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Bénard-Marangoni convection
with a deformable surface
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Takao IOHARA

1. Introduction

Thermal convection is often studied by an incompressible fluid model, Boussinesq
equations (see for instance [J]),

1
(1.1) P—(u,+u-Vu)+Vp=Au—p(T)Vy, divu=0,
r

(1.2) T,+u-VT=AT.

Here, u=(u,,u;) is the vector field of fluid velocity, p the pressure and T the
tmperature, and Pr is a constant called the Prandtl number. The density p is
assumed to depend linearly on T, p(T)=G—RaT; the constant Ra is called the
Rayleigh number.

The simplest setting of these equations for the study of thermal convection
would be: consider the equations in a strip region, say {—1<y <0}, with boundary
conditions

u=0 (non slip) or pi—(Vu+'Vu) 1i=0 (stress free)
on y=0, —1 and
T=1on y=—1and T=0 on y=0.

This set of equations are too simple for the study of real convection of fluids,
because this does not take into account complicated physical effects on the
boundary. In usual setting of experiments, upper boundary of the fluid is open to
the air and possible to deform from flat shape.

In this paper, we will be concerned with the equations (1.1) and (1.2) on moving
two-dimensional region Q()={—1<y<n(x,f)) —oo<x<oo} with the following

boundary conditions. On the bottom boundary B={y= —1}, we consider
(1.3) u=0 on B,
(1.4) T=1 on B.
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The moving boundary I'(¢) subject to “kinematic boundary condition” : normal
speed of I'(¢) at x equals to u T |-, where T is the outward unit normal vector of
I'(f). In terms of n(x,?), this can be written as

(1.5) Ne=Uy— UMy

On the moving upper boundary I'(t)={y=n(x, 1)}, we consider stress balance
relation:

(1.6) (p =Pt —(Vu+'Vu)-T=cHn—(t-V)ot on T(z).

Here, the constant p,,, is the pressure of the air, t is the tangential unit vectors of

the boundary and H is the curvature of the deformable surface (,/—1—:72)::' We assume

that the surface stress ¢ is given by
g:=a(T)+ Vit-Vu T,

where the surface tension coefficient o(T) is assumed to depend only on the
temperature. The second term represents a dissipation effect, called surface viscosity,
present on the free surface. We consider heat balance on I'(¢f) given as

(1.7) n-VI+BiT=—-1 on I,

where Bi is a constant.

The equations (1.1)}+(1.7) form a complete system for unknown functions #, u,
T and p supplemented with initial conditions for n, u and T. These equations have
an equilibrium solution

_ Ra
(1.8) n=0, u=0, T=T:==—y, p=13:=—7y2~0y+pai,,

which represents the purely conducting state. We will be concerned with the existence
of solutions of the equations (1.1)~(1.7) for initial data near this equilibrium, assuming
that initial conditions are periodic in horizontal direction.

The above system of equations contains as an unknown variable the shape of
deformable surface, so this is a free boundary problem. Beale proved an existence
result for an incompressible fluid layer with a deformable boundary. In his paper
[Beale], he used a transformation determined by the shape of the deformable
boundary, which maps time dependent fluid domain to a time independent domain,
and transformed the original problem with a moving boundary to a problem on a
fixed domain. In section 4, we show existence of exponentially decaying solution
of (1.1)—(1.7) for initial condition close to the equilibrium (1.8), using his method
with minor modificartions.

The next section deals with a simpler linear system. In section 3, we will show
linear stability around the equilibrium solution (1.8), when Rayleigh number and
Marangoni number are small enough.



Bénard-Marangoni convection 257

In the rest of this section, we give a weak formulation of equations. Let initial
conditions, a function #5y(x) and functions uy(x,y) and the 0y(x,y) defined on
Qo={—1<y<ny(x)} be given. The solution of our problem for the initial condition
is n(x,?) and functions u(x,y,7) and 0(x,y,?) defind on {t>0, —1<y<n(x,#)} which
satisfy divu=0, (1.3), (1.4), (1.5) and the following two equations. (A) Momentum
balance : integral form of the (1.1), (1.6):

(1.9) OZJ —l—(u,-(D—u®u:V(D)+2D:V(I)—(D'Vyp(T)dxdy
oo T

+J o(I-T@n):Vdds  (¢>0)
()

for all vector test functions @ satisfying div®=0 and ® |[;=0. Here D=(Vu+'Vu)/2,
I is the unit matrix and Q(f)={(x,y): — 1 <y<n(x,0)}, T)={(x,y):y=n(x,1}. (B)
Energy balance : integral form of (1.2), (1.7):

(1.10) 0=J (T — Tu-V¥)+ VT VWdxdy
()

+| BiT+1)¥ds (1>0)

@

for all test functions ¥ satisfying ¥ |;=0.

