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1. Introduction

Recurrence and conservativeness of symmetric Markov processes have been
studied by several people. Firstly K. Ichihara [13], M. Fukushima [8)] gave
a recurrence criterion for symmetric diffusion processes on R? K. Ichihara
[16] also gave a conservativeness test for such processes. Y. Oshima [24]
extended their criteria and gave the general criteria of recurrence and
conservativeness for symmetric Markov processes. M. Takeda [32] also gave
the conservativeness test for diffusion processes on R? which is sharper than
[16], [24], by using the Lyons-Zheng decomposition. On the other hand, K.
Ichihara [14], [15], M. P. Gaffney [10], S. Y. Cheng and S. T. Yau [2], A. A.
Grigor'yan [11], [12], and M. Takeda [33] gave the criteria for Brownian
motions on Riemannian manifolds. K. Th. Sturm [30] extended their works
for strong local regular Dirichlet forms by using the Carathéodory (intrinsic)
metric. He assumed the relative compactness of balls by this metric (see also
[31]). H. Okura [23] also gave the recurrence criteria for regular Dirichlet
forms by using the capacitary inequality. He assumed the local integrability
of metric by jumping measure with the relative compactness of balls. H.
Kaneko [17], [18] extended the results of [23], [30]. He used a class of
exhaustion functions instead of the Carathéodory metric. In the case of
regular Dirichlet forms on locally compact state space, M. Takeda [35] gave
the conservativeness test for symmetric diffusion processes transformed by
supermartingale multiplicative functionals by using the Carathéodory metric
with the relative compactness of balls. Also Y. Oshima [25], Y. Oshima and
K. Th. Sturm [26] gave a criterion of conservativeness for the time-dependent
Dirichlet forms. In this paper, we will give the recurrence and
conservativeness criteria for symmetric diffusion processes on a separable
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metric space transformed by supermartingale multiplicative functionals. We
also use the Carathéodory metric. Our metric is slightly different from what
was used in [30], [31], but is very related to the metric used in [4], [5],
[27]. To show the results, it is essential that the cut-off function of this
metric belongs to the domain of Dirichlet forms. In the case of Co-regular
Dirichlet forms on locally compact state space, Co-regularity assures the above
argument. In the case of quasi-regular Dirichlet forms on separable metric
spaces, we can not carry out this procedure, since any balls are not
necessarily relatively compact and the domain of forms do not necessarily
contain continuous functions with compact support. Instead of the relative
compactness of balls, we assume the finiteness of 1-capacity of balls. Then
we have that the cut-off function is in the domain of forms by using the
characterization of the domain of forms associated with the transformed
processes due to P. J. Fitzsimmons [6] and the ideal property of Dirichlet
space in the reflected Dirichlet space (see Theorem 3.1 and Theorem 3.2).
So we can get the criteria for recurrence and conservativeness. Our criteria
are slightly sharper than M. Takeda [35], but are indicated by K. Th. Sturm
[30] in the framework of Co-regular Dirichlet forms.

The organization of this paper is as follows. In Section 2, we review the
basic property of quasi-regular Dirichlet forms. In Section 3, we present the
transformations by supermartingale ultiplicative functionals and the
characterization of the associated Dirichlet space. In Section 4, we investigate
the Carathéodory metric of quasi-regular strong local Dirichlet forms and
show that the cut-off function of metric belongs to the domain of forms under
the finiteness of 1-capacity of balls (see condition (A), (B)). In Section 5,
we give the criteria for recurrence and conservativeness and prove them
under (A), (B) and the finiteness of local energy of ¢ (see condition (E)).
In the last section, we collect some examples.

2. Review of quasi regular Dirichlet form

Let X be a separable metric space and m a o-finite Borel measure on X with
full topological support. Consider a symmetric Dirichlet space (8, %) on
L*(X; m), namely Z is a dense subspace of L*(X; m) and wl =0VuALEF if
u € % and 8 is a symmetric non-negative definite bilinear form on ¥ X %
satisfying 8wl ul) <8, u) for u€F, and F is complete with respect to
82-norm. Here &, (u, v) =8(u, v) + [ x uvdm for u, v €EF. For a closed
subset F of X, we set Fr=WEF u=0m-a. e. on X—F}. An increasing
sequence {Fy)}nen of closed subset of X is said to be an §-nest or generalized

nest if U %, is 81%-dense in #. A. subset N of X is said to be §-polar or

n=1
&-exceptional if there exists an §-nest {F,},eny such that NC N (X—F,) . A

n=1
statement P=P(x) depending on x € X is said to be “P §-q.e.” if there exists
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an &-polar set N such that P(x) holds for r€X—N. A function u is said to
be &-quasi-continuous if there exists an &-nest {F,} neny such that w|pn is
continuous on Fy for each n€N. A subset E of X is said to be 8-quasi-open
if there exists an &-nest {Fu}sen such that ENF, is open with respect to the
relative topology on F, for each n€N. §-quasi-closedness can be defined as
the dual notion. For two subsets A, B of X, we write A =B 8-qe. if [, =
I 8-q.e. If a function # has an §-quasi-continuous m-version, we denote it by
uw. We prepare three conditions which are called the conditions of quasi-
regularity of (§, ) as follows:
(QR1) There exists an §-nest of compact sets.
(QR2)  There exists an &Y2-dense subset of F whose elements have
&-quasi-continuous m-versions.
(QR3) There exist an §-polar set NC X and u, € %, n € N having
8-quasi-continuous m-versions i, n € N such that {@,} nen
separates the points of X—N.
Assume that (8, %) is quasi-regular, namely (QR1), (QR2), (QR3) hold.
Then there exists an m-equivalence class of special standard processes M/~
properly associated with (8, #). Fix a special standard process M= (Q, X,
{, P,) properly associated with (8, #). Properly association means that
x+ [of(X,(w)) P.(dw) is an &-quasi-continuous m-version of T, f for
fE€EBL(X) NL2(X; m). Under the quasi-regularity of Dirichlet space (8, %),
there exists another Dirichlet space (&, %) on L2(X, ) with a locally compact
separable metric space X and a positive Radon measure # on )? which is
Co-regular and &-quasi-homeomorphic to (8, %). Precisely to say, there
exists an &-nest {K,} of compact sets, and a locally compact separable metric

space )?, and a map i: Y= U K,,—*f such that i|K" is a homeomorphism and the

n=1

image (&, F) of (8, F) for m=mei"! is a Co-regular Dirichlet form on L2 (X;
) satisfying that {i (K,)} is an 8-nest. The definition of the image (&, &) of
(8, #) is as follows: Define an isometry i*: L2(X; #)—L2(X; m) by setting
i*(u*) to be the m-class represented by @ °i for any B(X) -measurable
w-version i of u* €L2(X: ). (& F) is defined by F= w*€L2(X; m) |i* (u*)
EF} and & (u*, v*) =& (i* w*), i*(v*)) for u®, v* €F (cf. Chapter VI Theorem
1.2 in [22]). For a function u on X, we set u* by u*(y) = u(x) if
y=1i(x) and otherwise u* (y) =0. Then representations u, v of m-classes in
F satisfy u*, v* €F, i* (u*) =u, i* 0*) =v and & (u, v) =& W*, v*). Hence we
can transfer the results of [9] to quasi-regular Dirichlet forms. Such
procedure is called the “transfer method”. The well-known application of the
transfer method is the Fukushima decomposition as follows: for u €%,

