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Introduction. There are several ways to obtain finite dimensional
irreducible representations of the general linear group GL(, C), or
equivalently of its Lie algebra gl(n, C). Among them the method introduced
by Schur and Weyl is classical. They considered the m-fold tensor product
V™ of the defining representation of GL (V) (V' =C"), and the action of the
permutation group &, on it. These actions are commutative each other, and
V®™ decomposes multiplicity freely as a GL (V) X &,-module:

Vem=73pp®ap,
D

where D runs over Young diagrams of size m with depth at most n,and
op (resp. op) is an irreducible representation of GL (n) (resp. &,). Further-
more, through the decomposition, pp determines gp and vice versa (e.g., see
[1]). If m varies in the set of non-negative integers, each irreducible
representation of GL (n, C) appears in this decomposition up to multiplication
by a suitable power of the determinant character.

The Cartan-type Lie algebras are Z-graded, simple, infinite-dimensional
Lie algebras, whose properties and representations have been discussed
extensively. LA.Kostrikin ([6]) proved that all the finite type graded
representations are either representations of height 1 (in the sense of A. N.
Rudakov [11]) or their conjugate except the algebra W(1). In the case of
W (1), Kostrikin gave models of all the irreducible graded modules of finite
type with one-dimensional homogeneous components. On the other hand, K.
Nishiyama ([8]) considered Schur-Weyl duality for the natural representa-
tion of Cartan-type Lie algebra W(n). In particular, he suggested to use End
[m] insted of &,,, which is a semigroup consisted of all the mappings from a
finite set [m] ={1, 2, -+, m} into itself.

For Cartan-type Lie superalgebras, which is a “superanalogue” of
Cartan-type Lie algebras, we also want to have an analogue of the
Schur-Weyl duality. As a first step, we consider one of Cartan-type Lie
superalgebras: Lie superalgebra of all the superderivations on the Grassmann
algebra A(n), which is denoted by W) (see, eg. [4]). In [9] and [10],
using the semigroup End [m], the author and Nishiyama have determined the

Received November 30, 1996. Revised May 6, 1997



554 Haiquan Wang

commutant algebra of W(n) in the m-fold tensor product of the natural
representation under the condition m <n. .

Let us explain it more precisely. Let ¢ be the natural representation of
W) on A(n) and ¢ be a representation of End[m] on ®”A(n) (the defini-
tion is given in Section 1). If m<n, then the commutant algebra of
¢ (Wn)) in End (®™A(n)) is the algebra generated by ¢ (End [m]) in
End (®”A®)) ([10]). Moreover, if n=1 or (m, m)=1(2, 3), the same
conclusion also holds (see[9]).

Along the idea of Schur and Weyl, we want to decompose the space
®”A(n) as W(n) XEnd[m] -module. However, in our case, the representa-
tion of W) on ®™A(n) is not semisimple, and it seems difficult to
decompose it. Therefore we are forced to consider the quotient representa-
tions. Nishiyama suggests the following conjectures:

Conjecture 1. Let p®c be a finite dimensional irreducible
representation of W(n) XEnd[m]. Then we have

dim Homwo) xendim (®"A (), 0®0) <1.

Conjecture 2. Put Rww (U, p) : = {0€ W) " |Homwm (U, p) #0} and
Renaim (U) : = {0 €End [m] " |Homenaim (U, 0) #0}. Then for any p € Rwm
(®™A(n)), there is one and only one € Rengim (®™A (1)) such that

dim Homwm xenatm (®"A (), o ®a) #0.
Therefore, the following mapping is a bijection:
W) " 2Rwm (®"A(n)) 20 —— € Renatm (®™A (1)) SEnd [m] ",

where W(n)” (resp. End[m]”) is the set of all the irreducible modules of
W) (resp. End[m]).

For general integer n, we could not prove the above conjectures, but in
the simplest case n=1, we have affirmative results (Theorems 3.1, 3.2 and
3.3). These are main results of this article.

