The mod 3 homology of the space of loops on the exceptional Lie groups and the adjoint action

By
Hiroaki Hamanaka* and Shin-ichiro Hara

1. Introduction

Let p be a prime number and G be a compact, connected, simply connected and simple Lie group. Let ΩG be the loop space of G. Bott showed $H_{*}(\Omega G ; Z / p)$ is a finitely generated bicommutative Hopf algebra concentrated in even degrees, and determined it for classical groups G ([1]).

Here, let G be an exceptional Lie group, that is, $G=G_{2}, F_{4}, E_{6}, E_{7}, E_{8}$. In [2], K. Kozima and A. Kono determined $H_{*}(\Omega G ; Z / 2)$ as a Hopf algebra over \mathscr{A}_{2}, where \mathscr{A}_{p} is the $\bmod p$ Steenrod Algebra and acts on it dually.

Let Ad: $G \times G \rightarrow G$ and ad : $G \times \Omega G \rightarrow \Omega G$ be the adjoint actions of G on G and ΩG respectively. In [3], the cohomology maps of these adjoint actions are studied and it is shown that $H^{*}(a d ; Z / p)=H^{*}\left(p_{2} ; Z / p\right)$ where p_{2} is the second projection if and only if $H^{*}(G ; Z)$ is p-torsion free. For $p=2,3$ and 5 , some exceptional Lie groups have p-torsions on its homology. Moreover in [8, 9] $\bmod p$ homology map of ad is determined for $(G, p)=\left(G_{2}, 2\right),\left(F_{4}, 2\right),\left(E_{6}, 2\right)$, $\left(E_{7}, 2\right)$ and $\left(E_{8}, 5\right)$. This result is applied to compute the \mathscr{A}_{5} module structure of $H_{*}\left(\Omega E_{8} ; \mathrm{Z} / 5\right)$ and $H^{*}\left(E_{8} ; \mathrm{Z} / 5\right)$ in [9].

For a compact and connected Lie group G, the free loop group of G is denoted by $L G(G)$, i. e. the space of free loops on G equipped with multiplication as

$$
\phi \cdot \psi(t)=\phi(t) \cdot \psi(t)
$$

and has ΩG as its normal subgroup. Then

$$
L G(G) / \Omega G \cong G,
$$

and identifying elements of G with constant maps from S^{1} to $G, L G(G)$ is equal to the semi-direct product of G and ΩG. This means that the homology of $L G(G)$ is determined by the homology of G and ΩG as module and the algebra structure of $H_{*}(L G(G) ; Z / p)$ depends on $H_{*}(a d ; Z / p)$ where

$$
a d: G \times \Omega G \rightarrow \Omega G
$$

[^0]is the adjoint map. Since the next diagram commutes where $\lambda, \lambda^{\prime}$, and μ are the multiplication maps of $\Omega G, L G(G)$ and G respectively and ω is the composition
\[

$$
\begin{gathered}
\left(1_{\Omega G} \times T \times 1_{G}\right) \circ\left(1_{\Omega G \times G} \times a d \times 1_{G}\right) \circ\left(1_{\Omega G} \times \Delta_{G} \times 1_{\Omega G \times G}\right), \\
\Omega G \times G \times \Omega G \times G \xrightarrow{\omega} \Omega G \times \Omega G \times G \times G \xrightarrow{\lambda \times \mu} \Omega G \times G \\
\downarrow \cong \times \\
\lfloor\cong \cong \\
L G(G) \times L G(G) \longrightarrow
\end{gathered}
$$
\]

we can determine directly the algebra structure of $H_{*}(L G(G) ; Z / p)$ by the knowledge of the Hopf algebra structure of $H_{*}(G ; Z / p), H_{*}(\Omega G ; Z / p)$ and induced homology map $H_{*}(a d ; Z / p)$. See Theorem 6.12 of [8] for detail.

In this paper we determined the Hopf algebra structure over \mathscr{A}_{3} of the homology group $H_{*}(\Omega G ; Z / 3)$ for $G=F_{4}, E_{6}, E_{7}$ and E_{8} by using adjoint action and determine the mod 3 homology map of ad for them. The result is shown in $\S 2$.

This paper is organized as follows. We refer to the results of $[4,5,6]$ for the structure of $H^{*}(G)$ and compute $H^{*}(\Omega G)$ for the lower dimensions and their cohomology operations are partially determined. This is done in §3. In $\S 4$ we turn to their homology rings. We determine the algebra structure of $H_{*}(\Omega G ; Z / 3)$ and we partly determine the Hopf algebra structure and cohomology operaions on $H_{*}(\Omega G ; Z / 3)$. Finally in $\S 5$ the homology map of the adjoint action and the rest of the Hopf algebra structure and cohomology operations are determined. The computations are completely algebraic.

2. Results

Let $G(l)$ be the compact, connected, simply connected and simple exceptional Lie group of rank l where $l=4,6,7$ or 8 . The exponents of $G(l)$ are the integers $n(1)<n(2)<\cdots n(l)$ which are given by the following table:

l	$n(1)$,	$n(2)$,	\cdots,		$n(l)$						
4	1	5	7			11					
6	1	4	5	7	8		11				
7	1		5	7		9	11	13	17		
8	1	7				11	13	17	19	23	29

Put $E(l)=\{n(1), \cdots, n(l)\}$ and $\bar{\phi}(t)=\Delta_{*}(t)-(t \otimes 1+1 \otimes t)$ where Δ is the diagonal map. \mathscr{P}_{*}^{k} is the dual of the Steenrod operation \mathscr{P}^{k}. Then the results are following:

Theorem 1. As a Hopf Algebra over \mathscr{A}_{3},

$$
H_{*}(\Omega G(l) ; Z / 3) \cong \begin{cases}Z / 3\left[t_{2 j} \mid j \in E(l) \cup\{3\}\right] /\left(t_{2}{ }^{3}\right), & \text { if } l=4,6,7 \\ Z / 3\left[t_{2 j} \mid j \in E(8) \cup\{3,9\}\right] /\left(t_{2}{ }^{3}, t_{6}{ }^{3}\right), & \text { if } l=8\end{cases}
$$

where $\left|t_{2 j}\right|=2 j$.

