A note on pluricanonical maps for varieties of dimension 4 and 5

By
Meng Chen*

1. Introduction

Let X be a nonsingular projective variety of general type with dimension n defined over C. The behavior of its pluricanonical map $\Phi_{\left|m K_{x}\right|}$ is of special interest to the classification theory. For $n \geq 3$, it remains open whether there is an absolute function $m(n)$ such that $\Phi_{\left|m K_{x}\right|}$ is birational for $m \geq m(n)$. The simplest case to this problem is when X be a nonsingular minimal model. For $n \geq 4$, T. Matsusaka first proved the existence of $m(n)$; K. Maehara presented a function $m(n)$; T. Ando ([1]) got $m(4)=16$ and $m(5)=29$.

With I. Reider's results ([6]) and by improving T. Ando's method, we get the following effective result.

Theorem. Let X be a nonsingular projective variety of dimension $n \geq 4$ with nef and big canonical divisor K_{X}. Then there is a function $m(n)$ such that $\Phi_{m K_{x}}$ is birational for $m \geq m(n)$, where $m(4) \leq 12$ and $m(5) \leq 18$.

Throughout this note, most of our notations and terminologies are standard except the following which we are in favour of:
$:=$ - definition;
$\sim_{\text {lin }}$ ——linear equivalence;
$\sim_{n u m}$ ——numerical equivalence.

2. The main theorem

We begin by introducing I. Reider's result at first.
Lemma 2.1 (Corollary 2 of [6]). Let S be an algebraic surface, L a nef and big divisor on S. Suppose $L^{2} \geq 10$ and the rational map ϕ defined by $\left|L+K_{S}\right|$ is not birational, then S contains a base point free pencil E^{\prime} with $L \cdot E^{\prime}=1$ or $L \cdot E^{\prime}=2$.

[^0]We obviously obtain the following corollary.
Corollary 2.1 Let S be an algebraic surface, R a nef and big divisor on S. Then $\Phi_{|K s+m R|}$ is birational for $m \geq 4$.

Kawamata-Viehweg's vanishing theorem will be used in our proof with the following form.

Lemma 2.2 Let X be a nonsingular complete variety, a divisor D on X is nef and big, then $H^{i}\left(X, K_{X}+D\right)=0$ for all $i>0$.

Lemma 2.3 (Lemma 3 of [1]). Let $|M|$ be a complete linear system free from base points, and let D be a divisor with $|D| \neq \emptyset$. Assume that $|M|$ is not composed of a pencil, i.e., $\operatorname{dim} \Phi_{|M|}(X) \geq 2$. If $\Phi:=\Phi_{|M+D|}$ is not a birational map, then, for a general member Y of $|M|, \Phi$ is not birational on Y.

We have the following theorem.

Theorem 2.1 Let X be a nonsingular projective variety of dimension $n(n \geq 2)$. Suppose we have a sequence of nef and big divisors $L_{0}, L_{1}, \cdots, L_{n-2}$ such that $\operatorname{dim} \Phi_{\left|L_{i}\right|}(X) \geq i$ for $i>0$ and $\left|K_{X}+m L_{0}\right| \neq \emptyset$, then $\Phi_{\left|K_{X}+m L_{0}+L_{1}+\cdots+L_{n-2}\right|}$ is a birational map onto its image, where $m \geq 4$ is a positive integer.

Proof. We prove the statement by induction on n , the dimension of X.
For $n=2$, it is just corollary 2.1. So the theorem is true in this case.
Suppose the theorem be true for $n=d$, we want to give a proof for $n=$ $d+1$. Let $f: X^{\prime} \rightarrow X$ be blow-ups according to Hironaka such that $\Phi_{\left|f^{*}\left(L_{1}\right)\right|}$ is a morphism. Considering the system

$$
\left|K_{X^{\prime}}+m f^{*}\left(L_{0}\right)+f^{*}\left(L_{1}\right)+\cdots+f^{*}\left(L_{d-1}\right)\right|,
$$

set $f^{*}\left(L_{1}\right) \sim{ }_{\text {lin }} M+Z, M$ is the moving part and Z the fixed part. Because $\operatorname{dim} \Phi_{M \mid}\left(\mathrm{X}^{\prime}\right) \geq 1$ by assumption, we have two cases.

