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I. Introduction

We will consider a probability space (X, !I) and a symmetric contraction semigroup
e'  on L 2(X,,u) which is Markovian in the sense that it takes nonnegative functions
to nonnegative functions and satisfies e ' l  =  1 for all t > O. For such a semigroup
there is a rough equivalence between a knowledge of the norms, N(t,p,q), of e '
as an operator from LP(u) to  O p ) and a knowledge of the function [3 in the family
of logarithmic Sobolev inequalities

f ( x )  log 
I f (x)I

 dtt(x)<Ee(f, f)+ #()11 f  II; ,  c> 0, f e g(A 1  2 ).I. 2 -11f112.
Here /3: (0, co) —> [0, co] may be taken to be a decreasing convex function. 11f112
denotes the L 2(j) norm and 6'(f, .1) = II A 112.f 11 is the Dirichlet form associated to A.

Although (1.1) will be assumed to hold throughout most of this paper for all
E>0, the possibility that /3(E)= co for some e  means that (1.1) may have substance
only for e  in some interval [E,, cc) for some Eo > 0 .  For example if /3(E)= oo for

<  go and fl(E)=130 for E> Eo then (1.1) reduces to a standard logarithmic Sobolev
inequality

(1.2)
f x f  (x)2 lo g  ( 11fl f(x11)21)

d ,u ( x ) — < E 0 e ( f f ) + f lo l l f q

[G 1], with fixed principal coefficient Eo and "local norm" flo (also know n as the
"defect").

Among the semigroups of interest to us there are three classes that have been
distinguished up to now. Hypercontractive semigroups have the least smoothing
ability: fo r  1 <p <q < c o  th e r e  is  a minimum tim e  to = to(P, q)>

0 s u c h  th a t
<  cc if t > 1  .  These semigroups are associated with the fixed logarithmic

Sobolev inequality (1.2). On the other hnad if /3(E) < oo for all E>0 then e - tA is
bounded from O p ) to L ( p )  for all p  and q in (1, cc) and for all 1>0. Sem igroups
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with this property have been called supercontractive [Ro]. (See also [G2].)
Among the supercontractive semigroups are those with the strongest smoothing

properties: the semigroup e - "  is called ultracontractive [D S] if  Ile - "  2  co G  0 0  for
all t >O. Sufficient conditions on the function 13 are known which ensure that the
semigroup e  is  ultracontractive. Ultracontractive semigroups have been useful
in  the  analysis of heat kernels [D , D S], Schrödinger operators [D S] and several
problems in  probability theory and statistics [Bn, CS, DSc1,2].

The question naturally arises as to w hich Dirichlet forms e '( f ,f )  can satisfy
logarithmic Sobolev inequalities such as (1.1) o r  (1.2). In  response to a  preprint
o f [C l], Ira  Herbst wrote to the first author of the present paper showing that in
the simplest case, th a t in  which X =R  and  X (f, f )= R lf (x )I 2 d11 (x ) the  inequality
(1.2) cannot hold with /30  =0 unless p is strongly consentrated near z e r o .  Specifically,
he showed that one must have

f e "2 4 1 (x )<
R
 o o

for some a >0, [H ] . T h is  is  a  necessary bu t not sufficient condition for (1.2) to
hold. Shortly hereafter such exponential integrability inequalities were discussed
b y  R.Carmona for n-dimensional Schrödinger operators, [ C a ] .  Herbst's method
was modified and  extended in  [ D S ] .  Further exponential integrability theorems
under the hypothesis that (1.2) holds have been proven in [AS, AM S, L, R ]. We
will refer to such exponential integrability inequalities as Herbst inequalities when
they are deduced from logarithmic Sobolev inequalities. Applications of exponential
integrability of functions have been made in [ASh], [H i] and  [U3].

In  th e  present paper we will deduce Herbst inequalities from  (1.1) in  the
supercontractive case, tha t is, when fi(f) < oo for all f. > 0 .  Naturally these will be
stronger than th e  Herbst inequalities deducible from th e  hypercontractive case
(1.2). We will consider also the hypercontractive case (1.2), partly for the sake of
example, but more importantly for discrete Dirichlet forms, in  order to  show that
tw o of the  natural Dirichlet forms associated to Poisson measure o n  Z ,  cannot
satisfy a  logarithmic Sobolev inequality. (See Section 5). B ut primarily we are
interested in  identifying the m inim um  am ount of concentration of p  forced by
ultracontractivity. Under standard conditions on /3 which ensure ultracontractivity,
[D, DS], we will prove Herbst inequalities which, for the Dirichlet f o r m  oo f '(x ) 2 dp(x),
reduce to an  inequality of the form

(1.4) fe " 21 "IxIdp(x)<oo.
R 

Examples indicate that this is the  strongest kind o f integrability one can expect
under the hypothesis of ultracontractivity.

Inequalities such as (1.3) have been derived from (1.2) by proving a  differential
inequality either for E(eke) [H , DS, AMS, R] o r for E(eAg) [L ]  o r  by an

(1.3)
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induction on E(Ig 12 ), [R], where g is a function on X  with bounded "gradient" in
all cases. We will adapt Ledoux's method [L] of estimating the Laplace transform
E(e'g) and combine it w ith a variant of a technique of [AMS] to obtain estimates
of the form E(eIgI )) < co for a convex function (I) allowed by /3. For the most part
we will formulate our results in the context of a symmetric Markov semigroup as
in [AS].

2. Notation

W e w ill follow  Aida and Stroock [A S ] in  the ir formulation of norm s of
generalized gradients associated to a class of Markov semigroups throughout most
of this paper, but deviate from this formulation in Section 5. Let (X ,.-R,n) be  a
probability space and let (I, x)—) P(t, x, • ) be a Markov transition probability function
o n  (X , M ). W e  assume t h a t  the m easure  M ,  o n  X x X ,  gl x  given by
M i(dx x dy)= P(t, x ,dy),u(dx) is symmetric and th a t for each bounded measurable
function f  on X

(P A  • ).=. f(Y)P(t, • , dY)
Jx

converges to f  in O t t )  as t 10. If P, is  the unique bounded extension of P , to
L 2 (u ) then  there  is a  nonnegative self-adjoint operator A  on L 2 (X, It) such that
p f _ e - tA .  The Dirichlet form  associated to this sem igroup is by definition the
bilinear form given by

(2.1) 6 0 ( f  g) , ( A 112f, A i 12 g )  g  e  g ( A  12 ) .