These can be obtained from the original equations using integration by part
and shown to be equivalent to them for sufficiently smooth », T and Q(f). We note
that, in deriving (1.9), we have used a form of Stokes’ formula

J D:V(I)—divD‘CDdxzj - D-Ods
Q(1)

()

and

J (6 Hn—(t-V)ot) dds= J o(I—n®n): VOds
() I'(1)

(see [J]).

Remark. The above definition of solution does not require much regularity to
the functions. This set of equations make sense, if, for example, n and 5, are
continuous, u, TeL*0,00;H"') and, when Vi>O0, the trace of T-Vu-t to I'(t) has
meaning. The solution to be shown to exist is enough regular; n is more regular
than C' and u and T belong to higher order Sobolev spaces.

Here, we give some notations and conventions. Q and I' denote the region
occupied by fluid at the equilibrium (1.8), {(x,y): —1<y<0} and its upper side
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boundary {y =0}, respectively. We assume that everything is periodic in horizontal
direction with period L, so regions Q(1),€Q,--- must be interpreted as peridic
one. H'(Q) and H'(I') denote the Sobolev space of periodic functions with period
L. We denote their norm by |- |, and |- ||, respectively. (-,-) and (-,-); is the
inner product of LX(Q)=HQ) and HT). In the following, we use an operator

A=,/1—A, and its fractional power A*.

2. Stokes System with a Deformable Surface

In this section, the dimension of the region Q is not restricted to two. The
region Q is a strip { —1 <y <0} and everything is periodic in horizontal directions
Xy, X, with period L. We treat the vertical coordinate y as n-th coordinate
x,. We denote u, the horizontal part u,=(u,,---,u,_,,0) of vector u.

We will be concerned with the following linear initial-boundary value problem,
the Stokes system with a deformable surface :

2.1) u+Vp=Au+F, inQ,

2.2) divu=0 in Q,

(2.3) T n=(—0,A,+Gyn—ViAu,+/ on T,
(2.4) u=0 on B,

(2.5) ne=uTr

with homogeneous initial conditions. Here the stress tensor of fluid is defined as
T:=(pI—2D) where D:=(Vu+'Vu)/2. The constants o, and G are assumed to be
positive and Vi to be positive or equal to zero. This system is different to the one
trearted in [ Beale] in the point that the surface viscosity term — ViA,u, is introduced in
the stress balance equation. As will be shown, this term slightly regularize the
solution on the boundary.

Let ¢(x) be a vector test function which is smooth, divergence free and vanishes
near B. Taking inner product of the first equation with ¢, after intergration by
parts, we obtain that the solution (u,#) satisfies

j U @+2D:Vo—F-@dx
o

+ f ooVl V40, +Gne, + ViV, :V,0,+ f- odo = ¢.
r

Thus, we obtain that the equations (2.1)+2.5) are equivalent to (2.5) and

(2.6) (U, @)+ <u, 0> +b(n, @, 1)+ ViV, , Vo )r = (F, @) — (f, 0)r

for all 1> 0 and for all smooth and divergence free ¢(x) which vanishes near B. Here
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Cu, 0> =[a2D(u): D(p)dx and  b(n,¢,) = [,V V,0,+Gne,)ds. We note that
Korn’s inequality {u,u)>6|ul|? holds in {ue H'(Q):divu=0, u|z=0}.
We will treat the problem by Laplace transformation

()= Jw e Mu(ndt

0

in time variable as in [AV] and [Beale]. Laplace transformation transform the
above equation (2.5) and (2.6) to the following boundary value problem with a
complex parameter A.

