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Cyclic automorphic forms on a unitary group

By

Yuval Z. FLICKER

1. Statement of results

L et C  b e  a n  algebraic subgroup o f  a n  algebraic group G over a global
fie ld  F , a n d  denote by G (F) \ G(4) —  çe a  cu sp  fo rm  in  th e  cuspidal
representation it  o f  th e  adele group G (4) , where d  is  the  ring  of F-adeles.
D enote by Z  th e  center o f G and  b y  w = Z  ( 4 )  / Z  (F) — >r  the central
character o f  7r. Suppose th a t th e  homogeneous space C (F ) C  (4 ) has finite
volume; w e  ca ll it  a  cycle. F ix  a  unitary character o f C (F) \C ( 4 )  i n  r .
Signify by P(ç5) (0) = I c(,) \c(4)0 (c) (c) dc t h e  -period of the form çS on

the cycle C (F) \C (4) of G (F) \G (4) . Here t . (c ) is  the complex conjugate of
(c). We simply say "period" when  1.

Motivated fo r  exam ple by classical questions on  the  P - cohomology of
bounded sym m etric spaces o f  th e  form  r\G/c, w e w ish  to  de te rm ine  the
-cyclie cuspidal G (4) - modules 7i ; these a re  the  cuspidal it fo r  which there

is a form OE TECLI (G (F) \ G (4)) with a  n o n -z e ro  -period P (0 ) (or Pc.E (0)
if  th e  dependence o n  C  and n e e d s  to  b e  m ade explic it). T he interesting
phenom enon which occurs in  th is  con tex t is , th a t  in  o rd e r  to  b y  c y c lic , a
global representation needs — in  addition to being locally cyclic at all places—
to overcome a purely global obstruction.

Such a  q u estio n  w a s  s tu d ie d  f irs t  b y  Waldspurger [W1,2] w hen G =
PGL (2) = SO (3 ) and  C = SO (2 ) (=  ellip tic  torus o f  G w hich  sp lits over a
quadratic extension of the base field) on using the W eil representation, then
b y  Harder - Langlands-Rapoport [HLR] w hen  G  i s  GL (2 ) o v e r  a  quadratic
extension E of F  a n d  C i s  GL (2 ) over F, and  then  by  Jacquet - Lai [JL] and
Jacquet [J1,2] w ho introduced a  "re la tive  trace  fo rm ula". T he  case  o f G =
50 (4) X  SO(3) a n d  C -= SO (3 )  (and i s  a  form  i n  a  cuspidal, not one-
dimensional, automorphic representation of C (4)) , was studied by (D . Prasad
[P1 , 2] lo c a l ly  a n d )  Harris - Kudla  [H K ], a g a in  o n  u s in g  th e  W e il
representation. The analogue of the trace formula technique w as later used in
a series of cases, where G -= GL (2, E) [F5], or where G=GL (n, E) [F6] , and C

GL (n, ,  with E/F being a  quadratic extension of global (or local) fields.
This last case is related to base - change for the unitary group. Local aspects of
the dual case, where G=GL(n, E) and C is  a  unitary group —  which is related
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to base change for GL (n) — are discussed e.g. in Ye [Y ]. For G=GSp (4) and C
S0 (2, 2)  — a  case related to counter examples to the  Ramanujan conjecture

— local (and global) aspects are studied in Zinoviev [Zi] (and in [FM2]).
The question of classifying the cyclic representations is too vast to even

currently attempt proposing a  general conjectural answer. Yet the examples of
[W 1,2] and [HK] suggest that fo r  a  suitable C  th e  purely  global obstruction
involves the non - vanishing of an  L - function a t the middle of the critical strip
when the  representation of C (sii) is cuspidal, while the  examples of [F5, 6,
7] suggest that this global obstruction should be stated in  term s of liftings in
th e  o p p o s ite  ex trem e  c a s e  where i s  a  one - dim ensional automorphic
non - cuspidal representation of C (4 )  (note tha t in the case of [W 1,2 ], every
irred u c ib le  rep re sen ta tio n  o f  C (s4)/C ( F )  is b o t h  c u s p i d a l  a n d  one -

dimensional).
O u r q u e s tio n  i s  a  g lo b a l, arithm etic o r  automorphic, v a ria n t o f  th e

c la ss ic a l q u e s tio n  concern ing  t h e  constituen ts  o f  t h e  r e s t r ic t io n  o f  a
representation o f G  to  its  subgroup  C. T h e  "classical" question — concerning
the non - vanishing of Homc w as treated in  many cases, for example in
Zhelobenko [Zh] ("the Gelfand - Cetlin basis") w ith  =  1  and com pact real
groups such as G=U(n, g?), C=u (n —  1, R), or G =- SO (n, g?), C = SO (n - 1, R),
in  Thoma [T h ] an d  Zelevinsky [Z2] ( th e  "b ranch ing  ru le") w ith  th e  finite
g ro u p s  G  = GL (n, q), C = GL (n — 1 , q )  (  [T h ]  a n d  [Z2] consider any
representation of C, not only one dimensional , and in van Dijk, Poel [DP]
w ith unitary representations of G = GL (n, 1?) and 1 on C= GL (n — 1, g?).
The global question concerns not only the non - vanishing of Homcw) but
ra th e r  th e  non - vanishing o f  a n  explicitly constructed element in  this space,
namely P=Pc..

T he  purpose of th is  p ap e r is  to  an sw er o u r question  in  a  situa tion  not
involving just GL (2 ) or base change, on using the  promising "trace formula"
type technique (suited to the case of d im =  1). This technique is based on an
application of a global "Fourier summation form ula", (as in [J ] , [F 5 ], [F 6 ]) ,
w h ic h  is  a  spec ia l c a se  o f  th e  " re la tiv e  tra c e  fo rm u la " . T h is  fo rm u la  is
analogous to the  standard  trace  form ula , w here th e  kernel K f(x, y )  of the
convolution operator r (f) is integrated on the diagonal x --= y. B ut it involves
no traces. It is  a summation formula. To obtain the Fourier summation formula
one integrates K t (x, y )  over x  in a "cycle", and y  over a  unipotent subgroup,
so  that the formula involves both "periods" of the cusp form , and its  Fourier
coefficients. A nother useful case  of the  "re la tive  trace" form ula  is obtained
when x  and y  both range over the cycle (see [JL], [F H], [F 1 0 ]) . W e refer to
this case as the bi - period summation formula.

T h is m ethod is entirely different from  the  the ta  liftings techniques used
by [W 1,2] and [HK]. T h e  m ethod is perhaps even m ore interesting than the
results, fo r  its intrinsic sim plicity  and  directness. T he  results follow  from  a
natural com parison. They a r e  not accidental. In  th e  c a se  o f  th e  particular
example considered in this paper, perhaps stronger results can be obtained at
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present using th e  older technique of theta lif t in g  (see, e.g., [GP]). But the
potential of the Fourier summation formula is immense. It draws together and
extends techniques from the theories of the trace formula, Whittaker functions,
B- orbits on symmetric varieties, and it applies in cases where the theta lifting
does not (see, e.g., [F6]).

In  this paper we carefully study both the global and the local technical
aspects of this method, treating general and  spherical functions, at th e  split
and non - split places. The technical computations concerning orbita l integrals
of spherical functions a re  relegated to [F8]. Interesting identities of "Fourier
o r b i t a l  integrals" a n d  "Whittaker - Period" distributions a r e  obtained.
Applications concerning cyclicity o f loca l representations a r e  also obtained
(from th e  g lo b a l results). I n  a n  attempt to understand [11] , p.211, we
introduced (the standard) truncation in [F6] and [F7] to develop the summation
form ula. The formal discussion there is supplemented here with a  detailed
handling of convergence questions, analogous to that of [FM2].

We proceed now to describe the  representation theoretic consequences of
this work. F or the  possibly more interesting technical aspects of the Fourier
summation fo rm u la , a n d  th e  F o u r ie r  o rb ita l integrals, t h e  reader should
consult the corresponding sections. The groups G and C will be taken here to
be the quasi - split unitary groups U(3, E/F) and  U(2, E/F) in  three and two
variables. To define them, let E/F be a  fixed quadratic (separable) extension
of global fields, of characteristic other than 2, and  denote by Gal (P/F) the
galois group of a  separable algebraic closure F  of F  with fD E . The group G
= U(3, E/F) over F  is defined by its group G(T) = GL (3, F7 )  of - valued
points, and the galois action z- (aii) = (Ta u ), E  (1  j  3) , if rE Gal (T/E)
c Gal (T/F), and  r (a,,) =-  g t (z-ai ,) - 1 ,7- 1  i f  r E Gal (f"/F) — Gal (T/E), where

/0 1 \
— 1

\1 0 /
If Z denotes the center of G then Z (P) = U(1, E/F) =E• = {a E Ex ; acT= 1},

and Z ( )  =  U (1, E/F).4= ta E s44; acT= 1) , where al— cT indicates the
action of the non-trivial element of Gal (E/F). Here t g  indicates the transpose
of g G G (F ). The F - subgroup C of G is taken to be th e  U(2, E/F) - factor in

/1 0 \

the centralizer C70 of 5 -0-= —1 in  G. The center of C is isomorphic
\o 1 /

to Z, and the  centralizer C70 is = C x Z. Fix a  unitary character e of sii/E*,
a n d  p u t  (c) =e(det c) for c EC (4) .

T h e  g lo b a l representation theoretic ap p lica tio n  o f  th is paper is the
determination o f  t h e  cuspidal representations n-  o f  G ( 4 )  (with central
character w: Z(.4)/Z(F) — >r )  which contain a  form OE 71- C L I  (G (F) \ G (4 ))
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with a non - zero period P(0 ) =Pc.(0 ) on the cycle defined by the subgroup C.
Such G(s4) - modules 71" w ill b e  c a lle d  h e re  - cyclic. In [F9] — using again the
extensive com putations of the Fourier orbital integrals developed here — we
consider G (4 ) - modules w ith  a non - zero period  w ith  respect to  anisotropic
forms of C, and compare them with the cyclic modules studied here.

We could equivalently consider Cgo and the character (c, b)E- ' (c)(o)i e 2)(b)
(1) C  .k / E , c E C (4) /C (F)) , instead of a n d  C .  T h i s  w ill no t change the
value of P(0), but will complicate the notations. Analogous objects are  named
"distinguished" in  the  s itua tions considered in  [F5] and [F6] — and we keep
using  th is  title  in  these cases — b u t th e  n a m e  - cyclic h a s  th e  advantage of
indicating the property which distinguishes 7r, hence we use i t  in the situation
studied in th is paper. In fact, our proofs are carried out below only for --=1=
co , to  ease  the notations. A s suggested by J. Bernstein, w e  s ta te  th e  general
case of any w in th is  introduction, in order to  have a clearer picture of the
results.

The determination o f  t h e  -.cyclic 7r w ill be stated in  term s of a lifting to
G from the F - group H o =  U(2, E / F )  (which is defined using a  different form

(w below) than C= U(2, E / F )  above), defined —  analogously to G — by H0Œ)
=GL (2, F7 ) , (C10) = (raj)  i f  z- E Gal (17E), j  and

0
( a  ) =141(ra ii) - 1  u) - 1 , w= if E Gal (F/F) — Gal ( f /E ) .

(  1 0

The lifting of global representations is defined locally, in  term s of almost
all components, a s  in  [F2]. Let y b e  a  p lace  of F  w hich  stays prim e and  is
unramified in E. Denote by F , the  completion of F  at y , and put Ev= EOFFv.
Any irreducible unramified representation of H ov = Ho (T.  v) is  the unique such
constituent in the com position se ries o f  a n  induced H oy - module o f  th e  form

10 (14), where p i, :  E vx --V x  i s  an  unramified character, uniquely determined up

to the equivalence relation p v
— i7,- 1 , where rt v (a ) = iv  (0  , a EEC. T h e  space of

(PV) consists of the smooth functions (p, from Hoy to  V with

9 v

( ( a0  *
) h )H al int i  ( a ) (h) ( h  E

H O V , w EE).

Sim ilarly, any irreducible unrarnified G  =  G (F e ) - module is  the unique
such constituent in the composition series of an induced Gv

- module of the form

“ g v ) ,  where the  unramified character !i v : E;;— *Wx  is uniquely determ ined up

to the relation tiv- g » .  The space of / ( 4(4 )  consists of the smooth (Pv
with

*

g =IalEvtiv (a) ( -ck v ) (b) (Pv(g)
-a-, _1 /

(gE G ,,,acE i;`,bE E ;).
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Here wo is the component of co at v.
Let Ko : E vx- - >r  be the  unramified character of Evx whose value a t a local

uniformizer Ito (of the m axim al ideal in  the  ring of integers R o o f  Fv, or R  of
Eo )  i s  — 1. T he local ,c 0 -endoscopic lifting in  th e  non - sp lit  unramified case is
defined as in [F2]to map the irreducible unramified constituent of /0(14) to the
unramified irreducible constituent of I (110K0)

In the case when the place y of F  splits in E , we have that Eo=EO FFo is
F, F v ,  a n d  Ho o = - Ho (Fo) -= G L (2,F v ) ,  G v  =  G (F0) = G L  (3 ,F 0) .  The
Ko -endoscopic lifting is defined as in [F2] in  th is case simply by mapping p o to

(P0® K v X W v / K1COpv ) , th e  GL (3, Fv) - module normalizedly induced from the
representation of a maximal parabolic, defined by Pv®Ko on the 2 x 2 block of

the Levi factor, b y  w0/w 0 0 4  o n  th e  1 x 1 factor, and b y  1 on  the  unipotent
radical. Of course the lifting depends on a choice of a character Kt, of F . S ince
Pv i s  unitarizable a n d  /co, w o a re  unitary, th e  induced GL (3, Fv) - module is
irreducible.

For the global lifting, w e say that the cuspidal representation p = O p , of
0 0 = 1 1 0 (,4  K- endo - lif ts to  the cuspidal representation 7r= ®7r0 of = G C )
if p v lif ts  to  ro for almost all places y of F. The lifting depends on a  choice of

a character ir : .SZG /Ex  NE/F6Z4- - q x w hose restriction to 4 ;/ F x i s  non-trivial.
Very detailed results about th is "endoscopic" lifting were obtained in [F2,

3 ,3 ' ] ,  o n  developing  sim ultaneously  t h e  th e o r y  o f  b a s e  c h a n g e  from
G =  U (3 ,E /F)  t o  GL (3 ,E )  a n d  u s in g  t h e  ( tw is ted ) trace form ula. The
representation theoretic applications of th is paper inc lude  estab lish ing  the
e x is te n c e  o f  th e  endoscopic lif t in g  fo r  g e n e r ic  ( o r  non-one-dimensional)
representations independently of [F3], proving in  particular the existence of a
generic element in  the packet—a notion introduced in [F3] —obtained from this
endoscopic lifting. T h e n  w e  u s e  a n  e a r ly  re su lt  of [F3] to  characterize  the
image as the set of packets of generic cyclic representations, and to derive the
local representation theoretic results.

To dissipate some misconceptions, note tha t the  problem of studying the
endoscopic lifting from  U (2 ) t o  U (3 ) w a s ra ise d  b y  R . Langlands [L]. An
attem pt a t th is p rob lem  w as m ade  in  reference [25] of [L] (= [Rogawski] in
[G P ]), b u t  a s  explained in  [F 2 ], §4 .6 , p .56 2 -3 , th is a ttem pt — based  on
stabilizing the trace formula for U (3) alone — was conceptually insufficient for
th a t p u rp o se . T h e  p re p r in t  "L-packets a n d  lif t in g s  fo r  U (3 ) "  (reference
[Flicker] in [G P], and [2] in [A 3], a n d  p . — 2 in [L ] )  proposed studying the
endoscopic lifting from  U (2) to  U (3 ) sim ultaneously with b'ase-change from
U (3 ) to  G L  (3 , E ) by  m eans o f  th e  tw isted  trace form ula. It in troduced  a
definition of packets, and reduced a  complete description of these packets— as
w ell as the  lifting  from  U (2 ) to  U (3 ) a n d  U (3) to  GL (3, E) — to  important
technical assum ptions, later proven by Langlands a n d  o thers (tw isted  trace
formula, transfer of orbital integrals). M oreover, rigidity and multiplicity one
theorem fo r U (3 )  w ere reduced to the assertions of [GP], which was written
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later than our preprint. The papers [F2, 3]contain a  much improved exposition
of the  prelim inary preprint. T he  paper [F3'] contains a  new  technique, based
on the usage of Iwahori - regular functions. It affords a  proof of a trace formula
identity  fo r  a ll te s t  functions — thus extending th e  re su lts  o f [F2,3] to  a ll
representations of U (3) — by simple means. Later, an alternative exposition for
these results —  but not for [F3'] — was published by Rogawski (Ann. of Math.
S tu d ie s  (1990)), w ho la te r co rrec ted  a  m istake in  th e  computation of the
multiplicities of the non - tempered discrete series representations in [F3]. The
final, representation theoretic part, of the present paper, uses results of [F2, 3,
3'] in the proof of Proposition 22, but it  relies on a Fourier summation formula
rather than on a trace formula.

O u r  m a in  g lo b a l r e s u lts  a re  th e  id e n tif ic a t io n  o f  th e  cyclic generic
modules, a new proof of the endoscopie lifting from U (2 ) to U (3) , and a  new
characterization of the im age of th is  lifting  in  term s o f cyclicity, and n o t in
term s of base change to  GL (3, E ) as in [F3]. O ur work involves a  panoply of
techniques. W e deve lop  a n d  a p p ly  th e  "F o u rie r"  sum m ation form ula. We
develop a  theory o f asymptotic expansion, and of matching "Fourier" orbital
integrals. A  very detailed and careful analysis of these integrals for spherical
functions is carried out in [F8] in the non-split and split cases.

Since we work only with generic representations of Ho (4 )  and G (i ) , let
u s  recall the  definition. Let (ab: al/F— >r<  be a non - trivial additive character.
D enote b y  0  t h e  ch a rac te r  o f  U (4 ) / U (F ) (U  i s  t h e  unipotent upper
triangular subgroup of G ) whose value is  0 (a - 1- a) a t  the element

/ 1  a a ã +  b \2=
0  1

\O 0 1

of U (4) (bEselE,b+5 -=-0;aE ggE )•

  

Then the  cuspidal G (sal) -module r  is called generic if  th e re  is  a  form çS E

with non - zero

141°(°)=. fuoi\u(.4) ( b ( u )  ( u )  d u .

Similarly, let UH0 denote  th e  unipotent upper triangular subgroup of H o.
1

Then Um, (F ) =  { u  =  (  
x  

;  X  E .  D e n o te  b y  0  t h e  cha rac te r of
0  1

1
UH,,(4) /UH,(F) whose value  a t  u  =  (  

x )  
, x E is (x) . T h e  cuspidal

0 1
H o (s4)-module p is called generic if there is a form 0•Ep with non-zero

W ° (0) = (u) (u) du.

Our qualitative global lifting result, characterizing the  cyclic modules, is
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th e  fo llow ing  (see  P roposition  (s 21  a n d  2 2 , a n d )  2 7 ) .  I t  u ses the  loca l
"multiplicity one" theorem of J. Bernstein, w hich asserts that on an irreducible
admissible PGL (3, Fv) - m odule (resp. PU(3, Ev/F,) - m odule) there  exists a t
most o n e  (up  to  a  sca lar multiple) non - zero GL (2, Fv ) - invariant (resp. U (2,
E0/F0) - invariant) W - valued linear form . A  proof o f th is  is  reco rded  in the
Appendix at the end of th is  paper. Our quantitative results concern identities
of F o u r i e r  o r b i t a l  integrals, Fourier summation f o r m u l a e ,  and
Whittaker - P e r io d  d is tr ib u tio n s . R e c a l l  th a t  t h e  n o t i o n  o f  a  packe t is
introduced in [F3], locally and globally.

Global Theorem. L et EIF be a  quadratic extension of  global f ields of

characteristic not equal to two, e, (.0 unitary  characters of  ,s2i k/ E,, and IC a unitary

character of sigV Ex NE/Fan whose restriction to at 1F'1■1a1P is non - trivial. Suppose
that rc is  a  e - cyclic generic cuspidal representation of  the quasi - split unitary group
G(4) = U(3, EIF),4 w ith  central character w .  T h e n  (the packet of) i t  i s  the
end oscopic K - l i f t  o f  ( th e  packet o f )  a  generic cuspidal representation p  of  the
quasi - split unitary  group H0 (4) = U(2, EIF).,4 i n  two variables, whose central
character is ail eK. Conversely, any generic cuspidal representation p  of Ho (a i) with
central character (a e K ,  l i f t s  (K- endoscop ica lly ) t o  (the  pack et o f )  a  generic
cuspidal e - cyclic G (ai) - module i t  w ith central character (P.

Our proof that a  generic cuspidal p  lifts to a  generic cuspidal i t  implies in
p a rticu la r  th a t th e  packet of the i t  w h ic h  a r e  lifted  from  such  p  on U(2,
E/F).a contains a  generic elem ent. O u r  p ro o f  h e re  th a t a  cyclic  generic  it
corresponds to  a  p  does not use the work of [GP]. But most of our qualitative
results can also be derived from the theta lifting studied in [GP] on using some
of the earlier results of [F3] (which do not depend on [GP]).

A s explained in [F3], each packet of representations of the unitary group
in question, contains a  (sing le , provided a  tw isted analogue of Rodier [Ro] is
assum ed) generic elem ent. B u t w e  d o  n o t u se  th is  re su lt  h e re . The lifting
studied in this paper relates (bijectively, under this assumption) these generic
elements.

Using th e  re su lts  of [F3] w e a lso  derive  a local analogue of the G lobal
Theorem. Let y be  a non - archimedean place of F w hich stays prime in E, and

a  unitary character of E .  A n  irreducible admissible G 0 - module it 0 is called
0 - c y c l i c  i f  Home y  (7r0, 0 , nam ely  there  ex ists a non - ze ro  linear form

1: 7r — Ç  on the space of 7r0 with / (74(c)w)=- ,(c)/ (w) for all c E C, and wE
or is a quotient of the restriction of 7E v to C v . By Bernstein's multiplicity one
theorem of the Appendix, if I exists then it is unique up to a  scalar multiple.

The local lifting from Ho ,  to G0 is defined and studied in [F3], in term s of
packets of representations of Ho, and G v . These packets are  finite sets, and we
shall not reproduce here the definition which can be found in [F3]. As in [F3]
w e  s h a l l  s a y  th a t  t h e  irreducible H o v - m odule p ,  l i f t s  t o  t h e  irreducible
Gv - module i t  if  th e  packet (fi v )  lifts to  the  packet {7r 0 ) . The Global Theorem
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has the following consequence. Put Gv = U (3, Ev/ Fv) , Hoy= U (2, Ev/Fv).

Local Theorem. ( (a) N o n - split c ase ) . E v e ry  Lf- cyclic generic
Gv - module rv w ith  central character co t,  i s  a n  endoscopic Kv - l if t  o f  a  generic
Hoe - module pv w ith central character 0.)v/vK0. Every generic Hoe - module pv with
central character cud t,Kv endo Kv - lifts to a generic Gv- module 7Cv w ith
central character coy (see Proposition 26) .
( (b ) sp lit  case). Ev ery  ,,- cyclic generic GL (3, F v ) - module with central character
(ov is  a  Kv - lift of  a generic GL (2, F v ) - module pv w ith central character o_),/,4.
Every generic GL (2, F y ) - module p ,  with central character cov/ Kt v endo ice - lifts to
a  .,- cyclic generic C y - module with central character wv.

In  p a r t  (a ) , th e  c a se s  w here 7ry o r  p v  a re  not square - integrable can be
h a n d le d  d ir e c t ly  lo c a lly  ( s e e  P roposition  2 9 ) ,  a n d  o n ly  th e  c a s e  o f
square-in tegrab le  lry  a n d  p y  r e q u ir e s  u s in g  th e  G lo b a l  T heorem  (see
Proposition 26). It is  no t hard  to  see  tha t if  7Iv is  cyc lic  and unramified, then
the Ho v - invariant form 1 on ir y  i s  non-zero a t the Kv - fixed vector, where Ky  is
the standard maximal compact subgroup of Gr.

In  the  sp lit case, where y  splits in  E, w e have G0=GL(3, Fv) and Hov=
GL (2, F r ) , Cv =GL(2, F v )  and K r = GL (3, R V ), w here R0 i s  the ring of integers
in F ; V , K v and co r  a r e  unitary characters of F .  A s in  th e  non-split case, an
irreducib le  adm issible Gy - module Iry  i s  c a l l e d  i , - c y c l i c  i f  th e re  e x is ts  a
non-zero linear form 1: 7tv — >V on the space of iry w ith  1 (irv (c) w) =- (c) 1 (w)
fo r all c E  CV a n d  w C Irv . B y  the  Theorem of the  A ppendix (w ith n = 3), if  1
exists then it is unique up to  a  scalar m ultiple. Part (b) of the Local Theorem
is proved — using [BZ] — in  Propositions 0  and 0 .1  of [F 7 ], and  Prasad [P3].
Proposition 25 here gives a global proof in the case of a square - integrable pv .
T h e  c a se  o f  p r in c ip a l se r ie s  pv  is  t r e a te d  b y  p u r e ly  loca l m eans a lso  in
Proposition 30, whose proof shows in addition th a t if  7r0 i s  unramified then  1
takes a non - zero value a t the Kr - fixed vector.

Combining th e  G lo b a l a n d  L o c a l T heo rem s, w e  ob ta in  t h e  following
interesting obstruction for a  cuspidal generic locally-cyclic representation to
be cyclic.

Corollary. A  cuspidal generic representation it o f  G (s4) =  U(3, E/F).a
with central character co such that each of its components r, i s  0 - cyclic, will not
be - cyclic u n le ss  it  is  th e  endoscopie K-lift o f  a  cuspidal H o (s4) -m odule p
(necessarily generic, with central character (1)/ .