# (X)) —a (Xo) =MM+N¥,  P,-as. for §-ge. rEX. (1)

Here M is the square integrable martingale additive functional whose
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quadratic variation <M™ >, is the positive continuous additive functional
admitting £-exceptional set and N} is the continuous additive functional of

zero energy (cf. §5.2 in [9]). Also the following Lyons-Zheng decomposition
holds (cf. §5.7 in [9] and [6]): for u€%F, T>O0,

(%) =i (X0) =M +5 (MEL () —ME (7)), 0<IST<E Paeas.
@

Here 77 is the reverse oprator on Q=D ([0, o)—X):

w((T—t)—) ift<T

rr(@) ()= { w(0) i E>T.

For an &-quasi-open set E and a set & of m-a.e. defined functions, we
introduce a class of increasing sequence of §-quasi-open sets and the local

space on E of o denoted by Fg, & gi. respectively: Let L°(E; m) be the all
m-a.e. defined functions on E.

Ee={{Gn): G» is §-quasi-open for all #, GnCGn+1 8-q.e. and E= UG,

n=1
8-q.e.}.

Arpie={EL(E; m): there exist {E,} €55 and u, €4 such that u=u,
m-a.e. on E,}.
When X—E is &-polar, we simply write 5, & o instead of Sg, Hrwe. We
also use the notation &, = NL*(X; m). Another application of the transfer

method is the Beurling-Deny type decomposition: there exist o-finite signed

Borel measures u%,,> for u, v € ¥, a o-finite Borel measure k on X, and

o-finite Borel measure J on X X X —d with p¥.,s(dx), k(dx), J(X, dx)
charging no §-polar set such that

8u, v) =%Lu‘<c;,,,>+fj;xx[ﬁ] [lﬂdj-l-Lde, w,vEF.  (3)

Here [u] (x, y) =u(x) —u(y). Indeed, let p: +5, J, k be the measures
appeared in the Beurling-Deny decomposition for (6?. ﬁ) It suffices to put

10> (A) =0 s G(ANY)), k(A) =kG(ANY) ) and J(AXB) =]G(ANY)
X i(BNY)) for A, B € B(X). In this paper, we will not use the

characterization of #¢¥,,>, J, K which establish the uniqueness of

decomposition (3) (see [21] which gives the characterization for the
uniqueness). If M is a diffusion process with no killing inside, namely J=k=
0, equations (1) and (2) are extended to u € % joc. At this stage, M is a
local square integrable continuous martingale additive functional and N} is a
continuous additive functional locally of zero energy (cf. §5.5 in [9]).
Condition (QR2) implies that every element « €% has an §-quasi-continuous

(8-q.e. finite) m-version 7 ([22]) and every element u € ¥ o has so ([21]).
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For an 8-quasi-open set E, we put F:=wu € %: w=0 &-q.e. on X —E} and
8s(u, v) =8(u, v) for u, vEFr. Then (8z, Fr) is a quasi-regular Dirichlet
space on L2(E; m) if (& %) is so ([27]). In [21], we showed Frioc= (FE) ioc.
Here (%) oc is the local space of Fg on E.

We collect several properties of the energy measure of continuous part
1% s for u, vE%F. The proof can be seen in [21].

Lemma 2.1. The energy measure of continuous part (<., satisfies the
following properties.
(')  (Schwarz inequality) For u, vEF,

U;f(x)g(x)u‘é&,w (dx) | <V [x /% @) 1G0s [dx) V Jx g2 (x) s (dx) .

('2)  (Markovian property) For any wE€F and r>0, tvunrs <pEs.
('3)  For any u= (uy, >+, ux), v= (vy, ***, v)) with u;, v; € F; (1 <i <p,
1<j<1) and FEC'(R*), GEC'(R") with F(0) =G (0) =0,

ko1
OF ;.\ 0G /.
ﬂ(fz)f(u),mv»:Z Zﬁx_, u)%(v)ﬂgf,w-

i=1j=1

(T'4)  (Derivation property) For u, v, wE Fs, ttmw> =1l % ws>+ U % w>.

(I'5) Foru, vEF, u%><m, n&)s <m implies > <m.

(I'6)  (Strong local property) For any E-quasi-open set E and u € F with
u=constant m-a.e. on E, Iz %~ =0, In particular Ix_ppt$)>=0 for u € Fp.

Next lemma is also shown in [21].

Lemma 2.2. (i) For u € Fio, we can define a unique o-finite Borel

measure Uy on X such taht Ig s = Igtns for {E,} €5 u, €F satisfying

u=u, m-a. e. on E,. (1) s, u EF 1o charges no E-polar set. (iii) All
assertions in Lemma 2.1 hold with the functions in F 10c by replacing the functions
in F except the latter assertion in (I'6). The latter assertion is replaced by that

UEF 1oc with #=0 8-q. e. on E° salisfies IgctS)s.

3. Girsanov transformation

Let X, m be as in Section 2 and assume that (§, ¥) is a quasi-regular
Dirichlet space on L?(X; m). Owing to the quasi-regularity condition (QR1),
we may treat X as a Lusinian space, namely X is homeomorphic to a Borel
subset of a compact metric space. Indeed, let {K;} be an -nest of compact

sets and put ¥ = UK, and Y is the completion of Y. Since K; is a Borel
=1

subset of Y, so Y is a Borel subset of ¥, hence it is a Lusinian space. We



740 Kazuhivo Kuwae

already know m (X —Y) =0. Thus we may take Y as the state space. Let
M= (Q, Xi, F=, F:, {, P) be the associated special standard process. We
assume M is a diffusion process with no killing inside, namely the sample path
of M is continuous until the life times { of M and Euwn [f(X¢-) ; {<t] =0 for
any non-negative Borel functions f, h. At this stage the measures J and k
appearing in the Beurling-Deny decomposition (3) vanish. Throughout this

paper, we fix @Egm with ¢=0. Note that every §-quasi-open set E is an
8-q.e. finely open set, namely there exists a finely open Borel set E such that
E=E&-qe. Let X, be the finely open Borel §-q.e. version of {x €EX: 0< @
<o} Then by [21], we have logp € Fxioc = (Fx)iwe. Hence by the

