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An explicit integral representation of Whittaker functions
for the representations of the discrete series — the case of SU(2,2) —

By

Takahiro HAYATA! and Takayuki Opa

1. Introduction

In a sense, this paper is a supplement to the paper [12] of Yamashita.
Also it is an analogue of a result in [6].

We consider the Lie group G = SU(2,2). The large discrete series
representation of G has a Whittaker model with respect to a nondegenerate
character of the maximal unipotent subgroup N of G. Using the Schmid
operator, Yamashita [12] explicitly computed the differential equations
satisfied by the minimal K-type vectors in the Whittaker model of the discrete
series representations.

The purpose of this paper is to push this computation one step further to
obtain an explicit integral representation of the Whittaker functions
representing these vectors belonging to the minimal K-type (Theorems 4.4
and 4.5). There is a general integral representation due to Jacquet for
Whittaker functions. But this representation is sometimes intractable for
higher rank groups. We hope our formula is useful for the investigation of
L-factors of automorphic representations of the discrete series at the real
places.

The content of this paper is as follows: In §2, we briefly review the
structure of SU(2,2) , the discrete series and the representations of the
maximal compact subgroup K. Basic notations and definitions are found in
[1,2], which we follow. In §3, we review the results of Yamashita and of
Kostant on the dimension of the space of Whittaker vectors. We also
calculate the radial A-part of the Schmid operator explicitly. In §4, we
describe the holonomic system of differential equations of Whittaker functions
which has appeared in [12]. Furthermore, we show that the integral
representation of the analytic Whittaker function can be obtained from the
differential equations under the parity condition of a nondegenerate character
of N.

Because we belong to the culture of automorphic forms, the maximal
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compact subgroup K appears in the right hand of G and the unipotent group N
in the left side. This is different from [12].
The authors thank Hiroshi Yamashita for constant communications.

2. The group SU(2,2) and its discrete series

2.1. Structure of Lie group and Lie algebra. Let G be the special
unitary group SU (2,2) realized as,

G=19ESLAC)lg*L,29 =12}, I,=diag(1, 1, —1, —1),

where ¢*="7 denotes the adjoint of a matrix . We fix some notation for this
group and its discrete series representations, used throughout this paper.

Let U (4) be the unitary group of degree 4 in SL,(C). Take a maximal
compact subgroup K=GNU(4)=S(U(2) XU(2)). We denote by g, t the Lie
algebra of G, K, respectively. Let 8(X) =—'X be a Cartan involution and
g=Ft+p is the Cartan decomposition of g.

We set, a=RH,+RH; with, Hi= X3+ X33, Ho= X14+ X41, where the Xij's
are elementary matrices given by,

Xi;= (0is0jq) 155054 With Kronecker’s delta 0.

Then a is a maximally R-split abelian subalgebra of g contained in p. Then
the restricted root system 4=4(g, a) is expressed as,

A=A(g, a) ={E 12, £22, £22,}.

where A; is the dual of H;, We choose a positive system A; and a
fundamental system Aguna of 4 as follows:

t= {Zlilz, 2/11, 2]2},
Aguna= {A1— A2, 225}

We also denote the corresponding nilpotent subalgebra by n=2lgcs+ gs. Here
gs is the root subspace of g corresponding to 8E€ A*. Then one obtains an
Iwasawa decomposition of g and G:

g=n+a+t G=NAK,
with A =exp a, N=expn. Now let
Ei=Hi;3—V/—1X13+/—1X31, E2=Hpy— v/ —1Xoa+V/—1 Xy,
E3:1/2 (Xlz_le_X14+X23+X32_X41_X34+X43),
Ey=v _1/2 (X12+X21_X14_X23+X32+X41_X34_X43) ,
Es=1/2 (X12= X1t X1t Xos+ Xaot X+ Xas— Xas),
Ee=+—1/2(X12+ X1+ X1u— X3+ Xso— Xa+Xas+Xas),
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where H;j=+/—1 (X;;—Xj;) for 1<i<j<4. Then it is easily seen that
824,—RE; (I'=1v2) , Q11+12=RE3+RE4. Qxl—zzzREs"'REe.