I t  fo llo w s  f ro m  [F 3 ] t h a t  a  cu sp id a l g en e ric  G (s ig )  -m o d u le  whose
components a re  a ll K0 - lifts from Hoy need not be a global K-lift from 110 (s4).
For example all of its components may be unramified, yet 7r may base - change
to  a  cuspidal representation of GL (3, sgE ) by  the base - change lifting of [F3].
Similar obstructions occur in  the  cases studied in [F5] and [F 6], and in [W1,
2].
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To explain the obstruction, consider r= 0 7 4  as in the Corollary. Since Try

is  ev - cyclic, there is a non - zero form lv o n  7Cv, in  Homc,, (ro, ( = W ) ,  unique
up  to  a  scalar, by Bernstein's multiplicity one theorem of the  Appendix. This
form  is uniquely determ ined w hen r e i s  unramified b y  th e  requirement that

lv(V) = 1. Here e,;) i s  the  chosen K r - fixed vector in  r e .  T he  product 1=  Oiv
over all places is  a non - zero form on the cuspidal generic 7r, in  Homc(4) (7r, )

By the local uniqueness property of l v , the  linear form P  is  a multiple
of 1. Thus P= cl for some c W. The Corollary asserts that c is  zero unless i t

is  a global lift. Being e - cyclic is  a global property, more than  the  sum of its
local parts.

It w ill in  fact be more natural to compare the e - cyclic G (4) - modules not
w i t h  t h e  Ho (4 ) - m o d u le s  a s  d e s c r ib e d  a b o v e , b u t  r a t h e r  w i t h  the
distinguished GL (2, 4 E ) - modules of [F5]. W e shall p roceed  to  recall the ir
definition, then state the M ain (global) Theorem, relating th e  e - cyclic G (4)
- modules w ith the  distinguished representations of [F5]. The Global Theorem
follows from this parametrization when combined with the main global result
o f [F 5 ], w hich  re la te s  th e  generic  H o (4 ) - m odules w ith  th e  distinguished
GL (2, 4E) - modules, via the unstable K- base - change lifting of [F1].

Let H denote GL (2) as an algebraic group over the global field F, and put
H' for the F - group ResE / EH obtained on restricting scalars from E to F. Thus
H' (F) = 11 (E) =G L (2, E ), while H (F) G L  (2, F ). A  cuspidal representation
p  of H' (4 ) is  c a lle d  (in Jacquet [J], and in  [F5]) d is t in g u is h e d  if th e re  is  a
form  0  in  its  space  such  tha t PH(0) =  fzuou(c)\H(.4)0(h)dh i s  non - zero. We
denote here by Z  also  the  center o f H . The global resu lt of [F5] asserts that
the distinguished H' (4) - modules are precisely those obtained by the unstable
base change lifting of [Fl] a s  unstable K . - lif ts  of the cuspidal H (4 )  - modules.
T h is  u n s ta b le  base - c h a n g e  lif tin g  d ep en d s o n  a  ch o ice  o f  a  character
K : RIVEWSen — q x  w hose restriction to 4 x /F x  i s  non - trivial.

W e proceed to define a  correspondence (depending o n  e , bu t not o n  K.)
from th e  se t o f  th e  distinguished 11' (4 ) =  G L (2, 4E) - modules to the se t  o f
automorphic G (4) = U(3, E/F).4 - modules. O ur M ain G lobal Theorem below
w ould  asse rt tha t the im age of this correspondence consists o f  th e  e - cyclic
generic modules, and each generic e - cyclic module is so obtained, for all e.

T he correspondence is defined — a s  in  the  case  of the  lifting  from Ho =
U (2) to  G = U(3) —  in  te rm s o f  a lm ost a ll local components. It suffices to
consider the  unramified components. Let y be  a place of F  w hich stays prime
in  E . A n irreducible admissible generic unramified H  = H ' .(F v ) = GL (2, Ev)
-module is necessarily of the f o r m  (lily, P2v), normalizedly induced from the

0  6

a  c
charac te r 

( )
p i (a)p2 (b) o f  th e  upper triangu la r subgroup  o f  I--/ ;

ttio - =  1 ,  2 )  a re  unramified characters. It is distinguished precisely
when p 2 „ =1-1-1,71,  thus 112v (a ) = ttiv (c7) 1.  W e w rite  I' (14) for (p i,,.  The
local , - correspondence in  t h e  non - s p l i t  unramified c a se  can  be  de fined  to
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asso c ia te  to  the  un ram ified  14 - module 0 1 4 )  th e  u n ra m if ie d  (irreducible
constituent of the) Gv - module I (p y ) . Note th a t  th e  unstable Kv - base-change
lif t in g  o f  [F l]  associates the Hov - module /o(ttv) to the 14 - module r ("AG) =
Kv r ( i i v )  (since Kv =  -e v

- 1 ) .  The local endoscopie K v -lifting defined above
m aps io(pv) to  /(pv K v ), a n d  th e  correspondence re la tes r(gvKv) t o  I(livKv),
making a commutative diagram.

At a place wof F  which splits in E, the group H y' =GL(2,E y )  is isomorphic
to  CL (2,F) X GL (2,Fy ) .  An H v' - module Pv =Piv  X  P 2 v  is distinguished, namely
there  is a  GL (2, F y ) - invariant non-zero form on its space, precisely when p2v
is  the contragredient Pi v o f  ply. We define the  local correspondence in  the  split

c a se  to  a sso c ia te  to  pv  =- piv X  f i lv  the Gv - module i ( p )  =  / (p iv  x  w
cop

v)

normalizedly induced from the representation of a maximal parabolic subgroup
of Gy = GL (3, F v )  which is p ly  on the 2 x 2 part of the Levi factor, and  w t,/w 0 1

on the 1 x 1 part, extended trivially on the unipotent radical.
A s  in  th e  c a se  o f  th e  lif t in g  from  H o (4 )  t o  G (4 ), w e  s a y  th a t  the

automorphic representation p =  O p ,  of H' (4) = GL (2, 4E) corresponds to  the
cuspidal representation r=O ir v o f G ( 4 )  U(3, E/ F),4 if p v corresponds to  r v

for almost all places y of F. Let co, be unitary characters of A k /E , and put
(z) =- co(z /F), ( z )  =( z / .F.) (z 4 ) .

The global result which we actually prove in this paper is as follows.

Main Global Theorem. L et E/F be a  quadratic extension of global
f ie ld s  o f  characteristic ±  2 .  Suppose t h a t  i t  i s  a  generic - cyclic cuspidal
representation of  the quasi - split unitary  group G (4) = U(3, E/F)sg whose central
character is W . T hen it is obtained by  t h e  - correspondence f rom  a  distinguished
representation 71"' of H' (4) = GL (2, 4E ) w hose central character is a/  o r f ro m
an  induced representation =  I ' ( p i ,  /12), : sen / E x M — *W x, p i  *112, 111112 =
(.0 7 '. Conversely , any  distinguished H' (4) - module 7E' w ith  central character
(.1;1', an d  any  induced z ' =  112 ) a s  above, - - corresponds to  a  generic
cusp idal - cyclic G (4 ) - module i t  w ith central character W.

From this global result we deduce the

M ain  Local Theorem. (a) ( N o n - split c a s e ) .  E v e ry - - cyclic
unitarizable generic G y =  U (3 , Ey/Fy) - m o d u le  r„ w ith  central character (by
corresponds to  a  generic distinguished Try  = GL (2, E y ) - module i t  w ith  central

character o i/ ;„  or to an induced representation r'y =I" (p ly , 112u), Itiy:
P l y *  112v, Itivti2v = cdvi'v. A ny  unitarizable generic distinguished f ry

- module
with central character coy1'y, and any  i t th y )  as in the previous sentence,
corresponds to a  :,- cyclic generic Gy - module 7Tv  w ith central character WV.

(b )  (Split case). Every  generic unitarizable GL (3, F v ) - module 7Cv  w ith central
character co y  w hich adm its a non-zero linear form 1: 7ry —)V w hich tranforms under
GL (2, F y )  via is  of  the form i (p )  =  I (p y  x , normalizedly induced from a
generic unitarizable representation of a maximal parabolic subgroup, which is py  on
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GL (2, Fa), w/ w0 .  on the 1 x 1 factor of the Levi subgroup, and extended
triv ially  on the unipotent radical. Conversely, for every generic GL (2, F v ) - module
Pv w ith central character cov / v , the GL (3, F v ) - module 7Ev  =  I (Pv )  whose central
character is wv adm its a non - zero form  1: 7Cv - 4V which transform according to
under GL (2, Fv ).

The M ain Theorems follow from Propositions 26 ( ire  square - integrable)
and 29 (7C, principal se r ie s)  in  the local non - sp lit case, and 27 in the global
case. The Main Local Theorem in the split case is proven in [F7], Propositions
0  and  0 .1  ( in  th e  context o f  G L(n ), b y  a  pure ly  local technique, based on
[BZ2]). Proposition 25 is  an alternative, global proof of the "conversely" part,
b u t  o n ly  f o r  square - in tegrable  representa tions pv . P roposition  2 9  i s  an
analogue — in  the context o f U(3) — of Proposition 28 (= B17 of [FH ]) which
concerns GL (2, E).

I t  w ill b e  in te re s t in g  to  d e te rm in e  w h e th e r  th e re  is  o n ly  o n e  cyclic
representation in  each generic packet o f U(3, Ev/Fv) w hich is in the image of
the endo - lifting from U (2, Ev/Fv), and it  is  the generic element of this packet,
and that every cyclic unitarizable infinite - dimensional representation o f U(3,
Ev / F ,) is  generic  a n d  hence lie s  in  o n e  o f  these  packe ts  (an  endo - lift of a
generic U(2, Ev/Fv) - packet) .  But these questions are  not considered in  this
paper.

In th is introduction we stated a general form of the results. But from now
on, to simplify the notations we restrict our attention only to the case where w
=  1  and 1. T hus w a n d  d o  not appear below, and  w e replace G = U (3,
E/F) b y  its  projective form, so G = PU (3, E/F). A lso w e replace H' = GL (2,
E )  b y  i t s  projective form , s o  H' = PGL (2, E )  below. The extension to  the
general w  and w ill be left to  the reader, the  difficulty is merely notational.
Moreover, a s  we do not deal with the archimedean components, our results are
p roven  here  on ly  fo r positive  characteristics, bu t the  ex tension  to number
fields is immediate once the archimedean computations are written out.

Here is a  schematic listing of the diagrams of liftings mentioned above.

GL (2, E) U(3, E/F) = ODE (ux A - 9 7E= (t1K )

U (2, E/E) 1E0 - (g)

0)„, (z) = (Kp)(z/F) = K2 ( )(ti/ 17)(z) (0)/ ) (z / z )] ->  wit (z/F) = 0)(z/ z)

0)7,0 ( z /  =  (z /) [= (01 / K ) (z/ i)] (zEEx , z/ EE . )

Here E/F is a  quadratic extension of local fields, or it can indicate sziE/4F
in the global case. The top horizontal a rrow  is the correspondence studied in
th is paper. The arrow  on the left is the unstable K. - base - change lifting of [Fl]
and [F5]. T he arrow  on  the  righ t is  the  endoscopie K - lifting of [F2] and [F3].
The first triangle indicates the groups involved, the second traces the induced
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representations, and the th ird  traces their central characters. Note that the left
a rro w  tak es  so m e  (su p e r)  cuspidal representations to  induced ones of the
form  /(ii, P2), tet E x /F x — q " , p i a 2 ,  which are distinguished ; the top arrow
takes them  back  to  (super) cuspidal representations. T h e  to p  arrow  relates
d istingu ished  a n d  c y c l ic  r e p r e s e n ta t io n s .  I t  is  n o t  d e f in e d  f o r  other
representations. T h e  fa c t th a t  it  is  w e ll - defined fo r  th e  distinguished and
cyclic representations other than those indicated is the assertion of ou r main
Theorems.

In the split case, when E=FEDF, the diagrams take the following form

z ' X  Te ' (7 ' = p®,c1 ), we= w1/1, GL (2, F) X GL (2, F)
(pO K I x , co„ = oh, GL (3, F)

10 ,  cop= w i/ GL (2, F)

W e listed  th e  representation, its cen tra l character, and the group. The
diagram in the split case is  a  special instance of the previous diagram, at least
when p  is the induced 7E0 ( p ) .  To see this note that on z = (z 1 , z 2 ) E Ex = Fx
X Fx , the  character g: E x — >r  is given by g (z) = irai  (zi) 112 (z2) ; w  a n d  a r e
defined on E .  =- {(z, 2.-1); z  F x }  •  y  w (z, z - 1 ) = w1 (z) , z - 1 )  =  i (z). Since
K (z ,  Z ) =1 on  NE' ={ (z , z ); z  EFx}, w e have ic 1 X Ki 1, and hence K (2. , Z - 1 )

K  (Z 2 ) .  Consequently (w/W (z, = (w1/ (4 , z E F x .
I w ish  to  thank  J .G .M . M ars, J .  B ernstein , M . Jarden, D . P ra sa d , for

invitations t o  U trecht, Tel-A viv, Jerusalem  (D ecem ber 1991), and Bombay
(June 1992), where I talked on th is  paper, as w ell a s  at OSU (March 1992).
Special thanks are due to colleagues who suggested criticism on earlier drafts
of this work, again to J.G.M. Mars for suggestions which led to clarification of
convergence questions, and a g a in  to  J . B ernste in  fo r exp la in ing  to  m e  his
Fourier transform technique used in  the  Appendix. It is my pleasure to thank
Toshio O shim a, Takayuki O da and A tsushi M urase for invitations to  Tokyo
(March 1995) and Kyoto (December 1995), hospitality and interest.

2. Fourier summation formula

T h e  g lo b a l to o l u s e d  i n  t h e  p ro o f  o f  th e  M a in  G lo b a l T h e o re m  is  a
comparison of two "Fourier" summation formulae. W e first recall this formula
fo r distinguished H' (.52i) = PGL (2, SE) -modules from [F5], Proposition 5, p.
157. The form ula of [F5] w as form ally generalized in [F6] to  th e  context of
distinguished representations o f GL (n , 4E). L ater w e develop a n  analogous
formula for cyclic G (.54) -modules.

T h e  F o u r ie r  sum m ation fo rm u la  fo r H ' is  s ta te d  f o r  a  t e s t  function
=OA on H' (4 ) ,  w heref  i s  a  C 7 (compactly supported, smooth) function on

H,' for all y , w hich is equal to the unit element j1, -=IK H 1,1-
1 chK„, in  the Hecke

convolution algebra 1C', of the Km-biinvariant functions of compact support on
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H , for almost all v. Here IKHi,1 is  the volume of the standard maximal compact
subgroup H ' (R ) o f  H;) ( i t  i s  PGL (2 ,R ') ) ,  a n d  chK„, i s  th e  characteristic
function of K In. A choice of a Haar measure is implicit.

Let L2 (H ')  be the  space of smooth functions 0: H' (4) w ith 0(Th) =
g5 (h) (h (P ) )  and f 1 1 11  10 (h)rdh  <00 . The convolution
operator

(p 0) (g)
 = 1 1 1 1

 (h) 0 h) d h = fir  (F
)\ 1 1 .(s O

K  ( g ,  h )  0  ( h )  d h

is an integral operator with kernel K  (g, h) = E r elf(4  ( g  irh).
The theory of E isenstein series decomposes 1,2 (H ') as the  d irec t sum  of

three mutually orthogonal invariant subspaces: the space  a  ( f f )  of cusp forms,

the space Li (H ') of functions 0 (g) = x (det g )  w ith 2(2 = 1, and the continuous
spectrum L (H') . The corresponding kernels are  denoted by Ko (g, h), K 1 (g, h),
K (g , h) . T h e  F o u r ie r  sum m ation fo rm u la  i s  t h e  e q u a lity  o b ta in e d  on

integrating K (n, h) 0 (n )  on h c H (F)  H (
1 x

)  and on n =- 1) in N (4E ) /N (E)

(i.e. x  in . E/E); here 0 (n) = 0(x - 1- .4, where 0 *  1 is  the  character on
fixed above. The convergence of this double integral is easily established.

The geometric expression for the integral of K (n, h) 0 (n) is computed in
[F6], Propositions 4 a n d  9  ( in  the  context o f  GL (n) ; the discussion of the
general case leads to  an expression clearer than that obtained by the  special
discussion of the case of n=2 in [F5]). It is the sum of

gr(0, f ,  (p) = fN f  (nh) (n)dndh,
(s4F) f P G L )

and of

0 1 i
gr(b, f , 0) = f Nwoi,,GL(241 ( n( 0 )  

nh) (n)dndh, 72=
/

over all b in E V E  ( -*NE / F  E x b y  bi—'NE/Fb, where E *  { z / i; z E .P } ) .  Here i
i s  a  n o n - z e r o  e lem ent o f  E  w ith  i  =  — i, a n d  n  sa tis f ie s  ?PT' =

(0  1
1 0 )
The integral of K1 (n, h )  (n) is  zero since 0 is  non-trivial. The cuspidal

kernel takes the form K0 (g, h ) =  „ , E ,5 „, (7r' (r) 0) (g) ( h )  ,  where ranges
over the cuspidal PGL (2, siE) - modules, a n d  0 over an orthonormal basis of 7-t-'
(with standard finiteness properties). The integral of Ko(n, h) ÇT) (n) is equal to

(W015x) r' , where

(WokH)r , (r) E 147 (ir' 95) P H (0)
Oe



380 Yuval Z. Flicker

is independent of the choice of the basis {0} of r'.
The integral of K, (n, h) (n) is computed in [F5], Proposition 5. I t  is  the

longest part o f the  summation formula. T o  record  it, we need some notations.
Let g  be a  unitary character of A V E '. Write p =u  if g(a) = u (ã) f o r  all a E

F o r  any  com plex  num ber s  consider th e  H ilb e r t  sp ace  H ' (g , s ) of
functions 0: PGL (2, .sziE)— q  which satisfy

0(( a
o

 4 4
1 )h, lalsE+12.11 (a) (h) (a E , hE PG L (2, E ) )

a n d  fyr10(k)1 2dk < 0 ° .  H e r e  Yr = w h e r e  K  is  the standard m axim al

compact subgroup of H .  T h e  re s tr ic tio n -to -Jr  m a p  0 011r  defines an
isomorphism from H' (g, s) to  H' (g) = H' (g, 0) . Identify H' (g, s) with H' (p) ,
and denote by 0(g, s) the element of H' (g, s) corresponding to 0 (g ) in H' (g).
L e t  I' (g, s) d e n o te  t h e  representa tion  o f  H'(.91) o n  H' (g, s) b y  r ig h t
translation, and

E (h, 0, p, s)= E (rh, s ) (0=0 (g) EH' (p))
T E B (E) \H o

the Eisenstein series. The kernel on the continuous spectrum is given by

CO

K (g , h) —4
1
r E f  EE (9, I' (g, it ; f') 0, g, it) E (h, 0, p , it)dt.

(In  th e  function fie ld  case  the  integral ranges from  0 t o  2r/lnq — q i s  the
cardinality of the field of constants; th is notation will be so understood below
too) . Here 0 ranges over an orthonormal b asis  {0a) of Jr-fin ite  functions in
H' (g), and g  ranges over a  se t o f representatives of the unitary characters g
on . / E x  u n d e r  the equivalence relation p ' - - p  if  p' (a) = p (a) lal i f  (t E R ) for
a ll a  E 4n , and it — A lso  note th a t N(E) \ N (slie )  i s  compact, and put
E0 (0 , p ) =  i N (E )\N ( 0E (n, 0, p, 0) (ï)(n)dn. D enote by M  t h e  group of a e
with absolute value 1a1=Ilvladv equal to 1, and b y  146/Fx1 the volume of the
compact sei lF/Fx.

Proposition 5 of [F5] asserts — fo r  a  function r = O fv such  tha t f y  i s  the
unit element 

j 0
 for y  outside a  finite set V, and where fv=0DEvr, — that there

exists an integrable function d (tw i t , f v )  on tE9 for each p i, with

(1.1) f  :Id  (gv", fv)Idt< 00

(we write v (a ) for lai), such that the integral of K,(n, h )  (n ) is the sum of :

(1.2) L J ood (In) " , iv) tr fv) 1dt
14  V
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and of (1 .3 ) , defined by the following expression (in which Oa, Os appear
twice):

1.94 /F x  I [ tr fv )  ELoacodk • Eo(013, rt)4 r ,ffi v
a,l3

NIEb) U  1
• L,L,o, (00a (k) nf 1iv (a) ialk2 f  f t , ( k v i ( a,  13)nev )d x adndkde.

VE V  EV'

In  summary, the Fourier summation formula is  the equality in the
following :

1. Proposition. W ith the above notations, we have the equality

T(0, f , 0) +  E  gr(b, f , 0) =E (wop.)„,v) (1.4 ± (1.3)
bEEx /E•

of distributions in f = O fv, f„=fv° for alm ost all v ,r „  CC° (11) for all V.

Next we develop an analogous Fourier summation formula in the context
of G = U(3, E /F). In fact it will put our problem in the correct perspective if
we enlarge our horizons and work in this initial stage with a more general
unitary group, and its subgroup. Suppose then that n _ 3 , and put

/0 1 \

g = —/ EGL (n) (thus / is the identity in GL (n — 2)) .
\ 1 0 /

Introduce the algebraic group G over F whose group G of F-points consists of
the g  E GL (n, E) with Arg V = g ,  where g— = (g- ,,) if g  =  ( g o ) ,  911 E E . Let PE1- 1

denote the projective (n - 1) - space over E, and let Y be the subvariety of x  in
PE i - 1  with x g t.f= 0 . Then G acts transitively on Y by g  : x= ( x i ," ,  xn )
If x o = (0,— , 0, 1) then its stabilizer B=stabcxo consists of the matrices g  in
G whose entries on the first column and last row are zero except the entries at
(1, 1) and (n, n), which are related by g1 1 = 1. The subgroup B is a maximal
proper parabolic subgroup of G, which is also minimal when n=3.

Put g o = diag (1, — 1, ,

/ 1  — 1  0 / 1  0  0  0  \  /
1 — 1  0  

1
1 1 1 0 0  2

go=
0 0 1 0 0 0 / 0

\ 1 1  0  1\ 1 1  0 1 / 2 \ O  0  0  1  /
2 2 4

1Note that —
2  

(I o) '`E go , Eo= (0, I, 0, •••, 0). Define C to be the centralizer of

1 0  0  - - -2
0 0 1 0  0  1  0 1
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go, or of 'ego, in G. Note that ,7090,70= tg0, and gV=Y`go ,7=g5090 ,70,7

2. Proposition. We have the disjoint decomposition G= BC U 1390C= BC
UBg(T1C.

Proof. Denote the ith row of h E C by r, = (r,i, •••, r,n). Then r,2= 0 and
r2 i = 0 if i * 2 .  Put r; for r, w ith 7,2 deleted, and  h' fo r  th e  (n —1) x (n —1)

01 \
matrix with rows r, 6 ••., r'n. Put ,7'= —/ E GL (n -1 ). As hE  (Cc) G

0 I
we have

(2.1) r'i,7-'143'-=

—1,

1,
0

3 i = j< n ,

{i, j1 = {1, n),

otherwise,

and r22322=1. Conversely, given a  row  (n - 1) - vector r„' with r T T ; = 0 , there
are  ro w  (n - 1) - vectors r , r , •••, rfl'-1 such  tha t (2 .1 ) holds. Namely there is
some h E C w hose last row  is rn . Consequently th e  o rb it  {ra =x0h} of xo E  Y
under C consists of all 1 E  Y, x= (rn=x0h=) (x1, • - , xn) with 1 2 =0.

1 1 1
On the other hand, xogo= ( -

2 '  
—
2 '  

0, —

4  
)

'  
where O is  the  ze ro  (n - 3)-vector.

1
The orbit ix  = x ogoh = -

4
(rn- k2ri - k2r2)} of xogo under C consists of all x =

• , xn ) E  Y with 1 2 ± 0 (then 1212 = 1/4). Indeed rig - T,i = 1 and r2 ,7T2 = —1,
1

hence x  =  ( r n + 2r2) satisfies x ` . -x- = 0. Conversely, given a  vector x

which projects to Y, thus x,T.f = 0, with x2.f2 =1/4, there a r e  (n — 1) - vectors
1

r 1 with r'i,7' tx  = I d a  and r,7' t77=151i511 - 5u, namely an hE C with

Xogoh equal to the given x.

T h e  F o u r ie r  sum m ation form ula is  o b ta in e d  o n  in teg ra tin g  (for f  e
C7 (G (R I))) the  kernel K  (g, h) = f(g - irh ) of the convolution operator

YE G(F)
r (f) =  fu(4)f(g)r(g)dg o n  th e  space L2 (G (F) \ G (.9 )) o f automorphic forms.
More precisely we integrate K h) ( u )  over h in  C (F)\C(sni), and over u
in  U(F) \U(sii), w here U  i s  th e  unipotent radical of the m axim al parabolic
subgroup B. The E-points of U are

/1 p z

U (E) = 0  I
{\ O 0

tq
1

; p - ( p 2, .•., P n - 1 )  
EEn-2 ,  q  EEn-2 ,  z E E ,

and
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{

u (F) = u (E) n G (F) = u =
11 P  110̀F- F  \

0  I iF
\O 0 1 }

; f EF, p= (p2, • • ., pn_i) EEn - 2

where tq is  the transpose of the row vector g. The character 0: U(4 ) /U(F) - - ,

V is defined by 0 (u ) =  (p2 +N) .
The absolute convergence of this integral is immediate. Let 11911 denote the

usual norm function on  the  group G(4 ) ([HCM], p. 6). Then
TeG(F)

 E  I f (9 - 1 7*)1

g 11N  ( f o r  some c  = c( f)  >0, N = N (f )>  0) fo r all g, h . Integrating the  last
sum over h in  the  space C (F)\C (4) , which has finite volume, and over g  in
the compact U(F)\U (4) , w here 11g II is bounded, we obtain a finite number.