D enoting by B (X ) th e  s e t  o f bounded measurable functions on  X , the space
B( X) r-) .9(A  1 1 2 )  is well known to be an a lg eb ra . For f  and g  in ,97  the map

(2.2) g  A f (g ) e '(g  f , f  2 )

is a positive linear functional on T . Moreover gi; is dense in O p ) .  Define 111f1112.3
to  b e  the norm  of the linear functional g i  A f ( g )  as a densely defined linear
functional on L 1 (L). F o r  details of the preceding discussion see [AS,Section 1],
where it is also shown how to extend H' IL to  the natural domain of this norm. We
will assume in the following that this extension has been made when we write
111f111.0<00. W e will make use of the following inequality [AS, Equ. (1.16)]. If
II If  111.9 < 00 and /l e R  then

(2.3) ‘ ( e 4 ,  e l f ) a  111f1112
c02 2R e 2AJ, a = 1  or 2

where E (g )= ,g (x )d p (x ) . In Equ. (2.3) a= I if e is local, as in Example 2.1 below. In
this case (2.3) is elem entary. If e is not local then a = 2. S e e  [AS] for the proof
of this case.
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Example 2.1. Let X =  R" and write Vf for the gradient o f f  Let B: R" {n x n
invertible matrices} be measurable and locally bounded and let dp(x)= w(x)dx be a
probability measure on R". A ssum e, say , tha t w > 0 on R". D e fin e

(2.4) e(f, f ) = (B(x)Vf(x), B(x)Vf(x))dit(x) f  e  C ( R " ) .
R"

One can compute readily from (2.2) that in  this case

A f (g)= f g(x)1 B(x)V f (x)1 2 M x ) ,  f ,  g e Ccx (R").
R"

Hence, ignoring questions concerning the closure of the form 6', we see that

(2.5) Illf Ill 0,) = sup{1Mx)vf(x)1 : x E .

The special case B (x )=J is of particular interest for Schrbdinger operators [D S ]. In
this case one simply has III fIlloo= sup x lVf (x)1.

We will not really be directly concerned in this paper with the semigroup e '
itself, whose Dirichlet form is given by the form closure of (2.4), since we will deal
only with the Dirichlet form  itself. For conditions on B (•) and  p, which ensure
that a unique Markov semigroup e '  is associated to (2.4) see [MR].

M ore generally, if itt is  a  probability measure o n  a  Riemannian manifold M
a n d  we define ev, f ) =  m iVf(x)I 2 dit(x) then one  has III f  Ill.= suptiVf(x)I: x MI.

Example 2.2. L et X = Z .  Suppose that ,u, > 0 and E k E z ,uk = 1. L e t  b k > 0 for
k e Z .  Define

(2.6) (D f )(k)= f (k + 1) —f(k)(k) k  e Z.

Define a Dirichlet form by

(2.7) e(f,g)= 1(D f)(k)(Dg)(k)b,,u k

keZ

for f  and g  of finite support in Z .  Two cases are of interest: Either p k >0  for all
k e Z or else 11k >0 exactly when k >O . E n the latter case we will assume bk  =0 for
k < 0 .  I n  either case one can compute that (2.2) gives

(2.8) A
1

f (g) = E — (ek +1)+ g(k))(D f)( 10 2 bbik •
k Z 2

This may be rewritten

(2.9) A1(g) = (1 /2) E g(k){h1.(D f)(k) 2 +(N - 11 tik)(D f)(k — )2} Itk
k
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in the one sided case. The same expression is also correct in the two sided case
if the sum is extended over all k e Z .  Hence

(2.10) Illf 1111 = sup 
1— 11)Z(D f)(k) 2 + (1)Z 111k- 11 110(1 )  f)(k — 1)2 }

k> 0 2

in the one sided case. A similar expression holds in the two sided case.

Example 2.3. Let X  b e  a finite set. L e t  K (x,y)>0 satisfy Z yK (x,y)=1 for
each xe X .  Assume that there exists a probability measure m(•) on X  such that
Ex n(x)K(x, y)=n(y) for each y E X .  Assume further n(x)K(x,y) is symmetric in x  and
y. So (K ,n) is a symmetric M arkov chain. Let

(2.11) f, g) = (1 /2)  ( f (x) —  f(y)) 2 n(x)K(x, y).
x ,y

It is straightforward to verify that

(2.12) e(g f, f )— (1 /2 )(g , f  2 ) =1  E g(x)[ f (x) — f)] 2  n(x)K(x, y).
2 x,y

In the definition of I f IIcc above the role of f t is played here by IL. It follows that

(2.13) III.f III2. = 1— sup E K(x, ALf(x) —f(Y)] 2 .2  x y

Define

(2.14) V f I  = (x) — f K(x, y) 0 01.

Then, since E y K(x, y)= 1, (2.13) and (2.14) give

(2.15) Ill f 1111 (1 I 2)1Iv f II!, •

Finally  w e note th a t  applications of moment bounds have been made to
statistical mechanics in [AS].

3. Bounds on the Laplace transform

Henceforth we assume tha t the re  is  a decreasing function fl:(0, co)--■ [0, co]
such that

(3.1)
f x f  

(x)2log (
1.1  (x)I

)dit(x)< f)+ 13(0M f  Mf  9 ( e ) .
f  M2

W e assume /3(c.)< oo for at least som e E > O .  In the following a = 1 if 6 ' is  local
and a = 2 otherwise.
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Theorem 3.1. L et g be a  real valved measurable function on X  such that

(3.2) 1.

Let a : (0, co) — > (0, co) be continuous. Assume that #(a(T))< co for all T E (0, co). Then

(3.3) E (e 1 )<c c  f o r all A ER

and

A

(3.4) E(e4)_E(esg)sex p[a laa(x)/2+2Moc(r))/r2 Idd 0<s< A.

The following proof is an adaptation of Ledoux's techniques to our setting.

Lemma 3.2. If  (3.2) holds and in addition g is bounded then (3.4) holds.

P ro o f  Let

v(2)= E(eAg).

Then v(•) is in  C ( R ) .  Put f (x )=e Ag(x)12 in  (3.1). Then v(2 ) = Ilf II; • Furthermore
v'(2)= ekg' gdp = (2/ a) f  2 logf dp while II f  Jog II f  112 =41.)(2) log v(2). By (2.3) &(f, f)

(a.1,2 I 4)E(e4 )= (a/12 14)v(a). Inserting these into (3.1) gives

(212)v'(2) — (1 12)v(2) log v(2) eci(2 2 I 4)v(a) + f3(E)v(2)

for any e>0 and 2 4 0 . Divide by (1/2)22 v(2) to find

2-  v' (A) 4(2) —  2 -
 .2 log v(2) r(a12) + 213(r)/22 , 2  0 0 .