$$
\begin{aligned}
& \bar{\phi}\left(t_{2 j}\right)= \begin{cases}0, & \text { if } j \neq 3,9, \\
-t_{2}{ }^{2} \otimes t_{2}-t_{2} \otimes t_{2}{ }^{2}, & \text { if } j=3, \\
t_{2}{ }^{2} t_{6}{ }^{2} \otimes t_{2}+t_{2} t_{6}{ }^{2} \otimes t_{2}{ }^{2}-t_{6}{ }^{2} \otimes t_{6}-t_{2}{ }^{2} t_{6} \otimes t_{2} t_{6} \\
-t_{2} t_{6} \otimes t_{2}{ }^{2} t_{6}-t_{6} \otimes t_{6}{ }^{2}+t_{2}{ }^{2} \otimes t_{2} t_{6}{ }^{2}+t_{2} \otimes t_{2}{ }^{2} t_{6}{ }^{2}, & \text { if } j=9,\end{cases} \\
& \mathscr{P}_{*}^{3} t_{2 j}=0, \quad \text { if } \quad r \geq 3, \\
& \mathscr{P}_{*}^{9} t_{2 j}= \begin{cases}t_{22}, & \text { if } j=29, \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

$\mathscr{P}^{1} t_{2 j}$ and $\mathscr{P}_{*}^{3} t_{2 j}$ are given by the following table:

$t_{2 j}$	t_{2}	t_{6}	t_{8}	t_{10}	t_{14}	t_{16}	t_{18}	t_{22}	t_{26}	t_{34}	t_{38}	$t_{46} t_{58}$	
$\mathscr{P}_{* t_{2 j}}$	0	t_{2}	0	0	t_{10}	0	$\varepsilon t_{14}-t_{2} t_{6}{ }^{2}$	$\kappa t_{6}{ }^{3}{ }^{2} t_{22}$	$-\varepsilon t_{10}{ }^{3}$	εt_{34}	$\varepsilon t_{14}{ }^{3} t_{18}{ }^{3}$		
$\mathscr{P}_{* 2 j}^{3} t_{2 j}$	0	0	0	0	0	0	t_{6}	0	t_{14}	t_{22}	$-t_{26}$	t_{34}	0

where ε and κ are 1 or -1 .
Remark. In Theorem 1, if $t_{2 j}$ does not exist in $H_{*}(\Omega G(l) ; Z / 3)$, we regard $t_{2 j}$ as 0 for such j.

Let Ad: $G \times G \rightarrow G$ and ad: $G \times \Omega G \rightarrow \Omega G$ be the adjoint actions of a Lie group G defined by $\operatorname{Ad}(g, h)=g h g^{-1}$ and $\operatorname{ad}(g, l)(t)=g l(t) g^{-1}$ where $g, h \in G$, $l \in \Omega G$ and $t \in[0,1]$. These induce the homology maps

$$
\begin{aligned}
& \operatorname{Ad}_{*}: H_{*}(G ; Z / 3) \otimes H_{*}(G ; Z / 3) \rightarrow H_{*}(G ; Z / 3) \\
& \operatorname{ad}_{*}: H_{*}(G ; Z / 3) \otimes H_{*}(\Omega G ; Z / 3) \rightarrow H_{*}(\Omega G ; Z / 3)
\end{aligned}
$$

Theorem 2. There are generators y_{8} in $H_{*}(G(l) ; Z / 3)$ for $l=4,6,7$ and y_{8} and y_{20} in $H_{*}\left(E_{8} ; Z / 3\right)$. We can choose these generators so that ad ${ }_{*}\left(y_{i} \otimes t_{2 j}\right)$ $(i=8,20)$ is given by the following table.

$t_{2 j}$	$a d *\left(y_{8} \otimes t_{2 j}\right)$	$a d *\left(y_{20} \otimes t_{2 j}\right)$	$t_{2 j}$	$a d *\left(y_{8} \otimes t_{2 j}\right)$	$a d *\left(\mathrm{y}_{20} \otimes t_{2 j}\right)$
t_{2}	t_{10}	εt_{22}	t_{22}	$-t_{10}{ }^{3}$	$-t_{14}{ }^{3}{ }^{3}$
t_{6}	$t_{14}-t_{10} t_{2}{ }^{2}$	$t_{26}-\varepsilon t_{22} t_{2}{ }^{2}$	t_{26}	$t_{34}{ }^{3}$	$-t_{46}$
t_{8}	t_{16}	-	t_{34}	$-t_{14}{ }^{3}$	$\varepsilon t_{18}{ }^{3}$
t_{10}	$\kappa t_{6}{ }^{3}$	-	t_{38}	$-t_{46}$	t_{58}
t_{14}	t_{22}	t_{34}	t_{46}	$-\varepsilon t_{18}{ }^{3}$	$\varepsilon t_{22}{ }^{3}$
t_{16}	$\delta t_{8}{ }^{3}$	-	$-\varepsilon t_{22}{ }^{3}$	$-t_{26}{ }^{3}$	
t_{18}	$t_{26}+t_{10} t_{6}{ }^{2} t_{2}{ }^{2}-t_{14} t_{6}{ }^{2} t_{38}+\varepsilon t_{22} t_{6}{ }^{2} t_{2}{ }^{2}-t_{26} t_{6}{ }^{2}$				

where $\delta, \varepsilon \in Z / 3 Z$ and $\varepsilon \neq 0$. For other generators $y_{i} \in H_{*}(G(l) ; Z / 3)$, ad $\left(y_{i} \otimes t_{2 j}\right)=0$ for all j.

3. The mod 3 cohomology groups

We recall the results of $[4,5,6]$ for the structure of $H^{*}(G(l) ; Z / 3)$ as the Hopf algebra over \mathscr{A}_{3}.

Theorem 3. There is an isomorphism:
$H^{*}(G(l) ; Z / 3) \cong \begin{cases}\Lambda\left(x_{2 j+1} \mid j \in E(l) \cup\{3\}-\{11\}\right) \otimes Z / 3\left[x_{8}\right] /\left(x_{8}^{3}\right), & \text { if } l=4,6,7, \\ \Lambda\left(x_{2 j+1} \mid j \in E(8) \cup\{3,9\}-\{11,29\}\right) \otimes Z / 3\left[x_{8,}, x_{20}\right] /\left(x_{8}^{3}, x_{20}{ }^{3}\right), & \text { if } l=8,\end{cases}$
the coproduct is given by:

x_{i}	$\bar{\varphi} x_{i}$
x_{11}	$x_{8} \otimes x_{3}$
x_{15}	$x_{8} \otimes x_{7}$
x_{17}	$x_{8} \otimes x_{9}$
x_{27}	$x_{8} \otimes x_{19}+x_{20} \otimes x_{7}$
x_{35}	$x_{8} \otimes x_{27}-x_{8}{ }^{2} \otimes x_{19}+x_{20} \otimes x_{15}+x_{8} x_{20} \otimes x_{7}$
x_{39}	$x_{20} \otimes x_{19}$
x_{47}	$-x_{8} \otimes x_{39}-x_{20} \otimes x_{27}-x_{20} x_{8} \otimes x_{19}+x_{20}{ }^{2} \otimes x_{7}$
others	0