CaSE 1. If $\operatorname{dim} \Phi_{|M|}\left(X^{\prime}\right)=1$, let $g:=\Phi_{\left|L_{1}\right|}{ }^{\circ} f, W_{1}:=\overline{\Phi_{\left|L_{1}\right|}\left(X^{\prime}\right)}$ and

$$
X^{\prime} \xrightarrow{g_{1}} C \xrightarrow{s_{1}} W_{1}
$$

be the Stein factorization of g, we have $\mathrm{M} \sim_{n u m} a Y$, where Y is a general fiber of the fibration g_{1} and Y is a nonsingular projective variety of dimension d. We have the following exact sequence at least over a nonempty Zariski open subset of C :

$$
\begin{aligned}
& 0 \rightarrow \mathscr{O}_{X^{\prime}}\left(K_{X^{\prime}}+m f^{*}\left(L_{0}\right)+f^{*}\left(L_{2}\right)+\cdots+f^{*}\left(L_{d-1}\right)\right) \\
& \rightarrow \mathscr{O}_{X^{\prime}}\left(K_{X^{\prime}}+m f^{*}\left(L_{0}\right)+M+f^{*}\left(L_{2}\right)+\cdots+f^{*}\left(L_{d-1}\right)\right) \\
& \rightarrow \oplus_{1=1}^{a} \mathscr{O}_{Y_{i}}\left(K_{Y_{i}}+m L_{0}^{\prime}+L_{1}^{\prime}+\cdots+L_{d-2}^{\prime}\right) \rightarrow 0,
\end{aligned}
$$

where $L_{i}^{\prime}:=\left.f^{*}\left(L_{i+1}\right)\right|_{Y_{i}}$ for $i=1, \cdots, d-2, L_{0}^{\prime}=\left.f^{*}\left(L_{0}\right)\right|_{Y_{i}}$ and each Y_{i} is a general fiber of g_{1}. We obviouly see that L_{i}^{\prime} is nef and big on Y_{i} for $i \geq 0$. By Kawamata-Viehweg's vanishing theorem, we have

$$
H^{1}\left(X^{\prime}, K_{X^{\prime}}+m f^{*}\left(L_{0}\right)+f^{*}\left(L_{2}\right)+\cdots+f^{*}\left(L_{d-1}\right)\right)=0
$$

and therefore we get the surjective map

$$
\begin{aligned}
& H^{0}\left(X^{\prime}, K_{X^{\prime}}+m f^{*}\left(L_{0}\right)+M+f^{*}\left(L_{2}\right)+\cdots+f^{*}\left(L_{d-1}\right)\right) \\
& \quad \rightarrow \oplus_{i=1}^{a} H^{0}\left(Y_{i}, K_{Y_{i}}+m L_{0}^{\prime}+L_{1}^{\prime}+\cdots+L_{d-2}^{\prime}\right) \rightarrow 0
\end{aligned}
$$

This means that the system $\left|K_{X^{\prime}}+m f^{*}\left(L_{0}\right)+M+f^{*}\left(L_{2}\right)+\cdots+f^{*}\left(L_{d-1}\right)\right|$ can separate fibers of g and disjoint components of a general fiber of g at least over a nonempty Zariski subset of C. Furthermore,

$$
\left.\Phi_{\left|K_{x^{\prime}}+m f^{*}\left(L_{0}\right)+M+f^{*}\left(L_{2}\right)+\cdots+f^{*}\left(L_{d-1}\right)\right|}\right|_{Y_{i}}=\Phi_{\left|K_{r_{1}}+m L_{0}^{\prime}+L_{i}^{\prime}+\cdots+L_{d-2}^{\prime}\right|}
$$