That is,

(3.6) (d/c/2)(2,-' log v(2)) . Eal2 +213(E)I 22 ,

for any E >0 and 2 4 0 . Now choose E = a(A) f o r  > 0 . Integrating (3.6) from s  to
gives

A

a -  'log v(2) —  s -
 I  log v(s) f {a(t)/2 + 2f3(oc(r))/r 2 Idr.

Multiplying by 2 and exponentiating gives (3.4).

The next Lemma is due to  Ledoux [ L ] .  We include his short proof for the
reader's convenience.

Lemma 3.3 (Ledoux's L em m a). Lei (X, p) be a probability  space. Suppose that
g :  X  R  is measurable and that f o r some constant C



E(eg) 2em.

Herbst inequalities 301

(3.7) E(e29 CE(eg)2<oo.

C hoose in such that it(g>m )<(4C )'. T hen

(3.8)

In particular, if  g E 1, 1 (y) then

(3.9)

Proof  tt(eg ..e.'").(4C) - 1 . Hence

f x

egdki eg,„, egdp
g

1/2
< > 12(f e2gclit) +  ern

<(4C)- 
1 / 2 c  1 / 2  

egdp+ ern.
Jx

S o  (112)E(e5 )<e m . T his  proves (3.8). T h e  special case (3.9) follows by taking
m = 4C11 g 11 1 .

Proof of  Theorem 3.1. Suppose that 1. Let ti,„(t) = —n for —n and
equal t  fo r — n <t<n  and equal n  for t _ n .  Then 1111//n ' g I IL a s  shown in
[A S, Equ. (1.15)]. Each function ik„ . g  is bounded a n d  satisfies g 1110, 1.
Hence (3.4) applies to the functions tp„ o  g. Let

2
c=  exp [2 lacx(t)/ 2 + 2/3(a(r))/T2 Idd .

Choose m  such that kt(g>m )<(4C) - 1 . Then one a lso  has k t(0. g>m )<(4C ) - 1

for all n. Hence by (3.4) with s= 1 and 2= 2 we have E(e 2 Pn°g)<CE(e°^°g) 2 . By
Ledoux's Lem m a it now follows that E(e

0

g)<2em for a ll n. By the monotone
convergence theorem on {x : g(x)>O} and dominated convergence theorem elsewhere,
w e have E(eg)<2em . S o  if  y  is defined a s  in  Lemma 3.2 then  v(1)<oo. Hence
v(s)<cc f o r  0 < s< 1  since  o n e  h a s  monotonicity i n  s  o f  t h e  integrand on
fx:g(x) 01. Now apply (3.4) to  (11„. g again, first for 0<s< 1 and A >s, and take
the limit to conclude that v (2)<cc for all 1 > 0 .  Finally apply (3.4) to tk o g again
fo r any  s  a n d  A  w ith  O <s<A  a n d  le t n— oo  to  se e  th a t (3.4) holds for g  as
s ta te d . S in c e  —g11103 =Illg IL < 1 (3.3) holds for all real A.

Example 3 .4  (Hypercontractive case) [L ,A M S]. Assum e th a t  (1.2) holds.
Choose /3(8)= oo for E  < 4  and 13(0= fi c, for c_>_Eo . Then (3.1) holds with this choice
of (3. Choose oc(T)=E0  for ZE(0, CO). We have 13(Œ0)=13 0  for t e (0, CO). Inequality
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(3.4) reduces to

(3.10) E(eAg)< E(esg)À/sexp[21(2—s)aE0 12 +2134s - 1 ]} j for 0<s<A

as already shown in [ L ] .  In particular, if /30 =0 then we find E(e'g)< E(esgYlsexp[A(A
—s)aE0 1 2 1 . Furthermore if g  is bounded then as s 0E(esg)is=(1 +sE(g)+0(s 2 ))11s
- e 'E tg) . Hence

E(e A9 .1. nE0/2(3.11) 2 if g < 1  a n d  /1.0

which one sees first fo r bounded g  satisfying 1 a n d  then for all g  with
111g111. <1  by the same limiting argument used in  the  proof of Theorem 3.1. The
inequality (3.11) is especially interesting because if  X=R, if y  is any  G aussian
measure o n  R with variance Eo , if e(f, f ) =1 ,f ( x ) 2 dp(x), and if one takes g(x)= x
then (1.2) holds with /30 =0 [G1], a= 1 and (3.11) becomes a n  equality, showing
that Theorem 3.1 is sharp in  some cases. T his has already been pointed out in
[AMS, Remark 3.9].

The next three corollaries show tha t the nature of the singularity in  /3(E) as
E 10 can control geometric properties of X  such as its diameter.

Corollary 3.5. Suppose that oc(•) can be chosen so that

(3.12) K Jc° laa(-012+2Xcx(r))/T 2 Idt <co.

If then g  is essentially bounded.

P ro o f  By (3.4) with s= 1 and (3.3) we have

E(eÂg)<exp [A{K + log E(eg)}] for 2 > 1.

Thus the L A ( y )  norm  of eg, E(e) 1 , remains bounded as A —> cc. S o  eg is bounded
off a set of measure z e r o .  Similarly e- g is essentially bounded.

Corollary 3.6. Let 0 <K <1. Suppose that (3.1) holds for a function 13 such that

(3.13) f l()^ C0e +C1 f o r  small E.

Then implies that g  is bounded.

P ro o f  Choose y >1 such that Ky <1. Choose b> 0 and let czer) =b-E - 7 . Then
fl(cx(c))/12 (C0 b- kt"+C 1)/T2 . Hence (3.12) holds.

Remark 3.7. L et Q be  an open connected set in R .  S u p p o s e  th a t  V  is  a
potential in  0  and  that A  denotes the Laplacian in  Q w ith  Dirichlet boundary
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conditions.
Assume th a t  th e  form  sum, — A + V , h a s  a  form  closure, H , w h ich  is  a

semibounded self-adjoint operator in L 2 (Q, dx ) and which has also a unique lowest
norm alized  e igensta te  q .  ( p o c a n  b e  t a k e n  t o  b e  s t r i c t ly  positive  almost
every-where. Let dp(x )=  ipo(x) 2 d x .  The ground state transform [J, p.71, CH p.458],
tlf(x) tli(x )q),(x ) -  ,  is  a  unitary map of L 2 (Q, dx ) onto P(Q,,u) and carries H-(inf
spectrum H ) to  the operator A  on L 2 (Q„u) whose Dirichlet form is

(3.14) e(f, f  IVfix) 124 .

The domain of e consists of those functions f  in  L 2 (p) whose weak gradient Vf is
also in  O a) .

Davies and Simon [DS] have termed the Schrödinger operator H  on L 2 (S2,dx)
intrinsically ultracontractive if the associated operator A  on L20, to is ultracontractive
(see the Introduction for the definition of ultracontractive). Their technique of proof
of ultracontractivity e - "  of relies on the following theorem, which we will quote
here because it provides some of the motivation for the next section.