and the cohomology operations are determined by the following table:

x_{i}	x_{3}	x_{7}	x_{8}	x_{9}	x_{11}	x_{15}	x_{17}	x_{19}	x_{20}	x_{27}	x_{35}	x_{39}	x_{47}
βx_{i}	0	x_{8}	0	0	0	$-x_{8}{ }^{2}$	0	x_{20}	0	$x_{8} x_{20}$	$-x_{8}{ }^{2} x_{20}$	$-x_{20}{ }^{2}$	$x_{8} x_{20}{ }^{2}$
$\mathscr{P}^{1} x_{i}$	x_{7}	0	0	0	x_{15}	εx_{19}	0	0	0	0	εx_{39}	0	0
$\mathscr{P}^{3} x_{i}$	0	x_{19}	x_{20}	0	0	x_{27}	0	0	0	$-x_{39}$	x_{47}	0	0

where ε is 1 or -1 .
If $r>1$ then $\mathscr{P}^{3 r} x_{i}=0$.
Remark. We consider x_{i} in these tables as 0 when $x_{i} \notin H^{*}$.

Recall a Serre fibration:

$$
\Omega G(l) \rightarrow * \rightarrow G(l) . \quad(\mathrm{A})
$$

First, we compute $H^{*}(\Omega G(l) ; Z / 3)$ by the Serre spectral sequence associated with the fibration (A). This spectral sequence has a Hopf algebra structure. We can proceed to compute it using degree-reason and Kudo's transgression theorem ([7]) from the previous theorem. For $j \in E(l)-\{9,11,29\}$, there are universally transgressive elements $a_{2 j} \in H^{*}(\Omega G(l) ; Z / 3)$, such that $\tau a_{2 j}=x_{2 j+1}$. Thus we can show that for $j=9,11,15,21,27$ and 29 , there are $\mathrm{a}_{2 j}$ such that satisfy

$$
\begin{aligned}
& d_{7}\left(1 \otimes \mathrm{a}_{18}\right)=x_{7} \otimes_{\mathrm{a}_{2}}{ }^{6}, \quad \text { for } l=4,6,7, \\
& d_{11}\left(1 \otimes \mathrm{a}_{30}\right)=x_{11} \otimes_{\mathrm{a}_{10}}{ }^{2}, \quad \text { for } l=4,6,7, \\
& d_{15}\left(1 \otimes \mathrm{a}_{42}\right)=x_{15} \otimes_{14} \mathrm{a}_{14}, \quad \text { for } l=8, \\
& d_{19}\left(1 \otimes \mathrm{a}_{22}\right)=x_{3} x_{8}{ }^{2} \mathrm{a}_{2}{ }^{2}, \quad \text { for } l=4,6,7,8, \\
& d_{19}\left(1 \otimes \mathrm{a}_{54}\right)=x_{19} \otimes_{\mathrm{a}_{2}{ }^{18}, \quad \text { for } l=8,} \\
& d_{47}\left(1 \otimes \mathrm{a}_{58}\right)=x_{7} x_{20}{ }^{2} \otimes_{\mathrm{a}_{2}}{ }^{6}, \quad \text { for } l=8 .
\end{aligned}
$$

$a_{2 j}{ }^{\prime} s$ are generators of the cohomology group in the low dimensions. The results are the following:

Proposition 4. For the dimensions less than $2 n(l)+2$, the next isomorphism holds:

$$
H^{*}(\Omega G(l) ; Z / 3) \cong \begin{cases}Z / 3\left[a_{2 j} \mid j \in E(l) \cup\{9\}\right] /\left(a_{2}{ }^{9}\right), & \text { if } l=4,6, \\ Z / 3\left[a_{2 j} \mid j \in E(7) \cup\{15\}\right] /\left(a_{10}{ }^{3}\right), & \text { if } l=7, \\ Z / 3\left[a_{2 j} \mid j \in E(8) \cup\{21,27\}\right] /\left(a_{2}{ }^{27}, a_{14^{3}}{ }^{3}\right), & \text { if } l=8 .\end{cases}
$$

Now we start to determine the cohomology operations and the coproducts on $a_{2 j}$.

Theorem 5. For $j \in E(l)-\{9,11,29\}_{a_{2 j} \in H^{*}}(\Omega G(l) ; Z / 3)$ is primitive and cohomology operations are determined by

$a_{2 j}$	a_{2}	a_{8}	a_{10}	a_{14}	a_{16}	a_{26}	a_{34}	a_{38}	a_{46}
$\mathscr{P}^{1} a_{2 j}$	$a_{2}{ }^{3}$	0	a_{14}	$\varepsilon a_{2}{ }^{9}$	0	0	εa_{38}	0	0
$\mathscr{P}^{3} a_{2 j}$	0	0	0	a_{26}	0	$-a_{38}$	a_{46}	0	0

If $r>1$ then $\mathscr{P}^{3 r} a_{2 j}=0$.

Proof. For $j \in E(l)-\{9,11,29\}, a_{2 j}$ is transgressive, therefore $\mathscr{P}^{i} a_{2 j}=$ $\mathscr{P}^{i} \sigma x_{2 j+1}=\sigma \mathscr{P}^{i} x_{2 j+1}$. Thus this can be determined by Theorem 3.

For the investigation of $a_{2 j}$ which is not transgressive we start from the
following theorem. In the next theorem, ψ means the coproduct of $H^{*}(\Omega G$; $Z / 3)$ and we set $\bar{\psi}(a)=\psi(a)-(a \otimes 1+1 \otimes a)$.

Theorem 6. For $j=9,15,21,27, \bar{\psi} a_{2 j}$ is given by the following formula:

$$
\bar{\psi} a_{2 j}= \begin{cases}a_{2}{ }^{3} \otimes a_{2}{ }^{6}+a_{2}{ }^{6} \otimes a_{2}{ }^{3}, & \text { if } j=9, \\ a_{10} \otimes a_{10}{ }^{2}+a_{10}{ }^{2} \otimes a_{10}, & \text { if } j=15, \\ a_{14} \otimes a_{14}{ }^{2}+a_{14}{ }^{2} \otimes a_{14}, & \text { if } j=21, \\ a_{2}{ }^{9} \otimes a_{2}{ }^{18}+a_{2}{ }^{18} \otimes a_{2}{ }^{9}, & \text { if } j=27 .\end{cases}
$$

