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Convergence of non-symmetric forms

By

Masanori HINO *

I. Introduction

Study on convergence of bilinear forms on a Hilbert space goes back to
1950's. Even of late years, some fundamental results have been  ob ta ined . For
example, in the case of symmetric forms, it was shown that the strong convergence
of associated resolvent operators is equivalent to so-called the Mosco convergence
of forms (see e.g. [9]). This seems like a useful criterion in application; Kuwae and
Uemura [4,5] recently developed theory of weak convergence of diffusion processes
associated with Dirichlet form s w ith the a id  of the M osco convergence, which
generalizes former re su lts  b y  u s in g , fo r  instance, the monotone convergence
theorem . In the case of non-symmetric coercive closed forms, Riickner and Zhang
[11] obtained strong convergence of resolvents on L 2 (R") under weak convergences
of coefficients by a purely analytical method, extending Stroock's results [13] based
on detailed estimates of the transition densities of the corresponding semigroups.

In this paper, we apply Riickner and Zhang's argument to  more general forms
in an abstract setting, and give necessary and sufficient conditions for strong
convergence o f associated  resolvents. W e m ight say  that these conditions are
variants of the Mosco convergence. The forms we treat are the sum of a coerive
closed form (in a wide sense) and a perturbation part induced by a linear operator
generating a semigroup of good properties. The class of these forms includes both
elliptic cases (coercive closed forms) and parabolic cases (time dependent forms). This
framework is borrowed from Stannat's paper [12], in which he discussed existence
of Markov processes associated with a little more conditioned forms which were
called generalized Dirichlet form s, including time dependent processes as examples.
W e hope that our results will be connected with study of these types of Markov
processes.

The organization of this paper is as follows : in the  section 2 , w e set u p  a
framework and prove preliminary lemmas. In the section 3, criteria for convergence
are g iv e n . In the last section, we give a few examples.

2. Framework

In this section, we follow Section 2  of [12] for the framework, with a little
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modification to  f it o u r  con tex t. L e t A (' be a  real H ilbert space with its inner
product (  )  a n d  norm  1-1= ( • , • ) h12 . L et d  b e  a  bilinear form  o n  Y r w ith  a
domain '17 . . 'V  is not necessarily dense in Ye. The symmetric p a r t  .s i  o f  d  is
defined by

y) := - Id(u, y) + d(y, u)}, u, y e
2

For l e  R , set d„(u, v)= d(u, y)+ oc(u,y). is similarly defined. W e suppose that
(d ,  YT) is a coercive closed form in a wide sense, that is, for some bound constant 2E R,

• (sTiA , 1/s) is a  nonnegative definite closed form,

• (d A , -17 - )  satisfies the  weak sector condition: there exists a  sector constant
K > 1 such that

IA/ Â +  i (u, y)1 < K s/  + i (u, u) 1 n f  i ( l l ,  0 1 1 2 f o r  all U,V EY.

Equipping with the no rm  II ' II-v A + 1 (  •  •  ) 1 1 2 ,  'V  becomes a H ilbert space. W e
denote by f e "  the closure of 'V  in  Y(', and by  P  the orthogonal projection from
Y r to  Ye. Let -17- *  be the topological dual of " K . The identification of Ye with
its dual induces the dense and continuous embedding If c  f e

°
 c  ^ K * . The pairing

between and  i f *  is expressed by ( • , • ), the same notation as the inner product
of f t'.

Let A be a  linear operator on ^K* with a  domain D(A, Yf*). We assume the
following:

• A  generates a  strongly continuous semigroup { Ur} on

• The restriction of { Ut } to  'Yf (resp. Y e) is a  strongly continuous semigroup
o n  y f (resp. a  strongly continuous contraction semigroup on  Ye).

T he dom ain o f  th e  generator o f  fU,Ii ,} is denoted  by  D(A, V ) .  N ote  th a t  the
adjoint operator (A, D(A, 'K*)) of (A, D(A,11) also satisfies the conditions above.