Fukushima decomposition, we can construct the functionals M8 and N}'o&¢!
defined on t<ty, such that

log@ (X,) —log@ (X,) =Mos?!+-Nlo#el 1 <7y P,-as. §-qe. x€EX. (4)
Here 7y, = inf {t=> 0: X, € X,} is the first exit time of X,. We define a
multiplicative functional of M by

L}wl =exp [M}logwl _%<Muog¢l > t] 1(t<tX,)- (5>

It is easy to see that L!' is a supermartingale multiplicative functional.
Indeed, let {E,} € Zy, and v, €F with loggp =v, m-ae. on E,. Then by It&

formula LI =1+ [of L'dM®™ Pr-as. on {t<tz] -qe. xE€X,. LetLi=1+
Jof L aM. Then E; [L}|Fs] <L, P.-as. §-qe. r€X, for s, t € [0, )
with s <t. Hence E; [Li|Fs] <lim infEq [Lficey |Fs] <lim infliscey B [L7

|Fs] <lim inflis<c,)L% = L§"', Pr-as. 8-q.e. x € X,. Here E, is a finely open
n—oo

Borel 8-q.e. version of E,. Let M?= (Q, X,, 7y, P%) be the part process on X,
of the transformed process by this supermartingale multiplicative functional.
It is well-known that M? is a right process in the sense of [29] and satisfies

E¢[Fly<r )] =E;[LIF], FEF, x €X,. (6)

Owing to (6), we see P$|y,m,<r_\,_; and Pg;lf},n(,<7/\;) are absolutely continuous with

respect to each other for §-qe. r €X, by LI’ >0, P,-a.s. on {t<zx}8-qe xrE
X,. We then see that M? has the continuity of sample paths until the life time

Ty, P$-a.s. 8-ae. x€X, Indeed,
P2 ({Xs# X;- for some s<r} N {r<ty})=0

for any r>0. Hence

PY(Xs# X;- for some s<7y,) < Z P2({Xs# Xs- for some s<r} N {r<7zy})=0.

reQn (0,00)
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We also see the p*m-symmetry of M? by {t<tzx,(r)}={t<ty} and the similar
calculation in the proof of Lemma 6.3.5 in [9]. Hence we can consider a
Dirichlet space (8% %) on L?(X, ¢*n) associated with M¢. However M? is
not necessarily Borel right process, we can treat the several results of P. J.
Fitzsimmons [6]. Indeed, since we treat X as a Lusinian space, so X, is
Lusinian. According to the general results in P. J. Fitzsimmons [7], every
symmetric right process on a Lusinian space in the sense of [29] generates a
quasi-regular Dirichlet form, hence (8°, %) is quasi-regular, so M* has a
version of Borel right process. Therefore, we may treat M? as a Borel right
diffusion process. Since P£|g,n(,<;‘;, and Px|g,m,<w are absolutely continuous
with respect to each other for -q.e. x € X,, the fine topology of My, (= the
part process of M on X,), coincides with the one of M* by deleting some
8x,-polar and °-polar set. Thus we can apply the results of [6].

Theorem 3.1. (Theorem 4.11, and Corollary 4.12 in [6]). () Fhe=
gx.loc and the energy measure [¥<uys of u, v E Fhe is given by Uluvs = G20 0>.
(1)) F*CHu€ Frioe N LE(Xy; @*m) S0 (@) s (dx) <o} and 6°(u, v) =
%fl‘._{ﬁz(x) tws (dx) for u, v, €EF®. Further if (8%, F°) is conservative, the
above inclusion is equality. In particular, if ¢ € L2(X; m) and (8% F°) is
conservative, then (8°, F°) is recurrent.

In particular, Theorem 3.1 (ii) implies that M? has no killing inside. An easy
consequence of Theorem 3.1 in the case of ¢=1 is as follows:

Corollary 3.1. FC{uEF 1o NL2X: m) : [xpS)s (dx) <} and
8w, v) =% Jxtlhus (dx) for u, v EF. Further if (8, F) is conservative, the

above inclusion is equality. In particular, if 1 € L*(X; m) and (8, F) is
conservative, then (8, F) is recurrent.

A simple sufficient condition ensuring u € # for u € F 1c N LE(X; m) with
(c)

Txu&s (dx) <oo is as follows: Denote by Cap; the fine 1-capacity of (8, %),
namely, for a finely open Borel set G,

Caps(G) =inf{8i(u,u) :u€EF u>1 m-ae. on G},
and for any set B,

Cap, (B) =inf{Cap,(G): BCG, G is finely open Borel.}.
If G is open, Caps(G) coincides with the usual 1-capacity Cap (G).

Theorem 3.2. Let G be a finely open Borel set with finite fine 1-capacity

and w € F 1o N LA(X, m) with [xp¥)s (dx) <oo. Suppose that #=0 &-q.e. on
X—G. Thenu€%.

Proof. We let F={uE€EF 1o NLE(X; m): [u&)s(dx) <o}, Then %,
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is an ideal in F{, namely ¥7% - #,C%,. First we show this ideal property.

Let u€EF [ v EF, with v=R1g, gEL2(X; m) N B,(X). Recall that every
&-quasi-open set E has finely open Borel §-q.e. version, so we may assume E
is finely open Borel. Since u Eg';,oc,,, there exists {E,} €5 and u, € %, such
that u =u; m-ae. on E,. Put va=R¥"g=E. [ [o e g(Xs)ds]. Then we
have wva €F5 and & vy, uvn) < [x w21, +lglle (s (X) + [xu?dm). Since
8w —vn v—uy)—0m—), we have {uv,} is an &¥?>-bounded sequence,
hence uv € ¥ by the Banach-Saks theorem. For general v € %, v is
approximated by a sequence of the type Rig, gEL%(X; m) N B,(X). Thus we
get uv € F, by the same argument as above. Next we show the assertion.
Since Caps(G) <0, there exists ec € F, with é¢=1 -q.e. on G. When u is
bounded, we see u =uec EF[¥ + F,C F, For general u € F with =0,
&-qe.on X—G, u™=(—n) VuAnE€EF is §?-bounded. So the Banach-Saks
theorem tells us u €%.

4. Carathéodory metric (Intrinsic metric)

Let X, m, (§, %) as in Section 3. We assume that J and k, the measures
appearing in (3), vanish. Fix a subset € of # N C;(X) and let =% U — 4,
the symmetrization of €. We consider the following pseudo metric:

o(x, y)=suplu (@) —uly) : u€D, p¥)><m}. (7)

Denote by B,(p), open ball by o with radius > 0 and center p € X. We
consider the next conditions.

(A) : p is a metric on X which generates the same topology endowed on
X.