Proof. To begin with, we investigate the element a_{18}. Let a_{2}^{\prime} be the generator of $H^{2}\left(\Omega F_{4} ; Z\right) . H^{*}\left(\Omega F_{4} ; Z\right)$ has no torsion and is a commutative Hopf algebra over Z. Since $\mathrm{a}_{2}{ }^{9}=0$, there is a_{18}^{\prime} such that $\mathrm{a}_{2}^{\prime 9}=3 \mathrm{a}_{18}^{\prime}$ and $\rho a_{18}^{\prime} \neq 0$, where ρ is modulo 3 reduction. Then we can choose a_{18} as ρa_{18}^{\prime}. The coproduct of a_{18}^{\prime} is computed as follows:

$$
\begin{aligned}
\psi a_{18}^{\prime} & =1 / 3 \psi a_{2}^{\prime 9} \\
& =1 / 3\left(1 \otimes a_{2}^{\prime}+a_{2}^{\prime} \otimes 1\right)^{9} \\
& \equiv a_{18}^{\prime} \otimes 1+a_{2}^{\prime 3} \otimes a_{2}^{\prime 6}+a_{2}^{\prime 3}+1 \otimes a_{18}^{\prime}(\bmod 3) .
\end{aligned}
$$

Thus $\bar{\phi} a_{18}=a_{2}{ }^{3} \otimes a_{2}{ }^{6}+a_{2}{ }^{6}+\otimes a_{2}{ }^{3}$ is shown.
Consider the inclusion $c: F_{4} \rightarrow E_{7}$, we chose $a_{18} \in H^{*}\left(\Omega E_{7} ; Z / 3\right)$ so as to satisfy $(\Omega \iota) a^{*} a_{18}=a_{18}$. Because $(\Omega \iota)^{*}$ is injective for degrees less than 18 , $\bar{\psi} a_{18}=a_{2}{ }^{3} \otimes a_{2}{ }^{6}+a_{2}{ }^{6} \otimes a_{2}{ }^{3}$ is shown again for this a_{18}. And in the similar way we put $a_{30}=1 / 3 a_{10}{ }^{3}, a_{42}=1 / 3 a_{14}{ }^{3}$ and $a_{54}=1 / 3 a_{2}{ }^{27}$ and obtain the coproduct formulas of the statement.

We remark that we can assume that a_{22} and a_{58} are primitive.
Theorem 7. In Proposition 4 we have that $\mathscr{P}{ }^{1} \mathrm{a}_{18}= \pm a_{22}$.
Let $\widetilde{G}(l)$ be the 3 -connected cover of $G(l)$ and

$$
\begin{align*}
& \Omega \widetilde{G}(l) \rightarrow * \quad \underset{G}{ }(l) \tag{B}\\
& \widetilde{G}(l) \xrightarrow{p} G(l) \xrightarrow{i} K(Z, 3) \tag{C}\\
& \Omega \widetilde{G}(l) \xrightarrow{\Omega \rightarrow} \quad \Omega G(l) \xrightarrow{\Omega i} K(Z, 2) \tag{D}
\end{align*}
$$

be Serre fibrations. To prove Theorem 7 we have to compute $H^{*}(\Omega \widetilde{G} ; Z / 3)$ and $H^{*}(\widetilde{G} ; Z / 3)$.

Let $\widetilde{a}_{2 j}$ be $(\Omega p)^{*} a_{2 j}$, for $j \neq 1$. Using the Serre spectral sequence associated with the fibration (D), one can easily show that there are generators $\widetilde{a}_{17} \in H^{17}$ for $l=4,6$, and $\widetilde{a}_{53} \in H^{53}$ for $l=8$. We have the
following proposition. Let denote $E(l)-\{1\}$ as $\widetilde{E}(l)$.
Proposition 8. For the dimensions less than $2 n(l)+2$, the next isomorphism holds:

$$
H^{*}(\Omega \widetilde{G}(l) ; Z / 3) \cong \begin{cases}Z / 3\left[\widetilde{a}_{2 j} \mid j \in \widetilde{E}(l) \cup\{9\}\right] \otimes \Lambda\left(\widetilde{a}_{17}\right), & \text { if } l=4,6, \\ Z / 3\left[\widetilde{a}_{2 j} \mid j \in \widetilde{E}(7) \cup\{15\}\right] /\left(\widetilde{a}_{10}{ }^{3}\right), & \text { if } l=7, \\ Z / 3\left[\widetilde{a}_{2 j} \mid j \in \widetilde{E}(8) \cup\{21,27\}\right] /\left(\widetilde{a}_{14}{ }^{3}\right) \otimes \Lambda\left(\widetilde{a}_{53}\right), & \text { if } l=8 .\end{cases}
$$

By computing the Serre spectral sequence associated with (B), it is easy to see $\widetilde{a}_{2 j},(j \neq 15,21)$ is universally transgressive. Let \widetilde{x}_{i+1} be $\tau \widetilde{a}_{i}$. Then we have the following:

Proposition 9. For the dimensions less than $2 n(l)+2$, the next isomorphism holds:

$$
H^{*}(\widetilde{G}(l) ; Z / 3) \cong \begin{cases}\Lambda\left(\widetilde{x}_{2 j+1} \mid j \in \widetilde{E}(l) \cup\{9\}\right) \otimes Z / 3\left[\widetilde{x}_{18}\right], & \text { if } l=4,6, \\ \Lambda\left(\widetilde{x}_{2 j+1} \mid j \in \widetilde{E}(7)\right), & \text { if } l=7, \\ \Lambda\left(\widetilde{x}_{2 j+1} \mid j \in \widetilde{E}(8) \cup\{27\}\right) \cup Z / 3\left[\widetilde{x}_{54}\right], & \text { if } l=8 .\end{cases}
$$

Proof of Therorem 7. It is possible to show that $\mathscr{P}^{1} a_{18}$ is not zero as follows. Let σ^{\prime} denotes the cohomology suspension associated to the fibration (C) for $l=4$. It is easy to see $\widetilde{x}_{19}=\sigma^{\prime} \beta \mathscr{P}^{3} \not \mathscr{P}^{1} u_{3}$ and $\tilde{x}_{23}=\sigma^{\prime}\left(\beta \mathscr{P}^{1} u_{3}\right)^{3}$, where u_{3} is the generator of $H^{3}(\mathrm{~K}(Z, 3) ; Z / 3)$. So we get $\mathscr{P}^{1} \widetilde{x}_{19}=\sigma^{\prime} \mathscr{P}^{1} \beta \mathscr{P}^{3} \mathscr{P}^{1} u_{3}=$ $\sigma^{\prime} \mathscr{P}^{4} \beta \mathscr{P}^{1} u_{3}=\sigma^{\prime}\left(\beta \mathscr{P}^{1} u_{3}\right)^{3}=\widetilde{x}_{23}$, and from this, we have $(\Omega p)^{*} \mathscr{P}^{1} a_{18}=\mathscr{P}^{1}(\Omega p)^{*} a_{18}$ $=\mathscr{P}^{1} \widetilde{a}_{18}=\mathscr{P}^{1} \sigma \widetilde{x}_{19}=\sigma \mathscr{P}^{1} \widetilde{x}_{19}=\sigma \widetilde{x}_{23}=a_{22}$, where σ is the cohomology suspension associated to (B). Thus $\mathscr{P} a_{18} \neq 0$. We fix a_{22} as $\mathscr{P} a_{18}$.