Set Hilbert spaces = 1/. n D(A, 'V*) with norm II • II, = (II ' II Fir +  A ' - . ) 1/2 , and
.5'"; = n D(A, *) with II • II,' = (II • 11Fp + IIA • 44 1/2 . I t  h o ld s  th a t , F  a n d  .0-; are
dense in -/"., (Au, u)< 0  for u  ,f ;  and (u, tku) 0  for u E .07 (c f . [12, Remark 2.1]).

For given d  and A, we define a  corresponding form on by

,d(u, y) — (Au, v) u E , ,  v EP
S(u, y) d(u,y)— (u, Â u E ve,9-;

oo otherwise.

I t  sh o u ld  b e  m e n tio n e d  th a t  w e  d e f i n e  (f (u,v )= oo for u 7 , e v e n  i f  v = 0.
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As usual, we define 67u, v)=6114,0+a(u,v) for cc e R .  S' has an associated form
on Yt" which is obtained by the natural restriction of 6' to  ..e° .

Proposition 2.1. For all Œ>A , there ex ist unique linear continuous bijections
PK,: 17. * ,.°7; and  1717„: r . ,9- -"; such that

,,f,u)= e a (u, Pfraf )=(f  u), f e  Y f * ,  u  

Further, there ex ist unique, not necessarily strongly continuous resolvent (G„)„,,, and
coresolvent (6 , ,4 o n  le such that

G„(*) , G . „(Y e) c 3-%; ,

.(G JO = 6 .(11, 6 0,,f )= ( f u)
 

f o r a l l  f e l t ',  ue-r, oc>

Besides, â OE is adjoint of  Ga , and (oc— 2)G„, (oc— 2)6, are contraction operators. A lso,
it holds that

s-lim(a— 2)G„u= P u  f o r  ue.Y (.

P ro o f  See [6, Chapter III, Theorem 1.1] for the first assertion. Uniqueness
of G, and Ô OE is proved by a standard argument. When Y P = Y e, we refer to [12,
Proposition 2.6] for the proof of the remaining assertions. T o  trea t the general
case, let G„ and 6' be the resolvent and the coresolvent of 6"', respectively. Then
it is easy to check that G P  and d ocl i  are what are wanted as G, and 6„, respectively.

Let ao(u)=sup i1„,11
u )  for u e .

Lemma 2.2. For u e :71%, the following hold.

(i) 0(u) /  M u ll  ,

(ii) u i f  (1)(u),

(iii) Au II „* <(K +1)0(u).

P ro o f  (i): By definition,

o(u) s u p  1,-,21 .i+ t (w, 01 +  sup  l(w, Au)1
II w Ilr= 1II w 11*-=

(ii): u 11,a)(u).

(iii): For w e ,
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(w, Au) + 1 (w, u) — ' A +  i (w,u)

'<il w II -v II u  M +  II w II .4'(u)
.(K +  1)1111'10 (u ) by (10.

Hence Iliku11,v ., (K + 1)0(u).

From this lemma, e (.) defines a  norm on . is equivalent to 11'11,:'• W e
set 1:13,(u)= co for tq,3-;" for convenience' sake. We also adopt a convention that for
each norm appeared in  th is section, the norm  of elements which are  n o t  in the
domain is oo.

Next we define approximate forms P ), fl> of e by

ef l )(u, y)= (fi — 2)(u —(fl — 2)G f l u, y) — 2(u, y), u, y e

and set r ( u ,  y) = e(otu, + ct(u,u).

Proposition 2.3. (i) 61 )(u, u) = e A013- 2)G0 ,1)) fo r u e .Yt

(ii) 617(u, u) =  e ((fi - 2)G pu, (I3 — 2)G au) + (I3 —  lu — (13 — 2)G 01 2f o r  u E

(iii) e(u, u)=e,(u, y) f or u V E  .

(iv) If sup f l  3 . 616_), ,(u, u) < co, then u e

P ro o f  F or (i)—(iii), we refer to [8, Lemma 1.2.111 a n d  [12, Proposition 2.7
(iii)].

