On maps from BS¹ to classifying spaces of certain gauge groups II

By

Shuichi TSUKUDA

1. Introduction

The purpose of this paper is to generalize Theorem 1.2 of [5]. Let $\pi: P \to X$ be a principal SU(2) bundle over a simply connected closed 4 manifold X and \mathscr{G} its gauge group. \mathscr{G} is identified with $\Gamma(AdP)$, all continuous sections of the adjoint bundle of P, and we give the compact open topology on it. We show the following result.

Theorem 1.1 The following three conditions are equivalent.

- 1. There exists a homotopically non trivial map from BS^1 to $B\mathscr{G}$.
- 2. There exists a non trivial homomorphism from S^1 to \mathcal{G} .
- 3. The structure group of P reduces to S^1 .

Remark 1.2 In [5], we showed this result under the assumption that X is a smooth simply connected spin 4 manifold or $\mathbb{C}P^2$.

It is clear that 3 implies 2 and by the Appendix of [5], 2 implies 1. The structure group of P reduces to S^1 if and only if there exists an element $u \in H^2(X)$ such that $c_2(P) = -u^2[X]$. We will show that 1 implies $c_2(P) = -u^2[X]$. In this paper $H_*() ((H^*))$ mean the integral (co) homology.

2. Proof of Theorem 1.1

Note that principal SU(2) bundles over X are classified by their 2nd Chern classes. If $c_2(P) = k$, by [1], we have a homotopy equivalence

$$B\mathscr{G} \simeq \operatorname{Map}_{k}(X, BSU(2)),$$

where $Map_k(X, BSU(2))$ denotes the connected component of Map(X, BSU(2)) containing the map inducing P and a fibration

$$\operatorname{Map}_{k}^{*}(X, BSU(2)) \longrightarrow \operatorname{Map}_{k}(X, BSU(2)) \longrightarrow BSU(2),$$

ev

Received October 21, 1996

where $\operatorname{Map}_{k}^{*}(X, BSU(2))$ is the space of based maps.

Lemma 2.1 ([5]). Consider a map $f: BS^1 \rightarrow Map_k(X, BSU(2))$. If $ev \circ f$ is homotopically trivial, then so is f.

Let $\rho: S^1 \rightarrow SU(2)$ be a non trivial homomorphism. Denote by $Z(\rho)$ the centralizer of this homomorphism and by $Map_{\rho}(BS^1, BSU(2))$ the component which contains the map $B\rho$. Note that $Z(\rho) = S^1$. The obvious homomorphism

$$Z(\rho) \times S^1 \rightarrow SU(2)$$

induces a map

$$BZ(\rho) \times BS^1 \rightarrow BSU(2)$$
,

which has as adjoint

$$ad_{\rho}: BZ(\rho) \rightarrow Map_{\rho}(BS^{1}, BSU(2)).$$

Let X_{ρ} be the homotopy fiber of ad_{ρ} . We can compute the homotopy groups of X_{ρ} (see [3], [5] for details).

$$\pi_i(X_{\rho}) = \begin{cases} \widehat{\mathbf{Z}}/\mathbf{Z}, & i=0, 1, 2\\ 0, & otherwise, \end{cases}$$

where $\widehat{\mathbf{Z}} = \prod \mathbf{Z}_{p}$ is the product over all *p*-adic integers. Note that $\widehat{\mathbf{Z}}/\mathbf{Z}$ is a rational vector space. Let $M \xrightarrow{p} \operatorname{Map}_{\rho}(BS^{1}, BSU(2))$ be the universal covering. Since BS^{1} is simply connected, ad_{ρ} lifts to M. Let F be the homotopy fiber of the lifting $\widetilde{ad}_{\rho}: BS^{1} \longrightarrow M$ then we have

$$\pi_i(F) = \begin{cases} \widehat{\mathbf{Z}}/\mathbf{Z}, & i=1, 2\\ 0, & otherwise. \end{cases}$$

Denote by $Rep(S^1, SU(2))$ the set of conjugation classes of homomorphisms.

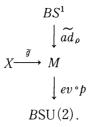
Theorem 2.2 ([3]). *The map*

$$Rep(S^1, SU(2)) \rightarrow [BS^1, BSU(2)]$$

is a bijection.