(B) : The 1-capacity of B,(p) with respect to (8, %) is finite for any
r>0 and pEX.
We consider a 1-excessive function ¢ €F with §>0 §-qe. Put F={u €
L2(X; g®m): ugEF) and &° (u, v) =8 (ug, vg) 8% (u, v) =8, v) + [xuvgidm
for u, vEF®. Then (84, #°) is a Dirichlet space on L?(X; g®m) We then see
that F§ C % 1oc (Proposition 2.5 (iv) in [20]). Set h=Gyf with f€ LY (X; m),
0<f<1 and h,=nh A1l. Here G, is the 1-resolvent on L?(X; m) associated
with (8, #). Then h and h, satisfy the conditions on g.

Lemma 4.1. 1E€EF 1o and p)5=0.

Proof. Put E,={h>1}. Since h>0 &-qe., {E.} €5 So 1=h, m-ae.
on E, implies 1 €% .. On the other hand, by (I'6), Igt€ls = Ig,ttEhs = 0.

Noting that #¥ls charges no §-polar set, we have p¥],=0.

Lemma 4.2. Let ui €F 1oep and put ="V u;, v=Au;. Suppose that for
i=1 i=1
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cach i, nEN, u; EF and lu; (@) —u; () |<p(x, y) with 5\21[1)||u1||m$7 and p€>
1
SmG=1). Then u, v € F 1oes N FL with |, vle <r, £&s, 1S <m and
u (x) —u (W) |<p @, y), v @) —v W) <o @, y).
Proof. The proof is the same as Lemma 3.1 in [20] by using properties
(I'4), (I'5) in Lemma 2.1 and Lemma 2.2. We only to show p%s <m. Set

k
u® = Vu; Then we see u'*h, €F and sup Ew®n,, uPn,) <2¢%8 (hy, hy,) +

i=1
2 [xhZdm <oo. Hence the Banach-Saks the orem tells us that there exists a
subsequence {k;} of k such that the Cesiaro means of u*’h, converge to some

uhn € F. Consider A € B(X) with A C{h>1/n}). Then we get uSs (4) =
1

tns (A) = lim ﬂf%) & (A). Hence we have u4,(4) S}im% >
— 0O i - 00 j=l

t&Ewns (A) ym (A) , which implies &5 <m.

Denote by 0, the distance function o, x—0(p, x) and by p,.,, the cut-off
function 0y, x— (r—p(p, )) V0. Next lemma is a variant showed in [20]:

Lemma 4.3. Suppose that (A) holds. Then pp ATE F 10 N Cy (X) and
1 v Z<m for any >0 and pEX.

Proof. The proof is similar to the proof of Theorem 1.1 in [20]. We
present its proof for completeness. Owing to Lindeldéf covering theorem.
there exists a countable number of points y; = y® € X such that X =

U B%(yi). For each i €N, we can take 5‘:55")6@ with ¢ <m and (ﬁ ()
n=1

—5,- (yi) =05 (ys) —+. Since 5; is the admissible functions in the definition.of
the o, it also satisfies @; (y) =@;(p) —p, (y) for all y EX as well as @ (y) <
@i(y:) ++ for all y €BL (yi). Together with the triangle inequality o, (y) =

05 (y:) —+ for all yEB1 (y:) the latter yields @;(y) <:(p) —p»(y) +% for all

yEB%(y,-). Let ¢; : y—0V (¢;(p) —¢;(y)) Ar. Then by Lemma 4.1, ¢;=
@™ satisfies
G EF 1o NF™NCy(X) with p%)s <m.
0<¢;(y) <p,(y) Ar for all yEX. In particulagr | ¢ll.<r.
3
@i (y) = <p,, (y) —;) Ar for all y EBL(y:).

Put $=@"?= V@™ Then @€ F 1o NF" N C,(X) with || ¢lle <7 and x>
i=1

<m by Lemma 4.2 and (0,—2) Ar<¢<p,Ar. Henece we have
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05 (y) Ar=1limg™? (y) =V A W= A V ¢%?

n—oo n=1 k=n n=1 k=n
which implies Py ATE F1oe N F* N Cy(X) with 1E) ars<m by Lemma 4.2.

Proposition 4.1. Suppose that (A) holds. Then pp € F10e N C(X) and
1> <m for any pEX.

Proof. Since pp =ppp Ar m-a.e. on B,(p), o, is an element of the local
space of % ,c on X. By [21], we have pp € F ... Owing to a strong local
property of S for u € F e, we have In,p 5,5 = Isyip ), nr> <m, hence

(c)
US> Sm.

Theorem 4.1. Suppose that (A) and (B) hold. Then 05, €EF N Cy(X)

and ), <m.

Proof. Since 1 € F 1oc and > =0, we see that 05, € F 10 and $, >
<m. Under (B), m(B,(p)) <oo . Hence p,, satisfies the condition in
Theorem 3.2.

5. Presentation of theorem and its proof

Let X, m, (8, #), M, ¢, M? be as in Section 3 and p, B,(p) defined as in
Section 4. M?, is said to be recurrent if the associated Dirichlet space
(8°, #°) is recurrent in the sense of [9] ( p48 in [9]). We denote v,(r) =
Vp.o (1) = [Bum@*dm and ro=v,'(e). We prepare next conditions.

(E): For any r>0, pEX, %5 (B,(p)) <0 and ¢ EL(B,(p); m)

1’
. —— Ady= 00 (S
(R): ) dr for some pEX.

(C): -

_r
ro 10g vy (7') dr

Theorem 5.1. Assume (A), (B) and (E).
(i)  Suppose that (R) holds. Then M? is recurrent.
(i)  Suppose that (C) holds. Then M® is conservative n the sense of

Pme (TX..< 00) = O

=00 for some pEKX.

When ¢ =1, condition (B) implies (E), hence we have the following.

Corollary 5.1. Assume (A), (B) and ¢=1.
(i)  Suppose that (R) holds. Then M is recurrent.
(i1)  Suppose that (C) holds. Then M is conservative.

Lemma 5.1. Suppose that (A), (B) and (E) hold. Then theve exists
©prEF such that 0=y, m-a.e. on B, (p).

Proof. Put ¢, =@ (0pr+1A1). Then [x¢%,dm< [prupm@dm <o and
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Ix d/-t‘<c<3»p,r> <2 fﬂm(m (Pp.r+1 A1) zdﬂ(f::» +2 fBr+1(p)¢2d#(<c}n.r+1A1> < 2/«l(<c«):> (Bra1 (P) )
+2 [5,m@*dm<oo. Thus Theorem 3.2 tells us the desired assertion.

Since ¢ €F is bounded away from zero and infinity on the set {5 <¢ <2"},
Lemma 2.2 and Theorem 2.1 in Takeda [35] hold by using Theorem 4.3 in
[6] in our situation. Hene ¢ € implies that M? is recurrent. when M is
recurrent, M® is so for o €%,. Here %, is the extended Dirichlet space (see
[9]). Put pp,r= 2%&) A1 for 0<7<R.

Lemma 5.2. Suppose that (A) and (B) hold and ¢ € . Then
L EF.