(iv): Since M y,y),91(y , ti) for y e .F• and (/3-2)Gfl is contractive, we have

61-+I(u, u)= ‘,0/3— A)Gfl u, (fl - 2)G  u) + —  lu  — (fi -  2)Gflu 12 + 1u12

>,4A, ((fl- A)Gflu, (fl -  A)Gfiti) +(13 — A)lu — (fi — ),)G flu 12 .

Hence the assumption suPti>.ten i(u,u)< co implies that

sup .4  , ( ( ie — .1)Gflu, (13-1 )G 0 )< co, (2.1)
11 >A

sup (f3 — — (fi — 1,)G et 12 < co . (2.2)
13 > ,1

From (2.2), (fl--2)G f i u u  in  ,Y(. Therefore u e  fe .  Combining this and (2.1), we
have that ti e'17. b y  [8, Lemma 1.2.12].

Lastly, we define th e  associated semigroup IT,I," o n  Ye . W hen f t '=X ' ° ,  the
definition via the generator is well-known. In general cases, we define T J=T ;P f
where {r} is the semigroup associated with (g" on
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3. Criteria for convergence

Suppose that we are given forms { r}„-_, and e  on fef following the framework
in  the  sec tion  2  w ith a  uniform  bound constant A E R . T h e  operators a n d  the
spaces relating to r  are represented by supplementing a  suffix n, such as
and  'Kn . W e  em phasize  tha t A  is taken independently of n  b u t that the sector
constants of sin's need not be uniformly bounded.

We introduce the following conditions which are referred to henceforth:

(F1) If  a  sequence {te n } weakly convergent to  u in  Yr satisfies lim , c 0 0"(u n )< oo,
then u e

(F2) For any sequence {te n } weakly covergent to u in  Y6 with ten c u  'V , and
a n y  W E .,gr. , there exists 1)4)0 converging to w  strongly i n  Y e" such that
lim„ e"(w„, u) -= e(w, u).

(F 2 ') For any sequence In k } / co and any sequence {IA} weakly convergent in Yr
to tee Y7 which satisfies supOrk(u k )<oo, there exists a dense subset (6 of „9-;
for the topology of ,.97  such that every w e '  h a s  a  sequence {w k } converging
to  w strongly in  Ye' with limb , 6 " (w k ,uk ) e(w,u).

(R) G : converges to  GOE strongly for oc>2.

We also define (FL) (resP. (Fi b )) by replacing 410
( ,1„) by (resp. und-v„) in (F1),

and (F2;) (resp. (F2'b)) by replacing (I)"k(u„,) b y  Ilunk 14„, (resP. Ilunkliv, k ) in (F2').

Theorem 3.1. (F2) (F2'), (F I )(F2') <=> (R)( F i  )(F2).

We state a  lemma used in  the  proof of Theorem 3.1.

Lemma 3.2 (cf. [2, Corollary 1.18]). Suppose that double sequences {ui ,J } L i E N

c { a J} JEN R and ue.Yt, aeR satisfy that

s-lim s-lim

lim lim (resp. lim  lim
J-00 co

Then there exists a  non-decreasing, divergent sequence {i(j)} such that

lim a = a  (resp. lima i u k i .  a).
00

Proof  o f  Theorem 3.1. (F 2 )  (F 2 ') :  B y  le t t in g  u „  0  for every n in (F2), we
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know  that for each w e.  there exists {wn } converging to w strongly in Y r such
that wn e r n for every n. Since i s  dense in every w e -r has the same property
by Lemma 3.2. Take an arbitrary sequence {nk } co, and {uk }  weakly convergent
to  u with uk e 'r„ k ,  u e 'r .  From  the observation above, we can take { u}  weakly
convergent to  u satisfying u  u'„,=u k . This is enough to show that (F2')
holds.