2.2. Parametrization of discrete series. Let us now parametrize
the discrete series of SU(2,2). Take a compact Cartan subalgebra t defined
by

t:Rg/ _1h1+RQ/ _1h2+Rv _112,2, with hl:Xll_Xzz, h2=X33_X44

and let tc be its complexification. Then the absolute root system, of type As,
is expressed as,

A=A(ge te) ={[£2,0; 0], [0, £2; 0], [£1, £1; £2]}.
where B=[r, s; u] means r=8(h'), s=B(h?) and u=p(l,2). Let
A+={[2,0;0], [0, 2, 0], [£1, £1; 2]}.

We write the set of compact positive roots by 4¢={[2, 0; 0], [0, 2; 0]} and
we fix it hereafter. The Weyl group w= W(gc. tc) is generated by si, sz, S3
where,

silr, s;ul =[—7r s;ul,

solr, s:ul =[r—s+u)/2, (—r+s+u)/2; r+s],

sslr, s ul=1[r, —s; ul.

We identify W and the symmetric group &, of degree 4 by the map:

si= (j, j+1). The compact Weyl group is given by W, = (s;, ss , also
identified canonically with the subgroup ©;X &,.

There are exactly six positive systems 4f, 4f; ..., 4%1 containing

¥, defined by 4f =w;A4*, where the elements w; € W are given as,
wr=1, wi=Sa, Wi1= 5283, Wiy = $251, Wy = $28351, Wy1 = $2515352.
We denote by A4;; the noncompact positive roots in 47.

By definition, the space of the Harish-Chandra parameters Z; is given by,

-

E,={AE€t§A is A-regular, K-analytically integral and A¥-dominant}.

Put

—

E,={A€ 5|4} -dominant}.

We also put p¢;=2"'24e 318 (resp. px=27'223<:8) ., the half sum of positive

roots (resp. the half sum of compact positive roots.) Then the space =, C t&
are divided into six parts: 5, = Uigsv8. We note that 5y (resp. Ewi)
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corresponds to the holomorphic (resp. anti-holomorphic) discrete series.
For A€ Ug;svi&), we denote the corresponding discrete series by 74 and call
this A the Harish-Chandra parameter of m4. As determined in [11, §10.4],
the Gelfand-Kirillov dimensions of the discrete series representations 74 are
given as follows:

4 (A€EUEY),
GK-dim (rr4) =1 6 (A& U &),
5 (A€ & U Ey).

Therefore the representations belonging to &y U &y is a large representation in
the sense of Vogan [8, Th. 6.2, f)], hence has an algebraic Whittaker model.
(Harish-Chandra parameters of discrete series of SU(2,2) are described as in
Figure 1.)

FIGURE 1. Harish-Chandra parameters in t&

2.3. Representations of the maximal compact subgroup. Let
dy, d2€Z: and d;EZ.
For d = [dy, ds ds] Et&, define Ts€K by the following rule:
Td (hj) klkz (ij dj)f;idl;zz- (l =1, 2) ,
Ta (e]+ ;g;zz (di—ki fiﬁou k2+02js (1)
(e’— ﬂlkz_k)ﬂl 815, k2— 824
(In2) fitr,=d 3 fiker

~N

d
T4
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Here, V,={f%,]0<k;<d;}c is the standard basis (see [1, §3]) and
R, h2 el =X1a €2 = X34, el ="¢,
are the generators of fc. Then according to [1, Prop. 3.1], K is exhausted by
{(za,Va)|d=[dy, d; ds], di+d2+ds is even}.

The adjoint representation Ad = Adyc of K on pc is decomposed into a
direct sum of two irreducible subrepresentations: pc=p4++p-, where,

P+ =CX13+CX 1+ CXp3+CXo, p-='p,.

In fact, Ads = Ad|,+ is isomorphic to Ty s21, respectively. For later use, we
fix the K-isomorphisms ¢:: p+—V(1,1. 22 as follows:

v (Xaa, Xiz, Xaan Xaa) = (f68V, AV, —fa", —Av),
e (Xa1, Xa1, Xz Xa2) = (f667, fI60, —fer, =) ([1, Prop. 3.10]).
The irreducible decomposition of tc-module V;®pc is given as follows:

Vd ®PC: Vd ®p+ & Vd ®P—. Vd ®pt’£ ® V[r+ex,s+ez: ut2].

e1,62€{x1)

The projectors
(€1,€2).
s Va ®P+—’ Virtensten utal,
plerea).
Py ?: Va®p_—Viprersten u-2l,

are explicitly given by [1, Lemma 3.12].

