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Whittaker functions of
generalized principal series on SU(2,2)

By

Takahiro HAvyATA

1. INTRODUCTION

This is a continuation of the previous paper [1].

For the calculation of Whittaker functions of irreducible admissible
representation on real semisimple Lie groups, the usage of the shift operator
provides us a way to obtain their differential equations. In the case of the
discrete series, many works have been carried out on various groups such as
Sp(2,R), SU(2,1) SU(2,2) and SU (n, 1) in [9, 13, 2, 11, 4], using the fact
that the Whittaker vectors can be characterized by the kernel of some
differential operators coming from the Schmid operator. Also in the case of
principal series, differential equations have obtained in several cases: Sp
(2,R) in [7,8], SU(2,2) in[1].

In this paper, we treat the irreducible generalized principal series
representation 7 induced from a representation of the standard maximal
cuspidal parabolic subgroup of SU(2,2). This representation is large in the
sense of Vogan ([12]), and the dimension of algebraic Whittaker vectors
becomes four, half of the order of the little Weyl group. Utilizing the Schmid
operator, we obtained the differential equations of Whittaker functions of w
with its “corner” K-type (Theorem 4.7). This system becomes holonomic, of
rank 4, hence it characterizes the Whittaker vectors. Furthermore we can
also find an integral expression of the rapidly decreasing Whittaker function
under a parity condition of a nondegenerate character of N (Theorem 5.1).
This kind of expressions could be seen in [2, 8, 9]. ‘

The author would like to thank Dr. Takuya Miyazaki for helpful
communication, Professor Harutaka Koseki, for pointing out errors on §4, and
Professor Takayuki Oda, for valuable comments and constant encouragement.

2. Brief summary: SU(2,2) and its Lie algebra

Let us review fundamental facts on the structure of SU(2,2) and its Lie
algebra briefly. The notation is same as in [1, §2].
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2.1. Restricted root system of 3u(2,2). Let G=SU(2,2) be the
subgroup of SL,(C) leaving the hermitian form defined by I,,=diag(1, 1, —1,
—1) unchanged. A maximal compact subgroup K=S(U(2) XU(2)) consists
of the elements in two copies of U(2) whose determinant is one. The Cartan

involution is written by 6(9) ='¢~!. We make the Cartan decomposition along 8:
g=t+p, (1)
where, g=Lie (G), t=Lie (K) and

Xz(v? X)

Hereafter, the blank entries are understood to be zero. We denote by a the
maximal abelian subalgebra in p and A=expa. Then the restricted root
system 4=A4(g, a) can be described as:

A={x A, T A, £24, £24,},
A.={A1 %A, 241, 245} (positive roots), (3)
Apuna= {A1— A5, 24,} (fundamental roots).

where /2,' (Hj) =5ij, H1:X13+X31, H2:X24+X42 for Xm: (5ki5[j) ifs the (i, ])‘
matrix elements in M,(C).

For the root decomposition with respect to (g, a), we begin with defining
some elements of g. Put,

p:

X1 €M, (C)] 2)

1 -1 0 0
0 0 1 -1
eyl 1 S 0
0 0 1 -1
1 —1 1 -1
-1 1 1 -1
_1 V=1
Es=3 1 —1| E& 73 1 -1
1 1 1 1
1 1 1 1
—1 1 1 —1
_1 _v=1
Es=3 1 1 Es=" 1 1
1 —1 . 1
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We also denote by H;; the matrix whose (i, i) -entry is /—1 and (j, j) -entry
is —+/—1.

These elements describe the root space decomposition of g:

g=c(a) + 2

Aed

where,
¢ (a) =the centralizer of a={H,, Hp, Hi2+Hs4}r,
g2, = {E1}r, @22,= {E2} R, Qa42.= {E3, Eg}w,
gu-2={Es, Eer, g-n="g,= {'X|X Eq,}.

