# Cyclic morphisms in the category of pairs and generalized $\mathbf{G}$-sequences 

By<br>Kee Young Lee* and Moo Ha Woo**

## 1. Introduction

In [1,2,3], D.H. Gottlieb introduced and studied the evaluation subgroups (or Gottlieb groups) $G_{n}(X)$ of $\pi_{n}(X)$. He used the concept of cyclic homotopies in the definition of Gottlieb groups. Varadarajian [12] transfered the epithet "cyclic" to the maps rather than homotopies and used the concept of cyclic maps to define a subset $G(A, X)$ of $\Pi(A, X)$ the set of homotopy class of maps from $A$ to $X$. Furthermore, he used the subset $G(A, X)$ to study the role of cyclic map and cocyclic map in the set-up of Eckmann-Hilton duality.

Since then, many authors have studied and generalized $G_{n}(X)$, for instance, G.E. Lang [6], K.L. Lim [8], N. Oda [9], J. Siegel [11], J. Kim and the authors [5, 7, 10, 13]. In [5], the second author and J. Kim have generalized $G_{n}(X)$ to $G_{n}(X, A)$ for a CW-pair $(X, A)$. In [7], the authors introduced the subgroups $G_{n}^{\text {Rel }}(X, A)$ of the relative homotopy groups $\pi_{n}(X, A)$ and showed that for a CW-pair $(X, A)$, $G_{n}(A), G_{n}(X, A)$ and $G_{n}^{\text {Rel }}(X, A)$ make a sequence

$$
\cdots \rightarrow G_{n}(A) \stackrel{i_{*}}{\rightarrow} G_{n}(X, A) \xrightarrow{j_{*}} G_{n}^{\text {Rel }}(X, A) \xrightarrow{\partial} \cdots \rightarrow G_{1}^{\text {Rel }}(X, A) \rightarrow G_{0}(A) \rightarrow G_{0}(X, A),
$$

where $i_{*}, j_{*}$ and $\partial$ are restrictions of the usual homomorphisms of the homotopy sequence

$$
\cdots \stackrel{\partial}{\rightarrow} \pi_{n}(A) \xrightarrow{i_{*}} \pi_{n}(X) \xrightarrow{j_{*}} \pi_{n}(X, A) \rightarrow \cdots \rightarrow \pi_{0}(A) \rightarrow \pi_{0}(X) .
$$

We call this sequence the $G$-sequence of a pair $(X, A)$. We showed that if the inclusion $i: A \rightarrow X$ is homotopic to a constant map or has a left homotopy inverse then the $G$-sequence of the $C W$-pair ( $X, A$ ) is exact. Recently, Oda [9] introduced the set of the homotopy classes of the axes of pairings as a generalization of the Varadarajin set $G(A, X)$ and the generalized evaluation subgroup $G_{n}^{h}(X, A)$ (in [5]).

In this paper, we introduce the concept of "cyclic morphism" as a generalization of cyclic map and we use this concept to define a set in the category of pairs. We show that this set is a generalization of all subgroups

[^0]mentioned above, that is, Gottlieb groups $G_{n}(X)$, Varadarajian's set $G(A, X)$, Oda's set $G^{h}(A, X)$, generalized evaluation groups $G_{n}(X, A)$ and relative evaluation groups $G_{n}^{\text {Rel }}(X, A)$. Furthermore, we study the conditions for the sets to be homotopy invariant or groups. We also use the sets to study the role of cyclic morphisms in the category of pairs. We generalize the concept of $G$-sequence of a $C W$-pair to that of the category of pairs and study the conditions for this new sequence to be exact. By exactness, we obtain a nice form of computations for the generalized Gottlieb subsets.

Throughout this paper, all spaces will be connected and of the homotopy type of CW-complexes. Hence the exponential law of function spaces holds and all base points denoted by $*$ are nondegenerate.

## 2. Definitions and Notation

For $n \geqq 0$, let $\Sigma^{n} A$ be the $n$-th suspension of $A, C A$ the cone of $A$ and $i(A): A \rightarrow C A$ the natural inclusion given by $i(A)(x)=(x, 0)$. Then we are able to identify $C \Sigma^{n} A$ with $\Sigma^{n} C A$ and $i\left(\Sigma^{n} A\right)$ with $\Sigma^{n}(i(A))$ by bringing the last coordinate forward. So $\Sigma^{n} A$ and $C \Sigma^{n} A$ have the co-Hopf structure. Let $i\left(\Sigma^{n} A\right)$ be denoted by $i_{n+1}$. We denote by $\Pi(A, X)$ the set of homotopy classes of maps from $A$ to $X$ preserving base point. It is well-known that $\Pi_{n}(A, X)=\Pi\left(\sum^{n} A, X\right)$ is a group if $n \geqq 1$ and is abelian for $n \geqq 2$.

The category of pairs is the category in which the "objects" are maps $(A, *) \rightarrow(B, *)$ and a "map" from $\alpha$ to $\beta$ is a pair of maps $\left(f_{1}, f_{2}\right)$ such that the diagram

commutes [4].
We shall call the maps in this category just "morphisms" to distinguish from maps between spaces. Two morphisms $\left(f_{1}, f_{2}\right),\left(g_{1}, g_{2}\right): \alpha \rightarrow \beta$ are called homotopic if there is a morphism $\left(H_{1}, H_{2}\right): \alpha \times 1_{I} \rightarrow \beta$ such that $H_{1}$ is a homotopy between $f_{1}$ and $g_{1}$ and $H_{2}$ is a homotopy between $f_{2}$ and $g_{2}$, where $1_{I}$ is the indentity map of the unit interval $I$ into iteself.

The set $\Pi(\alpha, \beta)$ is the set of homotopy classes of morphisms from $\alpha$ to $\beta$ in the category of pairs. In particular, $\Pi_{n}(\alpha, \beta)=\Pi\left(\Sigma^{n} \alpha, \beta\right)$ is a group if $n \geqq 1$ and is abelian for $n \geqq 2$. If $\alpha=i_{n}: \Sigma^{n-1} A \rightarrow C \Sigma^{n-1} A$ is the natural inclusion, $\Pi(\alpha, \beta)$ is denoted by $\Pi_{n}(A, \beta)$ and is called the $n$-th homotopy group of $\beta$ rel. A. If $\beta$ is an inclusion and $A=S^{0}$, then we get the ordinary relative homotopy groups. Furthermore, if $\beta:^{*} \rightarrow B$, then $\Pi_{n}(A, \beta)=\Pi_{n}(A, B)$ and if $\beta: B \rightarrow *$, then $\Pi_{n}(A, \beta)=\Pi_{n-1}(A, B)$.

Let $Y^{X}$ be the function space of maps from $X$ to $Y$ with compact open topology,
( $Y^{X} ; f$ ) the path component of $f$ in $Y^{X}$ and $\omega: Y^{X} \rightarrow Y$ be the evaluation map given by $\omega(f)=f(*)$. Then $\omega$ is always continuous map for $C W$-complexes.

Here we recall several generalizations of Gottlieb groups and cyclic homotopies.
Definition 2.1 ([12]). A map $f: A \rightarrow X$ is said to be cyclic if there eixist a map $H: A \times X \rightarrow X$ such that the diagram

is homotopy commutative, where $j$ is the inclusion map and $\nabla$ is the folding map.
Definition 2.2 ([12]). $G(A, X)=\{[f] \in \Pi(A, X) \mid f$ is a cyclic map $\}$, equivalently, $G(A, X)=\omega_{*} \Pi\left(A, X^{X}\right)$, where $\omega: X^{X} \rightarrow X$ is the evaluation map. In particular, $G\left(\Sigma^{n} A, X\right)$ is denoted by $\mathscr{G}_{n}(A, X)$. Equivalently, $\omega_{*} \Pi_{n}\left(A, X^{X}\right)=\mathscr{G}_{n}(A, X)$.