Let us describe the contents of each section briefly. In the first section,
we give the basic notations and preliminary results. In the second section,
we give the decomposition of ®”A(1) as W(1) X&,-module (Proposition
2.3). In the third section, we give the decomposition of ®”A(1) as W(1) X
&m-module (Theorem 3.1); and the decomposition of ®”A(1) as gl(1) X End [m]
-module (Theorem 3.2). In Theorem 3.3 we give affirmative answers to
Conjectures 1 and 2 in the case of n=1. In the last section, we give models of
some indecomposable modules of W(1).

Acknowledgment. The author expresses sincere thanks to Professors
T. Hirai and K. Nishiyama. They introduced him into this field, and in the
past three years, gave many instructions and encouragements. For this
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article, they have given many suggestions.

1. Notations and Preliminaries

1.1 Symmetric group S,.. In this article, we denote by D a Young
diagram, by (A1, Aa =*+ A4) its associated partition and by B (D) or by B one
of Young tableaux of shape D. We denote by &, the symmetric group of
degree m. For a Young tableau B of size m, we put

Pg: ={gE€&,, : g preserves each row of B},
Qs: ={gEG,, : g preserves each column of B},

ag: = 2. ¢; bp: = 2. sgnl(g)g.
gepPp 2€QB
The Young symmetrizer cg of B is defined by cp: =agbp. Denote the group
ring of ©,, by R: =C&,,. It is well-known that Rz: =R - cp is an irreducible
&,,-module, Further, Rz = Rp- as S,-modules if and only if Young diagrams
of B and B’ coincide. We denote this ©,-module by gp.

A Young tableau B is called standard if the numbers in each row of B are
increasing from left to right and the ones in each column are increasing from
top to bottom. For example, for Young diagram D = (3, 2), we list all the
standard tableaux of shape D below.

11213 |1]2|4] |1]|2]5 1134 1135
415 3|5 314 215 2|4

Denote the set of all Young tableaux of shape D by # (D) and the set of all
standard Young tableaux by $°(D).

Lemma 1.1. (1) The number of standard tableaux of shape D is equal to
the dimension of the irreducible representation 0p of S, corresponding to D.

(2) If B and B’ are two different standard tableaux of shape D, then agbp =
bBra3=chBr=0. \

(3) Let B (D) =1{By, By, ***, B,} be the set of all the standard tableaux of
shape D, and put a (D) : =2 peawRep; then a(D) =Rcp, ® - ®Rep,.

For proof of the above lemma, see [2], [3], -+, for example.

1.2. Cartan-type Lie superalgebra W (1) and its natural represen-
tation. Let A(n) be a Grassmann algebra over C in n variables {&, &, -,
&,}, and A* be the subspace of k-homogeneous elements of A (n). Let W (n)
be the set of all the superderivations of A (n). It becomes naturally a Lie
superalgebra. Every superderivation D € W (n) can be written in the form
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D=27_,P;0/0&; with P;€A(n) (1<i<n), where 0/0¢; is a superderivation of
degree 1 defined by (0/0&;)&;=40,;. By definition, the Lie superalgebra W (n)
acts on Grassmann algebra A (n) as follows: for any homogeneous D E€ W (n)
and V& A A&y,

r

D (&A= NEy) = 2 (1) 57098PE A --- AD (i) A+ A&,

We call it the natural representation of W (n), and denote it by (¢, A(n)) or
simply by ¢.

Let us consider the m-fold tensor product ®”A (n) of (¢, A (n)). We
have a natural isomorphism as W (n) -modules:

®"An) =A[E;1<i<n, 1<j<m]=: A, m),

where A[£;]1<i<n, 1<j<m] is a Grassmann algebra generated by {&;(1<
i<n, 1<;<m)}. In the following, we identify ®”A (n) with A (n, m). By
means of tensor product, W(n) is imbedded into End(®"A(®)) =
End(A(n, m)). More precisely, an element

p=5p(6 . &) e W)

corresponds to a superderivation

¢<>§

|| M§

(Sla, ot Sna)%EDer/l (n, ‘WL)

via the m-fold tensor product ¢®™ of ¢.
In particular, in the case of =1, we have

(1) = <a% €%> , deg(%) =1, deg(E %) =0.