Note that dim gs412,=2 and that the little Weyl group W is of order 8.
Fix a basis of ft¢:

1— hl 2 I 1 — eil 2 — I )
h—( I ),h—( |h>,€t_( l ),ei—( |€i v A2, (4)

1 1 0
where h=< 1 ) e+=< 0 ) e-=< 1 ) are 2X 2 matrices. Then,

bc={n', h? I,3}c is a compact Cartan subalgebra in k.

2.2. Cuspidal parabolic subgroups of SU(2,2). In this subsection,
we consider a minimal parabolic subgroup P = P,, and a Jacobi parabolic
subgroup P; of G with Langlands decomposition P, =MAN=MuA »wN,, and
P;=M;A Ny, respectively.

Let Ax =exp ax is a split component of P (% means either “m” or “J”)
with

a=ag={H), Ho}r, (5)
a;= Qg = {H) r. (6)
In the following, we identify A with (Rs¢)2 by
(a1, az) =exp ((log a;) H;+ (log az) H,) .

Their unipotent radicals Nx=exp (n) can be described as follows:
=gz, FGore+ Gurre T 00—, = {E;li =1 ..., 6}& (7)
=8+ Guertau-={Ej=1.3 ... 6}r (8)

By definition, the Levi parts are Mx=Zx (ax) exp mx with Lie algebras:

m=Ry/—11,,  IL,=diag(1, —1,1, —1), 9)
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my={Ha, Ez, v— 11, H24=—”;1(12,2—h1+h2) IR, (10)

and therefore,

M={exp (6l * 1/|6€R,j=0,1}, r=diag(1l, —1,1, —1), (11)

fER, a, BEC,

M;=13exp (6],). alt—|gl=1

(12)

(=:T-G)=CPxSU1,1).

3. Generalized principal series of SU(2,2)

3.1. Discrete series of SU(1,1). Let Go=SU(1,1) and K,=C™ be
a maximal compact subgroup. We regard these groups as subgroups of M;
(cf. (12)). Let xm (e¥-10) =¢mV=10 he 4 character of C'V. The weight lattice
of go=Lie(Go) can be identified with Z with property:

xm (diag(1, V101, omV-10)) =Xm(eﬁ0) =e"V=10 for mEZ.

Let Df be the discrete series representation with Blattner parameter k.

Namely, the minimal Ko-type of D} (resp. Di) is & (=2), (resp. x—p (k< —2))
and the other Ko-types are in the form Xe+zj, (resp. X-z—2;), with non-negative

integers j. We say that the suffix £ is the signature of D¥ and denote it by
sgn (Df). We note that the contragredient representation of D} is isomorphic
to Dk

3.2. Generalized principal series of SU(2,2). Let 0= (xm D%) be
a discrete series representation of M;. Choose v€ajc. By the symbol ¢”, we
denote the character defined by ¢”(a,) =¢*"°%.

Define 7y =ind§ (g, ®¢***/ ®1) acting by right translation where po;=3A4:.
We say 7y the generalized principal (P;-) series representation of SU(2,2).

3.3. Multiplicity of K-types. We briefly review the irreducible
representations of K. According to [1, Prop. 3.1], K is parametrized by
{d=[d, d3; d3) €EZao X Zao X Zld1+dr+d; €27}

The representation having parameter d is denoted as (4, Va).
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Let V,={f%,]0<k;<d;}c be the standard basis; the action can be expressed
as follows:

ta (W) filke= (2kj—d) fithe,  (=1,2)

Ta (efi-)f{k‘{;az = (dj - kj)ﬁaﬂ-du.kﬁézh

)=y 2 1
Ta (I2.2) fitke=d3 f¥lha

Let TEK. By Frobenius reciprocity, one sees,
[ﬂ'llxi = X [0'|KnM/2 w] [t |KnM,Z w]. (14)

we KMy

We prepare several lemmas to compute the multiplicity of 7 in mlk. First, we
see that

KNM;={ (V=10 V-1¢) =exp (0l,) exp ((H24) |6, LER}.
Thus the characters of KN M; can by parametrized along the following:

Vo160 V10 — V=1 h6+120)
Wiy, 1) (e , € C) =e 10+020),

Clearly we have

Lemma 3.1. Let 0= (x™ Df). Then,

1 if m=1y, sgn(D¥) 1,2k and 1,=Fk (mod 2),

[0’|KnM,I O] = :
otherwise.