Because $\operatorname{dim} \Phi_{|L i|}(X) \geq i$ for $i>0$, i.e., $\operatorname{dim} \Phi_{\left|f^{*}\left(L_{i}\right)\right|}\left(X^{\prime}\right)>i$, therefore

$$
\operatorname{dim} \Phi_{\left|L_{i}^{\prime}\right|}\left(Y_{i}\right) \geq i+1-1=i
$$

for $i=1, \cdots, d-2$. Because $\left|K_{X^{\prime}}+m f^{*}\left(L_{0}\right)\right| \neq \emptyset$ and $f^{*}\left(L_{0}\right)$ is big $K_{Y_{i}}+m L_{0}^{\prime}=$ $\left.\left[K_{X^{\prime}}+M+m f^{*}\left(L_{0}\right)\right]\right|_{Y_{i}}$ must be effective. Thus, by induction, we see that

$$
\Phi_{\left|K_{1}+m L_{0}^{\prime}+L_{i}^{\prime}+\cdots+L_{d-2}^{\prime}\right|}
$$

is birational. Therefore

$$
\Phi_{\left|K_{x^{x}}+m f^{*}\left(L_{0}\right)+M+m f^{*}\left(L_{2}\right)+\cdots+f^{*}\left(L_{d-2}^{\prime}\right)\right|}
$$

is birational and finally

$$
\Phi_{\left|K_{x}+m f^{*}\left(L_{l}\right)+f^{*}\left(L_{1}\right)+f^{*}\left(L_{2}\right)+\cdots+f^{*}\left(L_{d-1}\right)\right|}
$$

is birational.
CASE 2. If $\operatorname{dim} \Phi_{\left|f^{*}\left(L_{1}\right)\right|}\left(X^{\prime}\right) \geq 2$, i.e., $\left|f^{*}\left(L_{1}\right)\right|$ is not composed of a pencil, set $f^{*}\left(L_{1}\right) \sim{ }_{\text {lin }} M+Z$, where M is the moving part. By Bertini's theorem, a general member $Y \in|M|$ is a nonsingular projective variety of dimension d. Again, we consider the system

$$
\left|K_{X^{\prime}}+m f^{*}\left(L_{0}\right)+M+f^{*}\left(L_{2}\right)+\cdots+f^{*}\left(L_{d-1}\right)\right| .
$$

We have the following exact sequence

$$
\begin{aligned}
& 0 \rightarrow \mathscr{O}_{X^{\prime}}\left(K_{X^{\prime}}+m f^{*}\left(L_{0}\right)+f^{*}\left(L_{2}\right)+\cdots+f^{*}\left(L_{d-1}\right)\right) \\
& \quad \rightarrow \mathscr{O}_{X^{\prime}}\left(K_{X^{\prime}}+m f^{*}\left(L_{0}\right)+M+f^{*}\left(L_{2}\right)+\cdots+f^{*}\left(L_{d-1}\right)\right) \\
& \quad \rightarrow \mathscr{O}_{Y}\left(K_{Y}+m L_{0}^{\prime}+L_{1}^{\prime}+\cdots+L_{d-2}^{\prime}\right) \rightarrow 0
\end{aligned}
$$

where $L_{0}^{\prime}:=\left.f^{*}\left(L_{0}\right)\right|_{Y}$ and $L_{i}^{\prime}:=\left.f^{*}\left(L_{i+1}\right)\right|_{Y}$ for $i=1, \cdots, d-2$. It is obvious that L_{i}^{\prime} is nef and big on Y for $i=0, \cdots, d-2$. We can see that $\left|K_{Y}+m L_{0}^{\prime}\right| \neq \emptyset$ and $\operatorname{dim} \Phi_{\left|L_{i}^{\prime}\right|}(Y) \geq i$. Thus, by induction, $\Phi_{\left|K_{Y}+m L_{0}+L_{1}^{\prime}+\cdots+L_{d-2}^{\prime}\right|}$ is birational. From lemma 1.3, we see that

$$
\Phi_{\left|K_{x}+m f^{*}\left(L_{0}\right)+M+f^{*}\left(L_{2}\right)+\cdots+f^{*}\left(L_{d-1}\right)\right|}
$$

is birational. And therefore

$$
\Phi_{\left|K_{x}+m f^{*}\left(L_{0}\right)+f^{*}\left(L_{1}\right)+\cdots+f^{*}\left(L_{d-1}\right)\right|}
$$

is birational.
Defintion 2.1 Let X be a nonsingular projective variety of dimension n. Define

$$
\begin{aligned}
& r_{0}(X):=\min \left\{p \mid p \geq 5, h^{0}\left(X, m K_{X}\right)>0 \text { for } m \geq p\right\} ; \\
& r_{i}(X):=\min \left\{q \mid \operatorname{dim} \Phi_{\mid q K_{x}}(X) \geq i\right\}, i=1, \cdots, n-2: \\
& m(n, X):=\sum_{i=0}^{n-2} r_{i}(X) ; \\
& m(n):=\sup _{X}\{m(n, X)\} .
\end{aligned}
$$