Theorem 3.8 (Davies and  S im on [D S ]). A ssume that (3.1) holds and that for
each t> 0  there ex ists a function c: [2, co) (0 , o o )  such that

(3.15) t= fp-lc(p)dp
2

and

(3.16) M (/ ). 2 p -  2  fl(c(p))dp < 00.
2

Then the semigroup e - "  is ultracontractive and

(3.17) e-"112-oo<em").

This theorem is the basis for the approach to ultracontractivity via logarithmic
Sobolev inequalities. F o r other techniques of proving ultracontractivity see [KS],
[D , Sec. 2.4], [Da],[Co] and its bibliography.

The function 13 is determined by both Q and  V. For example if Q  is bounded
and V = 0 then D avies and Sim on show [D , page 127], [D S, Theorem 9.3] that
(3.1) holds with #(E)= C o — C, log E for sm all E  provided that (3t2 is sufficiently
regu la r. This is a  rather mild singularity for small e. R. Banuelos [B a] showed
that if Q  is bounded then one can take 11(i)=C -

14 l o g e + C 'e  where a  depends
on regularity properties of ao. a may be > 1 or <1 depending on the regularity . On
the  other hand even if  Q  is bounded a n d  V =0  intrinsic ultracontractivity may
fail. See [DS, Section 9].
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In any case Corollary 3.6 implies that D must be bounded if the singularity
in ,6 near zero is no t too  strong . W e have the following Corollary.

Corollary 3.9. Take X=D and  g  as in  Remark 3.7. A ssume (3.1) holds with
fl satisfying (3.13). Then s.2 is bounded.

P ro o f  Fix a point x ,  in R" and let g(x)=distance from x ,  to  x .  Then the
weak gradient IVg(x)1=1 almost everywhere. Let 0„ be  the truncating functions
used in the proof of Theorem 3.1. Then IViii„. gl <1 and ifrn o g is bounded. Hence

g e g ( g ) .  Since g  g  in ,u m easu re  it fo llo w s th a t g 1. (See the
definition of g I a , in  [A S].) By Corollary 3.6 g  is bounded on Q . H e n c e  Q is
bounded.

4 .  Herbst inequalities

Information about the grow th rate of the Laplace transform E(eAg )  gives
imme-diately information about the integrability of other functions of g  via the
following simple procedure . Suppose that h: R  [0, co) has the property that

A E(eag)h(A)dA<co.

Let

w(u)= e"h(A)dA.

Then E(w(g))=A  by Fubini's theorem.

Example 4.1. (Hypercontractive case). Consider first the special case 60 =0
in Example 3.4. Assume g 1 and for simplicity assume E(g)= 0 (or replace
g  by g — E(g) in (3.11)). Then E(e'g) __eP a'°12 for all real A. Let 

h ( A ) = e - 1 1 . 1 2 / 2
 with

b> ag o . Then

A < J e
P " 0 /2 h(A)d.1.= [27r1(b—m 0 )] 1/2

and
CO

w(u)= eAuh(A)d2=(2n/b)2e"2/2b.

Hence
E (g))2 / (2 1 ,»  <(4.1) E(e(g- ) [bl(b— aco)]

 1 / 2

i f b >  a 0 .

Of course, just as in Example 3.4, this is an equality when ti is a Gaussian measure
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on R with variance e ,  in  which case a= 1. Cf. [AMS, Remark 3.9].
Now suppose that flo >0 in (1.2). We cannot let s  0 in (3.10). Choose s= 1

and consider only A> 1. Then (3.10) gives

(4.2) E(e'g.) exp {22 aE0 /2 +BA + CI for A> 1

where B = log E(eg) —ago /2 + M c, and C= —2)30 . Replacing g  b y  —g shows that a
sim ilar inequality holds fo r  A < — 1. Take h(A)=e 212 f o r  1 1 1  a n d  hp.)=0
othewise. We see that

. f° °  
E(e4 )h(1)dA< oo if b > ae, .

But for any ö>0 there  is a constant y such that

e"e - " 212 dA< e"dA < beu2l2 b + y
- t -

for all real u. It follows that  ? 2 / 2 t , <  constant eh (2 )d 2 . Hence

(4.3) R eg2 /2b) <  c o if b > ae,

The inequality (4.3) was derived for large b in  [L ], when e is local (so a= 1) and
also for large b by [AS, Corollary 3.7] in the local and non-local cases. The full
range of validity of (4.3), i.e., b>e o , was derived in  [R ] (in the local case) by two
distinct m ethods. O ne  method builds o n  Ledoux's large b  result by deriving a
differential inequality fo r  E(ekg'2). T h e  o ther m ethod  is based  on an inductive
argument forthe moments E(g 2 "). The validity of (4.3) for the full range of b is also
proved in  [AS, Theorem 3.10] in the special case

Inequalities such a s  (4.3) have a lso  been  derived  i n  [U 1,U 2] fo r  infinite
dimensional gauss measure by quite different methods a n d  in  particular without
going through logarithmic Sobolev inequalities.

Remark 4 .2 .  W e wish next to derive stronger Herbst inequalities than (4.3)
under the hypothesis of supercontractivity. O ur goal is to derive inequalities of
the form E(e'0 1 ) )< oo for some functions (1)(u) that grow faster than quadratically
for large u. The proper setting seem s to be that o f Young's pairs [Z , Chapter
5]. L et cp : [0, oo) [ 0 ,  op] b e  nondecreasing, left continuous and  satisfy (p(0)=0.
Denote by t4i th e  function which is inverse to  q) in  the sense that IP(1)=inf{s>0:
<q)(s )}. Then th e  functions (1)(s):=Iso (p(u)du a n d  1̀1(2):=S/i(v)du from  [ ' cc) into
[0, co] form a  Young's pair. Both are convex o n  [0, cc), Young's inequality

(4.4) As (Ks) + kY(A)

is satisfied, and (4.4) is  an  equality exactly when A= cp(s). In the cases of interest
to  u s  cp(s) w ill increase near co faster than linearly. The simple version of the
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above inverse relation, namely 11/((p(s))=s, often fails for s in some bounded interval,
in interesting cases, but holds for large s. We will assume this relation for large s.

Theorem 4 .3 .  S uppose that (1) and 111 a r e  conjugate Y oung's functions on
[0, cc). A ssu m e  that

(4.5) a. lE ( e " g ) e - ' ( 2 ) &1<oo for (5= +1,

and, in the notation of  Remark 4.2,

b .  f o r some R> 1
i. Ill exists and is bounded on [R, cc).
ii. go is continuous and unbounded on [R, cc) and til((p(s))=s for s> R.