Op.rlx, Op.r.R

Proof. Since M? is recurrent, we can use Theorem 3.1 (ii). So #¢=
{u S -ojx,toc nL? (X<p§ (sz) : fx.,@z (x) #(<cz)¢> (dx) <o}, We see Op.71x, Pﬂ,r,Rlx,e
gx.loc N L2(X, ¢*m) by F toc x, © «a}rx.loc and [x0%,0%dm <7 [x@ldm <o
Ix0%,20%dm < [x@*dm <oo. On the other hand [x@%du%), > < [x@?dm <oo,
Ix@%dps), > Sﬁ Jxp*dm <o, Thus we have 05, nEF°.

Xoo  Opr.R

Proposition 5.1. Suppose (A), (B) and (E) hold. Then 0y,
Op.7.Rlx, € F°.

Xo

Proof. By Lemma 5.1, there exists @5, € % such that ¢ = @), m-a.e. on

B,(p). Note that X, N B,(p) =X,,, N B,(p). Let pf®® "% be the transition
kernel associated with the part process of M? on B,(p) N X,. We wee easily

pPEr O Xy () = pporBr@ NXeny (2) B-ge. x. €EX. Let F%,nx, be the part space
of #° on B,(p) N X,. Owing to the transfer method, we can apply Theorem

4.4.1 in [9]. Hence we have F8,pmnx,= F&{mnx,,. Thus we have o,,|x, €
FBnx,,=Fbwnx,. Similarly oprr

. — e
xEFhnx,.=Fbpnx,

o

Proof of Theorem 5.1 (i). Condition (R) implies 3 *—7 =, hence X
n=1

n=1

oo n
4" — — 4* 4! —
s = . Put pin=am e/ 21 we™ —ne and ux = kzlpk'n Oparate
i= =

Then u, € #* by Proposition 5.1. Since 8°(0p.2x,2¢1, Op21,2061) =0 for [ Fk, we
have

n
8 (un» un) = Zpk,nf () dﬂ(<cp,,,,.,z...>
Bouer (p) —Bas (p)

k=1

n
1
SZ 2 2dm
P ™ gk sz..(p)—an(p)(p
k=1
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—Zp” (v (2541) — 0, (29))

- (Zv (2*“)4k—v (zk)> Obr=ee).

On the other hand 0<u, <1 and rllimun=1 by limppanznr =1, limpyn=0 for
each k. The recurrence of M? holds by Theorem 1.6.5 in [9].

Proof of Theorem 5.1 (ii). By Proposition 5.1, we have the finiteness
of the fine 1-capacity of B,(p) N X, with respect to (&%, #°). Hence, for
Re1 =E* [ fo™e%dt], there exists up, € F® such that R4l =u,, m-ae. on
B,(p) N X,. Indeed, it suffices to set up, =R&1Aef pnx. Here efnyx, is the
1-equilibrium potential of B,(p) N X, with respect to the fine 1-capacity of
(8%, #°). So, for vEFE ynx, ¢(RE1, v) has a meaning and 8% (1 —aR%1, v)

k
=0. Putu=1—aRgl and w(t) =ue® —|ul.. Condition (C) implies t,= >

n=1
R 2

ey — © (k=) for Ry=2%(r=1y). So for each T>0, ther exists NE N
with ty=T. We let ¢, (t) =w* () (R%pp,zg,‘ A1) 2% exp [— 3725=]. By the
similar method as in the proof of Theorem 4 in [30], we see w* (t) =0 m-a.e.
for any t>0, namely w(t) <0 m-ae. for any t>0. Hance u=1—aR21 =0
m-a.e.

Remark 5.1. (i) If ¢ does not satisfy (E), we have the possibility
of the attainability to Xy — X, of M?. However {¢y= 0} is &-polar, it can be

non-8%-polar for some @ €%, (see Example 6.2).

(ii) In [30], he assumed the irreducibility of (8§, %) to show the
L?-Liouville property. However, to show the recurrence of (8, %), the
irreducibility is not needed as in [23].

6. Examples

Example 6.1. (Locally compact state spaces). Let X be a locally
compact separable metric space and m a positive Radon measure on X with
full topological support. Let (8§, %) be a Co-regular strong local Dirichlet
space with a special standard core €([9]). For an open set G, we denote
6c=1{u €€: supp[u] €G}. We consider the Carathéodory metric used in
[30] as follows:

o, y)=suplu(x) —uly): w€FNCy(X), ubs<m}.

We assume that p generates the same topology endowed on X and any open
balls B, (p) ={xr €X: o (x, p) <r} with radius >0, center pE X are relatively
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compact. Then assumptions (A), (B) are satisfied and (E) holds for
0 E Froe wity ¢=0. Here Fioe= u €L (X; m) : for any relatively compact
open set G, there exists u¢ €% such that u=u¢ m-a.e. on G}. So (C) implies
the conservativeness of M?. In particular, if there exist p € X, ¢y, c3, 70> 0
such that v, (r) <e¢; exp [cor?] for any 77, then (C) holds. In this case, the
conservativeness of M is proved in M. Takeda [35].

Next we consider the situation which does not necessarily satisfy (A),
(B) and (E). But the criteria in [30] are applicable. Suppose that ¢ € % o
with >0 m-a.e. satisfies [x@*du¥,><oofor any u€%. Owing to Lemma 4.5
in [6], we have €|x, C#® Since ¢>0 m-a.e., we get m (X—X,) =0 and supp
[*m] =X. So we may treat (8% #°®) is a Dirichlet space on L%(X; ¢?m) and
GCFe. Let (8% F¢) be the closure of (8% €) on L2(X; ¢?m). Then F¢C
F¢ and € is a core of F¢. If F¢=F", the conservativeness and recurrence of
M follow the criteria of K. Th. Sturm [30]. When ¢ € %, with ¢=>0
m-a.e. and du¥,s =T (u, u) dm for any u €€, and (A), (B) are satisfied, we
can see #¢=%°* under the conditions (1.13) and (1.14) in A. Eberle [4].
In particular, if ¢ is bounded on B,(p), (1.13) and (1.14) in A. Eberle [4]

are satisfied. We give another observation without assuming ¢ € %o, dpuss>
=T"(u, u)dm for u€%, and (A), (B).

Proposition 6.1.  Suppose that ¢ € F o N C(X) with ¢> 0 m-ae.
satisfies [x@Pdu)> <o for any u€E. Then FE=F°.

Proof. Put F,={1/n<@<n} NG,, then {F,} is an §°-nest with respect
to (6%, #%). Here {G,} is an increasing sequence of relatively compact open
sets with G, Gnyy. Take u €FE, Then we get by (I'6) and Theorem 3.1
(i), uEFyuoe NL2(X 5 m) and p%)> (X) <oo. Note that the 1-capacity of the
fine interior of F, with respect to the part space (8x, %y, is finite. So by
Theorem 3.2, we get ME?F,,Cg(ﬁ<¢<n+1). We know %#«pq“} is a core
of FiLlcocnt (Theorem 4.4.3 (i) in [9]). Hence we get u € F&r,. By the
definition of 8°-nest , we have F°C%§, so F*=%§.