To com pute th is double in tegral w e need to  know  w hich double cosets
U (F) T C (F) , y  E  G (F ) , m ay contribute a  non-zero  term . W e then introduce
the integral

(r, f , =  f iz v in , i ) x c c a ) ) f (14-
1( I )  (s) dudh,

w here Z  denotes th e  centralizer, consisting o f  th e  (u, h )  w ith  u -
1 Th = T . It

vanishes precisely when 0  is  non trivial on Z (4). The same comment applies
to the local analogues

T(r, fv, O v )  = ff„ \ a „ . , /v (u - lrh ) Ø„ (u)dudh.

When y  splits in E  then Gv =G L(n , Fe ) ,  Cv i s  the  centralizer of g -
0 , or of

1
1  p z

-y (I -  g - o) = t soso, so= (0, 1, 0, •••, 0), in Gv ; Uv consists of u= 0 I to] , p=
0 0 1

(P2, •••, Pn-/), q =- (92, ••', qn- 1) in F i
-

2 . Lemma 2 of [F7] takes 0v (14 ) =  Ov (1, 2+
q _ 1 )  a n d  asserts tha t (y , fv , O v) vanishes unless T  l ie s  in  th e  (Ur, Cv)
- double coset of g b g o , where 9b=diag(1, •••, 1, 1/b), bEF,)1, or of I  (when 1/ .3;
the case of n=2 is also considered in [F7], Lemma 2). A  similar proof applies
in the non-split case to establish:

3. Lemma. If v  stays prime in E, and Tc G v satisf ies ¶ (r , f, O v)  0
for some A, O,,, then T lies in the (Un, C v ) - double coset of gag°, Where gb= diag (b,
1, •• • , 1, b or of I. Moreover, UNbgoCv=- Uvgb, goCv implies that CA  E E .

Proof. Put F (g )  =  f cvfv(gh)dh. This F  is  a  function on Gv/Gv, and this
symmetric space injects into the  space of n X  n matrices x  w ith entries in  Ev ,
rank = 1, tra c e =  1, and with x ti T l, by  the  map Gv/Cv D g '- g t sosog
_ g tEo rp e o g - i. The image X consists of the x  of the form x =  - t riTg- 1 , with
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v= (Vi, •-•, VI, 0, •.., 0), v i± 0 ,1 1 _ n ,  and 2 if n All elements x =
of X with x n i *  0  (then 1= n and  'n i =- vni7n E NEvia n  a re  obtained as the
image of the double cosets

/1 p -ptF+if\ b 0 \

UvgbgoCv/CvD 0 1 `F • g 0

\O 0 1 / \CI b /

— b+b - 1 Giotf+ -10

1F/26- 2 b  '  2 6 '  " 46 i•
(   - 1  _p_ pt/T-i2f)

1/26

1 p * \
If 3 l <n , and u= 0 / * , then uty= ty', where v '=  (v ii - p2v2±•••+

0 0 1 /
1)2, •••, vi, 0, •••, 0). Take p3 = •••=p1- 1 = 0, and pl= P2v2/v 1, to get u E U,

with arbitrary 1,2 *  0 which satisfies uxu - 1 = x  (x  is  tyi3 - 1 ) .  Consequently
f u, F (ug) (u) du = 0 for g E G0/C0 with g̀seg- 1 =x.

/1 p *\
If 1= 2 and u= 0 / * , then y = v2, 0, •••, 0), and IA  = 11., ', where

\O 0 1 /

y' — (vi ±p2v2, v2, 0, •••, 0). Hence UvA,, where Az, =

{I b
I  

\ I0

, acts

transitively on the unique orbit of the x = 1vi7J - 1 , v= (vi, v2, 0, ••-, 0), v2tT2= 1.
1 (0, 1, 0, •••, 0), and - 1 e0e0,7-='s0E0.This orbit is obtained by  J E  G0, since PE0 -=

W e a re  now in  a  p o sitio n  to obtain th e  geometric part o f the  F ourie r
summation formula.

3.1 Corollary. T he integral of K1 (u, h) (I) (u )  over u  in  U  (si)/U  (F)
and over h  in  C (F) \C ( 4 )  is absolutely  convergent and equal to the f inite sum
T(0, f, 0) + T (b , f, 0 ), where

b e E x /E •

¶(0, f, (,b) = f  (u h )  (u )d u d hu (so /uo(so f2,(01)

and

(b , f, 0 ) =  fu (m i c(w )f  (ugbgoh) (u)dudh.
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/1 p *
Here gb=diag(b, I, b , and U 0 is the group of u= 0 I 'IT in  U with P2= 0.

\ 0 0 1 /

Proof. This follows from Lemma 3 above and Lemma 2 of [F7].

W e shall not use the following observation. Put n=3.

3.2 Lemma. Fo r any f  E  Cc (G (4 ) ) ,  the  function K 1  is  compactly
supported on LAU (al) X C \C (4 ), U=U (F) , C= C (F) , G = G (F) .

Proof. If  G i s  a  connected linear algebraic group over F, and C i s  a
reductive closed subgroup over F, then  G/C i s  an  affine  varie ty  V  over F
( [Bo], Proposition 7.7). T hen  V = V (F ) is discrete and closed in  'V =  V(4 ).
Put G (4 ),  etc. The natural m ap W/W— >V  is continuous, and it m aps G/C
cW/V to v 1 7 .  Hence G/C is closed in W/V, namely GW is closed in a n d  so
W/C is  c lo se d  in  W/ G . Moreover, fo r  G  o v e r  F  a s  above, f o r  any closed
F-subgroup I-1 of G, ,Ye'/H is closed in W/G ( [G], (2.1)). Now for our function
f, since UVU is  compaci, K  f  t  ,  h )  =  E Z\G  f (u 'r h )  has compact support on LA
6/./ x OW, hence also on its closed subset U\ali X  C\W, by either of these results.

A computational proof is as follows. We have K f (14 - 1 ,  h )  =  E rE G  f =

ErEnEcEv (uvryih) (y E U\G/C, E fl TC7- 1 ) .  If u lies in a com pact
subset of U (.9 ) and f (uvrt7h) 0, then In t (r ) o lies in a com pact of G (4) .
A  se t o f  representatives r  fo r  U\G/C is  g iv e n  (in Proposition 2) b y  I  and

d(b)go , d(b) = diag(b, 1, b bEEVE•. A lso w rite 7.)= (p, f) for an element
o f  U. Then Iv (p, 0) ; p E E} i s  a  s e t  o f  representatives i n  U  f o r  u/unc.
Multiplying out Int (vr)Jo for y=1 and for r=d(b)90, we see that the rational y
(namely h ) and I) (namely p  (and f  if  .r. / )) lie in a compact, hence in  a  finite
s e t .  H ence nh  l ie s  in  a  c o m p a c t  o f  C (4 ) ,  a n d  h  lie s  in  a  c o m p a c t o f
C (F) (4 )  if K f(u ',h ) *0  for u E U (F )\U  (4 ).

As in the case of H' (F) = PGL (2, E) discussed above, the kernel Ko (g, h)
o f  th e  convolution operator  r (f) o n  t h e  sp ace  o f  c u s p  fo rm s  is  Eir n(7r)
E0Er (ir WO) ( h ) .  Here it ranges over a  se t o f representatives for the set
of equivalence classes of cuspidal representations of G (i), a n d  n (7r) denotes
the multiplicity of it  in  the space of cusp forms. In the case of n=3 it is shown
in [F3, 4] that n (7r) =1, and this is conjectured to be true for all 3, but we
make no use of th is rem ark. T he 0 range over an  orthonormal basis of cusp
form s w ith standard  if-fin iteness properties, in  th e  space o f  7r. T he  sum is
convergent to  a  rapidly decreasing function in  g  and  h  in  G(F) \ G (4 ),  for
every test function f . In  fact the sum  is finite in  the  function field case, since
it ( f )  ç5± 0 only for 0 with fixed ramification depending on f, and the space of
such cusp forms is finite dimensional.

3.3 Proposition. The integral of Ko (u, h) (u ) over h  in  C (F) \C (4)
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an d  u  i n  U (4) /U ( F )  is  equal to En (r)(W oF)x (f), where 04 015 )ir =

E ibErWo (7( (f) P  (0 ) , and  W0 (0 ) is  fu(F)\u(p1)0(u) (u )  du.

Remark. T h e  g lo b a l considerations sim plify i f  w e  assum e th a t a t
some place vo of F the component fvo of the  test function f  is  a  supercusp form.
O f course vo h a s  to  b e  non-archimedean, a n d  s in c e  it  is  e a sy  to  se e  th a t a
supercuspidal GL (3, Fv) - module cannot have a non - zero GL (2, F y) - invariant
linear form on  its space  (see  Proposition 0 of [F7]) , w e assume that vo stays
p r im e  in  E .  A  w ell-know n obse rva tion  o f D .  Kazhdan im p lie s  th a t  the
convolution o p e ra to r  r(f) w ill  th e n  f a c to r iz e  th ro u g h  t h e  orthonormal
projection to  the space of cusp forms. Consequently Kf (9, h) = K o , f  (g , h), and
the  F ourier summation form ula in th is  case is sim ply th e  following identity,
obtained from Corollary 4  and Proposition 5. If  the  component f 0 of f  at some
place vo of F which stays prim e in E is a supercusp form, then we have

¶(0,f, (,b) ± W(b,f, (P) E n  (r)(147o15 )7r
I tbeE'VE*

T his  form of the  F ourie r summation formula is  to o  restrictive to derive our
global results. In  th is  p ap e r w e  use  the  general F ourie r summation formula
which we proceed to develop (when n = 3 ).

To deal w ith convergence questions, we briefly recall some consequences
of Arthur's work [Al, 2], mostly in h is  (standard) notations. This is best done
in  th e  context o f  a  genera l reductive  group G  over F .  L e t Wi  d e n o te  the
subgroup of the g  in W =G (.4 ) with I X W I=  1 for every rational character x
o f  G  ([A 1], p .917). Put =  K , p ro d u c t  o v e r  a ll  p laces v  i n  F , of

hyperspecial maximal compact subgroups Ifo of G (Fv ). Let fE (G (4) ) be a
,Y{ - f in ite  ( th e  s p a c e  s p a n n e d  b y  its  le f t  a n d  r ig h t  X - translates is  fin ite

dim ensional) sm ooth  com pactly  supported  function o n  W . D enote by A T
truncation  ([A 2], p . 89 ) w ith  respect to  the second variable, and by  x  any
cuspidal d a ta  ([A l], p .924 -6 ). Denote by U a  closed F - subgroup o f G  such
th a t U \q/ is  compact, and b y  0  a  character o f U\q/ w ith  101=1. Let C b e  a
closed reductive F-subgroup of G , such that C\W  has finite volume, and such
th a t fo r  any Siegel dom ain S ([HCM], [P R ]) in  sc=snw i s  a Siegel
domain in W. We put C=C(F), W =C(.4), etc.

4. Proposition. L et w be a com pact set in V. Then f or any sufficiently

regular ([A2], p. 89) T in  Vic; we have K 1 (u , h )
=

ATIff(u, h ) and Kf,x(u, h) =

ArK f,x (tt, h ) ( [ A l ] ,  p .  935), for all u E CO, h E W. For any Siegel domain S in  W1

and N>0, there is c> 0 such that E x liff,x (n, h)I cil hil- N  for all u E CO and h E S.
Consequently

f c\ J u\ IIK f(U , h)0 (u) dudh = E ffK f,x  (u , h) çl (u)dudh.
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Each side is finite even if  KO is replaced by its absolute value. The Eisenstein
series being defined in [A l], p. 926, put E0(0, = fuvu E(u, 0, 7r) (u)du. Then

En (A p) - 1  f IEo(Ip(rr, PO, Tr) f  ATE (h, 0, 7r)dhldz
fl(M) OE Zp(7r). C\W

is finite. The expression obtained on erasing the absolute values is equal to

fcvelu\IK (u, h) (u) dud h.

Proof. The truncation operator A T  is defined in [A2], p. 89, to be (we put
IA/ZI for dim (A /Z))

/Ir v) (h ) i )  ,A/ZI E T) f (n5h) dn.
deP\G

Then

AD,f(u, h) =E (-1) I A / Z  I E f p (H (5 0 — T ) f ,  Ki (u, n5h) dn.
n.A/

6E P\G

Put Kp,f  (u, h ) =E a .m L I/  f (u - Vmh)dn, as in [A l], p.923. Then

K f (u,nh)dn= E h).fv\.A(
TEP\G

By [A2], p. 101, sentence including (2.4), if Kp,f  (ru, 5h) *0, then there exists
To E  21 0 , depending only on  the  com pac t suppo rt supP of f ,  such  that
tp (H (ru) — H (oh) — To) = 1. B y  [A l], (5 .2 ), p . 936, th e re  is  c> 0 such that
TC (H(Tu)) (1 for all u E TEG, TE E d o. Our u lies in the compact
co, hence there is some c > 0  w ith  IC ( H ( r u ) )  c  E T G ), for a ll It E:dp.
Hence It (H (A ) )  <c —  i t  (To), and  Fp(H(5h) — T )  is  ze ro  fo r a  sufficiently
regular T . Then the  term  indexed by P * G  vanishes, and LI T K f =K f .  But the
sentence including (2 .4 ) o n  p . 101 of [A2] is  va lid  a lso  fo r Kp,f,x ,  fo r  a ll X.
Hence A r Kf,x= K

The kernelkernel K 1,x is defined in [A l] , p. 935, to be

K f ,x (Pt h )  
= E n  p) f  E  E (u, Ip (r, p 0 ,  )E (h, 0, r)d r.

(M) 0 E  %,(7r)

By [A1], Lemma 4.4, there is N > 0 an d  a  semi-norm II • Ilo on•C7 (G(.4)) such
that

EEnop) - ,  f E E (u, PO, 7r)E (h, 0 ,  ) I d
 I t I I  O N  • II hIIN .

X P Tr(m) sbEL, (7r).

In  particu lar E x IKr.x (u, h) I Mo • 111411N  • II hr. By [Al] , Corollary 5.2 (see
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also [A 2], m id page 8 9 ), w e can  truncate  Kf(u, h )  = E x K f , x ( l t ,  h )  term  by
term: ArKf  (u, h) = Ex ATKf ,x (u, h ). Moreover, by [A 1], Lemma 4 .4 , and [A2],
Lemma 1.4, there exists some N' > 0 such that for any N > 0 there is c>0 such
that for all u E V - and h  in a Siegel domain S , we have

EEn ( A p ) ' fi E  E  (u , p (7, f) 0, 7r) E  (h , 0 , ir) Ic l •
P ribm g5E3p(iox

Hence

EiKf,x (u, h ) = EIAT j ,x (u, h)
X X

for u o..) and h E S , and the proposition follows.

B y  [A l], (3 .1 ), p . 928, the Eisenstein series E (x , 0 , C ) , and  each o f its
derivatives in  x ,  is  bounded  by  c(C)II (x  E  ,  w here c (C) i s  a  locally
bounded function o n  th e  se t  o f  C c 90' where E (x , 0 , C )  is  regu la r. Let us
review the  w ell know n fact that on ill * , w here E  (x , 0 , C ) is regular, it has
polynomial growth in  C. F o r this purpose, embed A ; 0 in  ,saiq  via x (x , ••-, x ,
1 , ••.)  (x  in  the archimedean components, 1 in  the  finite components). Put (as
in [A l], p . 925) II= Hom a s  (sIVE'R>o, 51 ) ,  where S ' is  the  un it circle in the
complex plane, and n o =  Homcts (.9PEIrg ;0 U , S 1) ,  w here U  =IL  Uv, and  U , is
the m axim al com pact subgroup of E .  I f  I);  (1 r )  a re  th e  archimedean
places of E , for p E  no we have p(zv,) = E  i , w ith  E i i  [Ev, : g?] =  O.
These pi (pc  no ) fo rm  a  discrete subgroup of rank r 1 in  these hyperplane.
Denote by Co(p) a  function on HO of the form Co(p) =c1I ;  ( 1 - 0  c' with c>0,
ci> O. In  fact it depends only on the restriction of p  to EX , where E.).̀. =

E7.
Choose a set of representatives ft for II/110, and a function C  on Ho of the

above type for each :a. Denote by C (p ) the  function on IT defined by C (p)
CIT (p/ 17) if  p =  Ft o n  U; then  C (p ) depends only on  the  restric tion  o f p  to
ExUE ).'.. Denote by c (p ) a  non  negative valued function o n  II which depends
only on the restriction of p  to  U. Using the existence of zero free regions of
L-functions about Re (C) =1, we have:

4.1 Lemma. There are functions Ci(f t ), C 2  (g )  C 1 (1 1 ) C 2  (p ) as  above,
su c h  th at f o r complex C with IReCI C1(1.1) - 1 (1± (ImC) 2 ) - "`# ) w e  h av e  that

IL (C, p) /L (1+ C, 141 is bounded by C2 (p) (1 ± (ImC) 2 ) " ( u )  (a bound of  the same
type holds for any derivative of the quotient, by Cauchy's integral formula).

Proof. F o r  a  complex number s =  + it , pu t L 1 (s, = L  ( S ,  f l y ) .

This L f  ( . 3  ,  f i )  converges absolutely on 1+ 5, 5> 0, by [L a], p . 158. It has
analytic continuation to  the entire complex plane, and it h as  no zeroes on a=
1. For any vertical s trip  of finite width there are C ( p )  and c (g )  such that for
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all p, and s  w ith  a in  th e  s tr ip , ILf (s, g) l is bounded by  C (g) (1 + s .§)c(u). In
fact, by [La], p . 334, for any t o > 0 there is m > 0  such  tha t s (s — 1)1.1 (s, p) is

0 (ItIni) in  the vertical strip - 1 <a<2, I ti >to. Then ILf (s, g) I <C171 ItIm  in  this
strip, and by Cauchy's integral formula we also have IL'f (s, g)I <W ItI n i there.
Take Eo> 0 such  that ILf  (s, p) I > C 2 in ItI 1 ,  a —  11 Here Ci are positive
constants. As in [La], p . 313, one has ILf (a , 1) 3L1 (a + it, p ) 4 L1 (a+2it, p 2) I
on a> 1. Hence ILf (s, p)1 ILf (a , 1)1- 3 1 4 IL1 (a+ 2it, 112) I 1/4> C31 a— 113/41d—rn/4

on a>1, Put C4
=

 (C1C3/3) 4 ,  and m'=6m. Given C w ith 1 — C4Itl ' ‹R e C
put s=1+C4Itl - n i' +it. Then ILf (s, g) — L f(a,g)I i I IRL,-(u +it, tc)dul is

bounded by CiTl ItIm  (Re s — ReC) (C4/Ci)Itl ' ' .  By the triangle inequality,

ILf (C, p) I I L f /t) I — 114 (s, g) — Lf (C, 11)1 C3C11 4 1t1- ( 3 m ' + m ) I 4  — 2 (C4/C1)

on lImC I 1. Since ILf(C, tt)I> C 2  in lImC I IReC — 1 l Eo, w e  a r e  done
(replacing C i b y  C1 (p) a n d  m by c (p), and using Stirling's formula to bound
the ratio of the gamma factors at infinity).

N ote th a t  f o r  characters p  o f  fin ite  o rder, m uch  be tte r estim ates are
known: ImC can be replaced by /nImC in our estimates. But we need here only
our crude estimates.

From now on n =3, namely G is  the projective quasi-split unitary group
PU (3, E/F) specified above. Let p be a  unitary character of szW E 'R > o , and B
= AU th e  upper triangu la r subgroup , w here  A  is th e  d iagona l subgroup
(A (4 ) consisting o f  a  = diag(6, m, 6 - 1 ) , b E E a ii), a n d  U i s  the
unipotent upper triangular subgroup. The character p defines a  character of 33
=B  (4) (by p (au ) = (b ))  . A s in [A1], p .925, le t Ir (it) be the space of right
1{-finite functions 0 on = G (.4) such that q  (uak ) = p (b) ç5 (k) . Here X =
nv K v, where K v is  the standard maximal compact subgroup in  G (Fv). F o r CE

2,tt (=the complex p lane  in  o u r  case), put , p, C) = ( g ) S ( 9 ) ,  where

5 (9) =Ibli for g  in G ( )  w ith  Iwasawa decomposition g =uak , u k EX, a
E A (4 ). T he  E isenste in  se r ie s  is  d e f in e d  a s  t h e  analy tic  continuation of
E (g , 0, p, = E r .B\G (Tg , p, (B  = B (F), G = G (F) ) , a  series which
c o n v e rg e s  in  s o m e  r ig h t  h a l f  p la n e . D e n o te  b y  I (p, C ) t h e  s-module
normalizedly induced from the Ai-module pc =g05c. The restriction of I (p,
to X depends only on the restriction of p to U, and its space is contained in L2 (1{).

By M(C)0 we denote the image of 0 under the action of the intertwining
operator M(C) = M (g ,  C) =M O - , p, ,  associated with the reflection ,7 ( [A1],
p . 926). As ( g ,  p , 0  lies in  the  induced I (p, 0 , the  function (M (C) 0) (g , 5 g,
3-0  lies in  the  induced / (Tp, 5-C). The operator M(C) has no singularity on
the imaginary axis.

A type K' is  a  finite set of equivalence classes of irreducible K-modules.
The norm of the intertwining operator M 0  on the K-component of I (p,
is denoted by II M(I-t, Ç) II. T h is  component is zero unless the restriction of p to
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U lies in a finite set depending on tr.

4.2 Proposition. (1) Fix  a '/{ - type K .  There are functions C1 (p), c1 (p),
such that f o r any complex in  th e  s e t  Q defined by I Re ( )1- ci(g) - 1 (1 +
(Inac)l) - ci(u', we have th at W u , C .) L is bounded by C2 (g) (1 ± (IMO 2 ) " ( " ) . A
bound of the same type holds for any derivative of the intertwining operator.
(2) Given K , there are C;  (p) , c;  (p), such that for any in  ,Q, and for any  0  in
the r - component of I (,u, C), the integral fc\wIATE (9, 0, p , C)I 2dg is bounded by
the product of kill, C2 (p) (1+ (IM) 2 ) " ( " ) , and exp(c3(p)11711)
(3) For any ./{ - finite fE Cc

° (G (,9i) )  there are C, (p), c) (p), such that for a n y  in
Q, x E V , we have that IE(g, I (tt, C; f) 95, tt, C)1 is bounded by the product of

II g IIC3(g)
II 475 hi,

C2 (g) (1+ (iinC) 2 ) " (P) , and The same holds for any derivative in o f  this
function.

Proof. B y  [Sh], e n d  o f  §2, M  i s  t h e  p ro d u c t  o f  a  normalized
intertw ining operator, w hich is easily  majorized, a  fa c to r  o f  absolute value
one, and a product of two quotients of L-functions of the type which appears
in  Lemma 4.1. (1) fo llow s. (2 ) fo llow s from  th is, v ia  th e  scalar product
formula of [A2], Lemma 4.2, p. 119 (see also J. Arthur, On the inner product of
truncated Eisenstein series, Duke Math. J. 49 (1982), 35-70).

F o r  (3), note th a t in  general, given a compact oh  in w e have AT  0 (g)
=  ( g )  fo r  any  g E  o h  a n d  any function g5, prov ided  tha t T  is sufficiently
regular w ith respect to  ah. Indeed, [A l], (5.2), p. 936, asserts tha t there  is a
constant c> 0 such that for any It E d, r E G, and g E V , we have It (H (W))
c (1 -  F in Ii g II) . It suffices to take T w ith it (T) • c (1 + Inli g II) for a ll it E d and
g Ewi . In fact we take T1 w ith  it (T i ) for all It E d , and T=Ti • max{1±/n11911;

SUPP (f)) . T h en  AT  0  (g ) =  (g ) for all g  in the compact ah • supp (f).
and 1171 ci max (1 -I- in II 911; g E  oh} for some c1=ci >0 . F o r  these f , o h , and
T, we have for all g E Oh,

E (g, I (p, C; f) 0, it, C) = (gh, 0, p, C)f (h)dh

= fA T E (gh, 95 , tt, (h )d h f  ATE (h, C) /G(9, h)dh,
9 G\9

w here K,-(g, h )  =  E r ec f (g - i r h ) .  But IKf(g, h) I c211 I1N , a n d  (2) given an
L2 -bound fo r A T E . Hence the expression to  be  estim ated  is bounded by  the
product o f 11011, C(g)(1 (ImC) 2 )c1 ) , and max 11 911"w. The m axim a are taken
over x  in the compact oh. Finally, taking ai to  be  a compact neighborhood of
the identity, we observe that for any x E maxli 911 is bounded on o 1 =x0) by
a multiple of maxlix11, a n d  (3) follows.

Put C1=g6- 1Cg0. T his is  the centralizer of 5 - 1= 1 =905 -0g0 in

\ 2 0 /
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G. Note that 905.090=',71. Put .kc n c (4).
5. Proposition. F o r a  sufficiently large  T  an d  Re (c), w e  hav e that

.1-c ( F )\c (4 )AT E (h, 0, i t ,  C) dh  is absolutely convergent and equal to the sum of

(5 . 1 . 1) (3 /) [Tc f çb(k)dk — T - c  f (M 0)(k )dk l

(k ranges over Y lc), and (p , 0 , C ) =  (ti) IB(.4)nc(4)■Q(4) 0(hg0 1 , tt, C)dh. Here
p : E x — 'r indicates also the  representation p :  diag(b, m, b - 1 ) — > p(b) of
B (sei) ; ô  ( p )  is  0 unless p factorizes through v(b) = 1bl, where 5 (p) =
and sii= {bEsPE`;161=1}; and E (p) is  0 unless p  is  1 on sdi=- {bEzdkr ; bF=1} ,
where E (g ) =1.9:WEI. Moreover, on C ciA , the function g' (p, 0, C ) is holomorphic.