Since V. decomposes into 1-dimensional K N M;-modules, we have the
following:

Lemma 3.2. Let T=1y,5. 1 be an trreducible representation of K. Then,

—u—2r<i1,—20,<2r—u,

] ] 1, u—2s<11+20,<2s+u,

Tlknm: Wil =

wn S =24 u+2r=1,+2l,—u+25=0 (mod 4),
0, otherwise.

Summing up, the multiplicity is given by,

Proposition 3.3. [7;|k: ] equals the number of integers l» satisfying
the following:
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(i) 12=k(mod 2),

(ii) sgn(DE)i1>k,

(iii) 2—u=m+2r=—m~+2s(mod 4),

(iv) max(m—2r, —m—2s) <2l,—u<min (m+2r, —m—+2s).

In particular the necessary and sufficient condition for multiplicity-one
can be described as follows: (see Figure 1 as an example.)

Theorem 3.4. Let ;= indf, ((xm, DE) ®***7®1). Put 0p=sgn (Df),
On=sgn(m), (8o=0). Then the multiplicity [7/lx: Tirs ) =1 if and only if the
pereameter [r, s; u] satisfies 2k—u=m~+2r(mod 4) and one of the following:

(1) 7=0, s=|m| and Spu=>2k—pm.

(2) 0<r<s—|m| and u=28p(—r+k) —m.
(3) r+s=|m| and dpu>=—28p0ms+2k~+dpm.
4) |r—s|<|m|, r+s=|m| and

" —20pr—20mk—m (if 0p0,<0).

(5)  r—|m|=5=0 and u=20,(—s~+*k) +m.
(6) r=|ml, s=0 and dpu=2k+ dpm.

Proof. 1f 74 4 satisfies one of these conditions, we can easily check that its
multiplicity in 7r|K 1S one.

Let Ty w be a multiplicity-one K-type. We assume that sgn (D) >0
and m >0 for clarity. If r<s—m, then Proposition 3.3 says that there is a
unique [, which satisfies

I,=F (mod 2) and max (m—2r, 2k—u) <2L,—u<m-+2r.

By the congruence property, l,s —u attains m+2r. In order that exactly one I,
satisfies the above conditions, it is necessary that m —2r<2k—u=m=+2r or ks
—u<m—sr<m+2r, equivalently

r=>0, r=0,
2r+u=2k—m, or u=2k—m,

so we have (1) and (2). Next, if |s—7|<m, we see that m —2r<2k—u=—m
+2s or 2k—u<m—2r=—m+2s, which is equivalent to

2s tu=2k+m, r+s=m,

r+s=m, u=2k—m+2r.

So we have (3) and (4). If r=s+m, then we have—m —2s<2k—u=
—m+2s,s20or 2k—u<—m—2s=—m+2s. This is equivalent to
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2s+u=2k+m, s=0,
$>0, T lu>2e+m.

Hence (5) and (6) follow.

FIGURE 1. Multiplicity-one K-types of ind§ ((x-4, Di) ®e**/®1).

3.4. Infinitesimal character of ;. According to [3, Prop. 8.22],
the infinitesimal character X=, of m; becomes m +sgn (DF) (k—1) +v

considered as the element of (t+¥f,+a;)& under the Harish-Chandra
homomorphism (t=Lie(T)). Thus, for the Casimir operator £ of G,

— 6 _
Q:H%+6H1+I(2)/2+tE1E1+22'E1E,+.QD, (15)
j=3

where,

.QD=H§+2H2+'E72E2
=—H3,—2y —1H24+4X42X24—H§4+2v —1Hy+4X2 X402

Then the value X, (2) becomes,

X’U (Q)
=xx((H—3)2+6(H—3) +1/2— (Hys F/—1)2F2/—1 (Hy ¥ /1))
= (m+sgn(D§) (k—1) +v) (H3—9—H3—1+1/2)
=124 (k—1)2—=104+m?/2.