The subgroup $\mathscr{G}_{n}(A, X)$ is a generalization of $G(A, X)$ and the Gottlieb group $G_{n}(X)$. In fact, $\mathscr{G}_{0}(A, X)=G(A, X)$ and $\mathscr{G}_{n}\left(S^{0}, X\right)=G_{n}(X)$.

Definition 2.3 ([7]). A pair map $f:\left(B^{n}, S^{n-1}\right) \rightarrow(X, A)$ is relative cyclic if there exists a map $H:\left(B^{n} \times X, S^{n-1} \times A\right) \rightarrow(X, A)$ such that $\left.H\right|_{B^{n \times *}}=f$ and $\left.H\right|_{* \times X}=1_{(X, A)}$

In fact, for the $C W-\operatorname{Pair}(X, A), \exists H:\left(B^{n} \times X, S^{n-1} \times A\right) \rightarrow(X, A)$ such that $\left.H\right|_{B^{n \times *}}=f$ and $\left.H\right|_{* \times X}=1_{(X, A)}$ if and only if $\exists H^{\prime}:\left(B^{n} \times A, S^{n-1} \times A\right) \rightarrow(X, A)$ such that $\left.H^{\prime}\right|_{B^{n \times *}}=f$ and $\left.H^{\prime}\right|_{* \times A}=i_{A}$.

Definition 2.4 ([7]). $G_{n}^{\text {Rel }}(X, A)=\left\{[f] \in \pi_{n}(X, A) \mid f\right.$ is relative cyclic. $\}$
Definition 2.5. Let $h: B \rightarrow X$ be a map. A map $f: A \rightarrow X$ is called a cyclic map with respect to $h$ if there exists a map $H: A \times B \rightarrow X$ such that the diagram

is homotopy commutative.
In [9], Oda introduced the following set to generalize some of the results on
the Varadarajin [12].
Definition 2.6 [9]. $\mathscr{G}^{h}(A, X)=\{[f] \in \Pi(A, X) \mid f$ is a cyclic map with respect to $h\}$, equivalently, $\mathscr{G}^{h}(A, X)=\omega_{*} \Pi\left(A, X^{B} ; h\right)$, where $\left(X^{B} ; h\right)$ means the component of $h$ in the function space from $B$ to $X$. In fact, Oda denoted this set $h(A, X)$.

If $h$ is the identity map of $X$, then the Oda's set $\mathscr{G}^{h}(A, X)$ is just the Varadarajin set $G(A, X)$. In particular, we denote $\mathscr{G}^{h}\left(\Sigma^{n} A, X\right)$ by $\mathscr{G}_{n}^{h}(A, X)$ and is equivalent to the image of $\omega_{*} ; \Pi_{n}\left(A, X^{B} ; h\right) \rightarrow \Pi_{n}(A, X)$. The subgroup $\mathscr{G}_{n}^{h}(A, X)$ is a generalization of the several subgroups mentioned above. In fact, we have $\mathscr{G}_{0}^{1 x}(A, X)=G(A, X)$, $\mathscr{G}_{n}^{h}\left(S^{0}, X\right)=G_{n}^{h}(X, B)$ (in [5]) and $\mathscr{G}_{0}^{h}(A, X)=\mathscr{G}^{h}(A, X)$.

## 3. Cyclic morphisms and their homotopy classes in the category of pairs

In this section, we introduce the notion of cyclic morphisms and study the set of their homotopy classes in the category of pairs.

Definition 3.1. Let $h: X \rightarrow B_{1}$ be a map. A map $\left(f_{1}, f_{2}\right): \alpha \rightarrow \beta$ is called a cyclic morphism with respect to $h$ if there exists a map $\left(H_{1}, H_{2}\right): \alpha \times 1_{X} \rightarrow \beta$ such that $\left.\left(H_{1}, H_{2}\right)\right|_{\alpha}=\left(f_{1}, f_{2}\right)$ and $\left.\left(H_{1}, H_{2}\right)\right|_{1_{x}}=(h, \beta h)$, that is, the following diagram commutes

$\left(H_{1}, H_{2}\right)$ is called an affiliated morphism of $\left(f_{1}, f_{2}\right)$ with respect to $h$. If $h: B_{1} \rightarrow B_{1}$ is the identity, then $\left(f_{1}, f_{2}\right)$ is called just a cyclic morphism.

Remark. If $\beta: B_{1} \rightarrow *$ is the trivial map, then it is easy to show that $\left(f_{1}, *\right): \alpha \rightarrow \beta$ is a cyclic morphism with respect to $h$ if and only if $f_{1}: A_{1} \rightarrow B_{1}$ is a cyclic map with respect to $h$.

Let $i_{n}: S^{n-1} \rightarrow B^{n}$ and $i_{A}: A \rightarrow X$ be the inclusions. Then a pair map $f:\left(B^{n}, S^{n-1}\right) \rightarrow(X, A)$ is relative cyclic if and only if $\left(\left.f\right|_{S^{n-1}}, f\right): i_{n} \rightarrow i_{A}$ is a cyclic morphism. So the concept of cyclic morphism is a generalization of relative cyclic map.

Definition 3.2. We define the subset $\mathscr{G}^{h}(\alpha, \beta)$ of $\Pi(\alpha, \beta)$ as the set of homotopy classes of cyclic morphisms with respect to $h$. That is,

$$
\mathscr{G}^{h}(\alpha, \beta)=\left\{\left[f_{1}, f_{2}\right] \in \Pi(\alpha, \beta) \mid\left(f_{1}, f_{2}\right) \text { is a cyclic morphism with respect to } h\right\} .
$$

We denote $\mathscr{G}^{h}\left(\Sigma^{n} \alpha, \beta\right)$ by $\mathscr{G}_{n}^{h}(\alpha, \beta)$, where $\Sigma^{n} \alpha: \Sigma^{n} A_{2} \rightarrow \Sigma^{n} A_{2}$ is the map between two suspensions induced by $\alpha$ which is called a suspension map. In particular, if $i_{n}: \Sigma^{n-1} A \rightarrow C \Sigma^{n-1} A$ is the natural inclusion, then we denote $\mathscr{G}^{h}\left(i_{n}, \beta\right)$ by $\mathscr{G}_{n}^{h}(A, \beta)$. Moreover, we denote $\mathscr{C}_{n}^{h}(A, \beta)$ by $\mathscr{G}_{n}(A, \beta)$ if $h: B_{1} \rightarrow B_{1}$ is the identity map. $\mathscr{G}_{n}(A, \beta)$ is a generalization of $G_{n}^{\text {Rel }}\left(B_{2}, B_{1}\right)$ because $\mathscr{G}_{n}\left(S^{0}, i\right)=G_{n}^{\text {Rel }}\left(B_{2}, B_{1}\right)$, where $i: B_{1} \rightarrow B_{1}$ are the inclusion.

Define $\bar{\beta}:\left(B_{1}^{X}, h\right) \rightarrow\left(B_{2}^{X}, \beta h\right)$ by $\bar{\beta}(g)=\beta g$, where $\beta: B_{1} \rightarrow B_{2}$ is a map and let $\omega_{1}: B_{1}^{X} \rightarrow B_{1}$ and $\omega_{2}: B_{2}^{X} \rightarrow B_{2}$ be evaluation maps. Then $\left(\omega_{1}, \omega_{2}\right): \bar{\beta} \rightarrow \beta$ is a morphism and it induces a map $\left(\omega_{1}, \omega_{2}\right)_{*}: \Pi(\alpha, \bar{\beta}) \rightarrow \Pi(\alpha, \beta)$.