Then

(4.6) E (e ( ig1)) < co.

P ro o f  Adopting the notation of Remark 4.2 the hypothesis b. assures that
there exists so > R  a n d  1C< C 0  such that whenever s > s ,  w e have  go(s)>R and
‘F"(.1.)_. 2K f o r  2 e [go(s), go(s)+ 1 1  F o r  s > so , th e  function u().):= s 2 —T(2)— (1)(s)
therefore satisfies u(cp(s))= 0  a n d  u'(9(s))=s — )11((p(s))= O. M o re o v e r  u"(2)= —)1/(2)
> — 2k on the interval go(s). .g o ( s ) +  1. Hence u(2)> —K for go(s) ( . , o ( s ) + 1 .  It
follows that

,os) +

JesA — A ) — e qs)chl, > e-K for s> s .
1

Hence

f .è b ( s) <eK esA - T w d2 for s > s o .
1

Therefore

I .E(e'Ng) , g> s o )<e" E(e'g)e- c
, 1 , A)d / i < c o .

1

Similarly E(e ) , g< — s 0) < c c .  Since (I) is bounded on  [0,s 0 ] (4.6) now follows.

Corollary 4 .4 .  Suppose that g  is a  real valued function on X  and there exist
constants K  and L  such that

(4.7) E ( e k )
<eICA+ LA2 111 +1001 

VA> 1

and that —g satisfies the same inequality. Then

(4.8) E(eYelegig1)< op if  0 <(4L)-
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P ro o f  Choose y as in (4.8) and define (I)(s) =ys 2 l o g s .  Let yo(s)=O for 0 <s < 1
a n d  yo(s)= ys(1 + 2log s )  f o r  s >  1 . T h e n  (1)(s) = fsvp(u)du a n d  (1) is a  Young's
function . Let tP and 4/ be as in Remark 4.2. Then I/40)=0 and OW = 1 for 0 < A <y
while tfr is Cc° on (y, ce). M o re o v e r  (11(yo(s))= s for s> 1. Hence (11(yo(s))(p'(s) — 1 for
s> 1. Thus if s> 1 and A = (s) then Ir(A)= 0'(A)= ((p'(s)) -  = y -  1 (3 + 2Iog s)  . So
T"(A) < (3y) -  1  if A> y. The hypotheses b. of Theorem 4.3 are therefore satisfied. Now
if s> 1 a n d  A = p(s) then  '11(A)= syo(s) —(1)(s) b y  (4.4) at A = yo(s). T h u s  a t A = yo(s)

= y{s2 (1 + 2log s)—s 2 log

= ys2 (1 +log s)

= y - 1 (p(s)2 (1 + log s)(1 + 2log s) '

=  y  1(22 /log 2){log(ys(1 + 21og s))}(1 + log s)(1 + 2log sr  2
.

Writing u(2)=T(2)/[(4y) - 1 )L 2 / (1  + log 2)], it follows that u(A) —> 1 as A (and therefore
s)  g o e s  to  + co. S in c e  L12 /(1 + log A) — 4!(.1) = [A2 /(1+ log A)][L — (4y) -  lu(A)] and
L — (4y)' <0 w e see  tha t STE(e4 )e - T ( 2 1 dA <  oo . T he  sam e argument applies to
—g. S o  the hypotheses of Theorem 4.3 are satisfied.

Similar computations can be used in the following alternate proof of Corollary
4.4 which avoids use of the concept of Young's pair: By increasing K  slightly we
m ay assum e g  O. L e t m(t)= p{x :g (x )  t} . T h e n  E(e 5 ) e 'tn ( t) . (4.7) implies

At + log m (t)  KA +LA 2 /(1 + log A).

So

log m (t) 2(K — t) + L12  /(I + log A) for A > 1.

Take 2=(2L) -  i t log t  for large t. The right side is easily seen to be asymptotic to
— (4L)'t 2 log t. Hence

ni(i) exp[ —(4L) -  t 2 (log t)(1 + o(1))].

Now
00

E(exp[yg 2 log g])= — e' t2 '0 'dm(t)

and an integration by parts shows that this is finite if y < (4L) -

Remark 4.5. Davies and Simon [DS, Secs. 4,5,6] use Theorem 3.8 in combination
with Rosen's Lemma to show that various Schriidinger operators on Rn are intrinsically
ultracontractive. The equation (3.15) requires c(p) to  go to zero sufficiently fast at
oo to m ake .1. p -  c(p)dp < oo . O n the  other hand the singularity in  /3(E) a t  t =0
requires c(p) to  g o  to  zero sufficiently slowly to make .ftp -  /3(c(p))dp < oo. The
existence of such a function c(-) depends therefore on the nature of the growth rate
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of fi(E) as E 0.

Example 4.6. If /3(0= Ke(D 1 '"  with K >0 and D> 0 take e(p)=C/(logp) 7. Then
C can be chosen such that (3.15) holds if and only if y > 1 . But (3.16) then requires
yK<1, which forces K  1. Davies and Simon give an example of one dimensional
potentials V,c(x)=x 2 [1og(2+1x1 2 )] 2 /", for which intrinsic ultracontractivity holds if
and only if  0  < K < 1 . T he  asymptotic behavior of the ground state cp, is given by
—log yoo (x),-----,x 2 (logx) 1 /K, for K > O. This example motivates the following corollary,
which is to be understood in  the  general context of Section 3.

Corollary 4.7. A ssum e t h a t  (3 .1) h o ld s  a n d  t h a t  t h e re  i s  a  function
:[1, ) —*(0, )oo) such that

(4.9) ot(s)<B(1 +logs) - 1 s >  1,

and

(4.10) M 2/3(a(t))t - 2 dt < co.

If then

(4.11) E(eYg2 I0 i51 ) <oo f o r 0_y<(2aB) - 1 .

P ro o f  For any 6>0 there is a constant C , such that

11 (1 A- lOg T r I LIT (1 + (5)(A 1(1 +log 2))+C, for 2>1.

T o  se e  th is  o n e  c a n , fo r  example, integrate th e  le f t  s id e  b y  parts , obtaining
2/(1 + log 2)-1+ fl(l+log TY 2 ctr. W r i t in g  th e  last in tegral a s  a n  integral over
[1, 2" 2 ]  plus an integral over [2 1/2 , 2] and estimating the integrand by its maximum
on each interval, one obtains upper bounds of 2 1/2 and 2/(1 + 2 - 1 1og 2)2 respectively,
which are both o(21(1+ log A)). This yields the asserted existence of the constant C .