Proposition 3.5. Let 2 be the Casimir element defined by (15) and let
X, be the infinitesimal character of my. Then,
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xn(Q) =1+ (k—1)2—10+m?/2. (16)

4. Differential equations for Whittaker functions

4.1. Shift operators. First of all, we define Whittaker functions.
For a moment, let G be a real semisimple Lie group, K a maximal compact
subgroup and P a parabolic subgroup of G. Let (m, H;) be an irreducible
principal P-series representation. For the maximal unipotent subgroup N of
G and its unitary character 7, consider the space of intertwining operators,

Hom x (HE, C2(N\G)),

where HX is the K-finite vectors. We call its element @, an algebraic
Whittaker vector. Choose (z, V;) be an irreducible representation of K such
that its contragredient 7* appears in mlx. We fix the K-injection

te: Ver = HE. Define @€ Cy(N\G/K) by
@,, (lr* (1’*) ) (g) = <1’*' @n,r (g) >

for any v¥*€V¥ We call @, a Whittaker function of 7 with K-type 7*.
We say @Dpca, the radial part of the Whittaker function; it is fully
characterized by the restriction of @,. to A by vitue of the Iwasawa
decomposition.

Next, we define shift operators. Let g, t be the Lie algebras of G, K
respectively, and g=f+p be the Cartan decomposition. Define a
K-equivariant operator V', called the Schmid operator,

V:Crp:(N\G/K) — Crroaa (N\G/K)
F = VF=2ZRxF(-)®X;
j
where {X;} is an orthonormal basis of p and that Ad=Ad,c is the adjoint

representation of K on pc. Let 7 be an irreducible component of 7 ® Ad and
Pr be its projection to 7. Then, Pr° V or their compositions are called shift

operators. Let P¥ be the canonical K-injection defined by
(PEw*), v®X) = w* Pr (v ®X))
for w*€VE vEV, XEpc. Note that Ad is self-dual. Considering
mul: Ver®pcD0*®X = 7 (X) 1+ (v*) €EH,

and a composition mul°P¥, we see that there is an constant ¢ =c (7, ¢ 7', t)*)
such that

mul*PE=c * ti)
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by vitue of irreducibility of 7. Here we use the convention that if ¢@)* is
meaningless (i.e.(7') * is not a K-type of ), then the constant ¢ is equal to 0.
From this equation, we have, by using (g, K) -homomorphism @,

§¢7z(mUl°P;k’ (v ™) )vL=C§¢n (ecer (W) ) v =cPar,v, (17)

where {vi} is a basis of Vi and {(vz)*}, its dual basis. The left-hand side of
(17) turns out to be equal to Pr ° V®.. This indicates that the shift
operators have Whittaker functions as “eigenfunctions”.

Proposition 4.1. Let (7, Hz) be an irreducible admissible representation
of a real semisimple Lie group G and (t, Vi) be an irreducible representation of a
maximal compact subgroup K such that [mlx 7%]#0. Let (7, Vo) be an
irreducible component of T ® Ad and K be its projector to V. Fix a K-injection
tex, (resp. twyr) of Ver (vesp. Vieyr) to Hy. Then there exists a constant
c=c (7, te T, tiyr) such that

Pr’° V @n,r'__c * Qn’,f’.

Here if ¢y does not exist, ¢ is understood to be zero.