(F1)(F2') (R ) :  We follow the argument of R6ckner and Zhang [11]. We may
assume tha t ( 6 =F  by Lem m a 3.2. Take f e y '  and a>A . First we prove that
Oc,"f converges w eakly to 6 „f  in X '. It su ffices to  p rove  tha t for any sequence
{nk } co  w e can  ex trac t a  subsequence Ink i l  su ch  th a t d k rf  converges t o  d i '
w eak ly . For notational convenience, we shall denote a subsequence of {nk } by the
sam e symbol. Set un = 6 f .  Since 116 :11 op (Ct 1 ,  { li n )  is weakly relatively
compact in Y t .  Take a subsequence o f {nk }  such that un k  converges weakly to
some ue Y e . It is easy  to  see  that supk Onk(und< c o .  This implies that ue .17. b y
(F1). For any we . , by extracting a subsequence if necessary, we can choose {w k }
strongly convergent t o  w  such that wk e r  n k  and limk _. .‘"k(w k ,u n k ), g(w,u) from
(F2'). Since C"k(wk ,u,,,)=(w k , f ) , it follows that

o= iim {ck(w k unk) — (wk
k o o

Hence 6%,(w,u) (w ,f ) .  By substituting —w for w, this becomes equality. Therefore
(WOE-  ' w,u)=(W Œ

- 1 w ,6 „f ). Since WOE
- 1 (F )= -r*, it follows that u= d a ff .  We have

proved that 6,7 converges to  6„ weakly, and as a consequence, G: converges to  GŒ

w eakly . In  order to  p rove  the strong convergence, it  is  e n o u g h  to  show that
limk „IG:kfl<IG,11 for any sequence {N} T co. Let v „=G : f  W e  c a n  ta k e  a
subsequence of {nk}  (which is denoted by the same symbol as already mentioned)
such that —6,("kv,,, converges weakly to some x in yr. Since supk aok(-6,,nkv„,)< co,
x  belongs to '17- b y  (F1). Take {wk }  corresponding to the case when — 6„"kv,,k ,
and GOEf  are taken as uk , u , and w in (F2'), respectively. W e may assume that
wk e-rn k by further extracting a subsequence of {nk }. Then, taking limk „  of both
sides of the equation

lv„,12 =(t ,„, , r .„) + (wk, —vnk)+ 0 4)k Vnk)

=  (f , 6 : kVnk) r N w k (:kV nk)-1- (w k V nd,

we have

— (f,x)+6'OE(Gatf ,x)+IG,J1 2

k o o

Hence (R) follows.
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(R) ( F 1 ) :  L e t  u„—> u w eakly  i n  l e  a n d  M:= lim „,(1)"(u„)< oo. Then
E . From  Proposition 2.3 (i)(ii), for 13> 2,

(fl — 2 )(u — (13 — il)G;u un) + ((13 — A)G;u,un)

‘ P]i+ 1((fl - A)GP,un)

)11(fl - 2)G;u1i.v„

+ ,((fi — A)Gp,(fl-2)G;u)` 12

<0"(u n)&nirl(u,u) 112

= CIY I (Un){(fl — 2)(u -(fl 2)G;u, u) + 1u12 1 1 /
2 .

Taking lim „  o f  both sides, we have

i(u, u) —  11412 + ((fl —  2)Gflu, u) < me, 1(u, 01 1 2 .

H e n c e  e l }  1 ( u ,  
172 < M + 0 ,2 +4(1 ,  _ul2 ((l3-2)G p u, u ))} /2 , w hich  im plies tha t

1(u, M 2 . F rom  Proposition 2.3(iv), we obtain that u e

(R) ( F 2 ) :  Let un —)u weakly in Y e, u„e1/-„,u e 'V, and weY7 . It holds that

s-lim s-urn (/3 — 2)G;w=w,
n  oo

iim limeni(P)(w,u„)= lim lim ([3 —2)(w —)1.)Gnw
>
 u)

co  n  p  —■ o o  8—, co

= lim ST*, 6%.(w, u).

Due to Lemma 3.2, we can take a nondecreasing sequence {/3„} o o  s u c h  th a t

s-lim (f3„ — =w, lim 61,43 ”)(w,u,)=S ,(w, u).
f l —cOf l — . c o

Setting w„ = (fin — A)G w, we have

(w„ , (w, u), 61(w ,u,)-=6: ( fin)(w,u)— )g,(w,u) as n —> co.