Proof. By virtue o f  P ro p o s it io n  2, f o r  C with la r g e  Re (C ) the
Eisenstein series E (h, 0, p, C ) can be written as

(r h, p, C )± (g cT 1 rh, C)
reBo(F)\C(F) rEg Bo(F)g nc (F)\c (F)

The constant term formula Eu (g, C) = q5 (g, C) + (MO) (g, ,7C) implies that
ATE (h, C) is the sum of

Ex (5 (rh) <T) (rh) 4 (rh) — E  x (5(7-0>T) 5(Th) (m95) (Th)
TG13.\C TeBo\c

and

E0 (9-07-h, 11, C) X (5 (9E, i rh) < T) -E(mo)(,,irh, g•„, g•ox (5 (g, , ,h) >T).

Here /30=B0(F) and C=C (F ). The last two sums range over rep 0/300 fl C\
C.

We claim that 5(961 h) is bounded o n  (h E) C(94). Indeed, the  proof of
Proposition 29 (a )  below shows that 5v(96- 1 h ) is bounded (by 1 if  y  is finite)
when y stays prim e in E. If the place y of F  splits in E then note that ZACiv
consists of gcTi dmkgo with a diagonal d ( = diag (a, 1, b), a, b E F ) ,  unipotent m

1 , and kEK v n c v. Note that
1

1
0

( 0 1
1
0

1/2
1
1

90=
/1 2
0 1

\ 0 0

2 \
2
1 /

( 1
—1
1/2

0
1

—1
0
1

= 0
1/2

70 0 2
—1 2
—  1 1

/2 0 0 \/O 0 1 \ /1 2 2 1 0 0
= 0 1 0 0 1 0  0 1 2 0

(
—1 0 .

0 0 1/2 / \1 0 0 / \O 0 1 0 0 1
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Hence

z 0 0\ / O  0 1\/1 x  y \
Ng 6-1dmK= N( 0 1 0 0 1 0 0 1 z K

0 0 1/x I \1 0 0 I  \O 01 /
=N  diag(z/ (1, z, y—xz), (1, z, y — xz)/ (1, x, y), (1, x, y)/x)K.

Here x =  2/a, 1= 2b, y  = c + 2b/a, a n d  (x, y ,  z )  i s  a n  element of F v w ith
absolute value max (Ix lv,IY lv,14 )  if  y is fin ite , a n d  (x.f. - 1-  yW± z i r 2  if not.
Hence av (go Ymkgo) = lxz/ (1, x , y) (1, z, y  — xz) Iv  is  b o u n d e d  (b y  1 if  v is
finite), and so is 5(90h) =11v5v W O for h  in C C ).

The function AT E (h, C) is rapidly decreasing a s  a  function of h , by [A2],
p .  108, 1. 8. I ts  in te g ra l o v e r  h  in  C \ C(s4) converges t o  a  meromorphic
function in  C, whose poles are at most those of E(h, C). For a large Re (c), the
integral is the sum of

f  x (0 (h )  <T) 5(1W - 4 0 (h )d h =  (It) f 0(k)dk • f  ib IP - 1 ) (c+-1) - ( n'd x
Bo\c(d)

= 5 (14 f (k)dk • f = 5
2
( t )  Tcf  (k)dk,

./(c irc

(for the first equality w e used dh= 5 -61 (b) dndbdk, in the second we recalled
that n 3), and

f  x (d (h) > T)5 ( 1 ) -1- c (MO) (h)dh
B 0 \C Gal)

= (R) f ( lo) (o d k f 14-1) —(n-2)d x  b
l ic ibl: T

= — 5W  f  (M ) (k )d k  •  f Ib li 2ce b =  C
2
( I ) f ( M O) (k)dk,

11, 1,>T'" Yec

and

f 00'0h, g, C)dh-- -E(g) (hg', Odh.
goiNvnoc (el) B (sit) nc,(,,o\c,(.4)

H ere B(.4) fl C 1 (.4) = szik X  s4k. T h e  lo c a l fa c to rs  in  th e  la s t in te g ra l are
computed in Proposition 29 when v stays prime in E, but we do not need here
this computation.

Let us note that ç5 (k) dk and  f (M O ) (k) dk are  equal when 5 (g) * 0
(we may and w ill take g= 1  to represent th e  class of the  characters V , s E
i9?). Indeed, th e  intertw ining operator M  can  b e  written a s  a  product of a
scalar m (tt, C) and  the  product (gRv(tev, C) of local normalized intertwining
operators. A t g =  1, th e  induced 0) is irreducible, and Rv(Pv, 0) acts as
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the identity. The normalizing factor m (g, C) is computed in  Shahidi [Sh], last
line in Section 2, to  have the value 1 at g= 1, C=0. It fo llow s that (5.1.1) is
holomorphic o n  C E i , a n d  it is slow ly  increasing  there . S ince  E(h, C) is
holomorphic an d  slow ly increasing o n  C E i , s o  i s  f A T E  (h, d h ,  and
consequently so is 5 .0 ,  C).

5.1 Lemma. Let f 2 be Schwartz (sm ooth, rapidly  decreasing asI(I'
co) functions on 01 with fi (0) =12(0). Then lim( fa [h (C ) C-

1Tc
 — f 2 (C)

T—.00
dC=. 27rfi (0) .

Proof. An elementary proof of th is is g iven  a t [FM1], end of proof of
Lemma 1.

5.2 Lemma. Let TC be a unitary G (4 )  - module on a Hilbert space H, and
let H° b e  the subspace of .1{-f inite vectors. Suppose that each IC - type has finite
multiplicity, and let Li, L 2  be linear forms on H° . Let f  be X -f inite in Ci* (G(4)) ,
and 1/51 an  orthonormal basis o f  H

°
.  T hen the sum 1011_4 (r( 1-)0)L 2 (0) is

independent of the choice of the orthonormal basis { 0} . In particular, i f  f = f i* f

f i(g )  = f 2 (9 -1 ) ,  f i  and f 2 a re  'K - f in ite  e lem ents o f  Cc
° (G(.91)) , then

E{O} L 1( 71- (f1) 0) L2 (n" (f2) 0) =E10} Li(r(f) 0) L2 (0 )

T h e  g roup  G  o v e r  F  h a s  r a n k  one, nam ely B  i s  th e  u n iq u e  (up  to
con juga tion ) p roper parabo lic  subgroup  o f  G  o v e r  F .  T h e  non-cuspidal
spectrum  consists o f  re sidua l spec trum , w h ich  does no t con tribu te  to  the
Fourier summation formula, as the residual spectrum  is non-generic, and of
the continuous spectrum. The kernel I f f ,c  (g , h ) over the continuous spectrum
has the form

4n-E f - EE(g, 1(g, iC, PO, g, i,C)E(h, 0, g, iC)dC.

6. Proposition. Suppose that f = f l* g ,  where f -
2
*  (g) =f 2 (g -1 ), and fi, f2

are .11-finite elements of C7 (G (4)). Then the contribution f f  K t , (u, h) çb (u)dudh
from the continuous spectrum is the sum of

(6.1)

and

1—
2
EE, (I(1, 0,h) 0,1, 0) • f  (1(1, 0, f2) 0) (k)dk

Ile
0

0 0

(6.2) 41,,EfEE0(i(ti, iC,f1)0, iC) (it, I (g, i C, f2) 0, iC) d C.

The f irst sum  ranges over the characters i :  slik`/E xstEA ; 0
— >S1. The second ranges

over a  smooth orthonormal basis (0) of the space I (te, (f t = 1  i n  (6.1)).
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Moreover,

,E f IE E 0  ( t e ,  i , fi) , It, iC),7. (ct, i ,  f 2 ) , iC)IdC
g - c o  95

is fin ite.

Proof. By Proposition 4 the sum

itir E fRIEE0 (/(tt, 1:C; fi) 95 , l:C) f \wAT E ch, ic; f2) 0, iodhidc

is finite . U sing Proposition 5, th e  last claim  of the proposition would follow
once we show that for tt=1, the integral

f
I T T

I 2i
tc (iC) 

T
2i

-
c
gcB, (i C)

is finite, where

271, (C) = EE0 (I (P, C; fi) 10, C)L , (I (ii, c; f2) 95) (k)dk,

and

() (/ ;fi) ,[ f
(1 p ,

 cf2)0 ( o d k _ f  (uctt, c)/(ti, cfm (odd.
.1(c

I n  f a c t ,  e v e n  t h e  s u m  o v e r  a l l  ,u : s i q / E 9 0 — > S ' is  f in ite . In d eed , b y
Proposition 4.2 (3), f o r  a  given f i  w ith  a  fixed X - type, 1E0 (I (it, iC ; f i) 95,
p, iC )I is bounded by some C(ft) (1+ C2)c (P) . Moreover,

(M. (p, iC) C; f2) (k) (p, iC; f2)11,

where the  last no rm  is  the  operator norm  on  the  finite dimensional space of
vec to rs w ith  a  g iven f( - type. T h i s  no rm  is  bounded  by  th e  norm  o f  some
matrix of the form

(L o u f2(kT 1auk i)du • P ( a) ö ( a) d a) ,s (so (k t E .

It follows that the functions A, (i.C) and B„ (i.C) are Schwartz functions on the
imaginary ax is iR  (the sum  over 0  ranges only over vectors w ith the  given
'( - type) . T he absolute convergence follows, and  so  does the proposition, on
using Lemma 5.1.

Remark. An integral analogous to that of Lemma 5.1 is considered in
[F6], but in  the  Remark on  p . 431 of [F6], "Consequently we also have" on 1.
— 10 should read: "However we do not have", and "However we prefer to" on I.

i t c
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- 8 should be: "We shall".

Corollary. For any test function f=Ofv, fv e Cc° (Go ) for all v and .4=4
for almost all v, the Fourier summation formula takes the form

(0,f, (P) +  E w(b,f,(,b)=En(r)(wd5)7,(f)+(6.1)±(6.2),
b e E ./E •

where r  ranges over a set of representatives for the equivalence classes of cuspidal
generic cyclic representations of G (4) =PU (3, E/F).4.

3 .  Matching Fourier orbital integrals

T h e  p ro o f  o f  th e  g lo b a l rep resen ta tion  theo re tic  resu lts  re lie s  o n  a
comparison o f  th e  tw o sum m ation form ulae obtained in  P roposition  1  and
Corollary 6  (here n = 3). Our technique w ill be to show that given f=  O fv on
G (d ) th e re  is  a  matching f ' =  0 .4, on  H' (4) ( in  a  sense  soon  to  be  made
precise) ,  and  v ice  ve rsa , su ch  th a t th e  geom etric sides o f  th e  formulae be
equal. The resulting equality of spectral sides w ill then be used to derive the
representation theoretic applications.

Choosing a  product m easure d h  =  d h v o n  C ( 9 ' ) ,  and  du =  d u ,  on
U(s4), and putting (x )  = Ob (x + .4 , the global in tegrals Tf(b,f, 4)) become
products over all y of the local integrals

f v ,  ç b v )  - f t f v f c v
f l , b 9 o h )  v ( x )  d u d h ,

i f  b E  EIVEI; and  i c  E  w i t h  i i  =  0  (gb = diag (1, 1, 1) - 1 )  and  Cb = Levi
subgroup o f type  (2, 1) when y is  sp lit) , a n d  T- (0, fv, (3bv) =  fubiubb Icy  fb (uh)

(Pb (x) dudh.
Sim ilarly, th e  in tegra ls of f ' = o n  1“s4) =  PGL (2, s4E) are  the

products of

(  b 0  ) h ) b ( 2 x ) d n d h ,-4' (1)v) iN ( EJ P G L (2,Fo f v  \71 \ 0 1 i n (P 

if b±0 (71=( 1n = , and if b 0 of
1  — i ( ))

(0,
\-1

W  .6, (Pv) = fN (EJ P G L  (2,Fv) f v (n ( O1
h)(1),, (2x) dndh

7. Proposition. Let v  be a  non-archimedean place of F. For every
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ivEG7 (Go) there exists fvE c c °  (11), and for each such f 'v there exists f v , such that

(7.1)f v ,  O v ) = 1 2 11b11 / 2 T(b,.4), Ov)

for all bEE,VE(=F,;( in the split case).
Moreover, if iv and f„ satisfy (7 .1), then gi. (0, f ,  O v)=T ( 0 , Ov).

Remark. (1 )  T h e  c a se s  o f  split y  a n d  non-split y  would require
completely different descussion. W e d o  not treat t h e  archimedean cases,
although their treatment is not so distan t from that o f th e  non-archimedean
cases. Consequently our global result would hold only for global fields with no
archimedean places, namely function fields.
(2) The proof of Proposition 7 is based on computing the  asymptotic behavior
of the integrals as b— >oo. Once the proof is completed we shall show that when
one of f y o r  f  is spherical, so can be chosen the  other, in  fact these spherical
functions would be related by th e  correspondence of representations, via the
theory o f the  Satake transform . The proof of the global result requires both
the transfer result of general functions, as in Proposition 7, and those of the
spherical functions, stated o n ce  th e  proof of P roposition  7  is complete, in
Propositions 14 and 16.

Definition. Functions f v E (Ga) and j  E  (Ht) a r e  called matching
if  T(b, fv, Ov) = 14 blu2 C b , fv, 0y) for all b EEO' (by Proposition 7, this identity
implies that ¶(0, iv, Sbv) = 1P (0,A, Ov)) •

To prove the local matching theorem, we study the asymptotic behavior of
the local integrals. First we deal with a place which does not split, and use
local notations. Let E/F be a  quadratic extension of non-archimedean fields of
characteristic ± 2,

/0 1

{

G =  9 EPGL (3, E); gg-V=.5 - = — 1
\ 1 0 /

(

1 Q\1 0 1 \
2

{

C= 9 EG; ggog-1 = 5 -
0 = — 1—goZG

(

1
0 1 0 /2

{

U =  u=
1 x

0 1

\ 0 0 1 I I; xE E ,yE F  ,
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/1 - 1 i \
2 \

1 1 1
2

I \
2 '

go= 1 0 1
2

, g o , 0 1

\ 1 1 1 /
\2 2 4 / 2
/ b 0 /(c+1) /2 d/2

g6-1= 1 g 0 = d c

\ 0 b - 1 \ c 1 d

/1 o \ / 2 ° \
=- —1 g°\ 1

\ o 2 \ 0 2 !

(c 1 )/4 \
d/2

(c+1) /2/

with

c= (b +b - 1 ) /2, d = (b - 1 - 6)/2, E=F i +  0 ,

-
1
2-  — go) =t  Eg o , So

=  (0, 1, 0).

b \

Then g,T11 0E C  if b=F;, - 1 EE . = tzEE; 11, and

o 1 /
b 0 \

W(b) =  W (b , = (b , f , 0 ) =  f  uf c f u 1 g o h  c,b(x)dudh

\ 0 F)-1

depends only on the projection of b in EVE'.
Replacing f  by F 1 (g) = f c f (gh) dh, w e ob ta in  tha t P  is  the integral over

U of the function F 1 on the symmetric space G/C. Via the map g— >gt Eoeog - 1  =
(g t E0) sog- V g - 1  the space G/C embeds in the space of 3 X 3 matrices x  over E
with trace 1 and rank  1 and with t.f .=.7 - 1 .x g. Denote the image by Xo, and put

Fo (x) =F 1 (g) if x = — (g t E0)  ̀(g-t so)Y . Then

I t i t
2 2 bb- t r \

.Ft-

g f (b) =Lito 2 çL'(x)dxdy,4bb-

\ - 1

4bb-

41)F 4bb- 2

x.f+ 2iy where t=1 4bb-  •
The function f  is compactly supported and locally constant, hence so is Fo.

Consequently W(b) is supported on lb I  c c ,  for some cc, = cc, (f) > 0, and it is
locally constant on b S E X .  W e proceed to analyze the asymptotic behavior of

(b ) as b— * c o  in E . Extend Fo to  a  locally constant compactly supported
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function o n  th e  space o f  3 X 3 m atrices over E . In  fac t w e  need  on ly  the
extension of Fo to  a  neighborhood of Xo in  th is space, and  th is  extension is
used only to simplify the exposition.

Since Fo is compactly supported, the last entry on the top row is bounded,
hence W e write a< <13 if there is a positive constant c=c (f) with

xxac. S. Hence - - *1 as b- >o 0  , and for a sufficiently large b we have4bb-

/7 - x t/ 2  - bb- t r\\

W (b) = f f F o 0 1 R12 (x)dxdy.
E  F 0 0

0 /

Changing variables: x 1
- 2bx, y 1

-
02bFy, we obtain

7/0 bxt - bFt1- \\

=12 13 11)12 f  f  F o 0  1 - bit(1 )(2 b x )d x d y , t=x.F-1±iy.
E  F  \ \ O  0 0 /1

Since Fo is compactly supported there exists some 1 with ILE: - 11
C/1b1 and I i y i l2 iC / ib i.  T h is  C can be replaced by any bigger num ber. W e

may write X =E  (1 +z ) , w ith lzl - C/Ibl and E E E V ( 1 ± —C—
b R E) with f f = 1 .  Here

c E  E x  w ith  lc  1= C  ( in  particu lar C  is  chosen  in  1E' I) . Note th a t  E  i s  a

representative in  th e  c la ss  modulo 1 ±.-/) RE .  P u t zi =  (z F)/2 a n d  izz =
(z /2 (thus z=zi - l- iz2 w ith z, z2EF), to obtain

12 13/21b12E ff dydziFoo(bE (2zi±iy) ) ç (21)0 ç (2bezi) f  0(2bsiz2)dz2

E E / 4  iR E ) I'ilM(1
aï=1

/0 t - tr\
Here Foo (t) = Fo 0 1 T . Let c (0 )  be  the  largest num ber such that

0 0 0 /
fi i^ ç  (a )da= 0 (a EE) for all c >c (0), c c  E X  I. Define b1, b2EF by be = 61+
ib2. Then the inner integral over z2 of 0 (2i2 b2z2) would vanish unless 12i2 b21C/
lib 1‹.c (0), nam ely 1b2/b I c (0) /12i IC. O n  th is dom ain  li2 b2y l< (C12 1/ 1bl)
(c (0)1b1/12IC) c  (0) , hence 0(bEiy) = 0(i 2 b2y) = 1. T his  integration over zz
then yields (C/1b1) 1/2 , if dz2 is norm alized by .1-141ciz2=li1 1 /2 . Writing x=2zi+
iy  (x E E; y, zi E dx=121 1/2dzidy, the integral becomes 14b1/2A2(b) fEFoo (x)
çl' (x)dx, where 52 (b)(2b) , c(ç2) =c (0) /121, and

A0 (b) = 0 / 2

EEE" ( -14-100
Eï=1,102/1,15,. (0) /C7
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Our study of spherical functions below implies that for unramified E/F and
0, c and C can be taken to be 1 without affecting the values of Agi, (b). Moreover
it can be shown that it is equal to f E.0 (be) de, but we do not prove this since we
do not use it.

Clearly

f, =  fE f c f (uh) (x)dudh= fE F (u ) (x ) du

=LF0 (u tEo) t (IVE0) .7 )  (x) dx = LF 00 (x) (x) dx .

The factor Ao, (b) is independent of f  and of C=C (f): C can be replaced by any
larger number without changing the value of T(b). Moreover, T- (b) depends only
on the image of b in Ex/E. . We obtain the following characterization of the ?11 (b,
f, 0 )  by means of their asymptotic behavior.

8 .  Lemma. The function A 0 (b ) o n  b  C  E V E ' h a s  the following
properties.
(a) Given J E  C c

e (G ) there is B > 0  such that for all lb B (f) we have
Tr(b, f, =l 4 blu 2 CO, f, 0)1102(b) . Moreover, if  3fr(b, = (b, f2, for all b E
Ex/ E*, then W(0, = CO, f2, (,b) •
(b) Let T. be a  locally constant function on E X / E . ,  such that (b) = 0 i f  lb l is
sufficiently small, and W(b) =1461112 CW Ao2(b) if Ibl is sufficiently large; (0) is a
(constant) complex number. Then there exists some JE  ( G )  with rb, f, 0) =Tf(b)

for all b.

Proof. The asymptotic behavior claimed in  (1) is proven above. F o r  (2)
note that f (0, f ,  0 )  is  lin e a r  in  f ,  hence  g iven  P  the re  is  som e f i E
C°

c
° (G ) w ith  T . (b) — f , 0 ) compactly supported o n  b E P  (/ E ; thus this

difference vanishes for lb I too big or too small) . B ut if T (b) is locally  constant
a n d  com pactly  supported  o n  E V E ,  th e n  c le a r ly  th e r e  is  s o m e  f2
CC° (G), w ith W(b) = T(b, f2, 0 ). Finally the last claim in  (1) follows at once from
the asymptotic behavior of (b , f ,

Analogous characterization of the Fourier orbital integrals on 1! by means
of their asymptotic behavior will be studied next. For this purpose, given f  c
Ccc° (H'), = - PGL (2, E) (more precisely, we take f  on GL (2, E) which transforms
trivially under the center Z' E x ) ,  where E is  a  quadratic extension of F with
char a n d  b E E X ,  w e put

(b,r  r  ( 0 _ i vb  0)
J E J H )  \\0 \0 1 ,0)0 (x/i)dxdh,

1  — i

/ 1  x  -1x.f2
t
 u 0 1  . F
\  \ O  0  1  1 /
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and

in A
T.1(la ' t =  f E „ f l i f 1)

h ) 0 ( x l i ) d x d h , H= PGL (2, .

Note th a t WI (b, f ,  0 ) depends only on the image of b in EVE', hence W(F) =
Yr(b).

9 . Lemma. For every f  E  C7(H) the function (b, f ,  (P ) is locally
constant on E x , invariant under E ', vanishes near 0, and there is B ( f ) >  0 such
that

(b, f ,= C ( 0 ,  r, o)Ao(bo:), (f ).

Conversely, if  C.' (b) is a function on EVE which vanishes in a neighborhood of
OCE, and there is some B' > 0 such that for we have

C ( b ) =C  (0) / (C (0) ,

then C (b )=T i(b , , 0 )  for some f  E  (i -r) , for all bEEVE*.
Finally, i f  Ti(b, fi, = Ti(b, f2 , 0) for all b E E </ E ,  then C(0, f i, =

C(0,.f2,

Proof. Put ri (g) = ! id  (gh)dh. Then r i  i s  a  locally constant compactly
supported modulo Z' function on GL (2, E) /GL (2, F), with Fi (zg) (g) (z C Z ).
This homogeneous space is isomorphic to the space X ' of g EGL (2, E ) with g =
1 v ia  the  morphism h h ; -

1 E  X ', Put F'0 (x ) = F  (g )  if  x  = Then
(zx) = r o (x) (z E E) . Extend F'0 t o  a  locally constant compactly supported

function on the  space of 2 x 2 matrices over E , modulo E ' (in fact, on ly  a
neighborhood of X'/E' is needed). Note that

F ( (1 ( 11 x
WI (0, f , (P) = f

E/F ) ) 0  /  d x

0  1
Since n i j i =  

1

 ) ,  we have
0

x/b- b(1 — x.f/bb)
(b, f , sb) =  fEro (( 1 / _ z / b _ ) ) ( I ) ( x / i) dx

x  b (1 —  x.f.)
Ibi f (IbI large) .= r o 0 j )E  \ \ 0(xb-/i)dx

As fo is compactly supported, there is C = C > 1 w ith  ix.f. — lb
for x  in  the support of the  integrand. Hence such x  can  be  w ritten  in the

form x = E (1+ z ), z CE, E E E x / (1  R  ,  E-C= 1, where c E  E x

satisfies ici = C  (and w e assume th a t C is  of the form lc I fo r  some e E  E X ) .
W rite z = i z 2  and eb- = 1)1 + ib 2 w ith  z , z2, th, b2 E F . T h en  W1 (b, f ,  (p)
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becomes:

E  o (s v i)  f  r o  E  — 2bZi
\\0b ))

ibi
0(EFz1/odzi f (Eb-z2)dz2.

E E E V (1-1 iR F )

EE =1

scikbi

Let c (0) E lE x  I be the  largest rea l num ber such  that fkiscO (a)da = 0 for
a ll c E lE x  C >  C  (0). Then th e  inner integral over z2 above vanishes unless

c (0), thus IN /6 1." .c (0)11:I/C. For such E (hence 61, b2), we have

F ,0(( 0E  — 2bzi \ = r0 (s ( 1 2a2zi. )).
— n/Fll \ \  0 1

F or the  last equality  note th a t  — 2nzi = 2i62zi (1 — bdaz), Ibi/a2I c (0)/C,
and 2ib2z1 is bounded (depending only on the support of f ,  o r  r o).

A s 162IF=1621 2 =1611/2, changing variables zi zi/b2 the integral becomes

11)11'2
 ( c/I b I) 1/2

EE EV (1 
-
Fi R

E
=

1,1br bI C (0) / (C/N)

(Ebli)
r0( ( 1  X

\\ 0 1 I /E/F
. Ï . ) ) 0  (x/i)dx,

since Fo' (cg) = (g ) (ro  is  invariant under multiplication by  sca la rs in  E . ),
and we realize the isomorphism E/F= T  by x — ..±7=2z 1i. The integral over x  is
equal to T(0, f , 0). The sum over s of qi(Eb-/ i) depends only on the projection
of b in

 E X / E .,
 a n d  is independent of C, w hich can be replaced by any larger

number without affecting the value of the sum . The first c la im  o f the  lemma
follows.

