w has
degree

d d
dega+ Y t:(t/t,—1) =degz+ ). (1=,

i=1 i=1

Since degz= 2%, (t;), we see that degw>td, and therefore w € I*. We then
use the “colon-capturing” properties of tight closure to conclude that
2€ (xy,*xqa)*. (See [HHI1, Thorem 1.15a] for the basic theorem on colon-
capturing.)

3.2.1. Remark. An alternative (but less elementary) proof of
Lemma 3.2 has become part of the “folklore” of tight closure and uses the
machinery local cohomology and the notion of tight closure for modules. The
tight closure of the zero module in the local cohomology module Hy (R) of an
equidimensional excellent local ring (Rm) of dimension d is well-understood:
according to [SI, 2.5], it is precisely the largest proper submodule of H% (R)
which is stable under the natural action of Frobenius on H¢% (R). In the
graded case, the Frobenius action on H% (R) multiplies degrees by p, so that
the non-negatively graded part of the local Hy (R) is stable under the
Frobenius action, and hence contained in the tight closure of zero. That is,
(H% (R)]20C 0 . By using the Koszul complex on a system of parameters
x1, x4 to represent elements of Hé (R), elements of 0 may be represented
by inclusions of elements z € (x,-** ax4) *. The fact that [HE (R)]>0C 0%
translates into the statement of Lemma 3.2. This is carefully explained in
Section 2 of [S1].

There are two advantages to using the Briancon-Skoda theorem to prove
Lemma 3.2. The obvious one is that it avoids the introduction of the technical
tools of local cohomology, tight closure of modules in an overmodule, and the
re-interpretation of properties of local cohomology in terms of properties of
parameter ideals. But more importantly, in addition to its simplicity, this
argument immediately generalizes to arbitrary m-primary ideals, as the next
result shows.

3.3. Proposition. Let R be a graded ring and suppose that I is any
m-primary ideal of R generated by the homogeneous elements py, 2, M. Let z be
any form of degree greater than or equal to 22%_; degu;. Then zE€I*. In fact, if
R is a domain, then zE IR N R, where R*°" denotes the graded integral closure of
R in an algebraic closure of its fraction field.

Proof. In light of the remarks following Definition 1.1, we may assume
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that R is a domain. v

Let S be the graded subalgebra of R generated over K by pi,u2, " t.
Since the ideal I is m-primary, R is integral over S, so that z satisfies a
homogeneous equation of integral dependence of the form

Nt aV Va2 Fayoiztay=0

where each a; is a polynomial in the g;'s of degree j X degz.
Let Uy,Us,+*,Uy, Z be indeterminates and define the quotient ring

T= K[UpUp " UsZ]
ZN+AZN T+ Ay

where A; is the same polynomial in the U,'s that a; is in the g;'s. Note that T
is a graded Cohen-Macaulay K-algebra, with the degree of U; defined to be
the same as the degree of y;, and the degree of Z defined to be equal to the
degree of z. The elements U, Us, Uy clearly form a s.o.p. for T, whence it
follows from the previous corollary that

VAS (Ul,Uz,"',Uk)* in T.

Because T is equidimensional, the images of the elements U, Up,*:* Uy are a
system of parameters in the quotient Tof T by any of its minimal primes.
Identifying elements of 7 with their images in T, we thus have that
7€ (UyUs -, U)* in T. 1f we denote by T’* the graded integral closure of
T in an algebraic closure of its fraction field, we recall that

(U, Ug, = Uy) T*= (ULUs,+,Uy) TH AT

(This is the main theorem of [S3]; the non-graded version is Theorem 5.1 of
[s2]).
We have an obvious map of T to R sending Z to z and U; to ;. Since R

is a domain, the map passes to a well defined map of T to R. The map T—R
extends to a map T*”—R**". Therefore the inclusion Z€ (UyUs,-+~Ux) TH"N

T maps to an inclusion
2€ (U tta o) R NR.
Since JRY N RCJ* for all ideals J of an arbitrary domain R, we conclude that

2€ (uipz, - p)® in R

This completes the proof.

4. Applications

The result of preceding two sections have been useful to the author in
computing tight closure of homogeneous ideals, or for simply understanding
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better the structure of a graded ring. The results in this paper are not an
algorithm for computing tight closure! However, because they give partial
information about the tight closure of ideals in graded rings and bound the
degree of elements that must be checked, in practice they are helpful.
Because tight closure can be useful for determining whether a particular ring
has rational singularities or is Cohen-Macaulay, these results may also be
used as a tool for these purposes.

Example: Two Dimensional Rings. Let R be any standard normal
ring of dimension 2 over a perfect field. Suppose that x,y is a linear system
of parameters (i.e. of degree 1). Then

(xy)*=(y) +@Ri,
the ideal generated by all forms of degree 2 and the original elements x and y.
Indeed, from Proposition 3.3, one sees that all homogeneous elements of degree
two or more are in (x,y)* whereas no element of degree one not already in
(x,y) can be in (x,y)* by Theorem 2.2.

From this example, we gain insight into the structure of two dimensional
graded F-rational rings. In particular, we see that the ideal (x,y) is tightly
closed if and only if R, € (x,y) R. In this case, the multiplicity of the ideal
(xy) is 6 — 1, and the Hilbert Function of R is H (n): = lengthg (R,) =
n(0—1) +1, where 6 =lengthg (R,) is the embedding dimension of R. In this
case the Hilbert function agrees with its Hilbert polynomial right from n =0,
This example may be interpreted as a tight closure analogue of M. Artin’s
results for rational singularities; see Theorem 4 of [Ar]. The reason for this
similarity is illuminated by Corollaries 4.3 and 4.4 below.