Therefore, lim , 0 0 r(w„, u„)=S(w,u).

In conjunction with Lemma 2.2, we have the following corollary.

Corollary 3.3. (i) (F I  b )(F2;,) (R).
(ii) If sector constants of  ,sin's are  taken uniformly bounded, then (F 1 „)(F2:,)<,> (R).
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Remark 3.4. Even in  the case of symmetric forms, the pair of the conditions
(F1) (F2) (or (F1 ,,)(F2)) seems like a different type of characterization from the Mosco
convergence.

W e state relations to  semigroup convergence.

Theorem 3.5. When (R) holds, Tr f  converges strongly  to Tff  in ..rf  f or every
f  e ° .  T he convergence is uniform in  any finite interval of  t> O. Conversely, if
T r converges strongly to T, f o r all te [0, T ] f or some T> 0, then (R) holds.

P ro o f  See [3, Chapter IX, Theorem 2.16] when 17 „ and I/ . a re  all dense in
A '. W e  n e e d  e a sy  m odification in general cases, w h ic h  is  le f t  to  th e  reader.

4. Examples

Example 4.1 (Coercive closed forms with domains which are no t dense). We
refer [8, C hapter II, S ec tion  3 ] fo r  th e  term inology. L e t  E  b e  a  separable
Banach space, a n d  i  a  finite positive measure on the Borel a-field .R(E) such that
supp u = E .  Let E *  be a  topological dual of E .  Define

,F(ej," = {f(/, , • • •, /„,) m  N , f  eC bœ'(W"), I I ,•••,1 eE*1,

where C (R '" ) stands for the collection of infinitely differentiable functions o n  l e
the derivatives of which are all bounded. Suppose that there is an infinite dimensional
separable Hilbert space H  densely and continuously imbedded in E .  For u e
define H* -valued function Vu o n  E  by

H •(V u(z), h)H  =lim{u(z + sh)— u(z)}  /s,h  e  H.
s-o

Define a  bilinear form Q  on  1,2 (E) by

Q(u,v)= f (Vu,Vy),pdit, u,v e

W e assume that (Q ,,F(C ) is c losable . F o r example, this holds when (E ,H ,n) is
an abstract Wiener space. W e denote the closure of (Q „F cC ) by (Q ,D (Q)). Take
a  countable subset {er  , of E * which is a  c.o.n.s. of H * by the natural inclusion
E *  c  H * . W e denote by ,F„ the  sub a-field of .1(E) generated by {e i ; 1 <i<n} ,
and define ,FW°( 7 „) = 31 7 (eg° n IF„-measurable functions on E l .  Let Y œ)(H*) denote
the space of all bounded linear operators on H * with the operator norm 11 • L i,. For
T E  (H * ) , t  stands for the adjoint operator of T. We also define 7=(T+ t)/2
a n d  =(T —t) /2 .

Suppose th a t w e  a re  given strongly measurable maps cr: E —> Y ( H * )  and
b:E - 11* such that
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For some c>0, 6(z)>cl in  the form sense for ti-a.e.z and

11611,EL1 (E), 116110,ELNE).

(ii) INN* e ' , (E).

Define bilinear forms on  L 2 (E ) by

e(u, v) = f  {(o- Vu, Vv). — (b,Vu) l l .yldit, u,ve,97 (q,'

e n (U, = V), U, t G ,F(eN,F„).

Then it is easy to see that there exist constants 2> 0, c>0, and  K> 1 such that

cQ i (u,u)_e A(u,u),

le  j u , ic e  i(u, 
0 1 1 2

e „ ,(v , 0' 12 , for u, v e .

Hence, e  and en are all closable and closures are coercive forms in a wide sense with a
bound constant A  b y  a  similar way o f  [8, Section II.3e)]. T he  domains of the
closures are denoted by - r  and - K  respectively. It holds that If  YT.2 C • • • C

r  C  D (Q ). d' and Si',, a re  in  accordance with the framework in the section 2, by
considering A = A„ 0.

Now, we will show the strong convergence of the corresponding resolvents and
semigroups by checking that (F1„) and (F2 ) in the section 3 hold.