Theorem 3.3. Let $\beta: B_{1} \rightarrow B_{2}$ be a map and $\bar{\beta}:\left(B_{1}^{X}, h\right) \rightarrow\left(B_{2}^{X}, \beta h\right)$ be a map. Then $\left(\omega_{1}, \omega_{2}\right)_{*} \Pi(\alpha, \bar{\beta})=\mathscr{G}^{h}(\alpha, \beta)$.

Proof. Let $\left[f_{1}, f_{2}\right] \in \mathscr{G}^{h}(\alpha, \beta)$. Then there exists an affiliated morphism $\left(H_{1}, H_{2}\right): \alpha \times 1_{X} \rightarrow \beta$ of $\left(f_{1}, f_{2}\right)$ w.r.t. $h$. Let $\bar{f}_{i}$ be the adjoint of $H_{i}$ given by $\bar{f}_{i}\left(a_{i}\right)(x)=H_{i}\left(a_{i}, x\right)$, where $a_{i} \in A_{i}$ and $x \in X$, for $i=1,2$. Since $\bar{\beta} \bar{f}_{1}=\bar{f}_{2} \alpha,\left(\bar{f}_{1}, \bar{f}_{2}\right)$ is a morphism from $\alpha$ to $\bar{\beta}$. So $\left[\bar{f}_{1}, \bar{f}_{2}\right] \in \Pi(\alpha, \bar{\beta})$. Since $\left[f_{1}, f_{2}\right]=\left[\omega_{1} \bar{f}_{1}, \omega_{2} \bar{f}_{2}\right]$ $=\left(\omega_{1}, \omega_{2}\right)_{*}\left[\bar{f}_{1}, \bar{f}_{2}\right]$, we have $\left[f_{1}, f_{2}\right] \in\left(\omega_{1}, \omega_{2}\right)_{*} \Pi(\alpha, \bar{\beta})$. Therefore we obtain $\mathscr{G}^{h}(\alpha, \beta)$ $\subset\left(\omega_{1}, \omega_{2}\right)_{*} \Pi(\alpha, \bar{\beta})$.

Similarly, we have $\left(\omega_{1}, \omega_{2}\right)_{*} \Pi(\alpha, \bar{\beta}) \subset \mathscr{G}^{h}(\alpha, \beta)$.
By Theorem 3.3, if $\alpha$ is a suspension map, then $\mathscr{G}^{h}(\alpha, \beta)$ is a group. In particular, $\mathscr{G}_{n}^{h}(\alpha, \beta)$ is a group, for $n \geqq 1$. It is easy to prove the following theorem by using lemma.

Lemma 3.4. Let $\left(g_{1}, g_{2}\right): \gamma \rightarrow \alpha$ be a morphism. If $\left(f_{1}, f_{2}\right): \alpha \rightarrow \beta$ is a cyclic morphism with respect to $h$, then the composition $\left(f_{1}, f_{2}\right) \circ\left(g_{1}, g_{2}\right): \gamma \rightarrow \beta$ is a cyclic morphism with respect to $h$.

Theorem 3.5. If $\left(g_{1}, g_{2}\right): \gamma \rightarrow \alpha$ is a morphism, then the induced map $\left(g_{1}, g_{2}\right)^{*}: \Pi(\alpha, \beta) \rightarrow \Pi(\gamma, \beta)$ carries $\mathscr{G}^{h}(\alpha, \beta)$ into $\mathscr{G}^{h}(\gamma, \beta)$.

Lemma 3.6. If $\left(g_{1}, g_{2}\right): \beta \rightarrow \gamma$ is a morphism and $\left(f_{1}, f_{2}\right): \alpha \rightarrow \beta$ is a cyclic morphism with respect to $h$, then the composition $\left(g_{1}, g_{2}\right) \circ\left(f_{1}, f_{2}\right)$ is a cyclic morphism with respect to $g_{1} h$.

Proof. Let $\left(H_{1}, H_{2}\right): \alpha \times 1_{X} \rightarrow \beta$ be an affiliated morphism of $\left(f_{1}, f_{2}\right)$. Then $\left(g_{1} H_{1}, g_{2} H_{2}\right): \alpha \times 1_{X} \rightarrow \gamma$ is an affiliated morphism of $\left(g_{1}, g_{2}\right) \circ\left(f_{1}, f_{2}\right)$. It is explained by the following diagram and the fact that $g_{2} \beta=\gamma g_{1}$;


Theorem 3.7. If $\left(g_{1}, g_{2}\right): \beta \rightarrow \gamma$ is a morphism, then the induced map $\left(g_{1}, g_{2}\right)_{*}: \Pi(\alpha, \beta) \rightarrow \Pi(\alpha, \gamma)$ carries $\mathscr{G}^{h}(\alpha, \beta)$ into $\mathscr{G}^{g_{1}^{1 h}(\alpha, \gamma)}$.

If $\alpha \times 1_{X}: A_{1} \times X \rightarrow A_{2} \times X$ is a cofibration, then $\mathscr{G}^{h}(\alpha, \beta)$ is determined by the homotopy class of $h$.

Lemma 3.8. Let $\alpha \times 1_{X}: A_{1} \times X \rightarrow A_{2} \times X$ be a cofibration and $h, h^{\prime}: X \rightarrow B_{1}$ be maps. If $h$ is homotopic to $h^{\prime}$, then $\mathscr{G}^{h}(\alpha, \beta)=\mathscr{G}^{h^{\prime}}(\alpha, \beta)$.

Proof. It is sufficient to show that one of them contains the other. Let $\left(f_{1}, f_{2}\right): \alpha \rightarrow \beta$ be a cyclic morphism with respect to $h$. Then there is an affiliated morphism $\left(H_{1}, H_{2}\right): \alpha \times 1_{X} \rightarrow \beta$ with respect to $h$ such that the following diagram are commutative


Moreover, since $h$ is homotopic to $h^{\prime}$, there exists a homotopy $F$ from $h$ to $h^{\prime}$. Define

$$
\hat{H}_{1}:\left(A_{1} \vee X\right) \times I \quad A_{1} \times X \times 0 \rightarrow B_{1}
$$

by

$$
\left.\hat{H}_{1}\right|_{A_{1} \times * \times I}=f_{1},\left.\hat{H}_{1}\right|_{* \times X \times I}=F \text { and }\left.\hat{H}_{1}\right|_{A_{1} \times X \times 0}=H_{1} .
$$

Then since the inclusion $A_{1} \vee X G A_{1} \times X$ is a cofibration, there is an extention $\bar{H}_{1}: A_{1} \times X \times I \rightarrow B_{1}$ of $\hat{H}_{1}$. Consider the map $\beta \bar{H}_{1}: A_{1} \times X \times I \rightarrow B_{2}$ and the following diagram


Since $\alpha \times 1_{X}$ is a cofibration, there exists a map $\bar{H}_{2}: A_{2} \times X \times I \rightarrow B_{2}$ such that $\beta \bar{H}_{1}=\bar{H}_{2}\left(\alpha \times 1_{X} \times 1_{I}\right)$ and $H_{2}=\left.\bar{H}_{2}\right|_{A_{2} \times X \times 0}$. Let $H_{1}^{\prime}=\left.\bar{H}_{1}\right|_{A_{1} \times X \times 1}$ and $H_{2}^{\prime}=\bar{H}_{2}$ $\left.\right|_{A_{2} \times X \times 1}$. Then $\left.H_{1}^{\prime}\right|_{A_{1} \times *}=f_{1},\left.H_{1}^{\prime}\right|_{* \times X}=h^{\prime}$ and $\left.H_{2}^{\prime}\right|_{A_{2} \times *}=\left.\left.\bar{H}_{2}\right|_{A_{2} \times * \times 1} \sim \bar{H}_{2}\right|_{A_{2} \times * \times 0}$ $=f_{2}$. Furthermore, $H_{2}^{\prime}(*, x)=\bar{H}_{2}(*, x, 1)=\bar{H}_{2}(\alpha(*), x, 1)=\beta \bar{H}_{1}(*, x, 1)=\beta h^{\prime}(x)$. Thus $\left[f_{1}, f_{2}\right]=\left[f_{1},\left.H_{2}^{\prime}\right|_{A_{2} \times .}\right] \in \mathscr{G}^{h^{\prime}}(\alpha, \beta)$.