G iven a  function grii (6 ) o n  E x /E . w h ic h  v a n ish e s  n e a r  0 a n d  h a s  the
asymptotic behavior as b—*()0 a s  specified in the lemma, by the linearity in fo f

(,b) w e  h a v e  th a t th e re  e x is ts  r i  E  C 7(1r) s u c h  th a t  C(b)
(b, 0 )  is compactly supported on EVE '. But then there exists some f 2

(H ') w ith  T;(b) — C. (b, 0) = T(b, f2, 0), and so  gr; (b) = C (b ,  f ,  0 )  for
= f i  +f2  b y  the linearity of f , 0 ). The final claim follows at once from

the asymptotic behavior.

Proof of Proposition 7. The integrals gr and on f r  are related by

I, 0 \- 1  \
gr(b, f ,  0) = Ti (a , * .r, 02), *f  (g) =f

(/ 

0  1  
) g ).

Here 0 2 (X) =  ( 2 1 )  .  Hence the asymptotic behavior o f T. (6, f , 0), as b—>00, is
yr(b ,  fe,— (0,

Since C(0, *f  Ç1)2) is equal to

11:1112 ffg f  ((01  xl)(0 0
1)-1 h,)0 (2x) dxdh =kV' g r  , f ,

ocE b-zi/o= o(b2zo,

*f (P2) A0,(b) .
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Lemmas 8 and 9 imply that given f (G) there is f 'E  Cce (1r) , and given f
there is f , with12 1611/2 T(b, f ,=  W(b, f, (,b) fo r  a ll b E EVE'. A  pair f, f
w hich  sa tisfies  t h e  la s t e q u a lity  f o r  a l l  b E EVE', satisfies (0, f ,  0 )
=11:1-1 7 2 Ti (0, * f, 0 2 )  = (0 ,  f ,  O . The proposition follows, in  the case of a
place y of F which stays prime in E.

4. Matching integrals at a split place

The next step is that of a non - arc himedean place y of F which splits in E.
A s  u s u a l w e  om it y  fro m  th e  n o ta tio n s . In  t h i s  c a se  E  =  F  F ,  H  =
PGL (2, F), H' = H  X H , f = (fi, f2 )  i s  a  Cr-function o n  H ' ( thus f (g) =
f i (91)A (g 2 ) fo r  g =  g 2 ) E H') ; by this we mean a  smooth function on GL (2, F)
X GL (2, F )  w hich  transform s triv ia lly  under th e  center, a n d  is compactly
supported m odulo the center. A lso b = (61, b2)  a n d  lb lE = 1bib21 (1 ' 1 i s  the
absolute value on F , •  lE on E ); i=  (ii, i2) satisfies i -Fi=0, thus (as
i = (j2, i1)), so w e w rite i =  (i, — i), and 11E=1i21; and we put f2" (h) = f2(h - ')
and f * f2

* , th u s !  (g)= iH ji(gh - l )f2*(h)dh; H embeds diagonally in H'.
The integral

r x ( b  0 i )
h)(1)(2x)dxdhJEJH  N  1  A O  1A1

of Proposition 7, is equal to

/F L ( 01 601 01 ) i )  h  )

A
((01 ' 2

) (  
b2 01 ) ( II. ,

• h)02xi+2x2)dxidx2dh.

( ( 01 x12 ) (b02 01
h, this becomes

i )y
Changing variables hl—* 

L i F f ( (01 x 11 ) ( bC■ ) ( 0 1  WO x: 
))0 (2 x 1 - 2x2)d.r1dx2.

N ote th a t  Ibi Iii 2 =  lb 1 1 / 2

 Ii 1, w here  b = 6162, and f

f  *  b  0
1 )

* ) , since f  is defined on PGL (2, F).
\ 0 
The singular integral

*  (b i  0 *
\O  b j1

1  x  (  i 0  \ - 1

gr(0, f, (P) = L i/  ( ( h)0(2x)dxdh
0 1  )\  0  1
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in equal to f
ol

0(2x)dx by a similar change of variables.

T he  in tegra l ?I (b, f , 0 )  on  G , w here now  G = PGL (3, F )  and C  i s  the
centralizer of Yo= diag (1, — 1, 1), takes the form  f u I c f (ng bg oh) 0 (u)dudh for
b EL", w here 0 (u) = (IF* q) , and

vt=
11 pz \

0 1 q , gb =

/ 1

1
0

go=

•/ 1

1

— 1

0
\O 0 11 \ 0 b-1 ' 1 1

2 2

Further, CO , f, 0 ) is  f u/u0 fcf (uh)0 (u)dudh, where uo=unc.
Definition. The functions f  Cc° (PGL (3, F)) and f (PGL (2, F))

a re  called m atching i f  gr (b, f, = 141lb 11 / 2 V (b, f ,  0 )  fo r  a l l  b E  F x , and
qf (0, f , 0) = W(0, f ,

In the case of a place y of F  which splits in E, Proposition 7 asserts that
given f E C°c° (G) there is a  matching f  E  ( H )  ,  and given f  there  is a matching
f , and if f  and f  are matching, namely (b ,  f, 0) =1411bi l i 2 T(b, f , 0) for a ll bE
F x , then they satisfy also gr(0, f , 0) = T (0, 0 ) .  A s in the non - split case, we
prove this proposition by characterizing the Fourier orbital integrals via their
asymptotic behavior as b— >oo.

10. Lemma. P u t  0 2 (x )  = 0 (2 x )  an d  0 ( x )  = 0 ( x ) .  For every f  E

(H) the f unction Yf. (b, f ,  0 )  is locally constant on F x , v anishes near 0, and
there is 13 (f ) >0 such that

gr( — b, f , 0) = V(0, r, 0) .G.02(x—kx )dx (Ib i B V )).

Conversely, i f  r  ( b )  is a  locally constant function on F x w hich vanishes near
0 and  there is Y('' (0 )  E  t ' and g >  0 such that for g  we hav e gr (— b) =

V' (0) f F  — ! - ) d x ,  th en  there  is  E  (H) w ith T(b, f , 0) = (b) for all b

EF. Finally , i f  T(b, fi, (,b) =Tr(b, .(2 0 )  for all b E F X ,  then C O , f i, 0 ) = T. (0, f2 ,
0)

Remark. T h e  in teg ra l f F 02(x — 1±
x ) d x  is defined  to  be  the  lim it of

th e  integrals over 11- 1  I  • ,  .  It does no t converge absolutely. An
equivalent definition in  term s o f  a n  absolutely convergent integral is that —
when lb I> 1 — the integral vanishes unless th e  (normalized) valuation o f b is

b ,even, and then integral is equal to  fix ' b 1/202(x - -
x

)ax.

12

1
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Proof. In the integral

F  F  t t — b 0 \ ( 1 \ 0 . y  \ \
g r ( — b ' (P ) =  f  f  f  0 1  xl 0 1  A l  0  AO 1 ) ) (1)2 

( x — y ) d x d y ,

the function f  is evaluated at 
(x  xy  — b

in  PG L (2, F) SO (3) . The image1 y
of this m atrix in*S0 (3) is

(
x2 2x (xy — 6) (xy — b) 2 \

b- ' x 2xy — b y  (x y  — b)

1 2y y2 /

Since f  is com pactly  supported  there  is som e C . 1 su c h  th a t lx l, lu 1 and

1xY— b1 are all bounded by C1611/2. For a large enough b we conclude that 1b1=-

1xY1 C1xlibl112, hence lxl, 1Y1-C- 1 1b11/2. W rite y= .+H- z. Then

C- 1 1b11/21z1 lxzl = 1xY bl Clb1 1/2
 

and so  Izi
The integral is then equal to

fFfF f  ( ( b ;x 2// 02 b/X) ( — z) dzdx = IF F (b/x2) (x  b / x )d x ,

ri  z
where F (t) 

=
02—dZ is  a  locally constant function, compactly'h .

f ( (  
0  t 

))
Z)

supported on r  .  In particular there is a  sufficiently small C2=C2 (F) >0 such
that F (t (1 — 6)) =F (t) for all t and all lel Note that

x(1 — e) - - b (1 -1- s+E2 +•••)=x - 1 1 - 6(x± 1± ± 1± (s+s2 +•••)).x x  x

Replacing x by x (1 — ,  where 1E1 C2, we get that iF F (6/x2) 02 b/x) dx
is equal to the quotient b y  fi,i c,dE of

iF F (b/ x2) 02 (X —  b/x) f i c 2(E(x±b/x))dEdx.

T he inner integral over E  vanishes i f  lx + 6/x l> C I f o r  some C I = C i  (k, 0 ),
w hence t h e  in teg ra l ove r x  c a n  b e  ta k e n  o n ly  o v e r  th o se  x  E  F x  with

+1)/x1 • Ci , for some C 1 >0, w ithout changing the value of the integral. But
for x with 11 +6/x21 C1/1x1 CC,./1611/2, we have that F (b/x2) = F ( - 1) , since
F  is  lo c a lly  c o n s ta n t (a n d  lb 1 is  su ffic ien tly  la rg e ) . O b ta in ed  is  F (— 1)
I 02(r—b/x)dx, where

1 z
F ( - 1) = f

Ff  ((0 —1))(P2(—z)dz
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r f al z y - 1  o \\

 N  1  ) \  0  1  
)1(1)2(z)dz=gr(0,f , 0),

and the first claim of the lemma follows.
Given a  locally constant gr' (b) on b E r  w h ic h  v a n ish e s  n e a r  0 and has

the indicated asymptotic behavior a s  1b1- 4 0 0 , the  linearity o f  W(b, f ,  0 )  in r
im p lies tha t the re  is  f  E ( I I )  w ith  W(b, f ,

 (p) = (6) o n  all sufficiently
la rg e  b E  P .  T h e  difference T '(b )  — Tr(b, f , (,b) is  lo c a lly  constant and
compactly supported on F x  , hence it is c lear that it is equal to  T . (b, f , (p) fo r
s o m e  EC7(H), as required. The final claim , that W(b, (P) =T (b , f2 , 0 )  for
a ll  b E F x  im plies tha t T r (0, 0) = 1  (0, f2 ,  0 ) ,  fo llow s a t once from  the
asymptotic behavior of the Fourier orbital integrals.

Remark. L e t  u s  c la r ify  t h e  asym ptotic e x p a n s io n  o f  th e  integral
F F (b / x 2 ) 02(x — b / x) dx, using the stationary phase method. This technique

asserts that the leading term in the asymptotic expansion is from x  in  a  small
neighborhood o f  th e  sta tionary  po in ts  o f the  a rgum en t k (x ) =  x  —  b/x  of
0 2 ( r  b t r )  .  These are  the  poin ts where the gradient of k  is  0, namely x 2 =
— b. F o r  a  sufficiently large b, our integral vanishes unless — b is  a square,
say  [3

2

, )3 in  F . B y M orse Lem m a there is a change x  =  ( 1 +  y  ± ay 2 + •-•)
of variables in a small neighborhood of 13 (i.e., y  is sm all) such that x — b/x =
)3 (2 + y 2 ) , a n d  (b/x 2 ) =F (— (1 - 2y)) . Put (Jo (y) =E (- 1 +y )  .  O ur integral
is then the sum over 13,132 = —b, of

11/210(4j3) ISI f F (P (Y) 0(13 112)dY =IS/ 210 (4S) re (IS) 1,31- 1 /2f F (0'(Y) 0(1 0  - 1 y2)d y

The equality follows from the definition of the W eil factor re (13), assuming the
H aar m easure d y  i s  self - dual, a n d  (,76 i s  th e  F o u rie r  transform  o f  yo with
respect t o  0 . This is com pactly supported. H ence fo r  a  la rg e  b  th e  last

integral is f  Ci6 (y)d y = (0) = F ( - 1) . It follows that for a large b, the integral

iF F (b/x 2 )0 2 (x —  b/x)dx vanishes unless — b is  a  square in F, in  which case

t h i s  in t e g r a l  i s  e q u a l  t o  Ei=± 0 (4i,/ — b)T e (i.1 — b ) lis i4  1112F (- 1 ) .  This
approach  is system atica lly  used  in  [FM2] , in  th e  context o f  th e  g roup  of
similitudes of a symplectic from on a four dimensional space.

1 1 .  Lemma. For every  f  E  C ( G )  the f unction  W (b, f , 0) is locally
constant on F', vanishes near 0, and there is B (f) >0 such that for all 1bl

Tr( - 1), I-, (I)) =14 111)1112 T  (0 ,f , 0 )  fF (P2(x — b/x)dx.

Conversely, i f  Tr(b) is  a  locally constant function on V ' w hich vanishes near
0, and there is gr(0) E çe and B '>0 such that for we have



112( 1 —  tb — N 2z Pb 2 1b  4 b

Pq 
4b 4b
—1 
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] : ( i _ p q )
2 \2 b  4 b /
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1/

406 Yuval Z. Flicker

C — b)=1b1"2141T(0) L 0 2 (x — b/x)dx,

then there is f EC c̀° (G) with CO =F(b, f, 0) fo r  all bEF x .
Finally, i f  W(6,1.1, = f2, 0) fo r  all b CF', then T. (0, fi , 0) -= WO, h,

Proof. Introduce (g) =  fcf (gh)dh o n  G , and F 0 (x ) = F i (g) if x =
04E4W- 1 on  the  space Xo of 3 x 3 matrices over F with trace and rank equal to
o n e . E x tend  Fo t o  a  loca lly  constan t com pactly  supported  function in  a
neighborhood of Xo in  t h e  space o f 3 x 3 m atrices over F . Recall that Eo

=

1(0, 1, 0), and that go 3 - tgo-7 - 1  th e n  Eogoi =--  (— —
2  '  

0, 1). Carrying out the

matrix multiplication we obtain that C b, f, 0 ) is equal to  ' F  ' F IF A • 0(P±q)
dpdqdz, where A  is

T o  study  th e  asymptotic behavior o f th is  in teg ra l w e  sha ll regard  b  as
having large lb 1, a n d  d en o te  b y  a < <13 th e  statement : th e re  ex is ts  c>  0,
independent of b, w ith ac13. W e shall be concerned with the support of the
integrand, a n d  a ttem p t to  f in d  o v e r w h ich  d o m a in  can  th e  integration be
restricted to, without affecting the value of the integral.

G iven any C I >  0, w e m ay  restric t th e  domain o f  integration to  the set
w here at least one of Ipl, lql is bigger than C ,. Suppose th is  is  n o t true. Then
we consider the  integral over the  se t o f 'g ig '  W i t h o u t  l o s s  of generality

Pq z 1  -Pq z C o n s id e r in g  th e  (1, 3) en try  o f  th e  m atrix at4b 2b 4b 2b
which F0 is evaluated , since  Fo is com pactly  supported  there  is C2> 0 such

pq ztha t 1 ± =u/b1/2,1u 2b1 C2. But then 1 Pg z  =  2 (1  P q ) u/b1/2—>24b 2 b 4b 4b
a s  lb 1- 4 co (here u E F  su c h  th a t  u/b 2 E  F, a n d  lu1 C2 means : lu/b1/2 1
C21b1- u 2 ). Consequently the absolute value of the (1, 3) entry is 1bl • lu/b"21 • 12 1,
and this is bounded by some C3>0, since Fo is compactly supported. Hence lu i<  <

lb1-1/2, and we m ay write 1 P4b 2zb ub with lul < <1. Again 1 P4qb 2zb 2 '
and over the domain of lpl, lql the integral is

/( 1 — p — 2u\\

f if F 0  o o o o(p+ q )dpd q dz.

\  0  0 0 /
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I t  v a n ish e s  s in c e  th e  Fo p a r t  o f  t h e  integrand is  independen t o f  q, and
figi c,o(q)dq=0 for a sufficiently large Ci.

W e m ay now  assum e tha t ou r in teg ra l ranges ove r a  domain where at
least o n e  o f  lp 1, lq 1, is  la rg e r  th a n  a n y  c h o se n  C1> 0. Since Fo is locally
constant w e  have  th a t  F0(sge-1 ) = Fo (g) fo r  E diag (1, E, 1), E in  some
neighborhood o f 1. Changing variables on p and q, w e m ay replace the factor
0(p+q) in the integrand by çb(sp+q/E). Integrating (Ep-1--q/E) over E in this
neighborhood of 1 (which depends on Fo) it is  easy  to  see  tha t 0 is obtained
unless Ipl = lql. Considering the  e n try  (2, 2), since Fo is compactly supported
w e have th a t th e  in tegral can be taken only  over 1P1= 1q1 C4 lb 11 / 2  f o r  some
C4> 0 depending only on F0 a n d  0. Taking a  sufficiently large C1, the entries
(1, 2), (2 ,3 )  can  b e  u sed  to  show tha t [pql = 14b1. Hence 16 11/2Ci-1 -1P1=191 C4
1b1112. The en tries (1, 2) a n d  (2, 3) imply that the integral ranges only over

pq z
4b 2 b < <1b1-112,

4b

   

H ence 1 —P q  « i b l -1/2 , and q=4b/p±u, lul< <1, and Izi < <11)11/2. Over4b
the domain of integration the integral takes the form

o 2-( u4b 2 6 ) b ( u4b + 2z  b) (u4 b 2 z  b)

1fifF , p \41) 2 b )
0 11

0(p+
-4b

+u)dpdzdu.

Writing x = k( lLtL± u =2 4b 2 b  '
2b  (up z   \
p  4 b 2b ) , the Jacobian a(4, / a (x, y )  is

14b/pl. We obtain

/0 x  xy \\

fifF 0 (  0  1 y
\\o o  o  / /

4b( 4 b0(p+ p p 7 ) x —  y dxdydp.T

Sublemma. The value of the integral does not change if the integration

is restricted to p  with lp— H46 < 1 1 , 1 2 1 5 .

Proof. It suffices to  show  tha t the  integral over the p  w ith  11)- -L
b

11)12'5 o f  ip hi, (. 4b 4bx) .p pp is zero. Take Ewith 1E1 1b1-1 / 3 . Then iEfib 11/2 < lb 1-1/6,

(25 31 115).
 T h eand E — 4b/p) ranges over the  se t o f a  with la 1 lb 11/15

domain lp-4b/plIb1 2 1 5  is  stable under P'—'1)(1 — E) , since
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4b 46. ) e246p (1
4 6

(1+E+E2+•••)=--p E ( i + E ± E 2 + - - )
P P P

has absolute va1ue=11, - 4b/p1 (indeed, On the other hand,

p(1—E)+
4 6  

(1+E-FE2+•••)+
4 b x   

(1+2E+3E 2 +•••)

= p  + 4b + 4bx 4b p )- F o (1),
P PP

w here  o(1) m eans a  quan tity  w ith  a n  absolute v a lu e  a s  sm all a s  desired,
provided lb I is large enough. It follows that the  integral specified at the  first
sentence of our proof contains a factor of the form

f lei lbh„0 (E (p —  4b/P) - clE,

w hich  is  z e ro  if  Ip — 4b/P I lb 12/5, fo r  a  sufficiently large  b . T h e  sublemma
follows.

T h e  sublemma im p lie s  th a t I1 — 4b/p2 1<lb 12 / 5/ lp « lb  hum , a n d  so
çb (4bx/p2)  can be replaced by (,b (x) in  the  integrand. The integral over p will
vanish unless p is taken over the domain IP12=14b1. W e are  left with

x  xy

1211b1- 1 1 2  f  f  F o (0  1y
F  F

0  0  0  /

This is equal to

(x — y)dxdyfF 0 (p+4b/p)dp.

1411b1-
1/2 • W(0, f, 0) I F 0(2(p+b/p))dp.

Replacing b b y  — b, the  first claim  of the lemma follows. T he other claims of
the lemma follow as usual. Then the proof of Proposition 7 is complete also in
the case of a place y of F w hich splits in E, by Lemmas 10 and 11, a n d  since
141F= l 2 1.

Remark. At a place of F which splits in E, the kernel E* of the norm
map E=FGF—>F, (b1, b2) F - *b1b2, is E"= {(b, b ') } .  F o r  b = ( 6, 1) E r ,  with
Ibl >1, the  integral is

f (2b)dE= f 0 (2 (z — b/z))crz-= Ibl - v 2 (1 — 1
0 ) f (2 2 ) ) C 1 2 ,

E=CZ,Z - 1 ) EE• Fx 1z1=Ibili2

where d'z= (1 - 1/q) -
i dzAzi is the relation between the normalized measures

crz and dz on Fx and F.
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5. Matching integrals of spherical functions

The equality of the geometric sides of the Fourier summation formulae is
proven for global test functions whose local components are almost all equal to
the unit element in the Hecke algebra of spherical functions on the local group.
W e need to show that when f

 a n d
 f  a r e  taken to be these unit elements, they

a r e  m atching . M o re  genera lly , t h e  correspondence o f un ram ified  loca l
representations introduced in the Introduction defines a homomorphism of the
convolution Hecke algebras on the groups. The isolation argument used below
to determine the cyclic cuspidal representations is based on the fact that such
corresponding spherical functions a r e  matching. T h e  trea tm ent o f  th e  two
cases  o f  sp lit  a n d  non - s p lit  cases  is  e n tire ly  d iffe re n t. W e  s ta r t w ith  the
easier case of a place which stays prime in E.

W e  s h a l l  u se  lo c a l n o ta tio n s . L e t E /F  b e  a n  u n ra m if ie d  quadratic
non - archimedean field extension of residual characteristic  2 ,  R' the ring of
integers in E (R in F) ,

G= {g EPGL (3, E); 93 - V = 5 }  a n d  K = tg PGL (3, R'); g V=
D enote  by  YC the  convolution a lg e b ra  ( fo r  sim plicity  w e choose th e  Haar
measure on G which assigns the maximal compact subgroup K the volume 1)
o f  compactly supported K - biinvariant functions o n  G . B y  th e  theory  of the
Satake transform, the function f  le is determined by the values of the traces
trz(f) of the convolution operators r (f) , w here ir runs through the variety of
unram ified irreducib le  representa tions o n  G . A n y  s u c h  7 T  i s  the unique
unramified constituent in the composition series (of length  one  o r tw o) of a
representation I  (f.t) o f G w hich is norm alizedly induced from  an unramified

( a *

character 1 1-0# (a)  of the  upper triangular subgroup of G . The

0 cr-i

character i :  Ex--, Wx is not uniquely determ ined by r, b u t {,u, /C I }  is, and so
is tr I (g, = t r  ( f )  , for every f E  IC. In fact

trir (f) = t r / =  EF f  (n) g (z) n ,
)4E2°

w here z is a generator of the maximal ideal in the local ring R, and

la - 11ElacT- 1IF r
F f  (n) = F f (a) =

laiE f (u-lau) 
du = lalEffu (au) du.

Here a= diag (a, 1, cT- 1 ) u is the upper triangular unipotent matrix in
1 _G w ith top row  (1, u, + v ) ( th e  (2 , 3 )  e n try  is  th e n  4) , where u ranges
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o v e r E , a n d  y  o v e r  th e  elem ents in  E  w ith  y =  0  (th is subspace  is
isomorphic to F  by y ( v / (vo - vo) fo r  a  fixed vo* 0). Clearly F f (n) =

so we may always take lal
Analogously, le t le' b e  the  Hecke convolution algebra of H' .= PGL (2, E)

with respect to K'=-PGL (2, R '). Again the f  E r  are determined by the values
o f  th e  t r a c e s  tre ( j') , w h e re  n-'  ru n s  th ro u g h  th e  unramified irreducible
representations o f  H '. E a c h  su c h  7r' i s  th e  u n iq u e  unramified irreducible
constituent in  the I f - m o d u le  (g )  normalizedly induced from  th e  character
( a  *

b 
1- , g(a/17) of the upper triangular subgroup, and

0 

trz' (f') = trr (g, f )  =  E F f ,  (n),u (Z) n

n e T

I t  w ill b e  m ore convenient to u se  th e  isomorphism PGL (2, E) - - 4 S 0  (3, E)
which maps

1 2u u 2(  a
( 1 u \ ( a )

I 'l l =  ( 0  1 and 1
\ 0  1  I 0 1 ,

o  0  1 a - 1 )

Then

laœlla lF r  (n )= F r (a) = ff (u- 'au)du= f  (au) du.lal 1/2

Here a E E ' with la I= lzi n (I • l is l • lE), and Fr ( — n ) = F r (n) , hence we may
deal only with lal

R e c a ll  th a t  t h e  correspondence o f  unramified IF - m o d u le s  to  su c h
G - modules w as defined by I' (g) - * I (g ). T he  dual m ap D :i r  o f Hecke
algebras is defined by D : f 1- V ' if  trr (p, r) = trI(g, ,  fo r  a ll  unramified
characters g  of E x .  Namely f  E X  corresponds to f  E rprecisely when F f (n) =
Fr (n ) for all n ET.

T h e  Hecke a lg e b ra  X  o f  G  is spanned -  a s  a  vector space -  b y  the
characteristic functions f k = ch KakK, where ak = diag (r - k , 1, r k ) , where k
Sim ilarly , t h e  Hecke a lg e b ra  Ye' o f  H ' =  SO ( 3 ,E )  i s  s p a n n e d  b y  the
characteristic functions f k  o f th e  d o u b le  cosets K'a k K ' in  H '. To describe
explicitly the Hecke algebra homomorphism, we prove :

12. Lemma. The image D (fk)  of f k E Ye in  le' is

elk+ (1_ q -1) q k  E f n (q = card (R /7r)) , k 0) .