From now on, we let G=SU(2,2). Since it is of hermitian type, we can
define the K-equivariant maps V*: Cyr (N\G/K) — C3rea4. N\G/K) by

V*F= 2 RxF(-)®Xy;,

i=1,2,j=3,4

18
PF= T RuF(-)®X, 18)

i=1,2,j=3,4
Here, we put Ad:=Adp. for the canonical decomposition pc=p++p-.
Let Pi¥* (resp. PE® be projectors t0 Tiysiser u+z) (reSP.  Trrensts u—21)
defined in [1, Lemma 3.12]. We define the following shift operators,
@UD:P(—,—) v +°P(+,+)° v+
@down:P_)(—,—)o v —013(+,+) - (19)

EEP =pEF [+ P =pEa.p-

4.2. Dimension of the space of the Whittaker vectors. The
dimension of the space of Whittaker vectors can be found as follows. Let

1

F*=exp(ac) =y, a=/—1 ). (20)
1
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It is known that F*G=1{gE€Gc|(Ad g)g=g} where Gc is a complex Lie group
with Lie algebra gc. Let (m, Hz) be an admissible G-module. For a €F*,

define another G-module (7@, H®) by,

79 (9)v=n(a""ga)v, H®=H, (§EG, vEH,).

If = has a (g, K) -module structure, so does ©#“. Choose {a;,..,ap} so that

{n‘*’} is a complete system of mutually infinitesimally non-isomorphic classes
of {T®)aEF*}.
If 7=ind§ ((xm D) ®e***/®1), then we find that p=2, i.e.,
Hay, a2 =11, @} with 7°=ind§ ((xm, DF) ®***7®1). We have the following:

Theorem 4.2. Assume T is irreducible. Then,

dim Homew (HE, C3 (N\G)) =4.

Proof. If m; is irreducible, then it is large in the sense of [12, Th. 6.2, f)].
Thus we have, from [5, Th. 6.8.1],

dim Homex (75, C3 (N\G)) +dim Homux (%, Cy (N\G)) =8.

On the other hand, the Whittaker models with 1 of 7‘® is isomorphic to those

with n'® of 7. But the dimension of the space of algebraic Whittaker vectors
is determined independently of the choice of 3, whence the dimension is 4.

sgn(DF) | m the parameter of T

d1= [0, m; —2k+m]
+ — |l d,=[—m, 0; —2k—m]

0 || at=10,0; —2k]
— l d-1=1[0, —m; 2k+m]
— + || d—2=[m, 0; 2k—m]

0 | dg=10, 0; 2¢]
TABLE 1. Corner K-types * of ind§,((xm, DE) ®e***/®1)

Remark 4.3. One has 9@ (E;) = —1n (E;), which will also explain the
relation (33). -

4.3. Differential equations for Whittaker functions. As in §3.2,
let m;=ind§ ((xm Di) ®***7®1) be a generalized principal series
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representation. The corner K-type 7f is characterized by the following
property:

(1) dimz}¥ is minimum in 7|x.

(2) 7| has the minimal Ko-type of Di.

(3) If m # 0, there exists a non-compact root & with respect to (gc, Hc)

such that T4+s€K and [7lx: 5] =0.

Choose 7 so as that its contragredient representation 7* becomes the corner
K-type of m;, which is eventually determined uniquely as in Table 1.

0,s=m

m,s=0

FIGURE 2. The corner K-type in the plane: r+s=m >0 consisting of
K-types of indf, ((xm, Df) ®e***7®1)

In the following we write mw=m;, 7, =14 for simplicity. For a

nondegenerate unitary character €N, we put (see [1, §4.1]),

M=y =10 (Ez), ne=E€. E=n(Es) +v/—=1In(Es), & =n(Es) —v/—1n(Es).

Consider the Whittaker function @, Then,

Proposition 4.4. (1) If sgn(D¥) >0, we have, for j=1,2,
geomm s =0 (m#0), (21)
PP, =0 (m=0). (22)
(2) If sgn(DE) <0, we have, for j=—1, —2,
gi-sentmsonmi . =0 (m#0), (23)
DY@, . =0 (m=0). (24)

Proof. If m#0, Table 1 tells us that what the parameter of the corner K-type is
and that the unique direction to make the Whittaker function vanish.