Even in higher dimensions, one obtains similar (but not complete)
information for standard graded rings that are F-rational. For example, in
dimension 3, we would see that R; € (x,y.2) R;, where x,y,z is a system of
parameters all of-degree one. We see again that the Hilbert function agrees
with its polynomial right from the start, so it is completely determined by its
values at n=1 and 2.

We now apply the results of the previous two sections to the study of
F-rational and pseudorational rings. Recall that a ring is F-rational if all
parameter ideals are tightly closed. For a local (or graded) domain, this is
equivalent to the property that some ideal generated by a (homogeneous)
system of parameters is tightly closed. Pseudorationality is a characteristic-
free analog of rational singularities. For the formal definition, see [LT].

Recall that the a-invariant [GW] of a graded ring (Rm) is the integer

a (R) =max, ez { [HI™R(R)],#0}.

4.1. Theorem. Let R be graded Cohen-Macaulay domain over a field K
such that the fraction field of R is a vegular extension of K, and assume that R has
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a system of parameters consisting of one-forms (at least after possibly extending the
ground field K). If the a-invariant a (R) <1 —d where is the dimension of R,
then R is F-rational.

4.1.1. Remark. The assumption that R has a system of parameters
of degree one  after extending the ground field is always satisfied for any
standard graded domain. The assumption that the fraction field of R is a
regular extension of K is equivalent to the assumption that R remains a
domain after any extension of the ground field K, and is therefore trivially
satisfied when K is algebraically closed. See 2.4.1.

Proof. Let x1,** x4 be a system of parameters (s.op.) of one-forms. (If
necessary, we make the faithfully flat base change RCL&@xR extending K to a
field extension L; all hypothesis, as well as the presumed failure of the
conclusion, are preserved). We need only check that the ideal generated by
Iy, *** x4 is tightly closed. Suppose that z is a homogeneous element in
(x1,+*xa) * but not in (z1,-**,x4) R. Recall that H% (R) is isomorphic to the
direct limit mﬁ where the maps are given by multiplication by the

products of the x;'s. When R is Cohen-Macaulay, these maps are injective,

and the element n=[z+ (x1,**.xs)] €EH% (R) is non-zero. Thus 1 necessarily
has degree less than or equal to 1 —d, which forces the degree of z to be less
than or equal to 1. Theorem 2.2 then implies that z €& (x1,°+*,xa) * unless it is
already in (x1,"**xa)R.

Theorem 4.1 has an amusing consequence.

4.2. Corollary. A graded Cohen-Macaulay domain R over an
algebraically closed field which admits a system of parameters of degree one is
normal if a (R) <1—d.

Proof. F-rational rings are normal.

4.3. Corollary. Let R be a graded Cohen-Macaulay domain over a field
K such that the fraction field of R is a regular extension of K, and assume that R
has a system of parameters of degrce ome (at least after possibly extending the
fround field). Then
(1) Ifa(R) <1—d, where d is the dimension of R, then R is pseudorational.
(2) Ifa(R) <1—d and the ground field is of chavacteristic zevo, then R has
rational singularities.

Proof. This is an immediate consequence of Theorem 4.1 above and
the main theorems of [S1], that locally excellent F-rational rings are
pseudorational (in char p) and that F-rational type algebras have rational
singularities (in characteristic zero).

4.3.1. Remark. If R is actually generated by its elements of degree
one, then the assumption that a (R) £1—d is well understood. Indeed, in this
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case, a (R) is at least —d, and it is exactly —d if and only if R is a polynomial
ring. If a (R) =1 —d, then the degree of the projective scheme ProjR is
precisely n—d +1, where #n is the dimension of [R], (which is one more than
dimension of the ambient projective space). These so-called wvarieties of
minimal degree are completely classified: they consist of quadric
hypersurfaces, cones over Veronese surfaces, and rational normal scrolls [Ha,
p48]. The cones over all of these varieties are easily checked to have
rational singularities. Indeed, their coordinate rings are all either quadric
hypersurfaces (which are Gorenstein and F-rational by 4.1) or toric varieties
(which are direct summands of regular rings), so in fact, these rings have the
property that all ideals are tightly closed in all characteristics.

This corollary immediately yields the following.

4.4. Corollary. A two-dimensional graded algebva of prime
chavactervistic which admits a system of parameters of degree one is F-rational if
and only if it is pseudorational. A two dimensional graded algebra of
characteristic zero which adwmits a system of parameters of degree one is F-rational
type if and only if it has rational singulanties.

Proof. It suffices to verify the characteristic p statement. The
characteristic zero analog is explained in [S1].

F-rational implies pseudorational in general [S1], so suppose that R is a
two dimensional pseudorational ring. Pseudorationality is preserved upon
tensoring with the infinite field extension L=K(X), where X is an
indeterminate. Therefore, it suffices to show that R®xkL is F-rational, since
R—R®xL is faithfully flat. We henceforth assume that R is graded over Ry,
an infinite field.

Let x1, xz be a homogeneous s.o.p. for R of degree one. Since R is
pseudorational, it is normal and Cohen-Macaulay, with a(R) <0 [FW].
Therefore, a (R) £1—2, and R is F-rational by Corollary 4.1.

The equivalence of pseudorationality and F-rationality has been studied
both by Fedder and by Watanabe. In particular, Fedder proves that two
dimensional graded rings with rational singularities are F-rational (in
characteristic zero) using different methods.

DEPARTMENT OF MATHEMATICS,
MASSACHUSETTS INSTITUTE OF TECHNOLOGY,
CAMBRIDGE, MA 02139, US.A.
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