3. Radial A-part of the differential operator 2,

Let 1 be a unitary character of N=exp n. For F(9) €C5r, (N\G/K), let

V3aF (9) = 2RxF(9) ®X,, {Xu}: orthonormal basis of p
k
be the Schmid operator. Put Dyy=PY’+V, 4 with the projectors
PY: Vv, ®Opc—Vi= &) Va-s.
g &,

Let m4 be the discrete series representation of G where AEE; is a
Harish-Chandra parameter. Then d = [7, s; u] = A+ pc; — 20k, called the
Blattner parameter of m,, is the highest weight of the minimal K-type of 74.

For a Whittaker vector @€ Hom g (rrf, Cy (N\G) ), define @, -, € C3r (N\G/K)
by the following:

<U*, q)m.n (g)> :@(U*) (g) (U*E Vi, g EG)

The algebraic Whittaker function @, for the representation of the discrete
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series is uniquely determined at the value a €A =exp(a) by virtue of the
Iwasawa decomposition.

Theorem 3.1 ([11]). Let AEE;. Then,
Hom g (mf, C3 (N\G)) =ker (DY),

where d is the Blattner parameter of .

According to the result of Kostant [4, Th. 6.8.1], the dimension formula
can be obtained:

Theorem 3.2.
4 Jg=1, V),

dime (Hom g (1}, Cy (N\G))) = [ .
0 otherwise.

Proof. It is sufficient to conside the case of A€ & U Ey because of the
largeness of m4. In order to specify the dimension, consider

F*=exp (ac) = (diag(1, =1, 1, —=1), a=y/~1T ( 1 12) :

Define another representation 7'® by 7'® (9) =7 (a~'ga). Then, we see from
Tir,s: ul (a'_lxa) = Tis,r. —ul (X) = Twawi™ [, s u] (X)

that the Harish-Chandra parameter of m4* belongs to Zy. Using the same
argument in the proof of [2, Th. 4.2], we obtain the theorem.

It is also known that the rapidly-decreasing solution is unique if exists.
For a= (a1, az) =exp ((loga1) H1+ (logaz) Hz) €A, let 0;=a;0/0a; and

L1=1/20y, L =1/2(0, £ n:a3), $=§(a1/az)? S = (a1/a)*
We also put, for a character n of N,

772=~/__17] (E,), E=77(E5) +~/—:T77 (Es), S,:U(Es) _/_—177 (Es), ne=E§§".

The following lemma is obtained by direct calculation similar to [1, Lemma
6.5].
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Lemma 3.3. For F(9) = Z4icrs @) i) € Cyzoy (N\G/K) , d=[r, s; u], we

have,
£ (k—7) (s—1) S ch
Pl gt = (k—7) (14+1) (L,— (2k—21+7+3s—u+6)/4) Chisl
F 1) =0 (L= @e—2—rts—u+2)/4) | | crsus
(r+1) 1+1) Y Cr+1,1+1
t (k=71) (s—1)J Ch,l
Ble P gy = (r—k) (1+1) (LF+ 2k—21—r+s—u+2)/4) Ch,i+1
v o C =
T k1) (—s) (L (2k—21—3r—s—u—6) /4) Choni
(k+1) 1+1) S Ch+1,0+1

4. Integral representation of discrete series Whittaker function

In the following, 7 is assumed to be nondegenerate. According to
Theorem 3.2, we treat the cases of J=1I and V. Moreover, since we have

n'“ (E;) = —n (Ez) , the Whittaker functions of 74 (A € 5y) can be obtained
from 74 (A" = winwy'A € 5y) , by taking the parameters (s, r, —u, — ;) in
place of (r, s, u, n2). Thus we only treat the case of A € 5. Then, the
Blattner parameter of w4 is d =A+ [0, 0; 2].