2.7 M=d71|,

(2.8) A, @)+ <, @) +b(1, @,) + Vi(Vyity, Ve = (F, 0) - (f @)r
or, eliminating 7,

(29) K(i; 9)=(F, 0)—(f, o)r.

where K(ii, ¢):= A, @)+ {4, o> + 17 'b(it, , @,) + Vi(V,i,, V4o, ). (We note that, here
and below #,¢,--- and inner products are suitably complexified) We will show
that this system has a unique solution when 1 is in a certain region and then
construct the solution of (2.1)«2.5) with homogeneous initial conditions by
transforming back through the inversion formula

(2.10) u(r):ij G(A)eMdA.
2 ReA=const

m

To state the result of this section, we describe some function spaces to be
used. K"(Q x I) denotes the space - time Sobolev space H°(I; H"(Q))n H"*(I; H°(Q))
as in [Beale] and K" (Q x /) denotes its weighted version {f:e" /'€ K'(Q x I)}, where
Iis a time interval. For notational simplicity, we write K" and K” , for K"(Q x (0, c0))
and K" (Qx(0,00)). K-, denotes {feK” (Qx(—00,00)):fl,<o=0}. We can
think this space as a subspace of K", and it is known that

K", o =the clusure in K_, of {feK",: f vanishes near t=0}

and, when 5! is not an integer,

d* r—1
@.11) K" o= {S €KL, ol =0 (0<k<"—2)

(see [LM]). Calculation shows that the norm | fllx- is equivalent to

.12 f (aAN1? + 1Ar (A | §)dA
Reid= -y
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and Laplace transformation gives an isomorphism between K”, , and the space
of H'(Q})-valued holomorphic functions on {ReA> —y} equipped with the norm (2.12)
(See section 7 of [AV]). For functions on I, we use similar, but a bit
different, spaces K™¥I" x I):= H°(I; H"*¥T")) n H"*(I; HYT)), and K"} x I):={f:e"f
e K"} x I)}. When I=R*, we write K™}I") and K'_”«;(F) for them. The meaning
of K ’_‘%‘(0,(1") will be obvious from notation. Now, we state the result of this section.

Proposition 2.1. There exists y>0 so that for any r>2 and (F,f)e K%,

X K’f,,ib%([’), the equations (2.1}~(2.5) has a solutionue K-, ), N € K’_‘;?(O)(F) satisfying

”“”K*_y"‘ ||'l"l('_-y2-%(r)S C(”F” Kr;v2+ ”f”l(r_-yzv%(r))-

where the constant C does not depend on F and f. When Vi>0, this solution satisfies
Viulre K7 2XT) and

||Vl%“h|| K';vl-%(r) <CIF| Kro2 +/1 K':vz-é(r))c

Remark. From (2.11), the solution in the above proposition satisfies initial
conditions

k k
gt—,‘u|,=o, gt_k’”t=0=0 (03k<r—21)-
In the existence proof for the nonlinear problem, we will work in the range r<3. In
this range of r, these conditions become u|,-,=0 and nj,-,=0. In general,
similar conditions must hold for the data F and £, and these constitute the compatibility
conditions for data F and f for solvability. But, when r<3, K73, =K""?* from
(2.11), thus there is no need for compatibility conditions for the data.

For simplicity, at this point, we assume f=0. The proof below works for
general f without essential change. The following proposition is sufficient for the
previous proposition.

Proposition 2.2. Assume r>2. There exists a positive constant y determined
by 6o, G and L so that for any A in {Rel>—y} and data Fe H ™2, there is a
unique solution e H', ne H *4 of (2.5-2.6), satisfying

2.13) el + 1l + 1l 4y r + AT Allo.r < CUF N, - + 1A F o).

Here the constant C does not depend on A When Vi>0, e H *{I) and
||z},,||,+§‘r+|l|"3rz||ﬁ,,||2+&‘,- is estimated by the right hand side of the above estimate
(2.13).

The rest of this section is devoted to the proof of Proposition 2.2. In the
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following of this section, we omit ". We assume Vi>0; the proof for Vi=0 is the
obvious modification of the following,

Because Korn’s inequality holds and the boundary terms b(u,|-, ¢,l) and
(V,u4y,» V,0,)r are equivalent to the I '(I')-inner product for functions on T, it is natural
to consider (2.9) in the function space

V={ue H'(Q):divu=0 in Q, ulz=0, ulre H'()}.
We have

Proposition 2.3. Assume Fe L*(Q) and Rel>0. The problem K(u;p)=(F,q)
for all eV has a unique solution ueV

Proof. Setting ¢ =u in (2.9), we obtain

R
(2.14) Re K(u;u)=Re Allulld + Cu,u) + I/l]% blu , ) + Vil Vyuy 13 -

By using Korn’s inequality, when Re 1>0, we obtain
(2.15) K(u;u)= Sllull} +Re A, 1 r+ Villuy |13 -

Thus, K(-,) is V-coercive. We apply Lax-Milgram theorem and obtain the
conclusion.