If m =0, we can easily find that the result of the action of @"?/%"" becomes
zero by Propositions 3.3 and 4.1. Thus the proposition follows.

In [1, Lemma 6.5], the radial part of such shift operators were calculated
in the most general way. Therefore, specializing the parameters, we obtain
the following:
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Prposition 4.5. Let @pry (@) = Zhicd (@) fif) for j= %1, £2 and let
Dro: (@) =c¥P (a) 18, Then we have,
(1) sgn(DF) >0, m=0 case:

(0—k=2) @—atne—r) — 7o 2) )ets=0. (25)
(2) sgn(DE) >0, m>0 case:
=) o= adma—kHj) el + G+1) (%) gedfa=0, (26)
=) ()¢ e+ (+1) Br—m—k—1+)cllfr =0, (27)
(3) sgn(DE) >0, m<0 case:
m9) (3= —j = 2)f + +1) (22)ger0=0
m+) (2)& e+ G+ 1) @, a3 —m—k—1=5) f210=0.
(4) sgn(Df) <0, m=0 case:
((Gi=k=2) @o+atn =) —no(22) )ess=0.
(5) sgn(DE) <0, m >0 case:
(m =) (@a-+atne—k-+H)efs?+ G+1) (&) efeo=0,
=) (4)§ 6+ (1) Gu—m—k—1+)cfs2a=0.
(6) sgn(DE) <0, m<O0 case:
m+9) (@i—k=j—2)el+ i+1) (%) eeizh =0,

(m=+5) (%)ECSF”‘*‘ (G+1) (02ta3n2—m—k—1—7)cs;$1=0.

From the Casimir operator, we get another proposition by [1, Lemma
5.1].

Proposition 4.6. Let @z, (a) = 2pct (@) ¥}, and so Prcs (@)
(0 +) (a)f(O j:)' Then,
(1) sgn (DF) >0, m >0 case:
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(312“"622_661_232_(1%7]%"'2770((11/02)2+2 (i_k) 7}2(1% (28)
+ (2 —m)?/2)cif +2(m—j+1) & (a1/az) el
—2G+1)E (ar/az) e = (W2 + (k—1)2—10+m?/2) ¥ .

When m=0, co3* also satisfies (28).
(2) sgn(DE) >0, m <0 case:

(512"‘522—661_262 027)2+2770(01/az)2 (m+k+]')772(1§ (29)
+ (2 +m)?/2) e +2(1—m—j) E(a/az)cPo
—2(G+1) & (ar/az) cFro= (V*+ (k—1)2—10+m?/2) ;3.

(3) sgn(D¥) <0, m>0 case:

(612"'622_601 _252"'0377 (Ez) 2"‘2770 (611/(12) 242 (k_]') 7720% (30)
+ (2 —m)¥/2)cp®+2m—j+1) Elar/az) ci=Po
—2(G+1) & (ar/az) ciz2e= (W24 (k—1)2—10+m?/2) cj5?.

When m=0, c§y~ also satisfies (30).
(4) sgn(DE) <0, m<O0 case:

(0f+ 08 —60,—20,+a3n (Ez) *+2n0(a1/a2) *+2 (m+k+j) n.a} (31)
+ (m+2)%/2) el +2(1—m—j) E(ar/az) 532
—2G+1) & (ar/az)co = W+ (k—1)2—10+m?/2) 55V,

From these propositions, we find that

(e, m) = (cmi—s, —m), (c;o?, m) = (c&imi-s, —m), (32)
e, n2) = (50?2, —1n2), &7V, n2) = (8, —12). (33)

Therefore we mainly treat the typical case: sgn (DF) >0, m >0.