4. Homology groups

Theorem 10. The homology ring of $\Omega G(l)$ is

$$
H_{*}(\Omega G(l) ; Z / 3) \cong \begin{cases}Z / 3\left[t_{2 j} j \in E(l) \cup\{3\}\right] /\left(t_{2}{ }^{3}\right), & \text { if } l=4,6,7 \tag{1}\\ Z / 3\left[t_{2 j} \mid j \in E(8) \cup\{3,9\}\right] /\left(t_{2}{ }^{3}, t_{6}{ }^{3}\right), & \text { if } l=8 .\end{cases}
$$

where $\left|t_{2 j}\right|=2 j$. The coproduct is given by

$$
\bar{\phi}\left(t_{2 j}\right)= \begin{cases}0, & \text { if } j \neq 3,9,11,29, \\ -t_{2}{ }^{2} \otimes t_{2}-t_{2} \otimes t_{2}{ }^{2}, & \text { if } j=3, \\ t_{2}{ }^{2} t_{6}{ }^{2} \otimes t_{2}+t_{2} t_{6}{ }^{2} \otimes t_{2}{ }^{2}-t_{6}{ }^{2} \otimes t_{6}-t_{2}{ }^{2} t_{6} \otimes t_{2} t_{6} & \\ -t_{2} t_{6} \otimes t_{2}{ }^{2} t_{6}-t_{6} \otimes t_{6}{ }^{2}+t_{2}{ }^{2} \otimes t_{2} t_{6}{ }^{2}+t_{2} \otimes t_{2}{ }^{2} t_{6}{ }^{2}, & \text { if } j=9 .\end{cases}
$$

Proof. Let $t_{2 j}$ be the dual elemet of $a_{2 j} \in H_{*}(\Omega G ; Z / 3)$ as to the monomial basis for $j \in E(l)-\{9\}$ and t_{6}, t_{18} be the dual element of $\mathrm{a}_{2}{ }^{3}, \mathrm{a}_{2}{ }^{9}$, respectively. It is easy to see $t_{2}{ }^{3}=t_{6}{ }^{3}=0$ and to show the coproduct formula for t_{6} and t_{18}. Thus we can say that statement (1) is true for $*<2 n(l)+2$.

Now it is possible to show that there is no truncation in $H_{*}(\Omega G ; Z / 3)$ other than the parts generated by t_{2} and t_{6} and that (1) holds for all dimensions. Since $H_{*}(\Omega G(l) ; Z / 3)$ is the even degree concentrated commutative Hopf algebra, we may suppose

$$
\left.H_{*}(\Omega G(l) ; Z / 3)=Z / 3\left[u_{i} \mid i \in I\right] \otimes Z / 3\right)\left[v_{j} \mid j \in J\right] /\left(v_{j}^{3^{\prime}} \mid j \in J\right) .
$$

Consider an Eilenberg-Moore spectral sequence:

$$
E_{2}=\operatorname{Ext}_{H_{*}(\Omega G(l): Z / 3)}(Z / 3, Z / 3) \Rightarrow E_{\infty}=\mathscr{G}_{r}\left(H^{*}(G(l) ; Z / 3)\right) .
$$

Since $E_{2}=\Lambda\left(s u_{i} \mid i \in I\right) \otimes \Lambda\left(s u_{j} \mid j \in J\right) \otimes Z / 3\left[\theta v_{j} \mid j \in J\right]$, where deg $s u_{i}=\left(1,\left|u_{i}\right|\right)$, $\operatorname{deg} s u_{j}=\left(1,\left|v_{j}\right|\right)$, and $\operatorname{deg} \theta v_{j}=\left(2,3^{r_{j}}\left|v_{j}\right|\right)$, the essential differentials have the forms: $d_{r} s u_{i}=\left(\theta v_{j}\right)^{3^{k}} \quad\left(k_{j} \geq 1\right)$ or $d_{r} s u_{j}=\left(\theta v_{j^{\prime}}\right)^{3^{l}{ }^{\prime}}\left(l_{j} \geq 1\right)$. Because $H^{*}(G(l)$; $Z / 3$) is a finite dimensional vector space, one can easily show

$$
E_{\infty}=\Lambda\left(s u_{i} \mid i \in I^{\prime}\right) \otimes \Lambda\left(s u_{j} \mid j \in J^{\prime}\right) \otimes Z / 3\left[\theta v_{j} \mid j \in J\right] /\left(\left(\theta v_{j}\right)^{3 m^{\prime}} \mid j \in J\right), \quad\left(I^{\prime} \subset I, J^{\prime} \subset J\right)
$$

and $\left|I^{\prime}\right|+\left|J^{\prime}\right|=|I|$. Here the total dimension of E_{∞} is $2^{|r|+\left|V^{\prime}\right|} 3^{\Sigma_{\text {fe }} m_{j}},\left(m_{j} \geq 1\right)$ and the total dimension of $H^{*}(G(l) ; Z / 3)$ is $2^{|E(l)|} 3^{f(l)}$ where $f(l)=1$ for $l=4,6,7$ and $f(l)=2$ for $l=8$. Thus the indices J of the truncation part satisfy that $|J| \leq f(l)$ and $|I|=|E(l)|$. This means that the truncation parts of $H_{*}(\Omega G$; $Z / 3)$ is generated by only t_{2} and t_{6}.