For convenience, we use the isomorphism A (1, m) = A[&), &, -, Em]. Then
we have

D =p(3e) =2 37 pe=em(sgg)=L ez

i=1 4

Obviously, D_; (A*) S A¥"! Do (A*) S A* for any k.

Denote by [m] the set {1, 2, --, m} of integers, and put End [m] = {¢:
[m]— [m]} the set of all the maps from [m] into itself. By composition of
maps, End [m] becomes a semigroup with unit, whose group elements form the
permutation group S, of degree m. We call End [m] the permutation
semigroup. Denote its semigroup ring by €,. An element ¢ € End [m] acts
on An, m) as (@P) (&i;) =P (&ipi) PEAM, m)) and we extend it to €, by
linearity (see [10]). Thus, we have a representation of €, on A (n, m).
Denote the image algebra of this representtion by §,CEnd A (n, m).
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Let €, denote the commutant algebra of ¢®”(W()) in End A(n, m).
We have the following fundamental results.

Theorem 1.2. ([9], [10]). Assume m <n, or n=1, or (n, m) = (2, 3).
The commutant algebra EGm of ™ (W (n)) coincides with the representation image
8m of the semigroup ring €, of the permutation semigroup End [m]:

gm == gm-

Theorem 1.3. ([10]). The bicommutant algebra of the m-fold tensor
product (™ of the natural representation ¢ of W(1) is equal to the image
G (U(W(1))) of the universal enveloping algebra U(W (1)).

1.3. Composition series. Let R be an arbitrary ring with unit and
V an R-module. A descending chain

V=V1DV;DDVDVis1= (0)

of submodules of V is called a composition series of V if all the quotient
modules Vi/Vis are irreducible. These quotient modules V;/Vi41 are called
the composition factors. Two composition series are said to be equivalent if
they have the same length and if the factors can be paired off in such a way
that the corresponding factors are R-isomorphic.

Lemma 1.4. (Jordan-Hélder). If an R-module V possesses a composition
series, any two compostition series of V are equivalent.

An R-module V # {0} is said to be indecomposable if it is impossible to
express V as a direct sum of two non-trival submodules.

2. The Decomposition of A(m) as W (1) X &,-module

In this section, we give the decomposition of A(m) as W (1) X &,,-module
explicitly. The decomposition of A(m) according to the action of &, is well-
known (e.g., see [5, p. 55]). However, we give the explicit structure of the
decomposition here because it is used in the subsequent sections. Let us
begin with the determination of the subspace cgA (m).

Lemma 2.1. Let 2= (A1, Az, =, Ax) be a partition of m corresponding to a
Young diagram D.

(1) If D is not of hook type, then we have cgA(m) =0 for BEB(D).

(2) Let D be a hook type diagram and A = (A, 1, ==+, 1). We have
cgA¥(m) #0 (BEB(D)) if and only if k=py or k=p1—1, where 1+, =m+1.

(3)  Under the same assumption as in (2), we have



558 Haiquan Wang

cs/A (m) =cpA*  (m) ®cpA*~ (m) (BEB(D)).

The both subspaces ave of one-dimension. Moreover, we have an explicit
description of each subspace as follows:

csA*1 (m) =Cagp (&an N+ A Sb(ul,l)), cgA1'=Cag(D_y (&an A A Sb(ul,l))

where b(i,j) denotes the number in the (i,j) -box in the Young tableau
BEXB (D).

Proof. Take BE® (D) and put
a;i:= 2 g bj:= Z sgnlg)yg

9E Py 9€Qs;

where

Psi: =1{glgEGn, g preserves the i-th row and fixes the other letters},
QRsj: = {g|g€ ©m, g preserves the j-th column and fixes the other letters}.

Then we can write down ap and bp as follows:
A= aiak-1"""a2a1, bp=bsbs_1"*"baby,

where s is the number of the column of the diagram D.