Proof. O u r  f irs t  s te p  is  to  c o m p u te  F  (a, f k )  .  W e  u se  th e  Bruhat
decomposition



Hence

= (

v

v/v
r - 1

/1 0 0 ) (2 r - ' 0
u  1 0 1

\/, IT  1 o•

0

0 \( 1 reiT/v

1

7"/v \ fv1r1

eu/F v/v

r'/F/ 0 1 / 0

/  (1  u  v\ \

ai 0 1 vT, dudv
\ 0 0 1/

0  \ )v /r1
1 dv+1711-' ff viv

r; 1 o

O \ (1  V I )  1/11 \ Tr

Vill

)

1 U/17

/ 0 1  /  0

0  )

zit/7-

dv

1
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( 1  o \ ( 1  1/14 yo —1 \ ( u  o ( 1  1 /u \
\ O  1  ) \ 1 0  /\0  1/u/\0 1

and the corresponding decomposition in SO (3). As usual, j, O. We write 91
--gr2 for g E H ' if Kg =-- If'92K' . Note that '9' -= .9. If lul >1, then

o

)=Cti oi )(7r0- ,  ol

Oi)(01

\O 14- 1 ) \ 0  1  1\ 0
h e  0 ri/u h r ' 0 \

1 ) 0 1/14 )(

1

0 1 ) = (

u

 0 1 / u

d u  0 V 1 1/u y u

It follows that

j = k

F(ai, f k ) =  (1— q - 2 )17ri - k/2 = (1—q - 2 )q k , k > j0 , k  -= "j (mod 2)
0, otherwise.

Note that 1 ' 1=1 ' 1E, hence izi —(/
Next we compute the orbital integrals F (a1, fk )  on G. We use

11 0 0 \ 1 ii/F  1/v  \0 0 1\1 v 0 fi/v 1/v
u 1 0 = 0 1 u/v 0

(

—1 0 F/v 0
)(1

1 u/F
)

\v v7 1 / 0 0 1 / 1 0 OAO 1/17 0 0 1

where v - F/T--=u/T, and note that if Iv' 1  t h e n  lul -<-1, and if Iv! then 1v1 1141.
Note that if Iv' >1 then 1v1>lul, lieu/v1<1, 1721/v1<1, and
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=1 f dv • f711- . 5e1
\\ o irj // 1 11,1=17cH \\ 0 //

1
 0  \ \ o \\

=q"f (a.,) + (1 —  q- 3 ) Eq 2 i+ 4 1f (a,+ 21) + (q - 1) Eq 2 i+ 4 1f(aJ+ 21+ 1).

Indeed, if 1 (>1 )  is even, vol EE; Iv I IZ- 1 1} is  the sum of vol {u EE, t EF;

lul =1771- 112 , Iti l7r1- 1}  and vol tu EE, t E F; lul<17r1 1 /2 ,  I t l =  lirl - 1 } (since y =
1

—

2
uu +it, and 121=1i:1=1) and these two volumes are equal to (1 — q- 2 ) q2 I and

(1 — q- 1) q- 2q21 . If 1 (> 1 )  is odd then vol {y E ; v i= ircl - 1} is vol EE, t e  F;
lu i ._. , 17.r i- u+i)/2, ItiF=q - }, and this is q-  1  (1 —  q- ') q21 . In other words,

11, j=k,

1—  q- 3 , k—j=21,11,
F(a.,, fk ) q 2 k

q- 1 (1— q- 1 ), k — j=21+1,
0, otherwise.

It is  c lear tha t the im age in Ye' of q- 2 k f k E ie is f  = cmcmfm, c E W.
05r,l5k

Using F (a,, f k ) = F  (a,, f )  with j= k ,  we conclude that ck = 1. W hen k—j =21>
1, we obtain

q -3  =  C  +  (1 —  q - 2 ) [C1-1-2 ±  C  4 + • •• + C d

=  —In particular, when j =  k—  2, thus 1=1, 1 —  q - 3  =  C k-2+ 1 — q - 2 ,  and ck-2 q  2

q- 3 . For k— (j(j - 2) =2 (1+1 ) >1 we have

1—  q- 3  = c,_2 + (1 — q- 2 ) [c,+c, + 2+ • • • ± c  .

Hence c,_2 =q - 2 c,, and ck_2, 2 -2 / c ,k _ 2 = q -2 y 1 _ q -1 \) for 1 (1 k /2) .
On the other hand, when k—j =21+1. 1, we get

q -1 (1 — q -1 )  — C 1+  (1  — 47- 2 )  [0+ 2+ C  4 + • • • +Ck_i] ,

and ck _1 =q - 1  (1 — q- ' )  when 1=0. For k—
 —  2) = 2 (1+1 )  — 1>1 we obtain

q- 1 (1—q - ') =c,_ 2 +  (1—q 2 ) [0+0 + 2 + • • • +c k-i] .

Hence ci _2=q - 2 c1, and ck-1-21=q-210,-1=q-1-2/ (1_47-1\) Namely ck _m = q ' (1 —
C I ) if  1 o r  cm = q m– k (1 C 1 )  fo r 0  m  <k. Since q-2k j then
corresponds to q- k k  + (1 — q- E "0 , the image of f k i s  as claimed in the

O< <k
lemma.

Denote by and f - 1 th e  zero functions.



Cyclic automorphic forms 413

Corollary. The image in X' of q -k -lf k+1_ E q v  •J i s

fk+1+ (1 k>  _ 1.

W e sha ll com pute  th e  F o u rie r  o rb ita l in tegra ls o n  H ' a n d  G  f o r  our
spherical functions f  E  it" and f  E Ye, where E /F is  a n  unramified quadratic
field extension (of residual characteristic  2) , and  0 : E—, C  is defined by
0(x ) =  0(x  +  w here  0 : F- - t "  i s  a  fixed  additive character w hich is
trivial on R but not on 7 r 1R. In [F8] we prove :

13. Proposition. If lbl >1 and m O ,  then

fm , 0)=E (b) q, m = 1,

1, m = 0,

(1 — q - 2 ) q m ,  m  2,where

(1)) =DI) (2bE) (6 E R '// (1 - kb - 1 R') , s = 1).
6

If  Ibl =1 7 :1 j and then

0,

1, m = j,

W(b, P i, 0) = 1+q, m = j+ 1 ,
q2 1, m =j+ 2,

(1+q - ') m —j

In particular, E  (b) is A02 (b).
Our aim is to prove the following specification of Proposition 7.

-  1 4 .  Proposition. For every  b  E  .Ex  w e  h a v e  lb  1 1 2 T  ( 1) , f ,
rb , D  (f) , 0 ) .

Here f  ranges o v e r  X , a n d  D: Ye' i s  th e  homomorphism o f  Hecke
algebras specified above by the correspondence of unramified representations.
If Proposition 14 i s  true , then  the values of ( b ,  f ,  0 )  a re  given a s  follows.
Since IC is spanned by the f k (k_0), we consider only f  of the form f k . Suppose
first that Ibi >1. Then Propositions 13 and 14 imply :

I b1- 1 / 2 gr(b, f°, (P) =T (b, = (b);
f o,  0 ) _ f  4 _  ( i  q — o

=q[q+  (1 —  q- 1 )]  ( b )  =  ( q 2 d- q -  E (h);
fk ,q k  [ w ( b , fk , 0 ) +  (1 _  q -1 )  E

o m<r?
-=q k [(1 — q - 2 )q k + (1+q+ (q 2 - 1) + (q3 — q) • • •
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±  (q 2 — t i k -4) + ( q k -1 _ q k -3 ))]E  (b )

— q 2k (1+ q -1) (1 — q -2) E (b) .

O n the other hand, when lb I= Iri l  1 ,  Propositions 13 and 14, as w ell as
Corollary 12, would imply that

I b1- 1 / 2  [q-
k

-
1T(b, fk +1 , 0) — q - k  W (b, f k , On = g f (b , f k + 1 ,  V)) —

1
q W(b,f k , (P)

is equal to 0 if j>k+1, and to

1,

1+q — q- 1 , i k,

e+ q - 1- -
1

(1 - Fq), j k-1,
9

(1+ 1 )(1 - 1 ) - - 1  (e -i- q- 1),
qq 2  q

=

=

j =-k — 2,

(

1 + I )  (1 — I )  (qk + i - i  — e - - - 7 ) j  k  —  3.
q1 , 2

1 5 . Proposition. The f unction W(b, f k ,  0 )  tak es the values just
specified for all bEE '.

Propositions 13 and 15 are  proven in [F8], P art 1, by direct computation.
Then Proposition 14 follows at once by virtue of Lemma 12 and its Corollary.

6. Spherical matching in the split case

O u r  n e x t  a im  is  to  sh o w  that corresponding  spherica l functions are
matching in  the  sp lit case. Here the  tw o groups a re  G = PGL (3, F ) and H =
PGL (2, F) , where F  is  a p-adic field. Denote by R the  ring  o f integers of F,
and put K=PGL (3, R), K' =PGL (2, R). Fixing Haar measures on G and H, say
the ones which assign K and K' the volumes 1, we define Ye (and i l l  to be the
convolution algebra ( s )  o f  K -  ( a n d  K' - ) biinvariant compactly supported
complex valued functions f  (and f )  on G  (and H, respectively). A function fC
IC  (and f  E  )  is uniquely determ ined by the values of the traces tri (g,
and tri' (tt, f) where g  runs through the  varie ty  of unramified characters of
the diagonal subgroup. Recall that the correspondence of representations maps

( a  *
I' (g), the representation of H normalizedly induced from the character

0  b
it (a/b) , where g  i s  a n  unramified character of F", to  th e  representation

/ g -
1, 1) o f G  induced from  th e  character diag(a, b, c) — + g (a/ b) of the

upper triangular subgroup (which is 1 on the unipotent subgroup).

Definition. The function fE  X  corresponds to the function f  E if
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tr /'(,u, f  )  =tr/ ( (tc, 11- 1 - , 1); f)

for all unramified characters f i  :  Fx— q x .

Note that f  is uniquely determined by f, but f  is not uniquely determined
by f  .  Put t (7c- 1 ) .  Then tr /' = E n F (n, f ) t n ,  where

F (n f )  =Fr ((a

0 b
)) (a  —  b) 2  1 -/2 f  f  (( 1 — X  ( a  0  )( 1  x  

dx
))

, °
I ab F  \\O 1 b 0 1

_ la  '1 1 - 6  r , ( ( a  0 ) ( 1  x ( i— b / a )  ) )
dxlb I a JFi \\ b 0 1

o  b 0— q n /2 Li (  a  O  1
dx

for any a * b  with la/ bl= qn (note  that q= qF and I • I is the absolute value on F) .
Since F ( — n ,  ) = F (n ,f ) we may assume that n 0, choose 1)=1 and 'al _>_1.

( 1 o \
Using the  Bruhat decomposition for recorded at the  beginning of

x  1
the proof of Lemma 12, it is easy to see that

K'\
1 0 ( a  0 ) 

K ' K '
 ( ax 0  \

if Ixl >1 and lal 4b l,=
x b \ 0 b/x ) 1 (

hence that

F ( ,14) = qn/2
0 ' \\1

a0  b )) + E  gm

f / 0
/ 0 b IJm>0

for la/b1=lirni. In particular, for la/bl-=lir'l we have

f , ) )  f  " a  0 "
lb/al l / 2  (F (n, f  )  — F  +2,

( (  0  b )) —  f  (( o b

o  ) )

7r 11.

On the side of G we have

tr/( (pt, 1); f) = E F  ((n+m , m, 0), tn ,

n,nz

where

F  (( 1 , m ,  l e ) , f )  =  f  ( g )  =   (a —  b) (b — c) (a c)„ f u f (
„

t--gu )d u = la ic if f (gu )du.abc
Here a qn

,Ibl= qm , Icl = qk, q= diag (a, b, c) , and  U is th e  upper triangular
unipotent subgroup of G. The equality tr f  )  = tr  /( (a. I/ 1 ),f)  for all /I
implies that

F (n, f )  = E F  ( (n + m , m, 0),
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Hence

f  ( I )  — f  (( 7 - 1  1 ——F (0, f) — F(2, f')
0 7 r

= E [F((m + 1,m + 1, 0),f) —F ((m+2, m, 0), j ) ] ,

and

u 1 0 \\ tt
f  (( O  Clb )) — f  (( 01) )b r

C1 2 —
11)1112b  ) ) 01 b °7r2 ))]

//b-len-1
-m-1= I b11/2 E FFf 7r

\\ 0

These last identities are  used in the proof in [F8]of

16.Proposition. If  JE  21e and f  G IC are corresponding, and

f  (diag(r - 1 , 1, 1)) =f(diag (7r - 2 , 7r- 1 , 1)) =o,
then they are m atching, nam ely  f(b, f, 0) f ,  gb) fo r  all bEF x .

T h e  f ir s t  s te p  in  th e  p ro o f  is  th e  computation o f the  F ourie r o rb ita l
in tegral o n  H . W e  sh a ll d e a l w ith  a  sligh tly  m ore  genera l situa tion  o f a
IC-biinvariant function f  on GL (2, F )  which transform s under the center via
an  unramified character 77 of order at m ost tw o, and  is compactly supported
modulo the center. W e need only the case of n=1, but dealing with n *1 too
does not complicate the proof : it clarifies it a  little.

17.Proposition. The value of W( — b, f , (I)) =

f F  f  (( 01 x1 ) ( - 0 1) )( 0  10  )( 10  ) )
02 ( X  y) dxdy

72

is

(b112 )-1
 Ft-,  (/) ( (zo :))1fF 02(Y )du i f  Ibl> 1

(the last integral ranges only over y w ith 'Y1 =11)1112, it  is  zero unless the valuation
of b is even, and then the value of the unramified 77 at 0 /2 is def ined), and

0 \\ /b-17r 2 OM

- F 1 7r—m
1 " 1 LI

f  
( ( '

o Ob ) )  2 f  (( 01  b i r0 2 ) ) 77 ( 7 r )  + 7 )  ( 7 r 2 0

0
1

This is proven in [F8], Part 2.
T o  p ro v e  th e  m atching Proposition 16 it is  no t necessary  to  com pute

b7C1r4) )  
i f  1bl
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gr(b, f, 0) explicitly, but we need to show that it is related to the result of
Proposition 17 via the identities in the few lines prior to Proposition 16. Since
g0 g -

0g,T1 = 91, for g o = diag (1, — 1, 1), g -1= (1, 1, —1)

/ 1  0  2 1 1 )( 0 1 )( 1 —1/2 \( 1 0 ) ,
gi =  0  1  0 1 1 1 1

\1 0 — 2/  ( 0 1 1 0 0 1 )  0 4

we have that W(6, f, 0) = f X0 (x+y)dxdydzdyd x  ad xig, where 0 =0  and

1/1 0 0 \ /1/6 0 \/ 1 — 1/4 \ 1/a 0 \f 1 u  0
X = f  x  1  0 1 1 13 o 1  0 .

\\z y  11\ 0 1 1 \ 0 1 1  0 1 1 0 0 1

*  0 \
Here we used the Iwasawa decomposition on H+ = *  *  0 E  G, andI

0  0  * 1
noted that f  is K-invariant on the right, and that f  •s K- invariant on the left

/0 1 \
(we only used the fact that f (79) =f (9) with g = 1 , and changed

\ i0 /
variables on z. The argument of f  in X can also

/1 0 0 \ /1/ab 0 \/1
be expressed as

u  —a/4
1 0 /3 f o i 0
y 11\ 0 1 /\o 0 1
1 0 0 /1/ ab 0 \/1 x z
u 1 oJ l o i y ).

—a/4 0i ! \ 0 1  /  0 0 1

It suffices then to show the following

1 8 . Proposition. The value of P — b, f, 0)lb I- 1 1 2  fo r  f  E  IC w ith
f (diag(r -

1, 1, 1)) =f (diag (r -
2 , r -

1, 1 )) = 0 is  the product o f f,02(y b/y) dy
and

E[F((m +1,m +1,0),p_F((m +2,m ,0), f )]
112

when Ibl >1. But when it is

ELF((m±1±j,m+1, 0),f) — F( (m+2d- j, m, 0), f ) ]

— q- E [F ((m + 3 + j,m + 1 , 0), f) — F((m+4-4-j,m, 0), f ) ]
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This is proven in [F8], Part 2, by a direct computaion.

7. Applications to cyclic representations

Now that we have all of the required results about matching local Fourier
orbita l in tegrals, w e can return  to  the global Fourier summation formulae of
Proposition 1 on  H' = ResE/FPGL (2 ) and of Corollary 6 on G  PU (3, E /F).
Let E /F be a  quadratic extension of global fields, f= O f v , fv c Cv

-
(Gv) for all y,

f = .4  for almost all y, and f  = fvEC7 (Hv' )  for all y, fv= fv° for almost all v.
Assuming the validity of Proposition 7 at the archimedean places, we may take
E /F to  be num ber fields. Since Proposition 7 is proven above only for finite
places, our applications are fully proven only for function fields E/F.

19. Proposition. Suppose that A and f y are matching for all places v  of
F. Then

E(W ) (r )  ±  (1 .2 ) +  (1 .3 ) = n ( )(W ) + (6.1) + (6.2) .

The sum on the left ranges over all cuspidal distinguished (there is 0 E 7r1  with
PH (175) *0) representations of PGL (2, aiE). On the right 7C ranges over all generic
(W1,(q5) * 0 )  cyclic (P (0 )  *  0 fo r  some 0  E  7 r )  cuspidal representations of
pu (3, E/F).4.

Proof. Propositions 14 and 16 imply — in  the  non-split and  split cases
respectively — that f v° and J  a r e  matching, and Proposition 7 asserts tha t for
each f v E C7 (Go) there  is  a  matching t v( H ) ,  and  fo r each such f t, there is
a matching f .  Hence the  assumption of the proposition is not vacuous. Since f v

and J  a r e  matching f o r  a l l  y , by  de fin ition  w e  h a v e  t h a t  T.  ( b ,  f .  0 )  =
?1 (b , f', 0 ) for all b cE V E , and for b = 0. Hence the "geometric" sides of the
sum m ation form ulae o f  P ro p o s it io n  1  a n d  C oro lla ry  6  a r e  e q u a l. Our
proposition simply concludes that for such matching f  a n d !  the spectral sides
are equal.

To use Proposition 19 to derive representation theoretic consequences, we
need to isolate a single contribution 77/  o r  r  on the left o r  right of the identity
of Proposition 19.

20. Proposition. Let V be a finite set of places of F  including all the
places v where 0 o is not unram ified  or v  is ramified (including archimedean) . For
each v V  fix an irreducible unram ified unitarizable generic representation I' (1,tv ) °

of 11;,=PGL (2, Ev ) (it is of the form I' (ti v )
°
 X I' ( t t ' )

°
 if y splits in  E) , and denote

by I (p o )
° th e  corresponding representation of G .  For each  v  C  V , let fy

(ll'o )  and fv C (G r) be matching functions, and put f' =Of', with f;, = .4
°
 for

all v EE V, and f= O f v with A =4 for all v EE V. Then



Cyclic automorphic forms 419

(20.1) E ( w o p n ) , , , v ) + ( i . 3 ) = E  n (7 ) N  ol5 ) ,

w here 7T' ranges ov er th e  cuspidal distinguished representations o f  H '(4 )  =
PGL (2, 4 E ) w ith T 6  =  ( l i v )

° for all v Er V , and Ir over the cuspidal generic cyclic
representations of G (4) =PU(3, E/F).4 w ith 7T v=

 I (tev)
° for v '$ V.

Proof. L et v i  '$  V  b e  a  p la c e  w h ich  s tay s p r im e  in  E , and  use  the
iden tity  o f P roposition  19 w ith  f ,  f  w hose com ponents a r e  corresponding
spherical fv 1 a n d  f „ .  T h e  operators irvei (41) a n d  741 (41) a c t  as zero  on  the
spaces of 4 ,  and 71-„, except on the K„-and K„-fixed vectors which exist only
when 7T'v i  a n d  7r„ a re  unramified. Hence the  identity of Proposition 19 can be
expressed in the form

(1.3) + E ta ' ( ten , 41) ( W a i l f ) r '  (f1) +Ef tri' (141141, A ) d (pin, ds
r'

= E t r / ( , f ) E n  (7r) (1/17
Ç 1  r V  1 ) ±  (6.1)

of a  standard k in d  (ri  is  !w ith  f „  replaced by 47 , f1 is f  with f t ,  replaced by
A ; the sum over 7r' ranges over those Tr' whose component at vi is I' (ftv1 ) ,  and
similarly for the sum over 7T ; and s ranges over i (R/(inqv i ) 1T )) .

Since  tr/(livi. ,fv,) = trr (pv1. ,41), a  s ta n d a rd  a rg u m e n t b a sed  on  the
unitarizability of the 7z„ and the 741, the absolute convergence of the sums and
in teg ra ls  in  t h e  F o u r ie r  sum m ation fo rm u la , a n d  th e  Stone - Weierstrass
Theorem (see, e.g., [F4], Proposition 5), imply the  identity of ou r Proposition
20, b u t w ith arbitrary m atching f, f  w hose com ponent a t v i is  A, f v ,  and
where i t .  i t '  ra n g e  only over those representations whose com ponent at v i  is
the fixed 7T vi =  (140° a n d  T C, = r (tiv i )° . Note tha t the  continuous sum, coming
from  (1 .2 ) a n d  (6.2), vanishes in  the  comparison with th e  discrete sum s of
the last displayed identity.

S u c h  a r g u m e n t  o f  "genera lized  linear independence" o f  characters
tr (tc". fv,) (= tr /(11vi. f v ) )  can be carried out at any finite number of places

EE V w hich  stay  prim e in  E . A  sim ilar argument can be em ployed at any
finite number of places 1,

2 Er V which split in E, but w ith a  little difference. At
a place 02 w hich  sp lits in E . an  unramified generic unitarizable component 742
of i t  w hich appears in  the sum of Proposition 19 is a - priori any representation
I (Pi, 112, 113) Of Gv2 = PGL (3, 1 ) induced from the B orel subgroup. But only
7r1'2 o f the  form I (p, 1 )  correspond to representations (generic unramified
unitarizable) 7 r, necessarily of the form /' (it) X I' (IC I ), O f H 2

- PGL (2, Fv 2 ) x
PGL (2, P 2).

W e m ay  then  app ly  " linear independence  o f  characters" o n  Gv 2 , and
conclude that on fixing a local representation /(1-tiv2, /€2v2. /13v2)° in  the  statement
of the proposition, the sum  (1 .3) and the one over 7-c' are empty unless 11,- 11

,
2, 2v2

=  1 and p3 v 2 =1. This can be used at a  later stage to show  that any unramified
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component at v2 of a r  which occurs in the sum of Proposition 19 is necessary
of the form I (g,,, 1.61', 1). However, Proposition 0 of [F7] — which is proven by
pure ly  local m eans in  th e  context o f  GL (n, F v )  — im plies w hen n = 3 the
following.

20.2 Lemma. The non - trivial unitarizable irreducible representations of
PGL (3, F v )  which hav e a non - zero GL (2, F v )  - invariant form are of  the form
I (1 X p 2 ) — where p2 i s  a  representation of  PGL (2, Fv ) — induced from the
representation lx p 2 of a maximal parabolic subgroup of PGL (3, Fa).

In particular the unramified representations of the Lemma are of the form

1(1, p, , and they correspond to representations 1' (p) ( i t ' )  Of IFV2 =
PGL (2, F v 2 ) X  PGL (2, Fv2) .  C onsequen tly  a t v2 w e  m a y  a p p ly  " l in e a r
independence of characters" on PGL (2, Fv2) . W e m ay repeat this argument at
any finite number of places v2 $  V which split in E. Proposition 20 now follows
from a sim ple induction-type argum ent, as in [F4] , Lemmas o n  p . 758. Note
th a t  (6.1) does not appear on the right side o f  (20.1) since ,r(p) with p 1
does not appear in  (1.3).

Remark. (1) B y rig id ity theorem  f o r  GL (2 ),  s in c e  w e  f ix  in
Proposition 20 a  representation 7E'll)  of H'v fo r  almost all v, there is at m ost one
cuspidal r '  w ith these local components, and at m ost one representation =-
I' (g) , with p2 ±1, p ls g ; =1, with these local components, and there is at m ost
one non-zero contribution to  the  left o f  (20.1) (namely the  sum  o f  (1.3) or
the sum over r '  is empty).
(2) The uniqueness of the W hittaker functional on 2 T , and  o f the  PGL (2, Fv)
-invarian t functional o n  th e  PGL (2, E v ) - module ey, im p ly  tha t each  of the
global functionals Wo and PH split a s  a  product of local ones, 1470, and Pnv, on
the local representations. Consequently, we can make the following.

Definition. L et 45 (7r)} indicate a  Ky -finite orthonormal basis of the
space of 4. Then

(WovPHy) (1v) =  E w ç b v (7 , - ; , (4 , )  95 (4 ) )Pit y (95 (4 ) )

defines a functional on C7 (HO .

T his functional depends on is independent o f the  choice of the basis
(ity') ) ,  it is  zero unless jr is generic and distinguished, and for inequivalent

ir'v i (1 , th e  (WoyPHy) ri), a re  linearly independent. It is invariant under
right translations by Hv =PGL (2, F v )  and transforms under left translations of

x )

1
j v  by EN'y EEv) according to ç1'..

0  
F o r  every  cuspidal 7C' and non - tr iv ia l character 0  there is a constant

c (pr', 0 ) such that
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wokH)„,  (f ) (7=', 0) fi ( wo„PHy) 70, (4,)

if . f  =W u. B oth sides are zero if som e it is not generic and distinguished. The
global cuspidal 7I '  i s  (automorphically) distinguished precisely w hen all Irv ,

a re  distinguished, and  c(77-', 0) 0 .  The constant c (7 e , 0 )  depends on the
various normalizations involved. For example we may choose the orthonormal
basis {0(4)}  o f  a n  unramified 7r;, to  con ta in  a  Ku - invariant vector and
require that P77,)(V ) =1= W ov(V ) when ov is unramified. T hen (W ..P )Hy, y 11,
tr 14'  (fD )  at a  spherical (Ku' - biinvariant) fv.

W e shall use these remarks to deduce from Proposition 20 the following.