Lemma 4.1. The projector P3" decomposes into four projectors as follows:

P{’=p-"@p-ep-Pept) (@)
Proof. We find that
Ah=A{[1, —1;2], [0, 1; £2], [—1, 1; 2], [0, 2; 0], [2, 0; 0]}
and that
Ara=A[1, —1;2], [1, 1; £2], [—1, 1; 2]}.
Thus the lemma follows.

According to Theorem 3.1, Whittaker functions are characterized by the

differential equations derived by the composition of the Schmid operator and

projectors which appears in the decomposition of P§".
Let @, (@) = Zkicky (@) fry. For notation, we write (D)., =cs,. Then, cp,'s

satisfy the following system which is equivalent to DY @=0:
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(Ct: D (P V®),,=0,

(€3 D (P22 V@) na— (s=1) (P V) 4141 =0,
(C3: 2w (P V@) i+ (14+1) (PP 7 @) ri+1=0,
(551 Dw (f—’(_'_“ D) ri— (k+1) (13(+")° V®)ri1,=0,
(C5: 2) (P2 V@) py— (r—k) (P70 V ®) 441,=0,

where we write V =V, , for simplicity.
Given ad= [, s; u], we put,

bo=bo(d) = (r+s+u)/2, bi1=b; (d) = (—r+s+u)/2,

ba=ba(d) = (r—s+u) /2, ba=bs(d) = (—r—s+u) /2. 3)

By Lemma 3.3 as well as [1, Lemma 6.5], the coefficients {cs.} satisfy the
following concrete equations:

(k—r) (I+].) (L1+ (b3—S_k+l_3) /2)61;,14.1

(Ct: Du + (+1) (s—1(Lz + (ba—k+1—1)/2) chsrs
+ (k+1) (l+1).(3,6k+1,1+1+ (k'—T) (s—l)dck,,=0,

r—k) (L= (b= k1) /2) cain
+ (k+1).<3,6‘k+1,1+1+ (k+1) (S_I)Ck.u,l:o,

(C3:2) (k1) (Li— (botr—k—1+1)/2) chsri— (k—7) Scri=0,
(C3: Dp U+1) LF— (be—k+1+1) /2) cysr— (s—1) Bery+ (k+1) (s—1) co1,=0,

(C3: 2 (s—1) (Li— (bytk+1+3)/2) chrri— U+1) S'cryr+1=0.

Each equation (C§:q) is derived from (C§: q).
Next, define

hey =RU(r—FR) 1 (s—1)1 g m/2qpr—hti=2ygbortk=l, (4)
Then the system satisfied by he,'s is given as follows:

(al+2b3_2)hk.l+l_§/ (al/az) 2hk+1,1+1+5(a1/az) zhk,l
HE: D — (0;—2n2a3+2b,— 2k +21) (a1/az) *hp41,=0
0<k<r—1,0<1<5—1),
(Hz: 1) u OohpintE (ar/az) *hpsriv1+2(1+1) (a1/az) Phesr, =0
(0<k<r—1,051<5—1),
(Hz: 1) o Ozhrot & (ar/az) hrs1,0=0 (0<k<r—1),
(Hz_ 2) ki (61_21’+2k+2)hk+11+&hk,1=0 (0£k£1’_1),
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(H3: 1) Oz sv1—E(ar/az) *hu,+2(r—k) (a1/az) *hps1,, =0
(0<k<r—1,0Z1<s5—1),
H3: 1)y Oohriv1—E(ar/az)2hy=0 (0<1<s—1),
31 2) ki (01 —=21) hiesri— ERer1,141=0 (0<1<s—1).

(
(
(H}: q)# is a direct consequence of (Cf:q)n. Concluding, we obtain the
differential equations satisfied by the Whittaker functions.