In Lemma 3.8, $\left(H_{1}^{\prime}, H_{2}^{\prime}\right)$ may not be an affiliated morphism of $\left(f_{1}, f_{2}\right)$ with respect to $h^{\prime}$ because we can prove only $\left.H_{2}^{\prime}\right|_{A_{2} \times *}$ is homotopic to $f_{2}$ rather than equal. But if $\alpha=i: A_{1} \rightarrow A_{2}$ is the inclusion, then we can obtain an affilated morphism of ( $f_{1}, f_{2}$ ) with respect to $h^{\prime}$. So we can get a stronger theorem than Lemma 3.8. In the proof of Lemma 3.8, define

$$
\hat{H}_{2}: A_{1} \times X \times I \quad A_{2} \times * \times I \rightarrow B_{2}
$$

by $\hat{H}_{2}=\beta \hat{H}_{1} \amalg f_{2}$. Then it is well-defined since $\beta \hat{H}_{1}(a, *, t)=\beta f_{1}(a)=f_{2}(a)$. If we substitute $\hat{H}_{2}$ for $\beta \hat{H}_{1}$ and apply the property of cofibration, then we obtain a map $H_{2}^{\prime}: A_{2} \times X \rightarrow B_{2}$ such that $\left.H_{2}^{\prime}\right|_{A_{2} \times *}=f_{2}$. So $\left(H_{1}^{\prime}, H_{2}^{\prime}\right)$ is an affiliated morphism of $\left(f_{1}, f_{2}\right)$ with respect to $h^{\prime}$. Thus we have the following theorem.

Theorem 3.9. Let $\alpha=i: A_{1} \rightarrow A_{2}$ be the inclusion and let $h, h^{\prime}: X \rightarrow B_{1}$ be homotopic. Then $\left(f_{1}, f_{2}\right): \alpha \rightarrow \beta$ is a cyclic morphism with respect to $h$ if and only if it is a cyclic morphism with respect to $h^{\prime}$.

Corollary 3.10. If $h, h^{\prime}: X \rightarrow B_{1}$ are homotopic, then $\mathscr{G}_{n}^{h}(A, \beta)=\mathscr{G}_{n}^{h^{\prime}}(A, \beta)$.
Let $\left(f_{1}, f_{2}\right): \alpha \rightarrow \beta$ be a morphism. A morphism $\left(g_{1}, g_{2}\right): \beta \rightarrow \alpha$ is called a left homotopy inverse of $\left(f_{1}, f_{2}\right)$ if $\left(g_{1}, g_{2}\right)\left(f_{1}, f_{2}\right)$ is homotopic to $1_{\alpha}$, that is, there exists a morphism $\left(H_{1}, H_{2}\right): \alpha \times 1_{I} \rightarrow \alpha$ such that $\left.\left(H_{1}, H_{2}\right)\right|_{\alpha \times 0}=\left(g_{1}, g_{2}\right) \circ\left(f_{1}, f_{2}\right)$ and $\left.\left(H_{1}, H_{2}\right)\right|_{\alpha \times 1}=1_{\alpha}$. Similarly, $\left(g_{1}, g_{2}\right): \beta \rightarrow \alpha$ is called a right homotopy inverse of $\left(f_{1}, f_{2}\right): \alpha \rightarrow \beta$ if $\left(f_{1}, f_{2}\right) \circ\left(g_{1}, g_{2}\right)$ is homotopic to $1_{\beta}$. In particular, $\left(f_{1}, f_{2}\right): \alpha \rightarrow \beta$ is called a homotopy equivalence if it has a right and left homotopy inverse.

Corollary 3.11. If the morphism $\left(g_{1}, g_{2}\right): \gamma \rightarrow \alpha$ is a homotopy equivalence, then the induced map $\left(g_{1}, g_{2}\right)^{*}: \mathscr{G}^{h}(\alpha, \beta) \rightarrow \mathscr{G}^{h}(\gamma, \beta)$ is an isomorphism of sets.

Proof. It follows from Corollary 3.5 and Corollary 3.10.
Lemma 3.12. Let $\alpha \times 1_{X}: A_{1} \times X \rightarrow A_{2} \times X$ be a cofibration. If the morphism $\left(g_{1}, g_{2}\right): \beta \rightarrow \gamma$ is a homotopy equivalence, then the induced map $\left(g_{1}, g_{2}\right)_{*}: \mathscr{G}^{h}(\alpha, \beta)$ $\rightarrow \mathscr{G}^{g_{1} h}(\alpha, \gamma)$ is an isomorphism of sets. If $\alpha$ is a suspension map, then it is a group isomorphism.

Proof. Let $\left(r_{1}, r_{2}\right): \gamma \rightarrow \beta$ is a homotopy inverse of $\left(g_{1}, g_{2}\right)$. Then $\left(r_{1}, r_{2}\right)_{*}$ carries $\mathscr{G}^{g^{1 h}}(\alpha, \gamma)$ into $\mathscr{G}^{r^{1} g_{1} h}(\alpha, \beta)$ by Theorem 3.7. By Lemma 3.8, we have


Theorem 3.13. The subgroup $\mathscr{G}_{n}(A, \beta)$ of $\Pi_{n}(A, \beta)$ is homotopy invariant with respect to two variables.

Proof. For the first variable, the theorem is true by Corollary 3.11. We show that it is true for second variable.

Let $\left(g_{1}, g_{2}\right): \beta \rightarrow \gamma$ is homotopy equivalent with homotopy inverse $\left(r_{1}, r_{2}\right)$ where $\beta: B_{1} \rightarrow B_{2}$ and $\gamma: C_{1} \rightarrow C_{2}$. By Lemma 3.12, $\left(g_{1}, g_{2}\right)_{*}: \mathscr{G}_{n}(A, \beta) \rightarrow \mathscr{G}_{n}^{g_{1}}(A, \gamma)$ is an isomorphism. So it is sufficient to show $\mathscr{G}_{n}^{g_{1}}(A, \gamma)=\mathscr{G}_{n}(A, \gamma)$. Let $\left[f_{1}, f_{2}\right] \in \mathscr{G}_{n}^{g_{1}}(A, \gamma)$. Then there is an affiliated morphism $\left(H_{1}, H_{2}\right): i_{n} \times 1_{B_{1}} \rightarrow \gamma$ such that $\left.\left(H_{1}, H_{2}\right)\right|_{i_{n}}$ $=\left(f_{1}, f_{2}\right)$ and $\left.\left(H_{1}, H_{2}\right)\right|_{1_{B 1}}=\left(g_{1}, \gamma g_{1}\right)$. Let $H_{1}^{\prime}=H_{1}\left(1_{\Sigma^{n-1} A} \times r_{1}\right)$ and $H_{2}^{\prime}=H_{2}\left(1_{C \Sigma^{n-1} A}\right.$ $\left.\times r_{1}\right)$. Then $\left.\left(H_{1}^{\prime}, H_{2}^{\prime}\right)\right|_{i_{n}}=\left(f_{1}, f_{2}\right)$ and $\left.\left(H_{1}^{\prime}, H_{2}^{\prime}\right)\right|_{1_{c_{1}}}=\left(g_{1} r_{1}, \gamma g_{1} r_{1}\right)$. So $\left[f_{1}, f_{2}\right] \in$ $\mathscr{G}_{n}^{g_{1} r_{1}}(A, \gamma)$. Since $\mathscr{G}_{n}^{g_{1} \gamma_{1}}(A, \gamma)=\mathscr{G}_{n}(A, \gamma)$ by Lemma 3.8, we have $\mathscr{G}_{n}^{g_{1}}(A, \gamma) \subset \mathscr{G}_{n}(A, \gamma)$. Similarly, $\mathscr{G}_{n}^{g_{1}}(A, \gamma) \supset \mathscr{G}_{n}(A, \gamma)$.