Suppose there exists a non trivial map $f: BS^1 \rightarrow \operatorname{Map}_k(X, BSU(2))$. By Lemma 2.1, $ev \circ f$ is homotopically nontrivial and by Lemma 2.2 there exists a non trivial homomorphism $\rho: S^1 \rightarrow SU(2)$ such that $ev \circ f \simeq B\rho$. Taking abjoint of f we obtain a map $g: X \rightarrow \operatorname{Map}_{\rho}(BS^1, BSU(2))$. Since X is simply connected, g lifts to M.

548



Note that $ev \circ p \circ \tilde{g}$ induces P and $ev \circ p \circ \tilde{ad}_{\rho} \simeq Bi : BS^{1} \rightarrow BSU(2)$, where $i : S^{1_{c}} \rightarrow SU(2)$ is an inclusion. $Bi^{*}c_{2} = -c_{1}^{2}$, where $c_{2} \in H^{4}(BSU(2))$ is the universal 2nd Chern class and $c_{1} \in H^{2}(BS^{1})$ is the universal 1st Chern class and $(ev \circ p \circ \tilde{g})^{*}c_{2} = c_{2}(P)$.

Proposition 2.3 \widetilde{ad}_{ρ}^* : $H^2(M) \rightarrow H^2(BS^1)$ is an isomorphism. The kernel of $\widetilde{ad}_{\rho}^*: H^4(M) \rightarrow H^4(BS^1)$ is a rational vector space.

By this proposition, we can prove Theorem 1.1 as follows. There exists an element $c \in H^2(M)$ such that $\widetilde{ad}_{\rho}^*(c) = c_1$. Then $\widetilde{ad}_{\rho}^*(c^2 + (ev \circ p)^*c_2) = 0$. Since $H^4(X) = \mathbb{Z}$, $\widetilde{g}^*(c^2 + (ev \circ p)^*c_2) = 0$. Therefore

$$c_2(P) = (ev \circ p \circ \widetilde{g}) * c_2 = -(\widetilde{g} * c)^2$$

hence the structure group of P reduces to S^1 and Theorem 1.1 is proved.

In the rest of the paper we prove Proposition 2.3. By the homotopy exact sequence for the fibration

$$F \longrightarrow BS^1 \xrightarrow{\widetilde{ad}_p} M,$$

we have the following short exact sequence

$$0 \longrightarrow \mathbf{Z} \xrightarrow{\widehat{ad}_{\ell^{**}}} \pi_2 \longrightarrow \widehat{\mathbf{Z}} / \mathbf{Z} \longrightarrow 0, \tag{1}$$

where $\pi_2 = \pi_2(M)$.

Lemma 2.4. If A is a rational vector space, so is $Ext^{1}(A, \mathbf{Z})$.

Proof. Note that an abelian group A is a rational vector space if and only if the homomorphism $\varphi_l = l \times : A \rightarrow A$ is an isomorphism for any non zero integer l. If φ_l is an isomorphism, so is $\text{Ext}^1(\varphi_l) : \text{Ext}^1(A, \mathbb{Z}) \rightarrow \text{Ext}^1(A, \mathbb{Z})$.

Lemma 2.5 The sequence (1) is a split short exact sequence.

Proof. By killing homotopy groups, we have an inclusion $j: BSU(2) \rightarrow K(\mathbf{Z}, 4)$. Note that the composite map

$$BS^{1} \xrightarrow{B\rho} BSU(2) \xrightarrow{j} K(\mathbf{Z}, 4)$$

is represented by $-l^2c_1^2$, where *l* is a non zero integer and *j* induces a map $M \rightarrow Map_{-l^2}(BS^1, K(\mathbf{Z}, 4))$. We show that the homomorphism

$$\pi_2(BS^1) \xrightarrow{\widetilde{ad}_{p*}} \pi_2(\mathbf{M}) \xrightarrow{j_*} \pi_2(\operatorname{Map}_{-l^2}(BS^1, K(\mathbf{Z}, 4)))$$

is not a zero map. Consider the following isomorphism.

$$\pi_{2}(\operatorname{Map}_{-l^{2}}(BS^{1}, K(\mathbf{Z}, 4))) \cong \pi_{2}(\operatorname{Map}_{0}(BS^{1}, K(\mathbf{Z}, 4)))$$
$$\cong \pi_{2}(\operatorname{Map}_{0}^{*}(BS^{1}, K(\mathbf{Z}, 4)))$$
$$= [S^{2} \land BS^{1}, K(\mathbf{Z}, 4)]$$
$$\cong \mathbf{Z}.$$