Note that, for any ¢ €EQp and £E€ A (m), we have czp (5). Therefore, in
order to calculate cgA (m), we only need to consider cp (5) for the following
type of & with appropriate integers hi, ha, ***, hs after translation by a certain
PEQRE:

H= (51;(1.1) AN /\fbthl,l) A (Eb(l,Z)/\ A (Eom,z) VAR

Let us consider (1). Since D is not of hook type, A22=>2. Let p= (u1, o,
-+« us) be the transposition of A (see. e.g, [7], § 1). Note that u,>2. If
hi<pi—2 for some i, then it is easy to see that b; (Z) =0, hence ¢5(&) =0. So
we assume that g#;2h;=p¢; —2. In particular, we assume that ho=p, —221.
We consider the expansion of bg(Z). For any term of this expansion (e.g., &,
A+ ANE;,), if there are two subscripts (e.g., ju j») from the same row, then
the result of the operator ap acting on this term is zero. Hence we only
consider the terms which do not have two subscripts from the same row.
Therefore we can assume that h3=hs=++-=0, hence ¢#3<1.

If h=2, then hi+h,=2py—1+2=g,+1. This means that, in each term,
there are at least two subscripts from the same row, and so cp (5) = 0.
Therefore we can assume p2—1<h,<2, which means ¢2<3. Combining with
the assumpion A2=2, we need only to consider the situation g#2=2 and h.=1.

(a) If hi =, then in each term in the expansion of bg (&an A -+ A
Evinn N Eba,p, there are at least two subscripts from the same row, hence
CB (E) =0.

(b) If =g —1, then b1 (Eav A A&w-10 A&a2) =Dt (San A A
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&) A &ba2), hence cg (B) =apbp (5) =D-_1apbz (Esa,n A A& AN &) .
By the same reason as in (a), we have ¢z (&) =0.

For (2) and (3), we can do the similar calculation and easily get the
desired results.

Next we consider the &,,-module strucure.

Lemma 2.2. Let A= (A, 1--, 1) be a partition of m and D the corres-
ponding Young diagram of hook-type. The subspace

> oA m)  (tm=m+1)
r=1

is irreducible under S, where B (D) = {B,, By**, Bs} are the set of all the
standard Young tableaux of shape D.

Proof. We use the notations in Lemma 2.1. By Lemma 2.1, we have

cpA* (m) =Cap (Esa,n A+ Asinn) .

Since cgep, = const * 05 cp, (const #0), {cp, (Epan A+ Apgn) i =1, 2, -+, s}
are linearly independent. Put

%Dl = <CBa(§b¢(l,l)/\"°/\Sbi(ul,l)li=1, 2, oty S>.

Then {CBi (fbf(l,l)/\"'/\be(m,l)) |i=1, 2, tte, S} is a basis of %D'
From 2.5_,Rcp, = 25-1c3R, we know that #p is an invariant space of S,,.

We prove the space #p is irreducible under &,,. Take an element x = 2. kic5,
(s A" NEpiny) EHp.  If ky#0, then

CBh (x) =CBy (Z_:kicm (50;(1,1) VARELIAN 6bl(a1,l)) =kuCBs (Ebn(l,l) VARIENAN (sbh(ul,l)) *0.
1

Clearly cg, (&g Aeeee &) generates #p as an S,-module, and we have
done.

Using the above lemma, we can decompose A(m) as a W(1) X &,,-module.

Proposition 2.3. Let W(1) and S, act on A(m) naturally. We have the
followng decomposition of A(m):
Am)=D D cpAlm),

D BE® (D)

where D runs over the Young diagrams of hook type corresponding to the partition
(b, 1,5+, 1) = (k, 1™ %) (=1, 2, -+ m) and B° (D) is the set of all the standard
tableaus of shape D.

For any Young tableau B, cg/A(m) is an indecomposable module of W (1) with
composition series
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cgA(m) 2cpA" % (m) 2{0}; dimcpA(m) =2, dimcgA™ *(m)=1.

For any D, the sum 2fespcgA™ 1 (m) is an irreducile module of S, of type D.

Furthermore, D_,(Zfes ) cpA™ ¥ (m)) = Zfesw) cagA™ *(m) is also an
irreducible module of the same type D.

Proof. Let D be a Young diagram of hook type with partition (k, 1, -*-, 1).
By the above lemmas, for any BEB(D), we have

cg/\ (m) =caA" ¥ (m) ®cpA™ " (m).