Therefore $H_{*}(\Omega G(l) ; \mathrm{Z} / 3)$ has the form

$$
\begin{array}{ll}
Z / 3\left[u_{i} \mid i \in I\right] \otimes Z / 3\left[t_{2}\right] /\left(t_{2}{ }^{3}\right) & \text { for } l=4,6,7 \text { and } \\
Z / 3\left[u_{i} \mid i \in I\right] \otimes Z / 3\left[t_{2}, t_{6}\right] /\left(t_{2}{ }^{3}, t_{6}{ }^{3}\right) & \text { for } l=8 .
\end{array}
$$

Also Theorem 5 means that for $j \in E(l)-\{9\} t_{2 j}$ is primitive and indecomposable and t_{6}, t_{18} are indecomposable. Thus

$$
\begin{aligned}
& \left\{t_{2 j} \mid j \in \widetilde{E}(l)\right\} \cup\left\{t_{6}\right\} \subset\left\{u_{i} \mid i \in I\right\} \quad \text { for } l=4,6,7 \text { and } \\
& \left\{t_{2 j} \mid j \in \widetilde{E}(l)\right\} \cup\left\{t_{18}\right\} \subset\left\{u_{i} \mid i \in I\right\} \text { for } l=8 .
\end{aligned}
$$

Since $|I|=|E(l)|$, the theorem is proved.
Dualizing the result of Theorem 5 and Theorem 7, we obtain the statement of Theorem 1 except for $\mathscr{P}_{*}^{1} t_{26}, \mathscr{P}_{*}^{1} t_{34}, \mathscr{P}_{*}^{3} t_{34}, \mathscr{P}_{*}^{1} t_{46}, \mathscr{P}_{*}^{1} t_{58}$ and $\mathscr{P}_{*}^{9} t_{58}$. To determine these operations, we use the adjoint action of $H_{*}(G(l) ; Z / 3)$ on $H_{*}(\Omega G(l) ; \mathrm{Z} / 3)$ which is introduced in the next section.

Remark. The computation of dualizing the result of Theorem 5 and Theorem 7 is not difficult except for $\mathscr{P}_{*}^{1} t_{18}$, because $\mathscr{P}_{*}^{n} t$ is primitive if t is
primitive. Moreover, it is easily shown

$$
\bar{\phi}\left(\mathscr{P} * t_{18}^{1}\right)=\mathscr{P} P_{*}^{1} \bar{\phi}\left(t_{18}\right)=\bar{\phi}\left(-t_{2} t_{6}^{2}\right)
$$

and this shows $\mathscr{P}_{*}^{1} t_{18}=-t_{2} t_{6}{ }^{2}$ modulo primitive elements. By Theorem 5 we can see $\mathscr{P}^{1} a_{14}=\varepsilon a_{2}{ }^{9}$ and this shows that $\mathscr{P}_{*}^{1} t_{18}=\varepsilon t_{14}-t_{2} t_{6}{ }^{2}$.

5. Adjoint action

Put $y * y^{\prime}=\operatorname{Ad} *\left(y \otimes y^{\prime}\right)$ and $y * t=\operatorname{ad} *(y \otimes t)$ where $y, y^{\prime} \in H_{*}(G ; Z / 3)$ and $t \in H_{*}(\Omega G ; Z / 3)$. The following theorem is the dual result of [3]. Also see [9].

Theorem 11. For, $y, y^{\prime}, y^{\prime \prime} \in H_{*}(G ; Z / 3)$ and $t, t^{\prime} \in H_{*}(\Omega G ; Z / 3)$
(i) $1 * y=y, 1 * t=t$.
(ii) $y * 1=0$, if $|y|>0$, whether $1 \in H_{*}(G ; Z / 3)$ or $1 \in H_{*}(\Omega G ; Z / 3)$.
(iii) $\left(y y^{\prime}\right) * t=y *\left(y^{\prime} * t\right)$.
(iv) $y *\left(t t^{\prime}\right)=\sum(-1)^{\left|u^{\prime \prime}\right||t|}\left(y^{\prime} * t\right)\left(y^{\prime \prime} * t^{\prime}\right)$ where $\Delta_{* y}=\sum y^{\prime} \otimes y^{\prime \prime}$.
(v) $\sigma(y * t)=y * \sigma(t)$ where σ is the homology suspension.
(vi) $\mathscr{P}_{*}^{n}(y * t)=\sum_{i}\left(\mathscr{P}_{*}^{i} y\right) *\left(\mathscr{P}_{*}^{n-i} t\right)$.

$$
\mathscr{P}_{*}^{n}\left(y * y^{\prime}\right)=\sum_{i}\left(\mathscr{P}_{*}^{i} \underset{*}{ }\right) *\left(\mathscr{P}_{*}^{n-i} y^{\prime}\right) .
$$

(vii) $\quad \Delta_{*}(y * t)=\left(\Delta_{*}\right) *\left(\Delta_{*} t\right)$

$$
=\sum(-1)^{\left|y^{\prime \prime \prime}\right| t^{\prime} \mid}\left(y^{\prime} * t^{\prime}\right) \otimes\left(y^{\prime \prime} * t^{\prime \prime}\right)
$$

where $\Delta_{* y}=\sum y^{\prime} \otimes y^{\prime \prime}$ and $\Delta_{*} t=\sum t^{\prime} \otimes t^{\prime \prime}$.
And $\bar{\Delta}_{*}(y * t)=\left(\Delta_{* y}\right) *\left(\bar{\Delta}_{*} t\right)$.
(viii) If t is primitive then $y * t$ is primitive.

Also the result of [3] implies the following theorem. See [8].
Theorem 12. We set a submodule A of $H_{*}(G ; Z / 3)$ as

$$
\begin{array}{ll}
A=Z / 3\left[y_{8}\right] /\left(y_{8}{ }^{3}\right) & \text { for } G=F_{4}, E_{6}, E_{7} \text { and } \\
A=Z / 3\left[y_{8}, y_{20}\right] /\left(y_{8}{ }^{3}, y_{20}{ }^{3}\right) & \text { for } G=E_{8}
\end{array}
$$

where $y_{2 i}$ is the dual of $x_{2 i}$ with respect to the monomial basis. Then there exists a retraction $p: H_{*}(G ; Z / 3) \rightarrow A$ and the following diagram commutes.

Remark. By Theorem 3 we can see $\mathscr{P}_{*}^{3} y_{20}=y_{8}$.

Since Ad_{*} is agreed with the composition $\mu_{*}{ }^{\circ}\left(1 \otimes \mu_{*}\right) \circ\left(1 \otimes 1 \otimes \iota_{*}\right) \circ$ $(1 \otimes T) \circ\left(\Delta_{*} \otimes 1\right)$ where μ is the multiplication of $G(l)$ and c is the inverse map, the next theorem follows. See [9].