Thus it now follows from (3.4) that

E(e)g) exp{AlogE(eg)+2(a12)BC,+ AM +(a12)B(1+ 6)1 2 1(1 + log 1)1.

By Corollary 4.4 it follows that E(eY
5 2 k

gi51 )< oo if y< {4(a/2)B(1 + 6)1 -  for some 6>0.

Example 4.8. Suppose tha t X=R, g(x)=x and clii(x)=(p 0 (x) 2 clx where Po is
the ground state for the  potential V„ of Exam ple 4.6. Then cp0 (x) 2 behaves like
e - 2 x2finixi"  fo r  la rg e  x . I f  K < 1 then (4.11) clearly holds for a ll y > 0 .  If  lc> 1
then (4.11) holds for no y > O .  If K = 1 then (4.11) holds only for y <2.

Furthermore
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(4.12) E(eYg2110g(1+ Ig1)1") — co

for all small y if 17> 1 /K . T h u s  if 17> 1 then (4.12) holds for some ultracontractive
semigroup.

Remark 4 .9 .  In  view of the  derivation of (4.11), the sufficient condition for
ultracontractivity given by D avies a n d  Simon's theorem (Theorem 3.8), and the
various cases cited in Example 4.8, it seems reasonable to conjecture that the validity
of (4.11) for some y >0 is the "borderline" necessary condition for ultracontractivity
to hold for a M arkov sem igroup. It should be emphasized that we dirived (4.11)
from  th e  infinitesimal version of ultracontractivity (as embodied in  th e  u se  o f
logarithmic Sobolev inequalities via Theorem 3.8) rather than from ultracontractivity
itself. T h e se  tw o  versions of ultracontractivity are not exactly equivalent because
of a loss of information involved in the interpolation required to derive (3.1) from
ultracontractivity. See [D , C o ] fo r  further d iscussion of the circumstances of
equivalence.

11Next, suppose we know that fl(E)ck <  o o . This is  know n [DS] to imply
J o

ultracontractivity. It is  a  fairly strong but useful cond ition . We will now show

Corollary 4 .1 0 .  A ssume that (3.1) holds. If  f  ) 0(c)dc< co and then

f o r sufficiently small 0

E (e0
e2Igua)<co.

P ro o f  Since I I g I I , , 111OE, w e m ay assume, without loss of generality, that
g  O. P u t t in g  s= 1 and et(T)=T -  I  in Equ. (3.4) we obtain

E(e 4 ):Ç.E(egY exp[A log A + K'A]

f iwhere K' = 2 f l (E )d E . Equivalently,
J o

E(e'g).. exp( i; Alog A+ KA)

where K = K' + log E(eg). If we now set m(t)= tt{x I g(x)> t}  , then since E(e'g)> e't m(t),
we have

At+ log m(t). Alog A+ KA
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or

log m(t) 2 log 2+(K— t) 2.
2

Setting log .1=l(t — K)— 1, we get log m(t) — C e 2 ` ,  where C=(a12)e-7,2K-1, or

(4.13) Ce2t1..

Next, let 0 < C .  Then

E(e9 e2 g 1= — e0 e2 dm(t)-= — m(t),e 2 "' rj) + (20/a) m ( t ) e ' 2 ' e2 lladt.
Jo

Both terms are finite by (4.13).

Example 4.11. It is  of interest to note tha t a  similar conclusion holds even
when /AO does not have an  integrable singularity at E=0. Take a s  a n  example
fi(e) =E -  1 . By Equ. (3.6)

a 2
[2 ' l o g  v(A)T E + .

2 t:22

Choose e=---2 - 1  which minimizes the right side, to obtain
a

[1'Iog v (2)]' . 2 a

Integrating from Ito 2 yields 'log v(.1.)_<_2,\Atlog .1+ log t)(1) or log 1)(2) 21c -h2log
+ v(1).

We are now more o r  less in the situation described in  the  last corollary and
readily obtain E(e0  ' 2 "" 2 ) ) is finite for

0 <2. ae ( - . -,logv( 1 )-  1)
2,/a

This example suggests a general principle which may be useful in other casse. When
Mc) is relatively simple in form, and also differentiable, the optimal procedure is to
choose e to minimize the side of the inequality (3.6) for each 2  and proceed from
th e re . Let us note here also that although we did not use the method of Theorem
4.3 in  diriving Corollary 4.10, the method of Young's pairs used in  Theorem 4.3
has a  potential for getting more precise bounds on  E (e"").

Here is an application of Example 4.1 to  the central limit theorem.

Corollary 4.12. L et it be a probability  measure on R  satisfying

(4.14) fRf (x) 2 log(If(x)1)(//t(x) Eo (X )2 M X ) +  f 2 ( 1 )  log 11 f  v (,i)
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f o r all functions f  in C l (R). L e t  X , ,  X 2 ,  •  •  •  be a sequence of i.i.d. random variables
with distribution pt and mean z ero . L e t S n =n - 1 1 2 E7= 1 X i . Then

(4.15) E(exp[S»2b])[bl(b— E0 )]112 f o r all n  if  b>c o .

P ro o f  The product measure ,tt n(dx, , • • •, dx„)=1 - 13= i pt(dx.i)  o n  R" satisfies (1.2)

with /30 = 0 and e(f. f ) = Igradf (x)I 2 d,u„(x)by the additivity theorem for logarithmicf
R"

Sobolev inequalities [G I , Remark 3.3 or G 2, Theorem 2.3]. Define g : R" —> R by
g(x, , • • • , x„)=(x 1 + x 2 + • • • + x„)1 n 1 1 2  . Then 1Vg(x 1 , • • •, xn)1 I  ( a n d  in  fact equality
holds.) T h e  a rg u m en t o f  E x am p le  4 .1  is  n o w  applicable: By (3.11) o n e  has

E(e f' l < e ' 2 " 1 2 fo r all real À. In tegra ting E(e''.)h(41.1 as in Example 4.1 yields

(4.15).

Rem ark 4.13. If it is a  probability measure on le satisfying (4.14) with If'(x)1 2

replaced by IVf(x)1 2  a n d  i f  X i , X 2,  • • •  is  a  sequence of i.i.d . le  valued random
variables w ith  distribution it th en  C oro lla ry  4 .12  has a  precise analog: Let

+ • • • + X„)/n 1 1 2 . Then E(exp[11,5„11 2 /2b])_bl(b—c 0 )] 1 1 2  f o r  a ll n  if b>E0 .
T h e  p ro o f  g iv e n  i n  C o ro lla ry  4 .1 2  n e e d s  o n ly  to  b e  m o d if ie d  b y  ta k in g
g(x 1 ,•••,x„)=11x 1 + ••• +x„111n 1 1 2  o n  R'". O n e  m u s t  o b s e r v e  a ls o  th a t  th e
k-dimensional version of (4.14) must be extended to locally L ip 1 functions to
accomodate use  o f this function g. T h e  c o n s ta n ts  a re  the  sam e as in  the  one
dimensional ca se . A s a  result of the dimension independence of the constants the
uniform integrability inequality (4.15) holds also for B anach space valued i.i.d.
random variab les. See [ASh] for the mechanism of formulation in this case. L et
us note also that in the one dimensional case the constant in (4.15) is best possible
since (4.15) becomes an equality when i t  is Gaussian of mean zero and variance E o .