## 4. A generalization of $G$-sequence to the category of pairs

Let $\bar{\beta}:\left(B_{1}{ }^{B_{1}}, 1_{B_{1}}\right) \rightarrow\left(B_{2}{ }^{B_{1}}, \beta\right)$ be a map given by $\bar{\beta}(g)=\beta g$ and let $\omega_{1}: B_{1}{ }^{B_{1}} \rightarrow B_{1}$ and $\omega_{2}: B_{2}{ }^{B_{1}} \rightarrow B_{2}$ be evaluation maps given by $\omega_{1}(g)=g(*)$ and $\omega_{2}\left(g^{\prime}\right)=g^{\prime}(*)$ respectively, where $*$ is a base point of $B_{1}$. Then $\left(\omega_{1}, \omega_{2}\right): \bar{\beta} \rightarrow \beta$ is a map and it induces a homomorphism $\left(\omega_{1}, \omega_{2}\right)_{*}: \Pi_{n}(A, \bar{\beta}) \rightarrow \Pi_{n}(A, \beta)$. By Theorem 3.3, we have $\left(\omega_{1}, \omega_{2}\right)_{*} \Pi_{n}(A, \bar{\beta})=\mathscr{G}_{n}(A, \beta)$. Therefore, if $\beta: * \rightarrow B_{2}$, then $\mathscr{G}_{n}(A, \beta)=\Pi_{n}\left(A, B_{2}\right)$ and if $\beta: B_{1} \rightarrow *, \mathscr{G}_{n}(A, \beta)=\omega_{1} \Pi_{n-1}\left(A, B_{1}{ }^{B_{1}}\right)=\mathscr{G}_{n-1}\left(A, B_{1}\right)$.

Let $\beta: B_{1} \rightarrow B_{2}$ be a map. Then there exists an exact sequence

$$
\cdots \rightarrow \Pi_{n}\left(A, B_{1}\right) \stackrel{\beta_{*}}{\rightarrow} \Pi_{n}\left(A, B_{2}\right) \stackrel{J}{\rightarrow} \Pi_{n}(A, \beta) \stackrel{o}{\rightarrow} \Pi_{n-1}\left(A, B_{1}\right) \rightarrow \cdots,
$$

where $\beta_{*}$ is the induced map, $J$ is explained by the diagram

and $\partial$ by


If $\beta: B_{1} \rightarrow B_{2}$ is a map and $\bar{\beta}: B_{1}{ }^{B_{1}} \rightarrow B_{2}{ }^{B_{1}}$ is the map defined by $\bar{\beta}(g)=\beta g$, then we have an exact commutative ladder by the naturality

$$
\begin{array}{ccccccc}
\cdots \rightarrow \Pi_{n}\left(A, B_{1}{ }^{B_{1}} ; 1_{B_{1}}\right) & \stackrel{\bar{\beta}_{*}}{\rightarrow} \Pi_{n}\left(A, B_{2}^{B_{1}} ; \beta\right) & \stackrel{J}{\rightarrow} & \Pi_{n}(A, \bar{\beta}) & \xrightarrow{\partial} \Pi_{n-1}\left(A, B_{1}{ }^{B_{1}} ; 1_{B_{1}}\right) \rightarrow \cdots \\
\downarrow^{\omega_{1 *}} & & \downarrow^{\omega_{2_{*}}} & & \downarrow^{\left(\omega_{1}, \omega_{2}\right)_{*}} & \downarrow^{\left(\omega_{1_{*}}\right.} \\
\cdots & \Pi_{n}\left(A, B_{1}\right) & \xrightarrow{\beta_{*}} & \Pi_{n}\left(A, B_{2}\right) & \xrightarrow{J} & \Pi_{n}(A, \beta) & \xrightarrow{\partial} \\
\Pi_{n-1}\left(A, B_{1}\right) & \rightarrow \cdots
\end{array}
$$

By Definition 2.2 and Definition 2.7, we can make a subsequence

$$
\cdots \rightarrow \mathscr{G}_{n}\left(A, B_{1}\right) \xrightarrow{\beta_{*}} \mathscr{G}_{n}^{\beta}\left(A, B_{2}\right) \xrightarrow{J} \mathscr{G}_{n}(A, \beta) \xrightarrow{\partial} \mathscr{G}_{n-1}\left(A, B_{1}\right) \rightarrow \cdots
$$

from the above commutative ladder. We call this sequence $G$-sequence of $\beta$ rel. $A$ in the category of pairs.

Theorem 4.1. If $\beta: B_{1} \rightarrow B_{2}$ is null homotopic, then the $G$-sequence of $\beta$ rel. $A$ is exact.

Before we prove the Theorem 4.1, we shall show the following lemma.
Lemma 4.2. If $\beta: B_{1} \rightarrow B_{2}$ is null homotopic, then $\mathscr{G}_{n}^{\beta}\left(A, B_{2}\right)=\Pi_{n}\left(A, B_{2}\right)$.
Proof. Since $\beta$ is homotopic to a constant map $c: B_{1} \rightarrow B_{2}$ such that $c(b)=*$, there is a path $l: I \rightarrow B_{2}{ }^{B_{1}}$ from $\beta$ to $c$. So we have a natural isomorphism $l_{*}: \Pi_{n}\left(A, B_{2}{ }^{B_{1}} ; \beta\right) \rightarrow \Pi_{n}\left(A, B_{2}{ }^{B_{1}} ; c\right)$. Moreover, $\omega_{*} l_{*}=\omega_{*}$ in the diagram

$$
\begin{array}{ccc}
\Pi_{n}\left(A, B_{2}{ }^{B_{1}} ; \beta\right) \xrightarrow{\iota_{*}} & \Pi_{n}\left(A, B_{2}{ }^{B_{1}} ; c\right) \\
\omega_{*} \downarrow & & \downarrow^{\omega_{*}} \\
\Pi_{n}\left(A, B_{2} ; *\right) \xrightarrow{\rightarrow} & \Pi_{n}\left(A, B_{2} ; *\right)
\end{array}
$$

where $\omega: B_{2}{ }^{B_{1}} \rightarrow B_{2}$ is the evaluation given by $\omega(g)=g(*)$. Let $f:\left(\Sigma^{n} A, *\right) \rightarrow\left(B_{2}, *\right)$ be a map. If we define $\bar{f}:\left(\Sigma^{n} A, *\right) \rightarrow\left(B_{2}{ }^{B_{1}}, c\right)$ by $f(a)(b)=f(a)$, then $[f] \in \Pi_{n}\left(A, B_{2}{ }^{B_{1}} ; c\right)$ and $\omega_{*}[\bar{f}]=[f] \in \Pi_{n}\left(A, B_{2} ; *\right)$. So we have $\omega_{*}\left(\Pi_{n}\left(A, B_{2}{ }^{B_{1}} ; c\right)\right)=\Pi_{n}\left(A, B_{2} ; *\right)$. Thus we have $\mathscr{G}_{n}^{\beta}\left(A, B_{2}\right)=\Pi_{n}\left(A, B_{2} ; *\right)$.