21. Proposition. Let 7r' be a  distinguished cuspidal representation of
PGL (2, ,s61E), or an induced representation of the form  r (to , w ith g: sin./E xai — >
r  and g 2 *  1. T hen 7r' corresponds to a generic cyclic cuspidal representation it of
PU (3, E/

Proof. Consider the  case  w here Tr' is cuspidal distinguished. The case
where 7r' is r ( i . t )  can be handled similarly. W e shall use Proposition 20 w ith a
finite s e t  V w hich contains all places of F  which ram ify in  E  (including the
archimedean prim es), and  a ll places w here Ou o r  7r; a re  ramified. T he  fixed
local representations / '( i , , ) ° a re  chosen to be the components Tru'  of 7r' for all y
Er V. The left side o f  (20.1) consists of a single summand, that indexed by our

by the Remark (1) above. The sum o f  (1 .3) is empty.
T o com plete  t h e  p roof w e  sim ply  need  to  p roduce E  C ° ( H )  with

(WouP-Hu) (4 )  * 0  for each v. This f u needs to be matching some f u( G v )
B y  th e  norm alization specified at th e  e n d  o f  R em ark  (2 )  above , w e have
(470uPliu)ra v °) = 1  for all y 1$ V  (and fu° matches 4, by Propositions 14 and 16).
A t e a c h  y  i n  V , l e t  01(7rur) b e  a  sm ooth  vector in  t h e  sp ace  of i t  w i t h
PH u(01(4)) ±0, a n d  02(7rv' )  a  sm ooth vector w ith 14/0„(02(7tv') )  * 0 .  We may
assume th a t e ith e r  02(4) = 01(7ru') ,  o r  th a t  02(74) i s  orthogonal to  01(4) .
Each of 0 2 (4 )  can be multiplied by a  scalar to have length one, and we extend
{0,(74'); i=1, 2) to  an orthonormal basis of 7r'u. Since Irv' ( 4 ) ; (1-1v')}  span
t h e  a lg e b ra  o f  endomorphisms o f  Jev, w e  m a y  c h o o s e  f i, su c h  th a t
zu' (4)0i(lev)is 0 unless i = 1 , and it is 02 (4 )  if i =1 . Then

( 1470,,Priu) (4) = Wou (7ev (fu) 01(4) ) Plity (01(4)) = W (02 (4)) Pliv (01 ( 7r;)) ±0.

By Proposition 7 any fu matches some f v C  C7 (Go) . Applying Proposition 20 we
conclude that th e  left side  o f  (20 .1) is  non-zero, hence  so  is th e  right side,
nam ely there is a  cuspidal generic cyclic i t  w h ich  corresponds to  o u r  7f, as
required.

In the opposite direction we prove the following.

2 2 . Proposition. L e t ir° b e  a  generic cy clic cuspidal (irreducible)
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representation o f  PU  (3 ,E /F)g. T h en  th ere  is  e ith er a  u n iqu e  cuspidal
distinguished (irreducible) representation It' of PGL (2, gilE) , or a unique induced

representation I' (g) of PGL (2, 4E ), where it is a character of an /E xal; with p 2

1, which corresponds to e .

Proof. T his w ill be proven along th e  lines o f the  proof of Proposition
21, except that th e  rigidity theorem  fo r PU (3, E /F ) is  deeper than  tha t for
PGL (2). In  any  case  w e choose a  fin ite  s e t  V consisting o f  a ll p laces of F
w h ic h  ra m ify  i n  E ,  a n d  w h e re  0  or IT  is  ra m if ie d  ;  th is  in c lu d e s  the
archimedean places. W e apply Proposition 20 w ith a fixed local representation
I' ( g ,) ° w hich corresponds to  the  components re of 7rv a t each  y E V. We need
to show that the right side o f  (20.1) is non - zero.

Using Bernstein 's "m ultiplicity one" theorem  recorded in  th e  Appendix

(asserting the uniqueness of Pv below), we have the product formula (W413)74 )
= c (0, TO II (1470A) iv. Vv) for each cuspidal generic cyclic r .  H ere (WovPv) itv (4)

is  E W o„ (ire (fe) q5 ( ir a ) )  Pv (0 (7r)) , as in the case of PGL (2, 4 E ) .  Also P, is  a
U(2, ELIF ,)  -invariant form on PU (3, E dFv),{0(14)} is  an  orthonormal basis
o f  sm ooth vectors in IT ,  a n d  147

0 ,  i s  a  0,-W hittaker functional o n  Ire . We

assum e th a t  {q5(ry )}  con ta ins a  Ku - fixed  vec to r V, a n d  th a t P v(V ) =  1  =

Wov (V ) for a ll y E V. T h en  (W0)5,),,c; (4 ) = 1  for all y E V.
C onsider a  p la c e  y  E  V  such  tha t  JT i s  supercuspidal. S u c h  y  is

necessarily  finite  a n d  i t  s ta y s  p rim e  in  E . T h e n  th e re  a r e  smooth vectors

(iri9) (i -= 1, 2) of length one with Pv (01(e))  ± 0 a n d  147,4(0 2 (7e)) ± 0 . W e
may assume th a t 0 2 = 0 1 o r  tha t 02  is  orthogonal to  01. Extend {01, 0 2 } to  an

orthonormal basis  o f  Ta. T h e  m atrix  coefficient 4 (x ) = (x) 02 , 01) i s  a
supercusp form  w hich satisfies ir;,) (n)q5 = 0  fo r  a l l  0  orthogonal to  01, and

ir,9 (a) (01) 02 (up to  a non-zero multiple) . Consequently ( WovP rv = 0
for all IT  inequivalent to ITT, a n d  ("Woyfy)rp,(4) *0. Using f ,°, at each place y
V  w here IT is supercuspidal, we conclude that the sum on the right o f  (20.1)
extends only over IT whose components at these y are the supercuspidal

Next we consider a place y E V such that IT is not supercuspidal. Then l e  is
th e  u n iq u e  generic  co n stitu en t in  th e  co m p o sitio n  s e r ie s  o f  a n  induced
representation / ( P , )  (or 1 (1 X  P2v), w h e re  p z , i s  a  g en e ric  unitarizable
irreducible representation of PGL (2, F v )  if  y  sp lits  in  E ) . A s usual we may
choose a  basis 01, 02, ••• for r ,13, and f, E (Ga) w ith  ir:3(fv)0,=  0 (i * 1 ) ,  and

711 Vv) 0 1  0 2 , so  tha t (1470vPv) V v) *0.
A p p ly in g  B e rn s te in 's  d e c o m p o s it io n  th e o re m  (w h ic h  is  b a se d  on

Bernstein's center, see [BD], a  forthcoming work by Bernstein, ançl a summary
in [F5] , pp . 165 - 6) , w e m ay assume that f ,  is  o f the  form f ,  *4, where 4E

(Gv) is  a  function with the  property that itv  (4 ) acts a s  0 on any r ,  whose
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infinitesimal character lies in a Bernstein component different than that of 74,
a n d  4(J) 01= 01. Namely th e  sum  over 7r o n  th e  righ t o f  (20.1) w ill range
over all 7r whose component at the y '$ V o r at the y where 7-d  is supercuspidal,
is the same as that of ir°, but a t the remaining finite set of places, where 7r° is
the generic constituent of a full induced i ( i i ) ,  or /(rev, liv 1, 1 ) in the split case,
we only know that 7r is a constituent of /(teuv;) or / (141.4, 14 114- s , 1) for some
s C V  (here 1.), (x) Ix Iv). It appears th e  sum  over ir  m ay range over a  set
la rge r than  7r° a lo n e , a n d  cancellations may cause th is  su m  o n  th e  r ig h t of
(20.1) to vanish.

A t th is  stage  w e  need  to  invoke  th e  rig id ity  theorem  fo r  automorphic
representations of U (3, E/F) from [F3] and [F3'] w hich asserts, in particular,
that : there is at m ost one cuspidal representation of U(3, E/F)g almost all of
whose components are  specified, and whose remaining finite set of components
consists of generic constituents of induced U(3, Ev/Fv) - modules. Note that this
is  a  weak form of the rigidity theorem of [F3]. It does not use the structure of
U(3) - packets a s  described in  [F 3 ], nor m ultiplicity  one  theorem  f o r  U(3),
w hich  is  p roven  i n  [F3] using som e o f  th e  w ork  of [G P ]. T he  pa rt o f the
rigidity theorem used here relies on no results stated in [GP]. In any case the
part o f the  rigidity theorem of [F3] just quoted im plies that there is only one
non-zero term  in  the sum on the right o f  (20 .1 ), it is indexed by our 7r°, and
the right side o f  (20 .1 ) is  non-zero for our choice of f v  fo r 7) V.

It now  fo llow s tha t th e  le f t s id e  o f  (20.1) i s  non-zero , and  we obtain
either a  cuspidal distinguished  o r  a n  induced I' (g) w hich corresponds to
our z

o
, as required.

8. Local cyclic representations

W e sha ll now  tu rn  to  the local theory o f cyclic representations, namely
those representations o f PU(3, Ev/Fv) w hich ad m it a  U(2, Ev/Fv) - invariant
fo rm , a n d  those  representa tions o f  PGL (3 , F v ) w hich  a d m it  a  GL (2, Fv)
- inva rian t fo rm . H e re  F o i s  a  non-archimedean lo c a l f ie ld , a n d  E ,  i s  a
separable quadratic extension, of characteristic  2. All representations which
occur in  our summation formulae a re  generic, hence all results derived here
from the summation formulae will concern only generic local representations.

A  complete characterization o f  th e  distinguished representations 74'  o f
GL (2, E 0 ) ,  nam ely those representations w hich adm it a non - zero GL(2, F v )
- invariant form , is  g iv e n  in  [F5] . W e shall re turn  to  th is param etriza tion
shortly, but note th a t  if  y  sp lits  in E/F, then Ev =  F 0 F 0  a n d  7et, = riv X 7r20
where ir  i s  a  representation of GL (2, F 0 ) ,  and  712v is distinguished precisely
when 7(20 = (= contragredient of 7r10 ) .  The local application of Propositions
20-21-22, is the following.

23. Proposition. For each generic distinguished representation r '„ ' of
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PGL (2, Ev )  which is a component of  a cuspidal distinguished representation 7e°
 of

PGL (2, .sziE), or of an induced 7e°
=.1'(#), P : siV E 'sPF̀

—q x , 112* 1 , there exists a
unique f in ite  s e t  {irv l o f  representation o f  PU (3,E v/Fv), and constants
c (çb v , 7rv )  such that the 74 are components of cyclic generic cuspidal representations

of PU(3, E/F),a, and all of  the r v  lie in one packet (a notion introduced and
studied in [F3] ) which is uniquely determined by r v'°; such that for all matching A c

(11) and f v e CC' (G v) we have

(W Wily) ir;,o (4) =  E c (0v, Try) ( W P )  I r y  ( fI)
irveinvl

Conversely, f or every component it0 of  a generic cyclic cuspidal representation
no of  PU (3, E/F).d, there exists a unique generic distinguished representation iev

°

of PGL (2, Ev )  which is a component of  a cuspidal distinguished representation 7e°

of PGL (2, .91e), or of  an induced r '
°
= I' (g), ft:,94`/E — >r ,  te*1, such that

(23.1) holds for all matching A e  (HO and fvCC7 (Go), with (Irv ) = (41 (4°) .
If  v  splits in E then {rv} consists of a single representation.

Proof. Given a global 7r
°
 o r the  corresponding global ir'

°
, we set up the

identity  (20.1) such that 7e°
 indexes the only term on the left, and 7r0 occurs

o n  th e  righ t. A t each place vi E  V, vi y ,  we choose f v ,  a s  in  th e  proof of

(-  Øviftn) rt i V v i) ±  0 a n d  th a t th e  TE whichProposition 22, to  g u a ra n te e  th a t  W
index non-zero terms on the right will have the component 7r,?, at each place Vi
± y  in  V.

A s in  the  proof of Proposition 22, we used here the  rigidity theorem for
U(3, E /F) of [F3]. W e derive the  iden tity  (23.1) for a ll m atch ing !, and fv ,
where the sum on the right ranges over a  subset of the packet of 7e, by virtue
o f  a  special c a se  o f  th e  rigidity  theorem  f o r  U (3, E / F ) of [F3] : If it = -
O r ,  i s  a cuspidal representation of U(3, ,sziE/s4F) lifted (in terms of almost all
p la c e s )  f ro m  a  generic  represen ta tion  o f  U  (2 , 4 s / . F ) ,  th e n  the local
com ponents at y  o f  any  cuspidal representa tion  o f  U (3 ) w hich is a lm ost
everywhere equivalent to i t  m ust lie  in  the  packet of r e .  Note tha t for each Kt,
w hich contributes a non - zero  e n try  to  th e  r ig h t s id e  o f  (23.1), the global
representation 740  (0  41 ) needs to be cuspidal, cyclic and generic, in  order

viov
to appear in  (20.1).

T he  {741 is uniquely determined by 7e„, and 74 is uniquely determined by

rv, since the d istributions (W o,P ,),„  are  linearly independent, and the subset
{7rv }  of the  packet o f  7r, is uniquely determ ined by the  rigidity theorem  and
the conditions which we put by fixing all other components of 7r

°
.

Definition. A  distinguished generic representation 7ev o f  PGL (2, Ev )
and a cyclic generic representation Kv of PU(3, Ev/Fv) are said to correspond if
they satisfy the relation (23.1) for all m atching!, and f .

(23.1)
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Remark. (1 ) Clearly, each component o f  a  generic representation is
generic.
(2 ) It is show n in [F3] tha t once a tw isted analogue of the theorem of Rodier
[Ro] ,  re la ting th e  asym ptotic behavior o f  a  charac te r w ith  th e  num ber of
W hittaker m odels o f  th e  representation, is m ade available, then th e  packet
te) of the  i r  o f  P ro p o s it io n  23 w ill contain precisely one generic member,
nam ely 711; itse lf, a n d  th e  sum  o n  th e  r ig h t o f  (2 3 .1 ) consists of a  single
non - zero summand, indexed by this 7r,c1.

Proposition 14 of [F5] asserts (see also the Remark following B17 in [FH])
that :  each distinguished inf inite dim ensional supercuspidal representation 7r, of
GL (2, E v )  can be viewed as a component of  a cuspidal distinguished representation

of  GL (2, .97IE ) ,  in  fac t w ith  supercuspidal distinguished components at any
prescribed finite se t o f p laces. If  74 h a s  triv ia l cen tra l character, 7r can be
chosen to have trivial central character.

T h e  proof of P roposition  14 of [F5] is  b a se d  o n  a  s im p le  compactness
argument w hich produces a  g lobal test function f  w ith  th e  preassigned local
components, such that the geometric side of the summation formula reduces to
a single non - zero  term , hence the  spec tra l s id e  is  a lso  non - zero. Analogous
proof applies in the case of cyclic generic representations, and we record only
the result.

24. Proposition. L et E/F be a  separable quadratic extension of global
f ields, and 7 r  a generic supercuspidal cyclic representation of  PU (3, Ev/F,) where
E , i s  a f ie ld . T hen there ex ists a  generic cuspidal cyclic representations 7r of
PU(3, E/F).4 whose component at y  is  the given i r a .

Again, the proof of this follows closely that of Proposition 14 in [F5], and
will not be given here.

To obtain explicit description of the local cyclic representation, we recall
some of the results of [F5] and [F3]. Our recollection here will be very brief ; for
a  fu ll  d e s c r ip t io n  o f  th e  definitions a n d  re s u lts  s e e  th e  o r ig in a l papers.
A ccord ing  to  [F 5 ] , t h e  d istinguished representations o f  GL (2, sliE ) (and
GL (2, Er)) a r e  p re c ise ly  th o se  c u sp id a l (a n d  a d m is s ib le  (irreducible))
rep resen ta tions o f these  g roups w h ich  a r e  ob ta ined  a s  th e  im a g e  o f  th e
u n s ta b le  b a s e  c h a n g e  l i f t in g  f r o m  t h e  u n i t a r y  g r o u p  U(2,E/F).4 (or
U (2, E v /Fi, ) )  in  tw o  variables associated w ith the  quadratic  field extension
E/F ( o r  WT . ?) w h ic h  is  im p lic i t  i n  t h e  defin ition  o f  a  distinguished
representation. Note tha t the  unstable base - change lifting depends on a choice
of a character sig'/ExNE/FsgP — ' r  whose restriction to SerF< is  n o t trivial (or
locally o n  a  choice o f  a  K a  : / 1 \ 1 E / F E 1 -4 V x  w ith  restriction Kv In  * 1 ) .  The
image of the lifting is independent of K (or Kr).

Combining the  unstable base change lifting from U (2 ) to  GL (2, E ), with
the global correspondence — defined in  term s of almost all components — from
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the set of distinguished cusp forms on PGL (2, giE) to the set of cyclic generic
cusp form s on  P U (3 , E /F ).4 , w hich  is  stud ied  in  th is  paper, w e obtain  the
endoscopic lifting f r o m  U(2, E/F) ),:i (the superscript K  indicates
representations with central character K- 1 )  to PU  (3 , E /  a, which depends on
a choice of K  as above. This endoscopic lifting is studied in [F3].

In the local case of a place y of F which splits in E, we obtain :

25. Proposition. L e t  p ,  b e  a  square - integrable representation of
PGL (2 ,F,). T h e n  t h e  representation 1(1X  p i,) o f  PGL (3 ,Fv), w h ic h  is
normalizedly induced f rom  th e  representation o f  a m ax im al parabolic subgroup
defined by p , on its Levi subgroup, is cyclic, namely admits a non - zero GL (2, Fv )
- invariant form.

Remark. T his statement involves the local non - archimedean field Fv,
but no quadratic extension E , thereof. A  purely local proof of this is given in
[F7], Propositions 0  and 0.1. Proposition 23 asse rts  a lso  tha t 7tv =I (1 X P v )

corresponds to  7r; P v  P v ,  nam ely that (141 0v171Hv) ev (4) = C(W  Ovii rv )  rv ( 4 )  for all
matching f ;  and f ,  where c is  a constant depending on Ov and  p v . This relation
of W hittaker -  period distributions does not follow from the methods of [F7].

Proof. Given p v  w e construct — along standard  lines, using th e  usual
trace form ula on U (2, E/F).4 and a pseudo - coefficient of p v  whose existence
(for non supercuspidals) is proven in Kazhdan [K] — a cuspidal representation
p  of U (2, E/F).4 (with the  required central character) whose component at y
is pv. The lift of p to PU (3, E/F).4 is cyclic, and its component at y is 1(1 x  p i ,)
(by following the diagram in the introduction and using [F3]) , which is cyclic
as a  component of a global cyclic representation.

In  th e  c a s e  w here  E v/Fv i s  a  separab le  quadra tic  extension of local
non-archimedean f ie ld s , w e  c o n c lu d e  t h e  fo llo w in g . R e c a ll th a t  Gy  =
PU (3, E v /Fv ) .

26. Proposition. Every G o - Packet which is the im age v ia the endoscopic
lif ting  o f  a square - integrable representation o f  U(2, E v /F y )  contains a  generic
cyclic square - integrable representation r y .  Conversely, the packet o f  any generic
cyclic square - integrable representation r y  o f  Gy  i s  the e n d  oscopic l i f t  o f  a
square - integrable U (2, E v /F y ) - m odule (with central character K '). Equivalently ,
the correspondence establishes a bijection between the set of  Gy

- packets containing a
generic cyclic square - integrable representation o f  Gy ,  an d  th e  s e t  o f  square -

integrable distinguished PGL (2, E v ) - m odules or the induced 1f (g y )  where Pv:
E , F x  satisfies ,t4 * 1 .

Proof. F o r th e  first c la im  w e need to  repeat the  proof of Proposition
25, nam ely that any square-integrable representation pv o f U(2, E v/Fv)" can
be viewed as a  component of a cuspidal representation of U (2, E/F)1. For the
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"conversely", the case of a supercuspidal 7tv is handled  by  Proposition 24. A
list of the reducible principal series representations of U(3, Ev/Fv) is given in
[F2], (3.2), p. 558. There are two cases where the full induced representation
h a s  a  s q u a r e  in teg rab le  c o n s t itu e n t . T h e  c a s e  o f  th e  s q u a re  integrable
subrepresentation o f  th e  induced I (ttixv1)/1/ 2 ) , w here  itiv  :  E,V F — *Wx, is dealt
w ith by the first assertion of our proposition: it is  the generic cyclic lift of the
"special" representation o f  U (2 , E v /F v ) .  T h e  o ther square -in teg rab le  non
supercuspidal U (3, E v /F ,)  - module is  th e  ("special") subrepresentation sp(i.tv)
of /(1-414), ttv : E vx/F,;'— Wx. It is generic, but not an endo-lift from U(2, Ev/Fv)
(see [F3]) . Hence we need to show tha t sp(go) is not cyclic. T h is  is done in
Proposition 29 (b) by means o f a  purely local proof. T h is completes the proof
of Proposition 26.

Remark. (1 )  T h e re  is  one m ore case of a reducible principal series
U (3, Ev/Fv) - m o d u le  ( [F 2 ] , ( 3 .2 (1 ) ) ,  p .  5 5 8 ) ,  nam ely  I  ( P o ) ,  f o r  some
1L,: Evx / F ' r .  I t  i s  th e  lif t  o f  th e  reducible tem pered U(2, Ev/Fv) - module
/0(//,/K v). Since the two constituents of h (ttv//cv) are elliptic (their characters
a re  not identically zero on the elliptic regular se t o f U (2, Ev /Fv )), they have
pseudo - coefficients as in [K ] , and so  a n  irreducible constituent of / 0 (f.tv/Kv)
makes a  local component o f  a  cuspidal U (2, E/F).4-module, whose endo-lift
will then be a  cyclic generic cuspidal U(3, E/F).01-module whose component at
y is cyclic, generic and a constituent of I (rtv).
(2 )  According to Proposition 26, each C y -packet w hich is the endoscopic lift
o f a  square - integrable U (2, F v /F ,)  - module contains a  generic member, which
is  a ls o  c y c lic . A ll o f  t h e  elem ents i n  th is  p a c k e t  a r e  square - integrable.
Assuming the  validity of the tw isted analogue of [Ro] we conclude in [F3] that
this packet contains only one generic element. Then Proposition 26 will assert
tha t the generic member o f the  packet is cyclic, all generic square-integrable
cyclic G v

- modules a r e  so obtained, a n d  they  correspond to  th e  PGL (2, Ev)
- modules specified in the proposition. W ithout using th e  tw isted analogue of
[Ro] w e  m a y  h av e  several generic  cyclic  m odules i n  a  packet lifted from
U (2, Ev/F v ) ,  a n d  these  con tribu te  to  th e  r ig h t s id e  o f  th e  correspondence
relation (23.1).

The global result is very much the same. Again 9 = PU (3, E/ F).4.

27. Proposition. E v e ry  - packet w hich is endoscopic lif t o f  a cuspidal
U (2, E/F)..4 - packet contains a generic cyclic cuspidal representation it. Conversely,
the - packet of  any  generic cyclic cuspidal Jr is the endoscopie lif t o f  a cuspidal
U (2, E/F) I-m odule w ith central character K- 1 . Equivalently , the correspondence
establishes a bijection between the  se t o f  9-pack ets containing a  generic cyclic
cuspidal representation of  9, and the set o f  cuspidal distinguished PGL (2, s4E)
-modules or the induced I' (p) , where p: siIklEx,94( - -q x  satisfies 122 *1.

T h e  summation form ula is  u se d  a b o v e  to  show  th a t  ce rta in  non  fully
induced generic representations of PU (3, Ev /Fv ) are cyclic. O ur next aim is to
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study the  remaining generic cyclic representations. In  th e  sp lit case w e have
Proposition 0  of [F7] , whose special case of n = 3 is  quo ted  in  Lemma 20.2
above.

Before turning to the determination of the induced PU(3, Er/Fv) - modules
/(pi,) w h ic h  a r e  c y c lic , w e  re c o rd  h e r e  ( a  m o r e  d e ta ile d  version of)
Proposition 9 of [F5], which determines the distinguished GL (2, Ev) - modules
I (pa, rt»). The proof is relegated to B17, [FH], to save space here. Since the
problem  is local, w e use local notations, as follows. Let E/F b e  a  quadratic
separable extension of local non - archimedean fields, and p a  unitary character
of E x .

N o te  t h a t  b y  [F 5 ]  ,  P roposition  1 2 , t h e  n o n  supercuspidal infinite
dim ensional distinguished representations o f  GL (2 , E )  a r e  o f  t h e  form

/(ft, ri - 1), w h e r e  ( x )  = p ( ± ) ,  or of the form /(1,11, p2), with ,ui lNEx = 1 , and I l l

± P2, o r  they  a re  th e  "special" square-integrable subrepresentation sp (p) of
/ (t i v i/2,  t i v -1/2)  where p is a  character of E x / NE x

t r28 . Proposition. (a ) The representation Is = I t t( iv-
s )  o f  G L  ( 2 ,  E )

is distinguished (s E ( b )  The representation I(gi, g2), P i  *  P 2 ,  is
distinguished precisely when pilF x  =  1. (c) T h e  representation sp (p )  is
distinguished precisely when pir  * 1 ,  but pINE x  =1.

Proof. T h is  i s  Proposition B17 of [FH ], w hich expands th e  proof of
[F5], Proposition 9.

Remark. (1 ) In  the split case E=FEDF, and a  representation 7r1 X  7r2
of GL (2, E) = GL (2, F) x GL (2, F )  is distinguished precisely when 7(2 is  the

=/ (t w ,contragredient of W hen 7 1 =/ p2) is induced, then t o ) .

Let K =GL (2, R) be the standard maximal compact subgroup of G = GL (2, ,
and A  the diagonal subgroup of G. Define a G = GL (2, F) -invariant form L s on

(01. 0 2 ) E i (UV, i t
-i. 2) - s )  x  (I n " ,

 p
i  S )v -s■ (  0  1  ))

u  acts v ia  (g, wgw), w= by
1  0

) ) 0 2 ( (a 2  b 2 ) )
dg.Ls(01, 02)f 01(( a ,

Ay; b2 a2 // \\ b ,  a , ! !