Proposition 4.2. Let @noo = 2piceifsl). Define hp, by (4). Then
hy, satisfies the following:

(i) (61+2b3‘2) Peger— (201"'62_2772(1%'{’2173“2) (01/(12) zkk+1.1:O
(0<k<y—1,0<51<s—1),

(ii) Oohpis1t (al/a2)2(31+2)1’tk+1,1=0 (OSkSr—l, 0<1<s—1),
(iii) (01 —2r+2k+2) hps1,+Ehr,=0 (0<kr<r—1),
(iv)  (01—=2D) hus1,1— Ehps1141=0 (0<1<5—1),
(v) Ooheot& (a1/a2) zth,O:O (03133—1)'
(Vi) azhr,l+1_€(al/az) zhm:O (03133—1).

Proof. Equation (i) can be obtained from Equations (H{:1)w, (Hi:1)u

and (H3: 1) . Equation (ii) is from (Hz: 2), and (Hs: 1).. The others are
clear.

Equations (iii) and (iv) in Proposition 4.2 tell us that h, determines the
system {h,;}. By the proposition above, we see that from (iii) and (v),
(010:— 10 (a1/az)?) hyo=0, (5)
and from (i), (iii) and (iv),

(a1+2b3_2) alzhr,o (6)
+ (261"‘62_27]2(1%"'21)3_2) (al/az) 27]0]’17,0:0.

Operating 0, to (6), we obtain the following:
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Corollary 4.3.
(3152_7]0(01/612) %) hyo=0, (7)
((0,+0,)2— (203—2) (0, +32) _Zﬂzagaz)hr'ozo- 8)

Equation (6) can be recovered from (8) by operating 3. We can also
check that this system becomes holonomic of rank 4.
To get an integral representation, first we consider

W (ay, az) =j:o¢ (u)exp(ﬂ%%—LV—u 9)

4a3/ u

for p€C(R5o). Then W formally satisfies the differential equation (7).
Suppose W satisfy (8) , then ¢ should be the solution of the following
differential equation,

2
4u23_14%+4b3%£-7]214¢=0. (10)

Putting v=4u and ¢ (u) =v™5*"2¢ (v), we see that Equation (10) becomes

a*¢ (1. 1/4— (bs—1)%\ , _
19— - na+ Jo=o0.

‘U2

If p,>0 (i.e. Im (n (E2)) <0), then we can find the unique rapidly-decreasing
solution,

¢ () = Wopa-1 (ZJU_zv)

where W,,(z) is the usual Whittaker function. Returning to Equation (9),
we can confirm the absolute convergence of the integral in this case. In
conclusion,

Theorem 4.4. Let A=1[r, s; u—2] € 5. Assume that Im (5 (E,)) <0
for a nondegenerate character n on N. Then there exists a rapidly-decreasing
Whittaker function @x, ., characterized by the following hy.:

*® 47]27]00} tz dt
hyo(ay, =Cf ERVRWo 1 (H) e < - -, 11
ola1, az) o 0.0a-1 (t) exp 12 167}za% ' (11)

where N:=—Im (n (E2)), bs= (—r—s+u)/2 and C is a constant.

Proof. The situation is completely similar to [6, Theorem (9.1)]. So we
omit the proof.

From this theorem, 7§ (A€ 5)) has no non-trivial rapidly-decreasing
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solution in its four-dimensional space of Whittaker vectors if 12> 0, which
agree with the Shalika’s multiplicity-one result.
Now recover the he,'s from h,o. By using Proposition 4.2, we have,

Theorem 4.5. Let A=[r. s; u—2] €5y, Assume that Im (1 (E;)) <0
for a nondegenerate character 1. Consider the rapidly-decreasing Whittaker
function Dr,z, (9) = 2Zricrs (G) for and define {he} by means of (4). Then they
can be expressed as follows:

! l . .
e =C2 (=1)! (k—r, 1—1) ( ) )(«S’) TR EN(—8na) Y (12)
i=0 1
® - 3 —i—7 47707)20'% _ tz ) dt
X,/; fbs+2lk IHV2ZY0 et (F) exp( 2 16722 FE

0
Here C is a constant independent of k and 1, the binomial <0 )‘—‘ 1, and

plp+1)-(p+q—1) (¢>0),
pg=141 (g=0),
0 (1—¢<p=<0. g#0),

for a non-positive inteder p and non negative integer q.

Proof. One can directly check that this formula satisfies the recursive
condition in Proposition 4.2. Its initial condition is exactly (11) in Theorem
4.4,
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