The element $ac_1 \in H^4(S^2 \wedge BS^1)$ represents a generator ε of $\pi_2(\operatorname{Map}_0^*(BS^1, K(\mathbf{Z}, 4)))$ where $a \in H^2(S^2; \mathbf{Z})$ is a generator. The generator of $\pi_2(\operatorname{Map}_{-l^2}(BS^1, K(\mathbf{Z}, 4)))$ corresponds to ac_1 under the isomorphism above is represented by

$$ac_1 - l^2 c_1^2 : S^2 \times BS^1 \longrightarrow K(\mathbf{Z}, 4)$$
.

The map

$$S^2 \times BS^1 \hookrightarrow BS^1 \times BS^1 \longrightarrow BSU(2) \xrightarrow{j} K(\mathbf{Z}, 4)$$

is represented by $-2lac_1 - l^2c_1^2$, which is $-2l \times \varepsilon$, therefore $j_*ad_{\rho*} \neq 0$. The short exact sequence (1) induces a long exact sequence

$$0 \rightarrow \operatorname{Hom}(\pi_2, \mathbf{Z}) \xrightarrow{(\widetilde{ad}_{\rho*})^*} \operatorname{Hom}(\mathbf{Z}, \mathbf{Z}) \rightarrow \operatorname{Ext}^1(\widehat{\mathbf{Z}}/\mathbf{Z}, \mathbf{Z}) \rightarrow \cdots.$$

Since $\widehat{\mathbf{Z}}/\mathbf{Z}$ is a rational vector space, so is $\operatorname{Ext}^1(\widehat{\mathbf{Z}}/\mathbf{Z}, \mathbf{Z})$ by Lemma 2.4, hence $(\widetilde{ad}_{\rho*})^*$ must be epic or zero. As we saw, $(\widetilde{ad}_{\rho*})^*(j_*) = j_* \widetilde{ad}_{\rho*} \neq 0$. Therefore $(\widetilde{ad}_{\rho*})^*$ is epic. An element $\alpha \in \operatorname{Hom}(\pi_2, \mathbf{Z})$ such that $i^*(\alpha) = 1$ gives a splitting.

Corollary 2.6 The homotopy groups of M is given by

$$\pi_{j}(M) = \begin{cases} \mathbf{Z} \oplus \mathbf{\widehat{Z}} / \mathbf{Z}, & j = 2\\ \mathbf{\widehat{Z}} / \mathbf{Z}, & j = 3\\ 0, & otherwise \end{cases}$$

Thus we have a fibration

$$K(\widehat{\mathbf{Z}}/\mathbf{Z}, 3) \longrightarrow M \xrightarrow{\pi} K(\mathbf{Z}, 2) \times K(\widehat{\mathbf{Z}}/\mathbf{Z}, 2)$$
 (2)

and we may assume

550

$$BS^{1} \xrightarrow{\widetilde{ad}_{\nu}} M \xrightarrow{\pi} K(\mathbf{Z}, 2) \times K(\widehat{\mathbf{Z}}/\mathbf{Z}, 2) \xrightarrow{p_{1}} K(\mathbf{Z}, 2) = BS^{1}$$
(3)

is identity, where p_1 is the first projection. Put $B = BS^1 \times K(\widehat{\mathbf{Z}}/\mathbf{Z}, 2)$. Note that $H_i(K(\widehat{\mathbf{Z}}/\mathbf{Z}, j))$ are rational vector spaces and

$$H^{j}(K(\mathbf{Z}/\mathbf{Z}, 3)) = 0, j \leq 3$$

$$H^{4}(K(\widehat{\mathbf{Z}}/\mathbf{Z}, 3)) \cong \operatorname{Ext}^{1}(\widehat{\mathbf{Z}}/\mathbf{Z}, \mathbf{Z}).$$