( 1  x
If A K *A K  then Ixl >1. Put x =  (1 — b) - 1 , note that

0  1

-1 1  0(11)) = ( 01 —
1 6 ) ( 01 ( 1 -

1b) ) ( b  1  ) ,

and that dx=11 —  b1-
2db. If p= 1, for K- invariant 01, 02 we have

1 \) 0 2 (( 1 b\\  d b  
Ls (01, 02) = f  d x +

f  0 1 (( 1
b 1 P \\1 1 11—  b12 .

n K\K 111-19 lb=1.(1 1
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Normalize th e  m easure  to  assign  A  (1 K \K  the  vo lum e 1 . Since

( 1 — 6  0 ) b \ /1/(1— b)  0 )N

K and K, when 01 and 02 are the unit
\  0 1 1 0 1

vector 0 ,̀9)  in  / (" , L rs), we have

Ls(0.̀ s), g ) = 1 4 - f 11-142s+111-61-2dbil-b1<1
CO

db=l+ (1 — q- ')
1 7 -2 s

=  L  ( 2 s )  
1-- c 2s L  (2 s - I- 1) •

The cases of other 0 1 an d  02, and of ramified te, is similarly handled.
(2 ) The explicit form  of the  functional L s  d iscussed  i n  (1 )  in  th e  split case,
and in the proof of [Fil], B17 (a), in  the  non - split case, is  the local component
of the global integral (re, s) 0 of [F5], p. 156, 1. 6. Our analysis here yields an
alternative — and more direct and natural — proof of the Lemma of [F5], p. 156.

Next we discuss the analogue of Proposition 28 for PU(3, E/F), where -

as there — E /F  i s  a  separable quadratic extension of local non - archimedean
fields, and rt is  a  unitary character of E x .  N o te  tha t the PU (3, E/F) -module
/(f .m ) is  the endo-lift of the U (2, E/F) - module Io (g), whose central character
is  K - 1  , namely im=  1 on E* = ta e E x ; acT= 1 ) . H ence w e need to show that
I (a ) is cyclic precisely when plE• =1.

29. Proposition. (a)  The representation Is = I (pv s )  of G = PU (3, E/F)
is cyclic precisely when 111E' = 1 . (b ) The ("special") subrepresentation sp(p) of
I (ftv) , /Fx—>r , is not cyclic.

Proof. (a )  Recall that C is  the centralizer of g o = diag (1, — 1, 1). The
centralizer C1 o f  g i =g5 I g 0g0 is  9 C90 . The space of Is consists of the smooth
9: G— >W' with

* \
1

\ \ o c * T - i
(g) la r 9  (g) 

( a E E x ,
 E G )

Define a C i -invariant form  L s  on  Is by Ls ((p) = fBnc,\,,9(h )dh. Here B= A N  is
the upper triangular subgroup of G, A the diagonal subgroup, N the  unipotent
upper triangular, and B n C1 consists of diag (a, b, a )  with a , b in E .  Hence Ls
is zero unless plE• = 1. Using the  Bruhat decomposition on G it is easy to see
that

c, = (c, n B ) u (ci n N A gN )=  (ci n K ) u (ci n NAgN — K n
o1 \

where K = G n PGL (3, R E )  and  g = —1 .  Moreover Ci n N A gN
1 0 /
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consists of

1
 0  \ (1  x  y/2 \(( - 1 ) / 2 0

0  1  ."-f 1
)/ 0 1 \(1. x  y/2 )/ s

\ 0 E  /  o o 1 / 0 2  \  1 0  /  0  0  1 ,y-1

1  
Y -1

1 w
0 \ (

a i  i +  z
y x  1/2\/6

where y=x .f - FtEE; sEE", x EE; t±r= O. We use these two forms to conclude
th a t  th e  ind ica ted  m atrix  l ie s  in  K  i f  ly — 1 I=  1 o r  ly I>  1  (an d  then
IYI >lx1) in  the normalization of the right side. The matrix does not lie in K if
Ig < 1.

Note that it suffices to work with an unramified E/F and p, since only the
tail of the sum matters for convergence. Take p= 1 — adjusting the value of s if
necessary — and  le t 9 be the  un it vector yoo in  L s . W e normalize the  measure
on B n cA c , to assign B n ci vf nCi the volume 1. Then

Ls ( 4)0 ) =f,„, (odk+ (1—q-2)-iEfc,nic (P°
i y — n E = t i s .

CO

_ 1 ± Eq_2„._,) (1 + .7-1) t r 2m

T h e  last equality  fo llow s from  th e  Lemma in  th e  p roof o f [FH], B17 (a),
asserting that

dgdt=q-ni • q - '" (1 +q - 1 )

Hence L5 (ç 90 ) =  L  (p  N E /F, 2 s)  /  (p  °  N E /Fx , 2s -F 1) w here  x  is  a g a in  the
quadratic character of FVNE x . W e conclude that L s  converges on 91 (s) > 0,
and that L(p'NE/F, 2s) - 1L5  has analytic  continuation to  91 (s) 0, with neither
zeroes nor poles. Hence ./s=/ ("IV )  is cyclic when ME' =1, as asserted in  (a)
(For 52 (s) <0 note that Is is cyclic iff its  contragredient is) . W e show that it
is not cyclic when ttlE•*1, together w ith (b).
(b) W e proceed a s  in  th e  proof o f  (b) a n d  (c) of B17 in [FH]. B y virtue of
Proposition 2 w e have the disjoint decomposition G = B C U BgoC. Hence any
C- invariant fo rm  o n  an y  su b sp ace  o f  I s  i s  a  linear com bination o f the
following two forms, 1 0 and 11. Put Bc=B n C. Then /0 is  the average on Bc \C
of 9, namely the integral of 9(h)dh on Bc\C, while 1 1 is  the integral of yo over
B n C1 \ C1, nam ely  it is L s  o f  th e  proof o f  ( a )  above. Denote by p  a n  upper
triangu la r m a trix  w ith  diagonal diag ( a , 1, 1/0 . T h e n  o n  C  w e  have the

/  2  2 x y !
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measure decomposition dh = la li ldPdk, an d  go(Pk) =  ,a (a )la  e l yo(k). Hence

go(h)dh=t1 (a) la LW (k) dpdk is left B- invariant precisely w hen i= 1 a n d  s =O.
On the other hand as  noted in  (a )  above, L, vanishes unless tt = 1  on E . This
completes the proof of (the opposite direction of) (a).

T o  p rove  (b) , w e take s= 1, then 10 i s  0, and w e need to show that Ls  is
also zero on the sub  sp(p) of our I (gv) , whose length is two. Note that sp(g)
c o n s is ts  o f  t h e  ço i n  I ( g v )  w h ic h  a r e  o r th o g o n a l  t o  the  un ique ,
one - dimensional, quotient g  of I (w ) .  Namely sp(p) consists o f  th e  yo with
frAG 4u -1 (0g9 (9)dg -= 0. Since the volume of Bc\C w ith  respect to  dg is zero,
and g  is  trivial on E . ,  and  hence on  G, the  last in tegra l is  no  other than the
integral which defines Ls . W e conclude that L, is  zero on sP(tt), and so sP(P)
is not cyclic, as required.

Remark. I t  i s  e a s y  t o  s e e  t h a t  7 T  i s  c y c l ic  i f  a n d  o n ly  i f  its
contragredient ir is. Hence it suffices to show that Is  is cyclic only for 91 (5)
0.

In the split case we complement Proposition 25 with the following.

30. Proposition. For an y  principal s e r i e s  PGL (2, F ) - module p, the
normalizedly indu ced  PGL (3, F) - module I(lx p) is  cy c lic  if it is irreducib le.

Remark. T his is proven — using [BZ] — in Proposition 0.1 of [F7]. The
explicit proof below show s tha t the  invarian t linear fo rm  is non - zero a t  the
K-fixed vector.

Proof. W e need to show that the representation /s = / (t ) s , 1, g -1  V s )  of
PGL (3, F ) is cyclic. A s rem arked prior to the statement of the proposition, we
may assume that 0, and that g  is  a  unitary character of F x . The shape of a
non - ze ro  GL (2, F) - invariant form  o n  Is  is  s u g g e s te d  b y  the  doub le  coset
decomposition B\G/H° o f  [F7], Proposition 13. Here B is  the standard Borel
subgroup of G = PGL (3, F) , and H° ( =  GL (2, F ) )  is  th e  group o f  (a u )  in  G
with au=0 when i -Fj is odd. Put

(
1

s =  0
1

0
1
0

0 \

0
1 /

, r ( 0
1 0

0
0 1

0\
1
o !

T h e  requ ired  linear fo rm  o n  / ,  w ill be  g iven  by  in teg ra tion  o n  B \ Bsr11° ,
namely on s r  • {diag (a, a , b)}\H° . W e m ay a s  w ell use  a t  once the Iwasawa
decomposition I r = N °A °K°, and the measure decomposition dh=la/bl - l eadxdk if
h=ndk, k in the standard maximal compact subgroup K° o f H°, n  is  the upper
triangular unipotent m atrix in  H° w h o se  (1, 3) entry  is x, an d  a ' denotes the
diagonal m atrix w ith entries (a, 1, b).

Recall that / s consists of the smooth yo : G- - +W with
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1 I a *

(P 1 g'-=P(alb)lalbls+1(p (g) .

Write (p ' (g ) = fK o (g k) dk . Then an  1r - invariant linear form Ls  o n  Is is given
by mapping 9 to its integral (against d h )  on Er {diag(a, a , b)}\110 , thus

(a x //1 0 0 )\

Ls((P) = ff (P'(er 1 latid x adx= ff ,u(a)lal s (p ' 0  1  0  d'adx.
0 1 I I \\a x  1  I

We shall show that Ls  ((p ) converges for s> 0, where it is not identically
zero. We cut the domain of integration of a E r ,  x EF, into 4 subdomains. In
each case it will be clear that the  integral is absolutely convergent, and that
the question of convergence is equivalent to that where p  is unramified (when
p  is ramified, the first few terms in our sums will vanish, but the convergence
of course depends only on the end of the sum). So we assume that p= 1, and
that s E  W. F o r  th e  same reasons we assume that 91K = 1. In  any case, the
subdomains are as follows.

0 0

(1) la l 1 ,  la c l  1 ,  where the  integral is = .fidsi la l a x a = (q - s)", and this is
n=0

convergent to (1 — q-
s ) -

1 = L (s) when Re ( s )  >0.
(2) lal >1, lal where

(  1 ) (  0  0
N 1 0  1  0 ) K

a x  1

( 1/a 0 \ / 1
-=N 1

0 a I\ 1

the integral is

1
—1) / 1 1/ a  / 1  0  0 /1/a 0 \

11 0 1  0  =N 1 K,
0 A 0 1  \ O  x  1 \ o a l

2s-2d 3a , f la ] xa,
lal>1

which converges to q ' s ( 1 — q ) q 1 L (s + 1) when Re (s) > —1.
(3) 1x1> 1 lai, where th e  integral is the  product of la I'd Xa = L ( s )  and
f C l) I, (s) , both integrals converge on Re (s) >0.
(4) Ix' >lal >1, where
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/1 00 \ / 1 0\

N o l o j I 1
\ 0 x 1 a 1 /

/ 10  \/10 0 \ / 1 0 0 / 1 0 \

=N 1/x 0 0 - 1 0 1 1/x 1
\ o x 1 0 /\() 0 1 \a 1 /
/ 10  \/1 0 0 \ /1/a 0 \

=N 1/x a 1 0K=N a/x K.

\ 0 x \O 0 1 / \ 0 x

Hence the integral is

i f f f
lal>1

the  last two factors converge on Re(s) >0, a s  noted in (2 ) and (3) . It then
follows that L s ((p ) converges absolutely to a  rational function in  q- s on
Re(s) > 0, it is not identically z e ro , a n d  its denominator is o f  th e  form

(s) 21, (2s) . The H
°- invariant functional can be defined then on  Re(s) z 0  a s

the value of L (2s) - 1 L (s) - 2 1,s , and the definition on Re (s) < 0 can be given by
analytic co n tin u a tio n , o r  by noting that r  is cyclic precisely when its
contragredient is, and that the  contragredient of / (pi", 1, tt - 1 ).)- s ) ,  where it is
irreducible, is /(f.t-  l v —s, 1 , R I " ) .

Remark. The PGL (n, F) - module Is -=/ (p i" , 1, itt' v - s) normalizedly
induced from t h e  indicated character o f  t h e  parabolic subgroup of type
(1, n

-
2, 1), consists of the smooth ço : PGL (n, F) — q ) with

/ a * * \

p 0 h * y a (n-1)(s+1)/2 a ,
iti(—b)ço I

,
la, b hE (fl — 2, F )).

\\ 0 0 b

Put H =1(
h 0  

EPGL F ); h E  GL (n — 1, F) I. Then Is can be shown to be
0  1

H-cyclic by studying the linear form L s on I s , defined by integrating (pdh over

E • h ; aEr , h EGG (n 
—

2, F) \f/,

0 0\
(

1
where E= 0 / 0 . Put cp '( g )=  f h „  (p(gle)dk. Then

1 0 1/

{

/a0 \

\o a
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Ls ((,D) = ff yo' s 0 I 0 d'adx
\ \O 0 1 /

/1 00 \ \
_ (a) la  i(n-1)(s+1)/2(p, 0 I 0 e a d x ,

\\a x1 / !
w h e re  a  E r ' and x ranges over th e  (n - 2) rows over F. It can be shown that
this integral is absolutely convergent to  a non - zero rational function in g '  on
Re (s) > 0  (when p is unitary).

9. Appendix. Multiplicity one theorems

The following a re  special cases of unpublished Theorems of J .  Bernstein.
1/ a  0

Let F be a local field, G = Gn = GL (n,
1

, C= ); a EGn-ii.
0  

Theorem (J. Bernstein) . L e t (7r, V) be any admissible irreducible
representation of G. Then dimr,[Homc (Y, V ) ]  1.

Proof. G iv en  a n  /-space ( [BZ]) X ,  p u t  S* (X )  f o r  t h e  sp a c e  of
distributions on X, namely the  space of linear maps from  s (x ) =C 7 (X ) to  W.
If a group J acts on X, denote by S* (X) ./ the  space of E E S* (X ) fixed by J. Let
T  b e  a  fin ite  g roup  w hich  ac ts on J an d  o n  X , le t  E b e  a  character o f  T,
extended to the semi - direct product J>< T trivially on J. Put S*  (X) Ix T 'E for the
EES*(X)J on  which T acts via E.

W e shall repeatedly u se  below three tools from  Bernstein [B] . T he first
asserts that if Z is  a  closed subset of X, and U is  i t s  (open) complement, then
the  sequence 0 S  (z)—>s* (x)—.s* (u)---q) is  ex ac t ( [BZ], §1; [B], p . 57),
and  so  is  0—>s* (z)J—> s* (X) 1—)S *  (U) J, when J m aps Z  to  Z  and  U to  U
(same conclusion when J is replaced by {,/>< T, s}).

The second is  th e  Localization Principle ([B], p .  58) . Let g: X—*Y be  a
continuous map of /-spaces. Then S (X ) and hence S*  (X ) are  naturally S ( Y)
- modules. Put X, = (y )  fo r  th e  fiber o f y E  Y. Identify S*  (X ,) w ith  the
subspace S t (X ) of S* (X ) of distributions supported on X . L e t W be a  closed
S ( Y) -submodule of s* (x) . Then the  closure of the  span of the union of the
subspaces Wy = Wn s* (Xy ) (y  ,  is equal to W.

T he  th ird  is  F robenius Reciprocity ( [B], p . 60). Suppose an 1- group J
acts on an /-space X, and p : x--z is a  continuous J-equivariant map, where Z
is  a  homogeneous J-space. Fix zo E Z . Put xo= p- 1  (4) in  X, and H=Stabj(zo)
in J. Then for any pE S *  (2 )  there  is a  cononical isomorphism from S*  (X0) 11

to S* (X) J, explicitly given in [13], p. 60.
W e  n o w  r e tu r n  to  th e  n o ta t io n s  o f  th e  theo rem . B y  a  c rite rion  of

Gelfand -Kazhdan [UK] (cf. [P i], L em m a 4.2;  [F5], p. 163), it suffices to show
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that S *  (G) c  s * (G ) C x  C x  T t where C x C acts on G b y  (g, h)x=gxh - 1 , and T
is  the group generated by an involution t of G which preserves C  (thus t2 = 1,
t ( x y )  =  t ( y ) t ( x ) ,  t (C )  =  C ) .  A lte rn a t iv e ly , i t  s u f f ic e s  to  s h o w  that
s * ( G )  C x C x T ,e  = {0} , w here e (t) = —  1. T he  support suppE of E E S * (G )  is
closed in  G C  X =  X , =  space of n X n  m atrices over F . Replacing E  by its
product with the characteristic function of suppE in X, it can be viewed as an
element o f  S*  (X ) . W e  w ill show  th a t  S* ( x )  C x C x T , e  =  I n l

1 O f  ,  w here t(x ) =
transpose of x EX.

c 'x r ' ' is  zero. Here

C' acts by g (b, c) = (gb, cg - i ) , and t(b, c) = (t (c) , t (b)). W rite b = (
b i

)  and c =
b2

(ci, c2), where b1, b2 a re  columns over F  of lengths k— r, r, while cl , c2 a re  rows
of lengths k— r, r. F or any u, y in F, pu t Yu,v= {(b, c); cibi=u, c2b2=v}. By the
Localization Principle, it suffices to show tha t S *  ( y )  C ' x r 'E i s  zero for all u,
v. This we do next.

The group C' acts transitively on Yu,v when uy*O. Put h=diag (1, ••., 1, u, 1,
••., 1, y), with u a t th e  (k— r)th place, and r(b, c) = (ht(c), t (b)h - 1). Choose co
= (coi, c02), coi = ( 0 , •••, 0, 1), and bo = ht (co) . By Frobenius reciprocity, the
space  S * ( y a m )  c, x T , E  is  co n ta in ed  i n  S *  ({(b o , co) } )  T ' , 6  T '  i s  th e  group
genera ted  by  t '.  T h is  la s t  s p a c e  is  z e ro  s ince  t' (bo, c o )  = (bo, co) .  Hence
s * ( y u , v ) c, x T,s =0  when u y*0 . To study the case where u 0, y *O , p u t Yv=-

v .{(b, c); c 2 b2 = v} . Then S* 
( y - v ) c x r e s * ( y o ) C ' x T , E

 In troduce  an action of A E
A i

F x o n y 0 A (6, c) = ( , (2ci, c2) . There a re  fou r C'-orbits in  Yo,,,
b2

defined by 0 1 * 0, ci* 0) , 1b 1* 0, c1 = 0), 161 = 0, c 1 * 0), 161 = 0, cl = 0} .
E a c h  is  p re se rv e d  u n d e r  th e  a c t io n  o f  A E  P .  H ence A E  F >' a c t s  on
S* (Yo,v) C'x T 'E w ith  eigenvalues 1.

F ix  an  additive non triv ia l complex valued character c,/, of F , and define
the partial Fourier transform RI on S* ( Yv) by a IE=ERI, where

Put k=n — 1. For 0._.<__-<r k, put X'r=
b)

c  
d  E X ; aEXk, rk (a) =-r, bEMkxi,

c E M ixk , d E  .  Here Muuv signifies the space of u X v  matrices over F . The
theorem  w ould follow  (using th e  f irs t to o l) , once w e  show , fo r each r, the
vanishing o f  

S * ( X r ) c . c x r , E .
 F i x  do E  F x . B y  th e  Localization Principle, it

suffices to show this w ith X'r replaced by its subset Xr defined by d =d 0 . This
we proceed to show.

Consider the C X  C - eqivariant map p: ./Yr- - Z r =  E X k ;  rk (a) =  .  The
group C X  C  ac ts transitive ly  o n  Z r  b y  (g, h) a  =- Yah - 1.  D enote by /r the

identity r x r matrix. The stabilizer of 
(0  0 )

Z r in  Cx C contains C'= G k _ r X
0  I r

Gr , embedded diagonally a s  (diag (A, D) , diag (A , D ) )  (A  EG k - r , DEG ? ) . By
Frobenius Reciprocity, it suffices to show tha t S * ({(b, c )} )
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Rif (b, i f f (Ti, C2) )0 (r ib i+ ciR i)dR id r,.

I t  i s  a n  automorphism o f  
S * ( y v ) C 'x r , e ,

 a n d  A  E  F x  a c t s  o n  aiE with
eigenvalues 121 2(k—r) Indeed,

51E (j ) = 1E (2- v) =E (a, (2- v) ) =121- 2(k- r)E (2 (ao),
since

rra, (2-v j j
toisi\

) (b, c) = ), (An, c2) (n / 4 + 4 0 0 , 0 ,
.2

= I /11- 2 ( k - r )  E  i f ( (
A  v 1 ), (2- l

e i ,  C 0) = 12 1- 2 4 - ' 9 2  a lf(b , c).
bz

In summary, A C F ' acts on E ES * (Yo,v) C ' x T 'e w ith  eigenvalues 1. On the
caother hand, E can be viewed as  an  element of S* (Y,,) C ' x T ' of the  f o r m  1E1,

where E 1 E  s *  (y v) c' x T.  = — * (YO,v) C ' x i '  'e . Hence A E F x  a c ts  on E=a1E1 with
eigenvalues I A 

1
-

2 (k - r ) .  
Taking A  with I A  I* 1, we conclude that E =  0, hence

that S*  (Yo,v) C ' x r '8 i s  zero. The proof of S*  ( 4 . )  C ' x r 'e  = 0  for u * 0  is carried
out analogously, on  introducing the partial Fourier transform  az on {(b2, c2)}.
The proof that S*  (Y0,0) ,C x T , s =

 0 can be carried out now in  the  same way, on
using the Fourier transform a= ala2. This completes the proof of the theorem.

From now on, E/F will signify a quadratic extension of local fields, and x

.

Proposition. The statement of the theorem holds with G = U (2, 1; E/F)
= {g E GL (3, E); 5't 7=g}, the quasi - split unitary group in  3 variables over F
which splits over E, and with C the U(1,1; E/F) - factor (defined by a2,2= 1, a u =
0 for odd i - Fj) in the centralizer of diag (1, - 1, 1) in  G.

Proof. B y th e  criterion  of [GK] m entioned above, it suffices to  show
that each double C coset in  G is fixed by the transpose t. W e use the Bruhat
decomposition, G =B  U BgN, where B is  the  upper triangular subgroup of G,

(
1  x

and N is its unipotent subgroup. Write N '=  {n (x )=  0  1 .±.- ; xEE}, and

0  o 1 /
note tha t G=CN'g -N'C. A s ,5- E C, G is  the union over x, y  in  E of X (x, y) =
On (y) n (x) C. For any a E Ex , we have X (x , y) = X (ax , y /a ) . Also `X(x, y) =
X (y, x ) ,  and  X (x, 0) =  X (0, — .f). I f  x y  *  0 , th e n  fo r  a  =  x/y w e have
'X (x, y) = X (y , x) = X (ay, x / a) = X (x, y) . Of course tX (0, 0) =X(0, 0), and

0 0 1

Htf the action of Gal (E/F). Put ,7-= 0( —1 0
1 0 0
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tX (x , 0) =X(0, x) =X ( —  0 )  =X ( ( - 11x )x , 0) =X  (x , 0 ), as required.

Proposition 11 of [F 5 ], p . 163, show s th a t the  asse rtion  o f the  theorem
holds for G = GL (n, E), C=GL (n, F), E/F is  as usual a  quadratic extension of
local fields. For such E /F, fix  0E F — NE/FE. The quaternion algebra D  over F

fa
- )'

can be presented as the algebra of the matrices b0 a  bEE.
b c ï  

Remark 1. The assertion of the theorem holds with G=GL (2, E ) and
C= multiplicative group of D.

Indeed, G = BC = CBC, where B  is  th e  upper triangular subgroup o f G.
( 1 0  ) - 1 ,g  (1 0
\O  0 ) \O

it  su ff ice s  to  show , fo r a n y  u, y, w  E EX  ( the  case  o f y  =  0  i s  triv ia l) the
existence of a, bEE with acT* bb-0 such that

( a  b 0 ) ( u  v u 0 ( a  b-0
b- cT O w v / 0  w  b  c T

The solution is g iven by a=  (ub- - wb) 0/y.

Remark 2. T h e  a s s e r t io n  o f  th e  th e o re m  h o ld s  f o r  t h e  groups
G= U (2, 1; E /F)  and the anisotropic C=C8= U(1)  X  U (2 ) of Proposition 1 of
[F9] below (0E F — NE/FE, E/ F= quadratic extension of local fields).

Indeed, Proposition 1 of [F9] asserts that G = BC0(=C6BC8) . Consider the
set X =CB C'e, where Co i s  the group of the matrices h  which a re  displayed in
Corollary 1 of [F9] (but we no longer requ ire  (1 ) a n d  (2 ) there). It suffices to
check that the criterion of [GK] applies with the involution t(x ) = d 'x d ,  where
d = diag (20, 1, 1/20). Given x, zEE x , it EE with u - I- vT=x.f, it can be checked
th a t a =  (b b /  (20 ± ) and c=  (bu - i- buz)z/ (x (1 —  z-i -) )  (or b=  (c.f. /uz
when z1= 1) satisfy

z zx zu \/ a 6/20 c / 2 0 \(
0 1 I b- d i - F F/20
0 0 1/i / \20c b a /

5120 c/20 \ z 0 0  \
b cï+E- b/20 20xz 1 0

(
20c 5- a /  4 0 2uz 2 O 1 / 1 /

If x= 0 , take b 0 and a -=c (1 —z1)/ (20uzi).

The involution t (g) = preserves C. By the criterion of [GK]
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