By Matsusaka's theorem ([5]), $m(n)$ is a finite value. We have the following theorem.

Theorem 2.2 Let X be a nonsingular projective variety of dimension $n \geq 3$. The canonical divisor K_{X} is nef and big. Then $\Phi_{\left|m K_{x}\right|}$ is birational for $m \geq m(n)$.

Proof. This is a direct result from theorem 2.1. We only have to take $L_{0}=K_{X}, m=r_{0}(X)-1$ and $L_{i}=r_{i}(X) K_{X}$ for $i=1, \cdots, n-2$.

3. $m(4)$ and $m(5)$

Lemma 3.1 (See lemma 7' and lemma 8' of [1]). Let X be a nonsingular projective variety with nef and big canonical divisor $K_{X} . \operatorname{dim} X=n$. Then
(1) If $n=4$, we have $h^{0}\left(X, m K_{X}\right) \geq 2(m \geq 3)$; $\operatorname{dim} \Phi_{\left|m K_{X}\right|}(X) \geq 2(m \geq 4)$.
(2) If $n=5$, we have $h^{0}\left(X, m K_{X}\right) \geq 2(m \geq 3)$; $\operatorname{dim} \Phi_{\left|m K_{x}\right|}(X) \geq 2(m \geq 4)$; $\operatorname{dim} \Phi_{\left|m K_{x}\right|}(X) \geq 3(m \geq 6)$.

From the above lemma, we see that $m(4, X) \leq 12$ and $m(5, X) \leq 18$. Thus $m(4) \leq 12$ and $m(5) \leq 18$. Therefore we get the results on 4 and 5 dimensional cases by theorem 2.2 as follows.

Corollary 3.1 Let X be a nonsingular projective variety of dimension n. Suppose K_{X} is nef and big, then
(1) When $n=4, \Phi_{\left|m K_{x}\right|}$ is birational for $m \geq 12$;
(2) When $n=5, \Phi_{\left|m K_{x}\right|}$ is birational for $m \geq 18$.

Remark. A direct result of theorem 2.2 for $n=3$ is $m(3) \leq 7$. Certainly, this is a known result by [4]. We recently proved $m(3) \leq 6$ in [2].

Acknowledgement. The author would like to thank the referee for
many skillful suggestions.

Department of Applied Mathematics, Tongji University
Shanghai, 200092 China

References

[1] T. Ando,: Pluricanonical systems of algebraic varieties of general type of dimension ≤ 5, Adv. Stud. Pure Math. 10, 1987, Algebraic Geometry, Sendai, 1985, pp. 1-10.
[2] M. Chen,: On pluricanonical maps for threefolds of general type, J. Math. Soc. Japan, 50-4 (1998), to appear.
[3] Y. Kawamata,: A generalization of Kodaira-Ramanujam's vanishing theorem, Math. Ann., 261 (1982), 43-46.
[4] K. Matsuki,: On pluricanonical maps for 3-folds of general type, J. Math. Soc. Japan, 38-2 (1986), 339-359.
[5] T. Matsusaka,: On canonically polarized varieties. Algebraic Geometry, Bombay Colloquium 1968, 265-306. Oxford University Press, 1969.
[6] I. Reider,: Vector bundles of rank 2 and linear systems on algebraic surfaces. Ann. of Math., 127 (1988), 309-316.
[7] E. Viehweg.: Vanishing theorems, J. reine angew. Math., 335 (1982), 1-8.

[^0]: Communicated by Prof. K. Ueno. September 18, 1996
 Revised February 25, 1997
 *Supported by NNSFC