Let V1(B) : =cgA(m) and V,(B) : =cgA” *(m). By a simple calculation we
have D_1 (V1) = V,, and D_,(V,) =0 because D*_; = 0. Clearly, Do(V;) S
Vi(i=1, 2), so V; and V, are invariant spaces of W(1). From the proof of
Lemma 2.2, we can deduce that dim (V5 (B)) =1, therefore V, is an irreducible
module of W(1). On the other hand, dim ker D_;|n@ =dim V,(B) =1, we
have V;(B) is an indecomposable module of W(1). Again from the proof of
Lemma 2.2, dim (V1(B) /V,(B)) =1, hence {0} € V,(B) € V,(B) is a composi-
tion series of W(1).
The rest of the proof is clear from Lemmas 2.1 and 2.2.

3. The duality between W (1) and End [m]

Along the idea of Schur and Weyl, we want to obtain the decomposition of
®”A(n) as a W(n) X End [m] -module. Because the represerntation of W (n)
on ®”A(n) is not semisimple, it seems difficult to do it. However, for the
case n = 1, thanks to Proposition 2.3, we can obtain the decompositions of
®”A(1) as a W(1) X S,,-module, and as a Wy (1) X End [m] =gi(1) X End [m]
-module. Using these two decompositions we can get the further result which
is similar to the classical duality between GL(n, C) and &,. To be more
precise, for any p ®€ W(1)” ®End [m]”, where W(1) " (resp. End[m]")
is the set of equivalence classes of irreducible finite dimensional
representations of W (1) (resp. End[m]), we have

dim Homwa)xenatm (A(m), p®0) <1.
If the equality holds,
dim Homwa) xgndim (A(m), 0 ®0a) =1,

then p € W (1) uniquely determines ¢ € End [m]” satisfying the above
equality. Based on these explicit calculations and results, Conjectures 1 and
2 are suggested by Nishiyama for general n and m.

Let us begin to state the main results of this paper.

Let D be a Young diagram corresponding to the partition (;, Az, ***, Am)
and B be one of the Young tableaux of shpae D. Put V,(B) =V,(B) =0 if D
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is not of hook type. If D is one of the hook type diagrams corresponding to
the partition (A, 1, ==+, 1), then V; (B) = cpA*! (m) (B € BS (D)) and
dim cpA* (m) =dim cpA**(m) =1. Using these facts, we have

Theorem 3.1. (1) As W(1) —modules, we have isomorphisms:

V1(B) ZHome, (0p, A(m)), V,(B) =Home, (ap, A*™*(m)),

where B is a Young tableaux of shape D with partition (A1, Az, ***, Am) and Op is
the irreducible representation of S, with diagram D.

(2) Let Ppmi=Home, (OpmeA(m)). As a W (1) —module, Dpm, is an
indecomposable module and has a composition series:

5Dm,k§ Vl (B) =2 Vz (B) D {0},

where Dy denotes the hook type Young diagram with partition (m —k+1, 1,
o+, 1) and BEB (Dm.x). Furthermore, the composition factors are 1-dimensional
modules.

(3) The W(1) X&,,-module A(m) has the following decomposition:

m
A (m) = @ ﬁl)m,k ®0Dm,k‘
k=1

Proof. We want to prove (1). As a realization of op, we take Rcp (B E
B(D)). 1f D is not of hook type, then the both hands side are zero.
Therefore we can assume that D =D, ,. We define W (1) -equivariant map
G:Home, (Rep, Am))—V,(B) by G(f) =f(cp) (VfEHome, (Rcp, A(m)). It is
clear that G is an injection. Take a non-zero element x; EcpA (m) and define
fi€Home, (Rep, Am)) by fi(@es) =@+ x1(V @ ER). By definition, we have
G (fy) =xi, hence G is surjective. This proves the first isomorphism in (1).
For the second isomorphism in (1), it is enough to note the following facts:

D_iHomg, (gp, A*"*(m)) =0, D_, (V>(B)) =0.

Combining Proposition 2.3 and (1), we can easily complete the proof of (2)
and (3).