Theorem 4.7. Let m; = ind§ ((xm DF) ® ¢**7 ® 1). Assume sgn
(D) >0, m=0. For T= Tio.m m—2x1, consider the Whittaker function

Dre=25cH Y. Put ¢ff (a) =exp (adn2/2)a?****ab7n¥ (a). Then, h®,
(G=0,..,m) satisfy the following:

(010:— (a1/az)*no) h¥ =0, (34)

(0t +03+2m+k—2j—1) (0:+0,) +21430, (35)
+ m+E—2—1)2—v*) h}¥=0.

These two differential equations become a holonomic system of rank 4.

Proof. When m =0, each equation is a direct consequence of Equations (25)
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and (28). When m> 0, Equation (35) is a consequence of (28) , while
Equation (34) is obtained from Equations (26) and (27). To show the
holonomicity, we find that the left-hand sides of Equations (34), (35) and
their Poisson bracket become a Grobner basis. Then, calculating its
characteristic variety, we find the dimension is two, and the rank is four on
the plane without the singular locus.

5. Integral expression of Whittaker functions

In this section, we obtain an integral expression of the rapidly decreasing
‘solution of differential equations in Theorem 4.7.
Put formally,

-[roven{r-) ¢

for  €C” (Rso). This is a general solution of Equation (34). The formal
relation

_ [ noat _t \dt
(31+62)“W—j.o 25,¢(t)exp< ¢ 4a%) t

tells us, from (35), that
(402 +4m+k—2—1) 0, +nat+ (m+E—2/—1)2—1?) ¢=0,

with 8,=t(d/dt). Put v=4yt and @(t) =p="+k=2-D=V2¢(3)) to get

1/4 V
E}Q“L( 7 (—4m) + )¢ 0. (36)

This turns out to be Whittaker's differential equation. If 7, <0, we denote
by W, (2¢/—12v) the rapidly decreasing solution of (36).

Theorem 5.1. Let ;= 1ind§ ((xm, DE) ® ***1 ® 1) be an irreducible
generalized principal series representation of G. Let @n,zs = 22 (a) fif’ be a

rapidly decreasing Whittaker function of m; with the corner K-type 75 given by
Table 1. Then,

(1) sgn(DF) >0, m =0 case: if n2<0,

C(()}) (a) =Cl (87]2) m—js’fevza§/2a1n+k+2—fa’23—i (37)
i 47]2770 a% tz ) dt
2j—m—k+1/2 — haddl
X j; t Wo, (t)exp( 2 +"16772a§ x

(2) sgn(DF) >0, m<O0 case: if 172<0,
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f (a) = Cy (B1a) "~ (— ) ersiiat+2igf s (38)
® i 4n,neat t2 ) dt
X 2j—-m—k+1/2 . (_ 2 hadhdl
j; t Wos (t) exp t? + 16ma3/ t°

(3) sgn (DF) <0, m =0 case: if n2>0,

0% (a) =C_p(—8ny) Mg Jg i/ 2qrrht2=ig g (39)
® i 4namoal t2 )dt
. 2i-m—k+1/2 < 20001 _
J;t Wo (t) exp 2 Tomad) £

(4) sgn(DE) <0, m <0 case: if 1,>0,

etV (a) =C-1(8my) "~/ E e il 2} H 2 Hig s (40)
& 2im— 41210 a'f' t ) dt
Xf ¢ 2j—-m k+l/2W‘; ¢ ( —_ :
0 oz (D exp t? 16m2a3/ t

Here, Cy, Cy2 are comstant multiples determined independently of the choice of j.

Proof. Nondegeneracy of 1 says that 7o is a nonzero negative number. So
the parity condition of 7, implies the convergence of integrals in the
right-hand side. Once it converges, it clearly satisfies Equations (34) and
(35). Keeping in mind the convention for other cases, we can readily deduce
the other equations. The proof of the rapid decrease of the functions when
ar/a;— and a;— is completely same as [9, Theorem (9.1)].

Remark 5.2. These expressions are very similar to those in the case
of Sp(2; R) ([8, Theorems(9.1), (9.2)]).
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