Corollary 4.3. If $\beta: B_{1} \rightarrow B_{2}$ is null homotopic, then $J\left(\Pi_{n}\left(A, B_{2}\right)\right) \subset \mathscr{G}_{n}(A, \beta)$.
Proof of Theorem 4.1. Consider the following commutative diagram

$$
\begin{aligned}
& \cdots \rightarrow \Pi_{n}\left(A, B_{1}{ }^{B_{1}} ; 1_{B_{1}}\right) \xrightarrow{\bar{\beta}_{*}} \Pi_{n}\left(A, B_{2}{ }^{B_{1}} ; \beta\right) \xrightarrow{\bar{J}} \Pi_{n}(A, \bar{\beta}) \xrightarrow{\bar{c}} \Pi_{n-1}\left(A, B_{1}{ }^{B_{1}} ; 1_{B_{1}}\right) \rightarrow \cdots
\end{aligned}
$$

where $\beta_{*}{ }^{\prime}=\left.\beta_{*}\right|_{\boldsymbol{g}_{n}\left(A, B_{1}\right)}, J^{\prime}=\left.J\right|_{\left.\mathscr{S}_{n} \beta_{(A, B 2)}, B_{2}\right)}, \partial^{\prime}=\left.\partial\right|_{\mathscr{g}_{n}(A, B)}$ and $I$ 's are inclusions.
Since $\beta$ is null homotopic, $\bar{\beta}: B_{1}{ }^{B_{1}} \rightarrow B_{2}{ }^{B_{1}}$ is null homotopic. Thus $\beta_{*}$ and $\bar{\beta}_{*}$ are 0 -homomorphisms and $J, \bar{J}$ are monomorphisms. From this fact, the $G$-sequence of $\beta$ rel. $A$ is exact at $\mathscr{G}_{n}^{\beta}\left(A, B_{2}\right)$. Furthermore, the sequence is exact at $\mathscr{G}_{n}(A, \beta)$ by Corollary 4.3. We must show that the sequence is exact at $\mathscr{G}_{n-1}\left(A, B_{1}\right)$ but it is sufficient to show that $\partial^{\prime}\left(\mathscr{G}_{n}(A, \beta)\right)=\mathscr{G}_{n-1}\left(A, B_{1}\right)$. Since $\bar{\partial}$ is an epimorphism, $\partial^{\prime}\left(\mathscr{G}_{n}(A, \beta)\right)=\partial^{\prime}\left(\omega_{1}, \omega_{2}\right)_{*}\left(\Pi_{n}(A, \bar{\beta})\right)=\omega_{1_{*}} \overline{\bar{d}}\left(\Pi_{n}(A, \bar{\beta})\right)=\omega_{1_{*}}\left(\Pi_{n-1}\left(A, B_{1}{ }^{B_{1}}\right)\right)=\mathscr{G}_{n-1}\left(A, B_{1}\right)$.

Theorem 4.4. If $\beta: B_{1} \rightarrow B_{2}$ has a left homotopy inverse, then the $G$-sequence of $\beta \mathrm{rel} . A$ in the category of pairs is exact.

Before we prove Theorem 4.4, we need to show the following lemma
Lemma 4.5. If $\beta: B_{1} \rightarrow B_{2}$ has a left homotopy inverse, then we have

$$
\beta_{*}\left(\mathscr{G}_{n}\left(A, B_{1}\right)\right)=\beta_{*}\left(\Pi_{n}\left(A, B_{1}\right)\right) \cap \mathscr{G}_{n}^{\beta}\left(A, B_{2}\right) .
$$

Proof. Since $\beta_{*}\left(\mathscr{G}_{n}\left(A, B_{1}\right)\right) \subset \beta_{*}\left(\Pi_{n}\left(A, B_{1}\right)\right) \cap \mathscr{G}_{n}^{\beta}\left(A, B_{2}\right)$, it is sufficient to show that $\beta_{*}\left(\mathscr{G}_{n}\left(A, B_{1}\right)\right) \supset \beta_{*}\left(\Pi_{n}\left(A, B_{1}\right)\right) \cap \mathscr{G}_{n}^{\beta}\left(A, B_{2}\right)$. Let $\gamma: B_{2} \rightarrow B_{1}$ be a left homotopy inverse of $\beta$ and $[f] \in \beta_{*}\left(\Pi_{n}\left(A, B_{1}\right)\right) \cap \mathscr{G}_{n}^{\beta}\left(A, B_{2}\right)$. Then there is an element
$[g] \in \Pi_{n}\left(A, B_{1}\right)$ and a map $H: \Sigma^{n} A \times B_{1} \rightarrow B_{2}$ such that $\beta_{*}[g]=[f]$ and the following diagram commutes homotopically

$$
\Sigma^{n} A \times B_{1} \xrightarrow{H} \quad B_{2}
$$

$$
\begin{array}{cc}
{ }^{j} \uparrow & \uparrow^{\nabla} \\
\Sigma^{n} A \vee B_{1} \underset{f \vee \beta}{\rightarrow} B_{2} \vee B_{2}
\end{array}
$$

Define $H^{\prime}=\gamma H$. Then $\left.\gamma H\right|_{\Sigma^{n} A_{*}} \sim \gamma f$ and $\left.\gamma H\right|_{* \times B_{1}} \sim \gamma \beta \sim 1_{B_{2}}$. Thus $H^{\prime}$ is an affileated map of $\gamma f$. So $\gamma_{*}[f]=[\gamma f] \in \mathscr{G}_{n}\left(A, B_{1}\right)$. Furthermore, $[g]=\gamma_{*} \beta_{*}[g]$ $=\gamma_{*}[f] \in \mathscr{G}_{n}\left(A, B_{1}\right)$. So $\beta_{*}[g]=[f] \in \beta_{*} \mathscr{G}_{n}\left(A, B_{1}\right)$.

Corollary 4.6. If $\beta: B_{1} \rightarrow B_{2}$ has a left homomtopy inverse $\gamma$, then $\gamma_{*}\left(\mathscr{G}_{n}^{\beta}\left(A, B_{2}\right)\right)$ $\subset \mathscr{G}_{n}\left(A, B_{1}\right)$.

Proof of Theorem 4.4. Let $\gamma: B_{2} \rightarrow B_{1}$ be a left homotopy inverse of $\beta$. Then we have commutative ladder

where $\beta_{*}^{\prime}=\left.\beta_{*}\right|_{\mathscr{G}_{n}\left(A, B_{1}\right)}, J^{\prime}=\left.J\right|_{\mathscr{F}_{n}^{\beta}\left(A, B_{2}\right)}, \partial^{\prime}=\left.\partial\right|_{\mathscr{g}_{n}(A, \beta)}, I$ s are inclusions, $\bar{\beta}: B_{1}{ }^{B_{1}} \rightarrow B_{2}{ }^{B_{1}}$ is given by $\bar{\beta}(f)=\beta f$ and $\bar{\gamma}: B_{2}^{B_{1}} \rightarrow B_{1}{ }^{B_{1}}$ is given by $\bar{\gamma}(g)=\gamma g$.