Under the conditions in Proposition 6.1, the recurrence and conservative
criteria obeys [30].

Consider the case that M is the d-dimensional Brownian motion on
X=R" The associated Dirichlet space is given by (§, ¥) = (1/2D, H*(R?)).
Here D(u, v) = [p Vu(x) * Vo(xr) dr and H'(RY) = {u € L2(R?) : all
distribution derivatives of u are in L2(R¢)}. Suppose that ¢ € H}, (R®) with
©>0 ae. and there exist constants ¢, ¢270>> 1 such that ve(r) <& exp [¢

#*log*r] for any =7, then (C) holds. In this case, the conservativeness of
M? holds by Theorem 4.2 in M. Takeda [36] and the criteria in [30].
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Example 6.2. Consider the d-dimensional Euclidean space R? with
d-dimensional Lebesgue measure dx(d=3) and ¢s(x) =1/|z|°>, rER*(d/2—1
<0 <d/2). Then @ & Hloc(R%) but @5 € L% (RY) N HY (R — {0}) N
H%: (R, so (R) holds, (E) does not hold for Dirichlet integral and balls
with center 0 by Euclidean metric. We let

8w v) =5 [ Vu@) - Vu@ gi@dz, v vEC (RY).

Then (8%, C7(R* — {0})) is closable on L?(R?% o¢fdx) and denote by
(8”, F¢) its closure on L2(R% ¢3dx) (see Example 3.3.2 in [9]). Denote
by H'(R?) * the Dirichlet space on L?(R% ¢3dx) associated with the
transformed process by L. Note that X,, = R%q.e. Here “q.e.” means that it
holds off exceptional set with respect to the Newtonian capacity. Theorem
3.1(i) implies H*(R%) * C {u € H'(R%) 1o N L? (R ¢3dx): [rl Vu () |20} ()
dxr <oo}. Applying Lemma 4.5 in [6], we have Ci(R¢— {0}) € H'(R?) *.
Then ¢ CH'(R?)?. We know that the 1-capacity of the origin with respect
to (8%, #¢§) is positive if and only if 6#d/2—1 (see Theorem 4.11 in [1] and
Example 2 in [34], Example 3.3.2 in [9]).

Proposition 6.2. M is recurrent if 0=d/2—1 and non-conservative if
0#d/2—1.

Proof.  First we show F&'=H'(R% . Consider the case X=R?— {0}
and (8, ) =(1/2D, H'(R*—{0})), €=C% (R*—1{0}). Since ¢sE H4 (R*—
{0}) is positive continuous, we get #¢* = H'(R?— {0}) * by Proposition 6.1.
Noting that {0} is polar for Brownian motions, we have #¢"=H'(R?—{0}) *=
H'(R%)*. When 6 # d/2 — 1, {0} is non-8%-polar, which implies the
non-conservativness of M?”. Note that the state space of M* is R¢— {0} and
the §-polarity is equivalent to the &,-polarity in the framework of Cy-regular
Dirichlet forms. Suppose 0 =d/2—1. To show the recurrence of M%, we
should show the Co-regularity of (8, H'(R%) %) on L2(R¢ ¢jdx). It suffices
to show that 1-capacity of Br(0) is always finite with respect to (8, H'(R%) %)
= (8, #¢'). Then Theorem 3.2 tells us C5 (RY) CH'(R?) *, which implies
the Co-regularity on R% So the condition (R) and the criterion in [30] give
the recurrence of M?. We emphasize that Lemma 4.5 in [6] is not
applicable to show C§ (R?) C H'(R?) %, since @5 € H},c (R?). Next we show
the finiteness of 1-capacity. Take annuli A.,(0) = {xr € R%: ¢ <|r|<7}.
Note that C§?(R? — {0}), totality of Lipschitz continuous functions with
compact support in R?— {0}, is a core of (%, #¢{'). Consider a piesewise
linear function g on [0, ©©] with g¢=0 on [0, €] U [2r, ) and ¢g.=1 on
[2e, r]. Set fe(x) = ge(x|). Then Cap”(A4.,(0)) <& (f., f.). This is

2d-26

bounded with respect to € € (0, 7), because [.2(3) 2 rdt <FEged™2"2 =2,
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Hence Cap” (B, (0) —{0}) <o, so Cap” (B,(0)) <o by 8#-polarity of {0}.

Example 6.3. (Recurrence of M® not covered by [30], [35]). Let
G={xE€R* x= (T, xs), TER* ™, |xs| <1} (d=3) and m (dx) =0’ (x)dx (o(x)
=1—|x4l, —1<5<0).

Consider

8w, v) =5 foVu(x) - Vo) 0" (x) (dx) u, vECT (G)

Then (&, G¢(G)) is colsable on L2(G; m) and denote by (8, #) its closure on
L?(G; m). The Carathéodory metric is given by

0° (x, y) =suplu (@) —u ): u€EFNCo(G), |Vu (@) |?<o(x) “ae. x}.
We also let

o, y) =suplux) —uy): u€EF1:NC[G), |Vulx)?<olx) ‘ae. x}.
For an open subset D of G with DCG, we put

oo (@, y) =suplu (@) —u(y): u€EFpic.NC D), |Vu (x)P<ox) ‘ae. x}

and
0% (x, y) =suplu @) —u (y): u€FpNCo (D), | Vulx)P<o(x) “ae. x}.

Then p) (x, y) <p°(x, v) <p(x, y) <pp(x, y) for x, yED. We letd (x, y) =
lx—yl. Suppose that {zER% d (x, z) <d (x, y)} €D. Then f( )= (x, y)

—d(x,+)) VOEHLD) NCo(D) with |Vf|<lae. So we see by FpNCo(D) =
HY(D) NCo(D), d(x, y) <Y (x, y) (A —c)4 (x, y), where c= irellf)|xd|. Hence

0 makes the same topology on D. So by Proposition 1 a) in [30], we get op
makes the same topology on D. On the other hand, o} (x, y) <p°(x, y) <p (x,
y) <pp(x, y) for x, yED. So (A) holds for p° and p (Proposition 1 a) in
[30]). We take ¢ (x) =0(x), ¢»(x) =|zland ¢s(x) =|x|. Then ¢;EFiocN
C(G) satisfy |V ¢i(x)|?<o(x)*(i=1, 2, 3), hence {xE€G: p(x, y) <rtC{zxe
G: |2l <7, |x| <7, |lxsl <755}, so (B) holds for p, hence holds for p° and p° =p
(Proposition 1 ¢) in [30]). Then we have

2r
b Sf — by < pi-1 f N
j;,(o)a (x)dz gl <7 zal <) (1 |x"|) dr<r* r+1 5,_2dw(7 ),

Hence the associated process M is conservative, further M is recurrent if d =
1,23 Welet ¢()=1/|x|?(@/2— (b+3)/2<6<d/2—1). Then we see

1
2 .b+4 - =
L’(0)|V¢(x)| o (x)dxﬁf dx <o

{lzl<7t Ix|26+2

and
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T Ly oy i
Hence ¢ €E% 4, but @& F,. On the other hand,

¢*(x) 0 (@)dr< [ e () i~ <P (o).