On the other hand

$$H_{2}(B) \cong H_{2}(BS^{1}) \oplus H_{2}(K(\mathbf{Z}/\mathbf{Z}, 2))$$

$$H_{3}(B) = 0$$

$$H_{4}(B) \cong H_{4}(BS^{1}) \oplus H_{2}(BS^{1}) \otimes H_{2}(K(\widehat{\mathbf{Z}}/\mathbf{Z}, 2)) \oplus H_{4}(K(\widehat{\mathbf{Z}}/\mathbf{Z}, 2))$$

$$\cong \mathbf{Z} \oplus \widehat{\mathbf{Z}}/\mathbf{Z} \oplus H_{4}(K(\widehat{\mathbf{Z}}/\mathbf{Z}, 2))$$

$$H_{5}(B) \cong H_{5}(K(\widehat{\mathbf{Z}}/\mathbf{Z}, 2))$$

therefore

$$\begin{aligned} H^{2}(B) &\cong H^{2}(BS^{1}) \\ H^{4}(B) &\cong \operatorname{Hom}\left(H_{4}(B), \mathbf{Z}\right) \oplus \operatorname{Ext}^{1}\left(H_{3}(B), \mathbf{Z}\right) \\ &\cong \mathbf{Z} \\ H^{5}(B) &\cong \operatorname{Hom}\left(H_{5}(B), \mathbf{Z}\right) \oplus \operatorname{Ext}^{1}\left(H_{4}(B), \mathbf{Z}\right) \\ &\cong \operatorname{Ext}^{1}\left(\widehat{\mathbf{Z}}/\mathbf{Z} \oplus H_{4}\left(K\left(\widehat{\mathbf{Z}}/\mathbf{Z}, 2\right)\right), \mathbf{Z}\right). \end{aligned}$$

Consider the Serre spectral sequence for the fibration (2). Since

$$\sum_{p+q=2} E_{\infty}^{p,q} \cong E_{2}^{2,0} = H^{2}(B),$$

we have an isomorphism

$$H^{2}(BS^{1}) \xrightarrow{\cong}_{p_{1}^{*}} H^{2}(B) \xrightarrow{\cong}_{\pi^{*}} H^{2}(M)$$

and by the fact that the composition of maps in (3) is identity, $\widetilde{ad}_{\rho}^*: H^2(M) \rightarrow H^2(BS^1)$ is an isomorphism.

 $E^{0,4}_{\infty}\cong E^{0,4}_5$ and $E^{0,4}_5$ is the kernel of

$$H^{4}(K(\widehat{\mathbf{Z}}/\mathbf{Z}, 3)) \cong \operatorname{Ext}^{1}(\widehat{\mathbf{Z}}/\mathbf{Z}, \mathbf{Z}) = E_{4}^{0,4} \xrightarrow{d_{4}} E_{4}^{5,0} = H^{5}(B).$$

Since $H^5(B)$ is torsion free and $\operatorname{Ext}^1(\widehat{\mathbf{Z}}/\mathbf{Z}, \mathbf{Z})$ is a rational vector sace, $E^{0,4}_{\infty}$ is a rational vector space. Note that $E^{4,0}_2 \cong E^{4,0}_{\infty}$ and π^* is given by

$$H^{4}(B) = E_{2}^{4,0} \cong E_{\infty}^{4,0} \hookrightarrow H^{4}(M).$$

Since $p_1^*: H^4(BS^1) \longrightarrow H^4(B)$ is an isomorphism, we have a short exact sequence

$$0 \longrightarrow H^4(BS^1) \longrightarrow H^4(M) \longrightarrow E^{0,4}_{\infty} \longrightarrow 0$$

551

Shuichi Tsukuda

and $\widetilde{ad}_{\rho}^{*}: H^{4}(M) \longrightarrow H^{4}(BS^{1})$ gives a splitting of this sequence. Therefore the kernel of $\widetilde{ad}_{\rho}^{*}$ is isomorphic to $E_{\infty}^{0,4}$ which is a rational vector space.

Department of Mathematics Kyoto University

References

- M. F. Atiyah and R. Bott, The Yang-Mills equations over Riemann surfaces, Proc. Royal Soc. London, A308 (1982), 523-615.
- [2] E. M. Friedlander and G. Mislin, Locally finite approximation of Lie groups, Invent. math. 83 (1986), 425-436.
- [3] D. Notbohm, Maps between classifying spaces, Math. Z., 207 (1991), 153-168.
- [4] S. Tsukuda, A remark on the homotopy type of the classifying space of certain gauge groups, J. of Math. of Kyoto University, 36 (1996), 123-128.
- [5] S. Tsukuda, On maps from BS^1 to classifying spaces of certain gauge groups, to appear in J.of Math. of Kyoto University.