Since the lower sequence is exact and $\gamma_{*} \beta_{*}=1, \beta_{*}$ is a monomorphism and so $\partial$ is a 0 -homomorphism. Therefore, the $G$-sequence is exact at $\mathscr{G}_{n}(A, \beta)$. By Lemma 4.5, we have

$$
\beta_{*}^{\prime}\left(\mathscr{G}_{n}\left(A, B_{1}\right)\right)=\beta_{*}\left(\Pi_{n}\left(A, B_{1}\right)\right) \cap \mathscr{G}_{n}^{\beta}\left(A, B_{2}\right)=\operatorname{Ker} J \cap \mathscr{G}_{n}^{\beta}\left(A, B_{2}\right)=\operatorname{Ker} J^{\prime} .
$$

So the $G$-sequence is exact at $\mathscr{G}_{n}^{\beta}\left(A, B_{2}\right)$.
Finally, we show the $G$-sequence is exact at $\mathscr{G}_{n}(A, \beta)$. Since $\gamma \beta \sim 1_{B_{1}}$, $\bar{\gamma} \bar{\beta} \sim 1_{B_{1}{ }^{B}{ }_{1}}$. Let $F: B_{1} \times I \rightarrow B_{1}$ is a homotopy from $\gamma \beta$ to $1_{B_{1}}$. Then $\bar{F}: B_{1}{ }^{B_{1}} \times I$ $\rightarrow B_{1}{ }^{B_{1}}$ given by $\bar{F}(f, t)(b)=F(f(b), t)$ is a homotopy from $\bar{\gamma} \bar{\beta}$ to $1_{B_{1}{ }^{B}}{ }_{1}$. Thus $\bar{\beta}_{*}$ is a monomorphism and $\bar{J}$ is an epimorphism. Therefore, we have $J^{\prime}\left(\mathscr{G}_{n}^{\beta}\left(A, B_{2}\right)\right)$ $=\mathscr{G}_{n}(A, \beta)=\operatorname{Ker} \partial \cap \mathscr{G}_{n}(A, \beta)=\operatorname{Ker} \partial^{\prime}$.

Corollary 4.7. If $\beta: B_{1} \rightarrow B_{2}$ has a left homotopy inverse, then we have

$$
\mathscr{G}_{n}^{\beta}\left(A, B_{2}\right) \cong \mathscr{G}_{n}\left(A, B_{1}\right) \oplus \mathscr{G}_{n}(A, \beta) .
$$

Given a differential triple $B_{0} \xrightarrow{v} B_{1} \xrightarrow{\beta} B_{2}$ with $\beta v=*$, there exists a homomorphism $\varepsilon: \Pi_{n}(A, v) \rightarrow \Pi_{n}\left(A, B_{2}\right)$ given by $\varepsilon\left[f_{1}, f_{2}\right]=(*, \beta)_{*}\left[f_{1}, f_{2}\right]$ in the following commutative diagram

$$
\begin{array}{cllll}
\Sigma^{n-1} A \xrightarrow{f_{1}} & B_{0} \xrightarrow{*} & * \\
& & & \\
i_{n} \downarrow & & & & \downarrow * \\
C \Sigma^{n-1} A \underset{f_{2}}{\rightarrow} & B_{1} & \rightarrow & B_{2}
\end{array}
$$

In particular, if $B_{0} \xrightarrow{v} B_{1} \xrightarrow{\beta} B_{2}$ is a fibration, then $\varepsilon: \Pi_{n}(A, v) \rightarrow \Pi_{n}\left(A, B_{2}\right)$ is an isomorphism.

Lemma 4.8. If the following diagram of two differential triples

$$
\begin{array}{rcrcc}
B_{0} & \xrightarrow{v} & B_{1} & \xrightarrow{\beta} & B_{2} \\
\alpha_{0} \downarrow & & \alpha_{1} \downarrow & & \downarrow^{\alpha_{2}} \\
& & & \\
B_{0}^{\prime} & \overrightarrow{v^{\prime}} & B_{1}^{\prime} & \underset{\beta^{\prime}}{ } & B_{1}^{\prime}
\end{array}
$$

is commutative, then we have the following commutative diagram

$$
\begin{array}{ccc}
\Pi_{n}(A, v) & \stackrel{\varepsilon}{\rightarrow} & \Pi_{n}\left(A, B_{2}\right) \\
\left(\alpha_{0}, \alpha_{1}\right)_{*} \downarrow & & \downarrow^{\alpha_{2}} \\
\Pi_{n}\left(A, v^{\prime}\right) & \underset{\varepsilon^{\prime}}{\rightarrow} & \Pi_{n}\left(A, B_{2}^{\prime}\right)
\end{array}
$$

Proof. We can prove the lemma by the following two diagrams

$$
\begin{array}{ccccccc}
\Sigma^{n-1} A & \xrightarrow{f_{1}} & B_{0} & \xrightarrow{\alpha_{0}} & B_{1} & \rightarrow & * \\
i_{n} \downarrow & & v & & \downarrow v^{\prime} & & \downarrow \\
& & & & & \\
C \Sigma^{n-1} A & \rightarrow & B_{1} & \rightarrow & B_{1}^{\prime} & \rightarrow & B_{2}^{\prime}
\end{array}
$$

and


Since $\alpha_{2 *} \varepsilon\left[f_{1}, f_{2}\right]=\left[*, \alpha_{2} \beta f_{2}\right], \varepsilon^{\prime}\left(\alpha_{0}, \alpha_{1}\right)_{*}\left[f_{1}, f_{2}\right]=\left[*, \beta^{\prime} \alpha_{1} f_{2}\right]$ and $\alpha_{2} \beta=\beta^{\prime} \alpha_{1}$, the lemma was proved.

Theorem 4.9. If $B_{0} \xrightarrow{v} B_{1} \xrightarrow{\beta} B_{2}$ is a fibration, then we have $\mathscr{G}_{n}(A, v)=\Pi_{n}\left(A, B_{2}\right)$.
Proof. It is sufficient to show that $\left.\varepsilon\right|_{\boldsymbol{g}_{n}(A, v)}$ is an epimorphism. If we define

$$
\bar{v}:\left(B_{0}{ }^{B_{0}}, 1_{B_{0}{ }^{B}}\right) \rightarrow\left(B_{1}{ }^{B_{0}}, v\right) \text { and } \bar{\beta}:\left(B_{1}{ }^{B_{0}}, v\right) \rightarrow\left(B_{2}{ }^{B_{0}}, c\right),
$$

by $\bar{v}(f)=v f$ and $\bar{\beta}(g)=\beta g$, then the triple $\left(B_{0}{ }^{B_{0}}, 1_{\left.B_{0}{ }^{B}{ }_{0}\right)}\right) \xrightarrow{\bar{r}}\left(B_{1}{ }^{B_{0}}, v\right) \xrightarrow{\bar{\beta}}\left(B_{2}{ }^{B_{0}}, c\right)$ is a fibration, where $c$ is the constant map. So there exists an isomorphism $\bar{\varepsilon}: \Pi_{n}(A, \bar{v}) \rightarrow \Pi_{n}\left(A, B_{2}{ }^{B_{0}}\right)$. Since the diagram

$$
\begin{array}{cccc}
\left(B_{0}{ }^{B_{0}}, 1_{\left.B_{0}{ }^{B}{ }_{0}\right)}\right) & \stackrel{\bar{v}}{\rightarrow}\left(B_{1}{ }^{B_{0}}, v\right) & \xrightarrow{\bar{\beta}}\left(B_{2}{ }^{B_{0}}, c\right) \\
\omega_{0} \downarrow & & \omega_{1} \downarrow & \\
\left(B_{0}, *\right) & \stackrel{\omega_{2}}{ } \downarrow & \left(B_{1}, *\right) & \xrightarrow{\beta}\left(B_{2}, *\right)
\end{array}
$$

is commutative, we have the following commutative diagram

$$
\begin{array}{ccc}
\Pi_{n}(A, \bar{v}) & \stackrel{\bar{\varepsilon}}{\rightarrow} \Pi_{n}\left(A,\left(B_{2}{ }^{B_{0}}, c\right)\right) \\
\left(\omega_{0},\left(v_{1}\right)_{*} \downarrow\right. & & \downarrow^{\omega_{2_{*}}} \\
\Pi_{n}(A, v) & \underset{\varepsilon}{\rightarrow} & \Pi_{n}\left(A, B_{2}\right) .
\end{array}
$$