(F1„): L e t  U„ U  w eak ly  i n  L 2 (E )  w ith  lim ,  oo e I ,  Jun , u„) < 09 . Then
lim „  +  1 (1 4 „  ,  1 4 „ )  <  0 0 .  This implies that a  subsequence of {u„} converges weakly
to  u in  I f  b y  [8, Lemma 1.2.12]. In particular, u e

(F 2 ): L e t  {nk } t oo, ukw e a k l y  w i t h  s u p k elk+  Juk ,uk ) < co , u c -r- a n d
w e'V . Then uk -+ u weakly in  '17. . Since the linear span of { e1 ; ie N} is dense in
E*, there exists lwk }  su c h  th a t ivk e -/f„, fo r every k  and W k w  in  'V . (cf. [1,
Proposition 2.10.]) Then in  the equation

enk(wk,uk)=61w,ukl+ e(wk—w,uk),

the first term of the right-hand side tends to e (w, u) as k co since there exists w 'e 'r
such that e (w, =  „ 104/ , 0 for every v e -r from the Riesz theo rem . The second
term converges to  0 by the sector condition.

Remark 4.2. Since e" has following another expression

e (u , 0  = f  {(o- „vu,v 0,.—(b„,Vu) 11*y}d,u, u,y e .0"f,  c ego ( . ,f „ ) ,
E

where o-„:E.-4.,r'(H*) and bn :E-1-1* are defined by
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an (z)(h)= E E „Ro ( - )ei , ei )„„ IF,J(z)(h, , h G H *,
i,j = 1

11

b„= E E„[(b,e,),.137; n]'i,
i =

{e"} are essentially considered as finite dimensional approximations of e . In the
forthcoming paper, this example is applied to the proof of existence of invariant
measures of diffusions with infinite dimensional state spaces.

Example 4.3 (Forms with time-dependent coefficients). L e t  d> 2. L et Q be
an open set of Rd , possibly unbounded. W e equip R  and Q w ith the Lebesgue
measures, denoted by di and dx, respectively. Let C ° (Q ) b e  the collection of
functions on Q  w hich are infinitely differentiable with compact support. We
define  the Sobolev sp a c e  V  b y  the com pletion of C ° (Q )  w ith  the norm
(1,1V • 12 dx +SQ 1 12 dx) 1 /2 , where V stands for the usual gradient operator and 1 . 1 the
Euclidean norm. W e consider that /̂/ := L 2 (R V ) is  a  subspace of L 2 (R x Q).
Define a closed bilinear form (Q, )  on L 2 (R x 0) by

Q(u, u)= dtf (V u,V v)dx, u, V e
R

Suppose that w e are given o n e ENR X Q  (Rd) *OR d ), b„, d„e LL(R x R d ), c„
E L,1

1„e (R x Q), n e Nu {col satisfying the following:

(i) There exists 5>O such that for all ne Nu {co }, 6-„(t,x)> 61 in the form sense
dtOdx-a.e. Here an stands for the symmetrization of a . A lso , { a n } are bounded
in L (R  x (Rd)*ORd).

(ii) There exists p> d such that
{k }  and {dn } are bounded in L N R  (LP + Lc°)(S2 R d )),
{c„} are bounded in LOE)(R (LP1 2 + LOE))(Q)).

We define bilinear forms d", n e Nu {col on O R  x f2) by

s r ( u ,  =  dtf {(o„Vu,Vu)+(b„,Vu)v+(d„,Vv)u+ c n uuldx, u,v
R

By Sobolev's lemma, for every E >0, q e [2, d
2_d

2 ) and ge V,

2/4
( f  l q d X ) 1Vg12dx + Cf g 2 dx,

where C is a constant depending only on d, E and q. This implies easily that there
exist constants > 0, c> 0  and  K> 1 , independent of n  su ch  th a t for every n,
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cQ 1(u,u)_.21(u,u) c - 1 Q 1 (u,u),

iszrz +i(u , v)I K siZ+1(u,u) 112 -4 1+ i(v,v) 112 , u, V E

Hence (.91", '11 a re  all coercive closed forms with bound constant A.
W e  ta k e  as A in the section 2, which satisfies the required conditions for any

n. Indeed, the corresponding semigroup {U,} on ''/7 *- L 2 (R —> V *) is described by
U ,f (s)=f (s+t), and D(A,"//- *)= ff e e  * in the distribution sense} . Then as
in the section 2, corresponding forms e"(ne AT) and e := P °  are defined.