Theorem 13. Let $y, y^{\prime} \in H_{*}(G)$. If y is primitive,

$$
y * y^{\prime}=\left[y, y^{\prime}\right]
$$

where $\left[y, y^{\prime}\right]=y y^{\prime}-(-1)^{|y| y^{\prime}} y^{\prime} y$.
Now we give the proof of Theorem 2 and finish the proof of Theprem 1. Let y_{i} be the dual element of $x_{i} \in H^{*}(G(l))$ as to the monomial basis. By Theorem 3 and Theorem 13 we see that for $j \in E(l) \cup\{3,9\}-\{11,29\}$

$$
y_{8} * y_{2 j+1}= \begin{cases}y_{2 j+9} & \text { for } j=1,3,4,9,13 \\ -y_{2 j+9} & \text { for } j=19 \\ 0 & \text { others }\end{cases}
$$

and

$$
y_{20} * y_{2 j+1}= \begin{cases}y_{2 j+21} & \text { for } j=3,7,9 \\ -y_{2 j+21} & \text { for } j=13, \\ 0 & \text { others. }\end{cases}
$$

Since $\sigma t_{2 j}=y_{2 j+1}$ for $j \in E(l) \cup\{3,9\}-\{11,29\}$, Theorem 11 (v) implies

$$
\begin{array}{ll}
\sigma\left(y_{8} * t_{2 j}\right) \neq 0 & \text { for } j=1,3,4,9,13,19, \\
\sigma\left(y_{20} * t_{2 j}\right) \neq 0 & \text { for } j=3,7,9,13 . \tag{2}
\end{array}
$$

Then the equations

$$
\begin{align*}
& y_{8} * t_{2}=t_{10}, \tag{3}\\
& y_{8} * t_{8}=t_{16}, \tag{4}\\
& y_{8} * t_{26}=t_{34}, \tag{5}\\
& y_{8} * t_{38}=-t_{46}, \tag{6}\\
& y_{20} * t_{14}=t_{34}, \tag{7}\\
& y_{20} * t_{26}=-t_{46} \tag{8}
\end{align*}
$$

are shown by Theorem 11 (viii). Moreover (2) implies

$$
\begin{align*}
& y_{8} * t_{6} \equiv t_{14}, \tag{9}\\
& y_{8} * t_{18} \equiv t_{26,} \tag{10}\\
& y_{20} * t_{6} \equiv t_{26}, \tag{11}\\
& y_{20} * t_{18} \equiv t_{38} \tag{12}
\end{align*}
$$

modulo decomposable elements. Since

$$
\begin{aligned}
\bar{\phi}\left(y_{8} * t_{6}\right) & =-\left(y_{8} * t_{2}\right) \otimes t_{2}{ }^{2}-\left(y_{8} * t_{2}{ }^{2}\right) \otimes t_{2}-t_{2} \otimes\left(y_{8} * t_{2}{ }^{2}\right)-t_{2}{ }^{2} \otimes\left(y_{8} * t_{2}\right) \\
& =\bar{\phi}\left(-t_{10} t_{2}{ }^{2}\right)
\end{aligned}
$$

one can see that $y_{8} * t_{6} \equiv-t_{10} t_{2}{ }^{2} \bmod$ primitive elements. By this and (9), we have

$$
\begin{equation*}
y_{8} * t_{6}=t_{14}-t_{10} t_{2}{ }^{2} \tag{13}
\end{equation*}
$$

The equations

$$
\begin{align*}
& y_{8} * t_{18}=t_{26}+t_{10} t_{2}{ }^{2} t_{6}{ }^{2}-t_{14} t_{6}{ }^{2}, \tag{14}\\
& y_{20} * t_{6}=t_{26}-\left(y_{20} * t_{2}\right) t_{2}{ }^{2}, \tag{15}\\
& y_{20} * t_{18}=t_{38}-\left(y_{20} * t_{6}\right) t_{6}{ }^{2} \tag{16}
\end{align*}
$$

are shown in the similar way.
By the equation (13), we can compute $y_{8}{ }^{3} \otimes t_{6}$ as

$$
\begin{aligned}
y_{8}{ }^{3} * t_{6} & =y_{8}{ }^{2} *\left(t_{14}-t_{10} t_{2}{ }^{2}\right) \\
& =y_{8}{ }^{2} * t_{14}+t_{10}{ }^{3} .
\end{aligned}
$$

Since $y_{8}{ }^{3}=0, y_{8}{ }^{2} * t_{14}=-t_{10}{ }^{3}$ and this means $y_{8} * t_{14}$ is a non-zero primitive indecomposable element. We redefine t_{22} as

$$
\begin{equation*}
t_{22}=y_{8} * t_{14} . \tag{17}
\end{equation*}
$$

Then we have

$$
y_{8} * t_{22}=-t_{10}{ }^{3}
$$

By Theorem 7 we can set $\mathscr{P}_{*}^{1} t_{22}=\kappa t_{6}{ }^{3}$ where $\kappa= \pm 1$. Since $\mathscr{P}_{*}^{1} t_{22}=\mathscr{P}_{*}^{1}\left(y_{8} *\right.$ $\left.t_{14}\right)=y_{8} * t_{10}$, we have

$$
y_{8} * t_{10}=\kappa t_{6}{ }^{3} .
$$

By the similar manner, we can compute $y_{8}{ }^{3} * t_{18}$ and obtain $y_{8}{ }^{2} * t_{26}=$ $-t_{14}{ }^{3}$. Therefore

$$
\begin{equation*}
y_{8} * t_{34}=y_{8}{ }^{2} * t_{26}=-t_{14}{ }^{3} . \tag{18}
\end{equation*}
$$

Because t_{16} and t_{46} are primitive, we can set

$$
\begin{align*}
& y_{8} * t_{16}=\rho_{2} t_{8}{ }^{3}, \tag{19}\\
& y_{8} * t_{46}=\rho_{3} t_{18}{ }^{3} . \tag{20}
\end{align*}
$$

Operate \mathscr{P}_{*}^{3} to (20) to obtain

$$
y_{8} * t_{34}=\mathscr{P}_{*}^{3}\left(y_{8} * t_{46}\right)=\rho_{3} \mathscr{P}_{*}^{3}\left(t_{18}{ }^{3}\right)=\rho_{3} \varepsilon t_{14}{ }^{3} .
$$

Thus by (18), we conclude that $\rho_{3}=-\varepsilon . \quad y_{8} * t_{58}$ will be determined after the determination of $y_{20} * t_{58}$.