By the fact $\omega_{2 *}$ is an epimorphism, we can prove $\mathscr{G}_{n}(A, v)=\Pi_{n}\left(A, B_{2}\right)$.
By Theorem 4.9, we have the following corollaries.
Corollary 4.10. If $B_{0} \xrightarrow{v} B_{1} \xrightarrow{\beta} B_{2}$ is a fibration, then we have the following sequence

$$
\cdots \rightarrow \mathscr{G}_{n}\left(A, B_{0}\right) \xrightarrow{v_{*}} \mathscr{G}_{n}^{\nu}\left(A, B_{1}\right) \xrightarrow{\beta_{*}} \Pi_{n}\left(A, B_{n}\right) \xrightarrow{\partial} \mathscr{G}_{n-1}\left(A, B_{0}\right) \rightarrow \cdots
$$

This sequence is called the $G$-sequence of the fibration rel. $A$ in the category of pairs. If $B_{0} \xrightarrow{v} B_{1} \xrightarrow{\beta} B_{2}$ is a fibration, we can easily check that the $G$-sequence of $v$ is exact if and only if the $G$-sequence of the fibration in the category of pairs is exact. Thus if $v$ is null homotopic or has a left homotopy inverse, then the $G$-sequence of the fibration in the category of pairs is exact. Especially, if $v$ has a left homotopy inverse, then we have the following corollary.

Corollary 4.11. If $B_{0} \xrightarrow{v} B_{1} \xrightarrow{\beta} B_{2}$ is a fibration and $v$ has a left homotopy inverse, then we have

$$
\mathscr{G}_{n}^{\prime}\left(A, B_{1}\right) \cong \mathscr{G}_{n}\left(A, B_{0}\right) \oplus \Pi_{n}\left(A, B_{2}\right) .
$$

Consider the following commutative ladder which consists of $G$-sequence of the fibration and the homotopy sequence of the fibration

$$
\begin{aligned}
& \rightarrow \mathscr{G}_{n}\left(A, B_{0}\right) \xrightarrow{v_{*}} \mathscr{G}_{n}^{\nu}\left(A, B_{1}\right) \xrightarrow{\beta_{*}} \Pi_{n}\left(A, B_{2}\right) \xrightarrow{\partial} \\
& \downarrow^{I_{n}^{0}} \quad \downarrow^{I_{n-1}^{1}} \quad \downarrow^{1} \\
& \rightarrow \Pi_{n}\left(A, B_{0}\right) \xrightarrow{\nu_{*}} \Pi_{n}\left(A, B_{1}\right) \xrightarrow{\beta_{*}} \Pi_{n}\left(A, B_{2}\right) \xrightarrow{\partial} \\
& \mathscr{G}_{n-1}\left(A, B_{0}\right) \xrightarrow{v_{*}} \mathscr{G}_{n-1}^{v}\left(A, B_{1}\right) \xrightarrow{\beta_{*}} \Pi_{n-1}\left(A, B_{2}\right) \rightarrow \\
& \downarrow^{I_{n-1}^{0}} \quad \downarrow^{I_{n-1}^{1}} \quad \downarrow^{1} \\
& \Pi_{n-1}\left(A, B_{0}\right) \xrightarrow{v_{*}} \Pi_{n-1}\left(A, B_{1}\right) \xrightarrow{\beta_{*}} \Pi_{n-1}\left(A, B_{2}\right) \rightarrow
\end{aligned}
$$

where the $I$ 's are inclusions and 1 is the identity. If the upper sequence ( $G$-sequence of the fibration rel. A) is exact, then by the theorem of Barratt and Whitehead, we have the following theorem.

Theorem 4.12. Let $B_{0} \xrightarrow{v} B_{1} \xrightarrow{\beta} B_{2}$ is a fibration. If $v$ is null homotopic or has a left homotopy inverse, then we have following long exact sequence

$$
\begin{aligned}
& \cdots \rightarrow \mathscr{G}_{n}\left(A, B_{0}\right) \xrightarrow{\left(I_{n}^{0}, v_{*}\right)} \Pi_{n}\left(A, B_{0}\right) \oplus \mathscr{G}_{n}^{v}\left(A, B_{1}\right) \xrightarrow{v_{*}-I_{11}^{1}} \Pi_{n}\left(A, B_{1}\right) \xrightarrow{\partial \beta_{*}} \mathscr{G}_{n-1}\left(A, B_{0}\right) \xrightarrow{\left({ }_{n}^{0}-1,{ }^{v}\right)} \xrightarrow{\left.v_{*}\right)} \\
& \Pi_{n-1}\left(A, B_{0}\right) \oplus \mathscr{G}_{n-1}^{v}\left(A, B_{1}\right) \xrightarrow{v_{*}-I_{n-1}^{1}} \cdots .
\end{aligned}
$$

## References

[1] D.H. Gottlieb, A certain subgroup of the fundamental group, Amer. J. Math. 87 (1965), 840-856.
[2] D.H. Gottlieb, Evaluation subgroups of homotopy groups, Amer. J. Math. 91 (1969), 729-756.
[3] D.H. Gottlieb, On fibre spaces and the evaluation map, Ann. of Math. 87 (1968), 42-55.
[4] P.J.Hilton, Homotopy Theory and Duality, Mimeographed notes, Cornell University (1959).
[5] J.R. Kim and M.H. Woo, Certain subgroups of homotopy groups, J. of Korean Math. Soc, 21 (1984), 109-120.
[6] G.E. Lang, Jr., Evaluation subgroups of factor spaces, Pacific J.Math, 42 (1972), 701-709.
[7] K.Y. Lee and M.H. Woo, The $G$-sequence and the $\omega$-homology of a CW-pair, Top. Appl, 52 (1993), 221-236.
[8] K.L. Lim, On cyclic maps, J.Austral. Math. Soc, Ser. A 32 (1982), 349-357.
[9] N. Oda, The homotopy set of the axes of paireings, Canad. J. Math, 42 (1990), 856-868.
[10] J.Z. Pan, X. Shen and M.H. Woo, The $G$-sequence of a map and its exactness, to appear.
[11] J. Siegel, $G$-spaces $W$-spaces $H$-spaces, Pacific J. Math, 31 (1969), 209-214.
[12] K. Varadarajin, Generalized Gottlieb Groups, J. Indian Math. Soc, 33 (19969), 141-164
[13] M.H. Woo and Y.S. Yoon, $T$-spaces by the Gottlieb groups and its duality, J. Austral. Math. Soc. (Series A) 59 (1995), 193-203.


[^0]:    *Supported by TGRC-KOSEF and NDRF96 (KRF) **Supported by BSRI 1409 and KOSEF Communicated by Prof. G. Nishida, December 27, 1996