5. Discrete spaces

When the Dirichlet form is nonlocal, a s  in  Examples 2.2 and 2.3, the chain
rule, which is responsible fo r  th e  key inequality (2.3) (with a=1 ) , is  no longer
applicable. Moreover the norm 111f111 , defined in Section 2, may not be useful. We
will see later, in Example 5.2, how it fails to give significant information for measures
o n  Z .  Instead w e w ill u s e  a  different "gradient" norm  a n d  a  different way of
bounding Laplace transforms from that of Theorem 3.1. We will show that Poisson
measure on Z  , cannot satisfy a  logarithmic Sobolev inequality for either of the two
natural Dirichlet fo rm s. T he same conclusion holds fo r the  discrete heat kernel
measure on Z .'. The results of this section are a response to a question of P.Diaconis
to the first named author a s  to whether there is a  logarithmic Sobolev inequality
naturally associated to Poisson m easure . The method used in to derive a logarithmic
Sobolev inequality for G auss measure o n  th e  line by applying the  central limit

00
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theorem to the "two point inequality" can in principle be used to derive a logarithmic
Sobolev inequality for Poisson measure on Z ,  by using the low density limit applied
to  an  asymmetric two point inequality . The best logarithmic Sobolev constant in
the asymmetric case was derived in  [DScl, Theorem A.2.] The tensoring method
ju s t  b a re ly  f a ils  to  p ro d u c e  a  logarithm ic Sobolev inequality  for Poisson
m easure . This section will show that the failure is intrinsic to the measure rather
than the fault of the method.

First let ue observe how the previous methods may be applied in the context
of EXample 2.3.

Example 5.1.Let X  be a finite set and let K(x,y) be a Markov transition function
which is symmetric with respect to  an invariant probability measure n(• ). For a
function f  : X  R define IlVf 11,, as in  (2.14). Then by (2.15) and (2.3) with a =2
we have

(5.1) m e A g ,  v g  1 1 1 2 2 ge 2 4 )

wherein g  is defined a s  in  Example 2.3. Suppose that V g  The key step
in  the  proof of Lemma 3.2 is based o n  the inequality (2.3) which in  our present
context can be replaced by (5.1). The result is that the conclusion of Theorem 3.1
holds in the form

(5.2) E(e4)__E(esg)À1sexp[A loc(T)12+ 2/3(1(T)).r 2 1dd 0 <s <A

when liVg11. <1. Since X  is a  finite set the potential usefulness of (5.2) lies in the
quantitative bounds rather than merely the conclusion that E(e'g)<oo, which always
holds.

L . Saloff-Coste has pointed o u t to  us tha t if X  is infinite and  it  has infinite
support then (1.2) cannot h o ld .  Indeed if m(a) 0 and f(x)=7c(a) -

1 1 2 5,7(x) then one
can compute easily that U111,20 0 = 1 a n d  eu; —  K(a,a): 1, while the left side
of (1.2) is log n(a) -

1 1 2 , which is unbounded as a  runs over the support of 7C.

Exmaple 5.2 (Poisson m easure). L e t tik — e 'e lk !  fo r  k > O . A dop ting  the
notation of Example 2.2, choose 14=1 for k >0  and  bk =0 for k < O . T h e n  the
Dirichlet form (2.7) is

(5.3) e(f, f) = E (D i)(10 2 /ik •
/c. 0

This is the principle discrete Dirichlet form that we will explore in this sec tion . Also
of special interest is the weaker Dirichlet form given by

W e w ill show  in  th is  section that the P o isso n  m easure does not satisfy a
logarithmic Soboley inequality (1.2) by showing that (1.2) implies a  Herbst inequality
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which fails for Poisson m easure . The norm (2.10) is not adequate for this purpose. In
fact for the form (5.3) the norm (2.10) is

Illf 1111= sup{ (D f)(k) 2 (k  I c)(D f)(k —1) 2 1.
k> 0

Hence if g 11103 < 1 th en  I(D g)(k — 1)1 (e  I k) 1I2 fo r  k = 1,2,3, •••. By estimating a
sum by an integral it follows that g(k)I g(0)I + 2(ck) 2 . Since Eic,°_ o eŒk pk < oo for
all oc> 0  it follows that E(e0 /21') <  oo  for all b > 0 .  Therefore the inequality (4.3)
holds for all b>0 for Poisson measure and cannot be used to rule out a logarithmic
Sobolev inequality. We will proceed differently based on use of a different gradient
norm and will abandon use of the inequality (2.3).

The rest of this section is based on use of the gradient norm (5.5). We will
apply the resulting Herbst inequality to rule out a logarithmic Sobolev inequality
for Poisson m easure . But this objective by itself can be most easily accomplished
by simply inserting the function given at the end Example 5.1 into the inequality
(1.2) with 6' given by (5.3). One obtains (1/2) log pa-  + p a _  i tua r  1)+ f30 . For
Poisson measure this clearly fails for large a, for any ro and /30 , and therefore (1.2)
cannot hold. The authors thank the referee for pointing this out.

Theorem 5.3. L et ttk b e  a probability density on Z . D ef ine

(5.4) f )= E (Df(k)) 2 11k.
kEz

A ssume that (1.2) holds for some eo >0 and f3 A ssu m e  further that

(5.5) IIIDg sup I(Dg)(k)l.<1.
kez

Let

(5.6) h(1)= 2r0A- 2 (e)1 2 — 1)2 + 2 /30A 2 '

Then

(5.7) E(e4 ) < o o  f o r all real A

and

(5.8) E(e'g)< E(esg))exp {4 2 h(r)dr} 0 < s  <  A.

P ro o f  Just as in the proof of Theorem 3.1 it suffices to prove (5.8) in case g  is
bounded because the truncations 0„ , g  used there for unbounded g  behave well
with respect to new norm (5.5). I.e., II DOH ̀ ',g' II II pg We proceed then as in
Lemma 3.2 with g  b o u n d e d . Let v())=E(e Ag). Insert f= e 4 '12 in to  (1.2). & (f f)
must be estimated differently from before because the inequality (2.3) is not valid
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for the norm  (5.5). W e have instead

e
(e

Ag/ 2, e Ag/ 2) ( e Ag (k + 1)/2 e Ag(k)/2)2Iik

_ I e Ag(k)(e A[g(k+ 1) -  g(k)112 02 t ik

< (eA/2  1)2 E (e )

because Ig(k +1) — g(k)l<1 for all k. Using this in the procedure of Lemma 3.2 we
find instead of (3.5)

(d1(12)(2 -  'log v(2))_h(2) for 2>0.