Now we further assume the following convergence of coefficients:

a„ —> aoc, =: a  in L L (R  x  —> (le)*(ple), b„—> b = :b  in L,10 c (R xS

c„—> coo = :c  in L L (R  x d„-÷  d„,=:d  in LL(Rxf1— > le).

Then strong convergence of associated resolvents and semigroups hold by verifying
(F1,) and (F2'b).

(Fi b ): Let u,, —> u  weakly in L 2 (R x 0) w ith  lim ,s4 (u u „ )<  o o .  Then
lim Q,(u„ , un ) < c o . F ro m  [8, Lemma 1.2.12], a subsequence of lun l  converges
weakly to u  in '//' and in particular, u e 'r .

(F2b'): Let {nk } co, uk  u  weakly with supe sdr+  i (uk , u k ) < oo, u e l f .  Then
uk u  weakly in V . W e  tak e  (e= C,T(R V) (cf. [6, Chapter 1, Theorem 2.1]). We
m ay  assume th a t  r ,  b ,  d ,  and c„,, c dtO dx -a.e. by  tak ing  a
subsequence if necessary. Take w e ( 6 , and let I c  R  be a compact set such that
the support of w is contained in I. Then

lenk(w, uk) —  e(w,

= le"k(w,uk ) —e(w,uk ) +g(w,u,—t ) l

J
 ((o-„„—cr)Vw,Vuk)dx
o

(d,,,, — d,Vu k )wdx
Jo

=:J1 +• 1 2+ ,1 3+.14+•1 5•

f2
dt b,Vw)ukdx

J' d t j
Q

(c,„, —c)wuk dx + le(w,uk

Since (17„,—tr)Vw —> 0 strongly in L 2 (/ x D —> le), we have that J, —■ 0 as k — > oo. Fix
p' e(d,p). For any E> 0, we choose a compact set K, c 0 such that f i chf,„\ K JVwl 2 dx

{
2

<  c2 and f, (f„ \ K ‘ lwl2 P7 ( P' -  2 ) dx) ( P' -  2 ) /2 P' +(f„,\ K  Jw12 dx) 1 /2 d i  <8 2 . Below, C, stands

for a constant which is independent of k  and 8. W e have

1 /P'

J 2{ C , ( f  i b „ — b 1 P 'dx ) ( f  Y w i 2 dx )
1/2

f2



<  C 3  Q i ( l i k  14101 1 2 [ { — dx) dt j jWj v jj 1

2/p
}

1/2
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+ C 211 b „, b  II (Lp + Lco)(12)(
1/2

1VW12 d X )I l U d y } d t

+ il Ilb" — blia,P+L->aoilL-(.0 18 •

SUrk., -

)

Since II II b LP(K 0 IIIII I L 0..( /) <  00 , w e  have th a t  J2 — by  le tting  k o o  and
E —> 0. Next we have

I IP' 1/2
3 [ C  4 ( j .  id  „k  d i P ' CIX) (I IV t kl 2 d X )  11W V

I

+ +1,-)(m (f IV uk 12  dx 
)1/ 2

X IW 12 " 1  f -{
12\&

2
%  (p '  -  2)/2p'+(I IW12dX)1/2}1 dt

S2\&

1/2
<  Q i (Uk , tik) 112 [ C4 1 ic id u k  —  all'' dx 

2 / p '

 dt
}

IIIIW II vIl L-(1)

+ j lid — dlia,P+L-ato IlL-(0E1 •

Letting k —> oo and 6 —> 0, we get that J3 —> O. Sim ilarly, w e have that J4 O. T h a t
0 follows from the weak convergence of uk in  'V.
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