Here we apply \mathscr{P}_{*}^{1} on (5), (6) and (14), \mathscr{P}_{*}^{3} on (5) to see

$$
\begin{aligned}
\mathscr{P}_{*}^{1} t_{26} & =\mathscr{P}_{*}^{1}\left(y_{8} * t_{18}-t_{10} t_{6}{ }^{2} t_{2}{ }^{2}+t_{14} t_{6}{ }^{2}\right) \\
& =\varepsilon y_{8} * t_{14}=\varepsilon t_{22}, \\
\mathscr{P}_{* 34}^{1} & =\mathscr{P}_{*}^{1}\left(y_{8} * t_{26}\right)=\varepsilon y_{8} * t_{22}=-\varepsilon t_{10}{ }^{3},
\end{aligned}
$$

$$
\begin{aligned}
& \mathscr{P}_{*}^{1} t_{46}=-\mathscr{P}_{*}^{1}\left(y_{8} * t_{38}\right)=-\varepsilon y_{8} * t_{34}=\varepsilon t_{14}{ }^{3}, \\
& \mathscr{P}_{*}^{3} t_{34}=\mathscr{P}_{*}^{3}\left(y_{8} * t_{26}\right)=y_{8} * t_{14}=t_{22} .
\end{aligned}
$$

Next we compute $y_{20} * t_{2 i}$. First we apply \mathscr{P}_{*}^{1} to (15) to obtain

$$
y_{20} * t_{2}=\mathscr{P}_{*}^{1}\left(y_{20} * t_{6}\right)=\mathscr{P}_{*}^{1}\left(t_{26}-\left(y_{20} * t_{2}\right) t_{2}{ }^{2}\right)=\varepsilon t_{22} .
$$

From this, (15) and (16) imply that

$$
\begin{aligned}
& y_{20} * t_{2}=\varepsilon t_{22}, \\
& y_{20} * t_{6}=t_{26}-\varepsilon t_{22} t_{2}{ }^{2}, \\
& y_{20} * t_{18}=t_{38}+\varepsilon t_{22} t_{6}{ }^{2} t_{2}{ }^{2}-t_{26} t_{6}{ }^{2} .
\end{aligned}
$$

$y_{20}{ }^{3} * t_{6}$ is computed as

$$
\begin{aligned}
0=y_{20}{ }^{3} * t_{6} & =y_{20}{ }^{2} *\left(y_{20} * t_{6}\right) \\
& =y_{20}{ }^{2} *\left(t_{26}-\varepsilon t_{22} t_{2}{ }^{2}\right) \\
& =y_{20}{ }^{2} * t_{26}+\varepsilon t_{22}{ }^{3} .
\end{aligned}
$$

Thus $y_{20} * t_{46}=-y_{20}{ }^{2} * t_{26}=\varepsilon t_{22}{ }^{3}$.
The similar computation of $y_{20}{ }^{3} * t_{18}$ implies

$$
y_{20}{ }^{2} * t_{38}=-t_{26}{ }^{3}
$$

Thus $y_{20} * t_{38}$ is a non zero primitive indecomposable element and we redefine t_{58} as $y_{20} * t_{38}$. Hence

$$
\begin{align*}
& y_{20} * t_{38}=t_{58}, \tag{21}\\
& y_{20} * t_{58}=-t_{26}{ }^{3} . \tag{22}
\end{align*}
$$

By applying \mathscr{P}_{*}^{3} to (22), we have

$$
y_{8} * t_{58}=\mathscr{P}_{*}^{3}\left(y_{20} * t_{58}\right)=-\mathscr{P P}_{*}^{3}\left(t_{26}{ }^{3}\right)=-\varepsilon t_{22}{ }^{3} .
$$

We obtain also

$$
y_{20} * t_{22}=\varepsilon \mathscr{P}_{*}^{1}\left(y_{20} * t_{26}\right)=-\mathscr{P}_{*}^{1} t_{46}=-t_{14}{ }^{3}
$$

by applying \mathscr{P}_{*}^{1} to (8).
Since t_{34} is primitive, we can set $y_{20} * t_{34}=\rho_{4} t_{18}{ }^{3}\left(\rho_{4} \in Z / 3\right)$. Operating \mathscr{P}_{*}^{3} to the both sides of this equation, $\rho_{4} \varepsilon t_{14}{ }^{3}$ is computed as follows:

$$
\begin{aligned}
\rho_{4} \varepsilon t_{14}{ }^{3} & =\rho_{4} \mathscr{P}_{*}^{3}\left(t_{18}{ }^{3}\right) \\
& =\mathscr{P}_{*}^{3}\left(y_{20} * t_{34}\right) \\
& =y_{8} * t_{34}+y_{20} * t_{22} \\
& =t_{14}{ }^{3} .
\end{aligned}
$$

So $y_{20} * t_{34}=\varepsilon t_{18}{ }^{3}$ is shown. Now ad $*$ is determined except for $y_{8} * t_{16}$.
Finally we operate \mathscr{P}_{*}^{1} to (21) and \mathscr{P}_{*}^{9} to (22) and see

$$
\mathscr{P}_{*}^{1} t_{58}=\mathscr{P}_{*}^{1}\left(y_{20} * t_{38}\right)=y_{20} *\left(\mathscr{P}^{1} * t_{38}\right)=\varepsilon y_{20} * t_{34}=t_{18}{ }^{3},
$$

$$
y_{20} *\left(\mathscr{P}_{*}^{9} t_{58}\right)=\mathscr{P}_{*}^{9}\left(y_{20} * t_{58}\right)=-\mathscr{P}_{*}^{9}\left(t_{26}{ }^{3}\right)=-t_{14}{ }^{3} .
$$

These equations imply that

$$
\mathscr{P}_{*}^{1} t_{58}=t_{18}{ }^{3}, \mathscr{P}_{*}^{9} t_{58}=t_{22} .
$$

This completes the proof of Theorem 1.

Department of Mathematics Kyoto University
 Nagaoka University of Technology

References

[1] R. Bott, The space of loops on Lie group. Michigan Math. J., 5 (1955), 35-61.
[2] A. Kono and K. Kozima, The mod 2 homology of the space of loops on the exceptional Lie group, Proceedings of th Royal Society of Edinburgh, 112A (1989), 187-202.
[3] A. Kono and K. Kozima, The adjoint of Lie group on the space of loops, Journal of The Mathematical Society of Japan, 45-3 (1993). 495-510.
[4] S. Araki, On the non-commutativity of Pontrjagin rings mod 3 of some compact exceptional groups. Nagoya Math. J. 17 (1960), 225-260.
[5] A. Kono and M. Mimura, On the cohomology mod 3 of the classifying space of the compact, 1-connected exceptional Lie group E_{6}. preprint series of Aarhus University, 1975.
[6] H. Toda, Cohomology of the classifying space of exceptional Lie groups. Conferenece on manifolds. Tokyo, (1973). 265-271.
[7] T. Kudo, A transgression theorem. Memoirs of the Faculty of Science, Kyushu University, Ser. A, 9-2 (1956), 79-81.
[8] H. Hamanaka, Homology ring mod 2 of free loop groups of exceptional Lie groups, J. Math. Kyoto Univ, to appear.
[9] H. Hamanaka, S. Hara and A. Kono, Adjoint action on the modulo 5 homology groups of E_{8} and Ω E_{8}, to appear.

[^0]: Received September 3. 1996
 *Partially supported by JSPS Research Fellowships for Young Scientists.