= r 20
Br(0) (I.r|<r,lza|<'_+l)|f|

Thus (E) and (R) hold for ¢. Since ¢ is continuous on R?—{0} and ¢ >0,
Proposition 6.1 is applicable. Hence M? is recurrent by the criteria in K. Th.
Sturm [30]. Let {r;};en be the totality of rational points in {r € R% |z|<1}

with =0 and put ¢;(x) =1/|x —7i|’® and ¢= Zéfp;. Then V ¢= ZéV(p; in
= ;
distribution sense. Hence we see ¢*< Zzi and |V @< Z %W=

(Z 772 by Voi(x) « Volx) =2zl - gl gy

b=l =l fe == -

Smce lri <1 and |7i| <1, we get

V) 1 1
2 b+4 SZ_I
Br(O)d) (1')0' (x)dx 21 (I.r—n|<r+1)|x—r,-|26dx<oo
i=1

and

1 1
2 b+4 SZ.__I —dr <o
j;r(o)| ng(l‘)' g (.I‘)dl‘ '_12 {lx—ril<r+1} |_q:—7',~|25"'2d‘r

So PEF10c, but QEF, by 3|V | <|V¢|. On the other hand,

1 a5
Br(0 )('[)2 (.I') 0 l‘) dx <22' j:lx nl<r+1, I$d|<-———) |26 (1 a |xd|) b dx NW o

T —
<<y

Hence (E) and (R) hold for ¢. Therefore M? is recurrent by our criteria.
Note that ¢ is non-bounded on B,(0). So we can not easily check the
conditions (1.13) and (1.14) in [4]. Also ¢ is not continuous, so we can
not apply the latter observation in Example 6.1 for ¢.

Example 6.4. (Balls of finite capacity without relative compactness).
Let X=R and m (dx) =e ®'dx. Consider a pre-Dirichlet form & (u, v) =
s /2w () (x)dx for u, vECT (R). Then (8, C5(R)) is closable on L?(R ;

m). We denote (8, %) its closure on LZ(R; m). The Carathéodory metric of
(8, %) is given by

o(x, y) =suplu(x) —u(y): u€Cy (R), |u (x)| <e *ae. x}.
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We see

v
o(x, y) =f e~"dt for x<y.
X

Hence B,(p) =R for r=,/m. On the other hand, we see 1EZ, thus 1-capacity
of R is finite. So (A), (B) are satisfied. (E) holds if and only if ¢ €%.
In this case, recurrence holds by Theorem 2.1 in [35].

Example 6.5 (Infinite dimensional state space-Banach spaces). Let B
be a real separable Banach space with dual space B* and H a real separable
Hilbert space with dual space H* such that H is densely and contiunously
embedded in B. In this situation, there exist a constant ¢> 0 with ks <
clile, h € H and |lell <clle s, ¢ € B*. Let FC;(B) be the totality of
cylindrical smooth bounded functions on B as follows:

FCy (B) ={u: B—R . there exists n€N and fECF (R"), Iy, Iz, ***, l,€B*
such that u (z) =f (:<l1, 2>, <z, 208, ***, 5+ <ln, 208)}

Here C7 (R") is the totality of smooth functions on R”" such that all

derivatives are bounded. For u, vEFCy (B) with u (z) =f (3«ly, 20 5, p+<l2, 20,
oo plly, 22) and v(z) =g (+<ly, 25, <, 25, ***, g+m, 205), We let

L) =), 2l 22, 5ot D5, 7+, el )

i=1 j=1
X gl(a*<fl. 2> B, B*<f2, 2B, -, B*<1Am, 2s) (U, 2;')H"-
X j
Let ¢ be a Borel probability measure on B with supp (1] =B. We consider
8 (u,v) =%j;r(u, v)du for u, vEFCY (B)

and assume its closability on L?(B;x). Then its colsure & is a quasi-regular
Dirichlet space on L?(B; y) (see [22], [27]). Then 1€FCy(B) and (1, 1)
=0, hence (&, %) is recurrent and the 1-capacity of total space B is always
finite. According to a Hahn-Banach theorem, we can take a countable set {e;}
ien of B* with | eills»=1 such that ||z||B=s_upB*<e,-, z>g=sup|3*<e,~, 2 5| for any z

ieN ieN
€B(IV Proposition 4.2 in [22]). We define

E={f (i, 25)/c :iEN, fECT (R) with | £|<1}.
Then the Carathéodory metric
o, y) =suplu(x) —uly): u€BU—%, I'u,u) <1 p-ael

coincides with ||z —ylls/c. So p satisfies conditions (A) and (B). Fix an
e €B* We consider f,(x) =|z|or =|z|/log*x and f(x) =exp [x?] or =
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exp [x? log*x] and put ¢;(z) =fi(s+<e, 225) (=1, 2). Then @1, € F 0 and
they satisfy the condition (E) with du$,> = I'(¢:)dy and ¢i(resp. ¢z)
satisfies (R) (resp. (C)). Hence M* is recurrent and M“ is conservative.

Also ¢3(z) =f2(|z]s) satisfies (E) and (C). When (B, H, i) is an abstract
Wiener space, we see Q€ %,.

Example 6.6 (Infinite dimensional state space-the free loop space on R*:
the case of finite capacity of balls with infinite capacity of whole space) .
We follow the notations in [27]. Let g = (gi;) be a uniformly elliptic

Riemannian metric with bounded derivative over R? and A,= (det g) =2 i =

ij=1
[(det g) V29" 2] the corresponding Laplace-Beltrami operator. Let p,(x, y),
x, y € R% t=0, be the associated heat kernel with respect to the volume
element with regards to g. Let W(R?) be the totality of the continuous paths
w: [0, 1]—R? and £(R?) = [w€ W(R?): w(0) =w (1)}, namely £ (R?) is
the free loop space over R% ¥ (R?) is a Banach space equipped with the
uniform norm | wl.=sup{lw t)|: t€[0, 1]}. Let P¥ be the pinned measure on
{we P(R? : w(0) =z}, namely the finite dimensional distribution of P¥ is
given by

Pl (w (t;) Edxy, w (t2) Edxz, -, @ (tn) Edxy)
:ptl (x. .”L'l) ptz—tl (Ily xz) .”ptn—tn-—l (-rn—l, .rn) pl—tn (J,'n' x) /pl (x' x) d-rl dxz---dxn

for 0<t,<t,<---<t,<1. Let u= [pp:(x, x)Pfdx. Then
vl () Edx, wts) Edxs, -, @ (t,) Edx,)

:_/;‘Pn (@, 1) Pra—t @1, T2) ***Pintns (Tn=1 , Tn) P1otn (X, T)dT1d T2 *dXxndx

for 0 <ty <ty <--+<t,<1. In particular, g(w(t) €Edy) =p:(y, y) dy, hence
there exist constants ¢y, >0 independent of t such that ¢y <p(lw(t) |<7)
<c#¥ by virtue of the uniform ellipticity of g and Theorem 5.5.2 and
Theorem 5.6.1 in [3]. u is called the “Bismut” measure on £ (R%). Note
that g is not finite but o-finite. Let H be the totality of the absolutely
continuous maps h: [0, 1] =Ty R*=R? such that

0= [ guor G5, 56D as+ [ guw (). 1)) ds<eo.