The commutant algebra of W (1) in the representation A (m) = ®”A(1) is
&m, which is the representation image of the semigroup ring of End[m].
Following the idea of the classical situation, we want to get the decomposition
of A(m) as a module of W(1) X §,. As an intermediate step, we describe the
decomposition of A(m) as a module of W(1) X End[m] = gi(1) X End [m]
-module.

Put Uy (k) : =A*(m), and Uz (k):=Ker (D-1|axom) (0<k<m). Then U, (k)
is an indecomposable End [m] -module which we denote by omi. We denote
the irreducible representation of gl(1) with weight k by o«.
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Theorem 3.2. We use the same notations as. in Theorem 3.1. As a
gl (1) X End [m] -module, we have the decomposition:

A(m) =D 0 ® s,
k=0

If 1<k<m—1, ux has a composition series Uy (k) 2U, (k) D{0}. For k=0, m,
Omx 1S trreducible,

Proof. Assume that 1 <k <m. Because D-; and End[m] commutes with
each other, Uz (k) =ker (D_1|axom) is an invariant subspace of End[m]. By
the relation ker (D_; |a) = Im(D_; |a+1) and Proposition 2.3, U,(k) is
irreducible under &,,, hence it is irreducible under End [m]. They only thing
to proved is that U, (k) /U, (k) is irreducible under End[m]. By the definition
of Ui(k) and Ux(k), Ui(k) /U2(k) is linearly isomorphic to U.(k — 1) by
operator D_; (see [10], Lemma 3.1), furthermore, it is an intertwining
operator between End [m] -module U, (k) /U,(k) and End[m] -module Us(k—1).
Using the irreducibility of End [m] -module Uz (k—1), we complete the proof of
the theorem.

We denote the irreducible representation of End[m] on A* (m) /U; (k) by
Opmi(k=1) and the irreducible representation of W(1) on Vi(B(Dm «))/
V2(B(Dmi)) by 0oy (R=1).

Then we have the following duality.
Theorem 3.3. (1) Forany p®0<€ W (1) XEnd[m]”, we have
dim Homw) xengim (A (m), p®0) <1.

The equality holds if and only if 0 ® 0= Ppmy ® Opmy for some 1 <k<m.
(2) Put

Rwa (/1 (m)) L= {pE W(l) A|H0mW(1) (A (m), .0) * (O)},
Renatm (A (m)) : ={o€End [m] " |Homgnawm (A (m), ) # (0)}.

For any 0€Rwa) (A(m) ), there is one and only one 0€ Renaim (A (m)) such that
dim Homw xendatmi (A (m), p®0) =1.
Therefore, the following mapping is a bijection:
W) " 2Rwa) (A(m)) 20 < 0€ Renaim (A(m)) SEnd [m] .
Furthermore, this correspondence is explicitly vealized by Ppms < ODpms-

Proof. We keep to the notation in § 3. From Propoisition 2.3, we have

Alm) =200 (#py, ® Uz (k)) (for the definition of #p,,, (k=1), see the proof of
Lemma 2.2 and we set #p,,,={0}). Note that D_, (#p,,..) =U: (k).
Assume that dim Homw)xgnam (Am), p ® 6) #0. We take a non-zero
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element f € Howwaxenaim) (A(m), 0 ® 0). As Wo(1) = gl(1) -module, A(m)
decomposed into the direct sum of one-dimensional irreducible representations
of weight #(0 <k <m). Note that p € W(1)" is one-dimensional and
completely determined by the weight of Wo(1). Since A(m) /ker f[Zp @ o=
(dim 0) p as a W(1) -module, 0 must be an irreducible module of W(1) with
highest weight #(0<k<m). As a consequence, there exists a unique k such
that f(A*(m)) #(0). We put k=k(p).

Assume that 1 <k(p) <m—1. Since f is W(1) X End [m] -equivariant,
ker f is invariant under the action of W(1) XEnd[m]. Hence we have

Us(k(0)) =D_1 (#p,.. ) CD_1 (A¥@*+1) Ckerf.

On the other hand, by Lemma 2.2, #,,,  is an irreducible module of &,,
therefore, ker fN#,, .., ={0}. Summarizing above, we know that for any f€
Homw() xgnaim (A (m), o ®o0),

ker f= 2 (A*(m) ®D_,(#),,,.)),

k*k(p)

hence,
dim Homw)xgnatm (A(m), 0®0) =1.