The rest of the proof is the same as that of Theorem 3.1.

Remark 5.4. If /10 = 0  then function h  (cf. Equ. (5.6)) has no singularity at
2 = 0 . J u s t  as in Example 3.4 we may then let s  0  in (5.8) and obtain

A

(5.9) E(eg-E(g)))<exp{Af h(t)dr} ,

But we will focus in the following on Herbst inequalities for the general case,
flo > 0 . F ( t )  will denote the gamma function.

Corollary 5.5. Under the hypotheses o f  Theorem 5.3 ive have

(5.10) E(MgIF(Ig1+1))<oo f o r all b>0.

P ro o f  Since E(e).1g1)<E(e 4 ) + E (e 'g )<  co (5.8) gives

(5.11) R eA lg l)  2R e lg
1
)As u p { 2 f  h(r)d-r} for 2>1.

It is not hard to see that

A

(5.12)1 f  h(t)ch asI

Indeed for each of the two terms in h(2) containing exponentials one need only use

f
A TAl2 A

1 T- 2 e'rdt _< e"d-c+(.112) -  2 e " d r  <const. 2-  2 e "

1 A/2

for c > 0  and large A. Since E(e'lgI)<E(elgi) for 0</<1 it follows from (5.11) and
(5.12) that
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(5.13) E(e l g l + 1 ) )e- b - l Cbl< 00 Vb >O.
o

Making the change of variables x =b -
1 e.  one computes easily that

h
W (t )= .e ' t e - b - l e'd1=bT (t)— lit f  x f - i e - xdx.

B u t  th e  l a s t  t e r m  i s  a t  m o s t  bt fb
o -

L.ict - i dx =t -
1 . H ence  bT (1)<w (1)+1 for

t 1. R e p la c e  t  by I g  + 1 and use (5.13) to get (5.10).

Corollary 5 .6 .  I f  u(k )=e - cck 1k! f or k > 0  then a logarithmic Sobolev inequality
(1.2) for the Dirichlet form  (5.3) cannot hold.

P r o o f  Assume (1.2) holds and  apply Corollary 5.5 to the  function g(k )=k
0). T h e n  (D g )(k )=1 . So IlDg11 =1. It follows from  (5.10) that for all b> 0

oo> E(b 1g1F(g +1))= E bk 1- (k +1),u(k)= bkk!,u(k).
k = 0 k = 0

But if b> 1/c the right side is infinite.

Remark 5 .7 .  The no-go result of Corollary 5.5 for Poisson measure applies
equally well to the class of Dirichlet forms given in Equ. (2.7), provided the coefficients
b,, are b o u n d ed . For in this case the form (2.7) is dominated by a multiple of the
form (5.3). In  particular the Dirichlet form given by b, =(k +1) - '  for k = 0, 1, 2, • • •
fails to satisfy a logarithmic Soboley inequality for Poisson m easure . This Dirichlet
form is associated to the Metropolis algorithem for Poisson measure. See [DSc2]
for further discussion of the usefulness of this kind of Dirichlet form.

Remark 5 .8 .  S . B o b k o v  a n d  M . L e d o u x  [B L ] h a v e  found  a  fam ily of
entropy-energy inequalities somewhat in the spirit of the standard logarithmic Sobolev
inequality (1.2) but which are valid for densities (112)e -1 ' 1 on  the  line . Of course (1.2)
cannot hold for such a  density because of Herbst's original inequality (1.3) (and its
extension to  non-zero 130 ,  (4.3).) S . B o b k o v  has kindly informed the first author
of the present paper that the work in [BL] extends to discrete spaces and that the
corresponding new entropy-energy inequality is satisfied by Poisson m easure . In
that paper the authors are able to deduce concentration inequalities from these new
entropy-energy inequalities.

The heat kernel o n  Z  is defined a s  fo llow s. Let m  be counting measure on
Z .  D efine (Df )(k )=f (k +1) — f ( k )  a s  before a n d  w rite  D *  f o r  i t s  adjoint in
L 2 (Z,ni). Define

A= — D*D.



316 Leonard Gross and Oscar Rothaus

Then ( A f ) ( k ) =f ( k +1 ) +f ( k - 1 ) - 2 f ( k ) .  Using this formula for arbitrary functions f
we see that if f o ( k ) = e ' then A f0 =2(cos0— 1)fo . Thus if

f (k )= e"f(0)d0

with f e L 2 (S 1 ,d0) then et A / 2  multiplies f  by ea c0s6 - 1 ) . It is convenient to identify
the heat kernel for A in terms of the Poisson measure kt, on Z ±  given in Corollary
5.6. The Fourier transform of i t ,  is

cc
ft,(0)1_, eik0e—eCk /Id= ec (e '8

k=0

Let j ( k ) = u ( — k). T h e n  itc*(0) —ecfr 6
-

11 . Thus the convolution

(5.14) vi =110 .*4 2

has Fourier transform ii0 2 (0)/1 2(0)=er ( 0s' 1) . Hence et A l 2  = Vt *. That is, V, is the
heat kernel for the discrete Laplacian.

Corollary 5.9. The heat kernel v, for the discrete Laplacian on Z , together with
the Dirichlet form  &(f  P=S z ipf (k )1 2 v ,(dk) does not satisfy  a  logarithmic Sobolev
inequality of the form  (1.2).

P ro o f  For k >0,

vi (k )= E tit,2(k
JEZ

Hence V (k ) falls off no faster than the Poisson measure i1,12(k ) as k + co. The
method of proof of Corollary 5.6 applies in this case as well with g(k )=k , for k e Z.

Remark 5 .1 0 . The same no-go theorem applies to the discrete heat kernel on
Z d. If Di  is the difference operator in the jth coordinate direction and A is defined
as —E1= 1 D;D i , where D ; is computed with respect to counting measure on Z ° ,
then the heat kernel for e t A / 2  i s  the product of the heat kernels for each operator
e -/D1Dj /2 o n  1 2( r . Taking g((k ,,•••,k d ))= k , ,  the method of Corollary 5.6 applies
without change. The proper notion of gradient norm is

d

IlDg11!0 =  sup{ E I(D i g)(k)1 2  , k  E  Z d }
.J=1

For the function at hand this norm is one.
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