Denote by 7(w) : Tww R Tuw R? the stochastic parallel transport
associated with the Levi-Civita connection of (R? g). We let Hy= {h €
H: 7i(w)h (1) =h(0)} and To¥ (R? be the tangent space at a loop @ defined
by To? (R?) ={X= (z,(w)h (t)) teto: hEHo}. The element X € T,.¥ (R?) is
a totality of periodical vector fields X,(w) = 7:(w) h(t). H, is a closed
subspace of H. We also consider the space H,€ (R%) (D T,% (R*)) defined
by HoZ (R?) = {(z;,(w)h (t)) tcton: hEH}. Then T, (R?) (resp. H,¥ (RY))
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is a Hilbert space equipped with the inner product defined by (7. (w) h1,7. (w)
h2) e = (M1, ha) u for h1, ha € Ho(resp. (7.(w) by, 7.(@) ha) ye ey = (b1, ha) m
for hy, h, €H). Let FCY be the totality of the cylindrical functions on £ (R9),
namely

FCy={u: £(R?) —R; there exists nEN and fECT ((R)"), ty, ta, -**, t,E [0, 1]
such that u (w) =f(w (), w(ts), =, w(ty)), ¥EL (R?)}.

Note that FC¥ is dense in L2(£ (R?), ). FC>(resp. FCy) is similarly defined
by C*((R%) ™) (resp. C¥ ((R%) ™)) replacing C3 ((R%) ™). We also need the
space FC{™® similary defined by C¢'® ((R?) "), the totality of the Lipschitz

continuous functions on (R9)" with compact support. We define the
directional derivative of u€EFC™ at w € £ (R?) with respect to X= (r.(w)h) €
H,% (R% by

Ot () =0 () = ) dif (@ (1), (1), @ (1) Xun(w)

k=1

=Y o (V@ (81), 0(t2), , 0 (), 70 (@) (1))

where dy (resp. V) denotes the differential (resp. the gradient with respect to
g) relative to the k-th coordinate of f. Note that

O () = o (@ 5X (@)oo, 0E L (RY).

Let for u € FC* with u (w) =f(w(t), w(ty), =+, w(t,)), fEC* ((R*) ") and

wE¥(RY), Du(w) be the unique element in H such that (Du (@), h) = 0su (w)
for any h€H. Then

Bu@) ()= )G s, 107 (@) Vi (), w(t), -, (k).

k=1

where G is the Green function of —ﬁ-l—l with Neumann boundary conditions

on [0, 1], namely

G(s, t) =_2(e2e—_1)(es+l—1+el—s—-t+e|s—t|—l+el—|s—t|).

We let Du(w) =Prg,Du (w). Here Pry, is the projection onto Ho. We define
for u, vEFCy

80 =3[ (D), Dv(@))pldw).
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Then by uniform ellipticity of g and the above expression of Du (w), we have
8, u) <oo for u EFCY and (8, FCs°) is closable on L2 (£ (R?); u), and the

closure (8, #) on L*(¥ (R?); 1) is a quasi-regular local Dirichlet form (see
Rockner-Schmuland [27]). Let M be the diffusion process associated with
(8, ). The energy measure of continuous part is given by

Uvs ([dw) = (Du (w), Dv(w)) g (dw), u, vEF.
Note that FC{* C %. Indeed, put u € FC™® with u(w) =f(w(ty), w(ty), -,
. dan
w(tn), FECE((RY) ™ and the molifier ps(x) = II 30 (&) with p(t) =C
k=1

exp[—125], [t1<1,=0, [t|>1. Here C= 2 exp[—7%:]dt. Then us; EFCY for
us(w) =ps * f(w(t), w(ty), =+, w(ty)). Since f is Lipschitz continuous with
compact support, the derivative of ;% f is uniformly bounded and the support
of ps * f is contained in a bounded ball in (R?)” uniformly. Hence we see
that {us} is an 8}>-bounded sequence in # by using g (lw(t) |<7) <cx®. So

the Banach-Saks theorem tells us # € ¥. For a countable dense subset {s;
1€ N} of [0, 1] and a countable dense subset {w;: i €N} of £ (R?), and ¢, (t)

]
= (k_lk_tl) \/0, teR, we let WUijk ((0) =V D (|w(s,) — W (S[) |) Then ‘l/ti,j'ke
I1=1

FCH® with l\j/lgo,, (¢ —awils)|) €CE*(RY). On the other hand, [Duisu(w) %
<|Dui i (w)|%4<c? for some constant ¢ independent of i, j, kEN. We put
€= {u;jr/cEFCE™ i, j, REN}.
Hence the Carathéodory metric
o(w, @) =suplu (w) —u(@): u€CU —E&, |Du(w)|s<1, p-ae.w)
coincides wityh ||@ — @|l./c. Note that the cut-off function o, (w) = (r —

J
| @llo/c) VO belongs to . Indeed, u;j(w) = A (r—|w(s;) |/c) VO belongs to

FCEP® and {u;} is 812-bounded.

Hence we see that the conditions (A) and (B) are satisfied. But
p(€(R%) = o implies Cap (£(R?) = o . Owing to Corollary 5.1,
tlwle <r) <p ()| <r) <cx? implies the conservativeness of M, and the
recurrence of M if d=1, 2. On the other hand, for any fixed wo €% (R?),

Cap ({wo}) <Cap({ s (t) =wo(t)})
<& ((A—|wo(t) =« (&)|/er) VO)
</ u(lwo(t) — « (1) <er)

< Q/7+1) Jiy—wonicentr (y, y)dy
< 1/#+1)car*—0
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as r—0 if d=3. Set ¢;(w) =1/| w2 and ¢} (w) =1/|w ) |® with 6<d/2—1.
Then s e w0e) 1oc and @f € (Fiw.ow=0rc) 1oc by Proposition 4.1, and the
results in [21], in particular, @5, @5 € F 0 if d=3. Note that ¢5€ %, In

this case, @5 and ¢} satisfy (E) and (C). Hence the conservativeness of M*
and M* holds.
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