If k(o) =0, then by the same argument as above, we can conclude A°=
U;(0) Cker f. This means f=0 and we get a contradiction.

Finally, assume k (0) =m. Since 275'A' (m) is invariant under W (1) X

End [m], A" = A (m) /273 A" (m) is irreducible under W (1) X End [m].
Therefore f is uniquely determined up to constant multiplication.

Note taht A (m) /ker f= U, (k(0) —1) as End [m] -module. This proves
that 0 ® 0= 0p,. ®0Opn,.. (2) is obvious from the above arguments.

We call the correspondence in (2) Howe's correspondence for W (1) X End [m].

Appendix: Indecomposable Representations of W (1)

In this appendix, for the sake of completeness, we prove that the
representations of W (1) on A (m) give a model of one principal class of
representations of W (1). Let us begin with a general representation theory
of W(1).

Take a finite-dimensional indecomposable graded representation o of
W (1) on a representation space V=V,®V,. Put T;: =1—p(Dy) and V;: =
{w|Tsv =0, IkEZs,}, the generalized eigenvector space with eigenvalue A.
Then we have the generalized eigenspace decomposition of V:

V= v,
2

Obviously, p (Do) (V) SVi.  Let us consider the action of o (D-;) on V;.
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Since we have the relation [Do, D_;] = —D_; and 2D%,=[D_;, D_;] =0, so
T:0(D_1) =0 (D_;) Ta+1 Using induction, we get o (D_;) T¥=T%_,0(D_,).

Let A be any generalized eigenvalue of o (D). Clearly #;: = ® ,ezViss
is invariant under W (1). By the finite-dimensionality of V, we can assume
that £, = V,;®V;.1® - ®V;_, with some g € Z>, Again by the finite-
dimensionality of V and the generalized eigenspace decomposition of V, we
have V=#,,® #,,--- ® #,, By the indecomposability of the representation, we
see that r=1 and conclude V=%,.

Now, we assume p (Do) is semisimple. Then Vi_s (0 <s <pu) is the
eigenspace with eigenvalue A —s. In this case, we get a W (1) -invariant
“decomposition V= (V;®D_; (V) ® (V;e;® V3@ -+-V,_,), where V;_, is any
complement space of D_; (V) in V;_;. By the indecomposability of W(1), we
conclude that V=V, ®D_,(V;). Using the similar argument, we can deduce
that

VZCUGBCD_W.

Summarizing the above results, we have the following proposition.

Proposition A. Let (p, V) be an indecomposable graded representation of
W (1), then

V=V®V,.,®- 8V,

where pt is an integer. If moreover o (Do) acts semisimply on V, then V has the
following decomposition:

V=Cp® Cﬂ (D_l) v,

where v is an eigenvector of p (Do) with eigenvalue A. If p(D_;)v=0, then V=
Cv, and so the tepresentation is irreducible. If o(D-p) v # 0, then the
representation is an indecomposable representation with composition series V=2V,2

{0}, where V;=Cpo(D_y)v.

Combining the above proposition with results in § 3, we conclude that
any indecomposable representation (o, V) of W(1) for which p(D,) is
semisimple with positive integral eigenvalue is realized in the tensor product
A(m) of the natural representation of W(1) for a certain m.

For an arbitrary integer g in the proposition, there really exists an
indecomposable W (1) -module (o, V) such that o (D,) is not semisimple and
V=V8V19 @V,

. Note that # (1) is not

20
Example. Let V =C** and n (1) = L

semisimple. An action of W (1) on V is given as follows:
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[ (1) 0 0 0 0
0 n(A—1) 0 e 0
oD =| 0 0 n(A=2 - 0 o0 |
0 0 0 n(i—,u)_
0 0 0 0 0
n(0) 0 0 0
oD-)=1]0 n(0) 0 0 |,
_0 0 0 n(0) 0

where 0 (Do) and p(D-;) are (2u+2) X (2u4+2) matrices. It is easy to check
by calculation that (p, V) is an indecomposable module of W (1) and has the
properties just stated as above.
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