For a fixed F(4), from the above proposition, we obtain a solution u(4) for all 1 in
{ReA>0} and this u(1) is holomorphic in 4 (with value, say, in V). Thus, by
holomorphic continuation, the following estimates are sufficient to obtain the solution
of {Re A> —y}. (We note that continuation of holomorphic u(1) satisfying (2.9) always
satisfies (2.9), because (2.9) is holomoirphic relation in A.)

Before the estimates of the solution, we state a lemma.

Lemma 1 ([L]). Consider a boundary value problem:
d“’(p:p in Q’ (pll'usz

Jor the data p, b satisfying L-u b= jﬂ p whereT is the outer unit normal vector. There
is a solution operator (p,b)— @ which satisfies

Al < CUIAPllo + 115+ 5,00 )

Proof. We prove the lemma assuming s=0. We take a function a by solving
Aa=pin Q, Va-ii=b-T on T'u B. This a satisfies |Val|, <C(|pl,+ 1514 rus), thus,
we have reduced this lemma to the case p=0.

We take an anti-symmetric tensor w={w;;} vanishing on T'UB and satisfying
Wi a=b; (1<i<n—1). Then, setting p=divw, divp=0 is automatically satisfied
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and, because tangential derivatives of w vanish on I"'U B, ¢ satisfies required boundary
conditions.

Proposition 2.4. There is a small pasitive y which depends only on oy, G and
L so that, when r>2, we have

IA™ Yully + 1l + - < CIA™2F

for A with ReA> —y. The constant C does not depend on A.

Proof. We take an auxiliary function a by solving
diva=0, a,lr=u,lr, a,lr=0, alg=0
by lemma 1. Setting ¢ =A%""'a in (2.9), we obtain
ATUB(AT A ) = (AT EE AT la) — (AT P ATy — A(ATu, AT a),
thus
N2y r < CLAIA" 2 Fllo + 1A tull )IATall, + CAP | Aullo| A allg -
<e|Aall}+ CAPIIAN 7 2Fllo+ A" ully + 1A ullo| A" Mallo).

According to lemma 1, a satisfies ||A"a||,sC||u,,||,+%',- and ||/\"‘allosCllu,,H,_ZHI
<C||A""2u|,. Using these inequalities, we obtain

440 < CLAPIAT2FIIS + 1T a3

or
(2.16) Il 440 < CUA ™ 2Fllo+ A" ully).

On the other hand, by setting ¢ =A%"" Yy in (2.9), we obtain
(2.17) ol A" ulld+Solnl 2+ SIA ™ ull} <A™ 2F oAl

For non-negative o, the proposition follows from (2.16) and (2.17). When ¢ is negative
and sufficiently close to 0, (2.17) leads to

(2.18) A" ully < Clollnll,.c+ 1A 2Fll)

and, combining (2.16) and (2.18), we show the proposition for sufficiently small
negative a.

Proposition 2.5. For ReA> —y, we have
A" 2ull o < CIIA""?F |

where the constant C does not depend on A.



Bénard-Marangoni convection 263
Proof. Since |A|<C(|Im A|+Re A+ 1), it is sufficient to show
(2.19) [Tm 2l Afullo < CIAF o,

because Re A||Asul|, is estimated in (2.17). We set @ = A*u in (2.9) and take imaginary
part, then we obtain

Im_/l b(A°u, A*u)+ Im(A°F, A'u).

Im A|Au|2=
[ Afullg TE

Thus,
[Tm A2 | A*ulld < Ch(A*u, A*u)+ Cltm Y| ASF || o | Asullo -

Since b(f, /)< CIf Il r. applying Cauchy-Schwarz incquality to the last term, we
obtain

[T A A%ullo < Cll 41 r + CIAF o

So, it is sufficient to show |u,ll;+ . r< CIA*F|,.
From boundedness of trace, ||u,lls+,r<ClIA%,|,. Here, we note that, for f

satisfying div /=0, we have f, .= =V, f,, thus | £, [, <CI|AfIl; + Cll f,;, 10 < CIASL |, -
Using this fact, we obtain

(2.20) letllss 1.0 < CUIAT Tl

Now, proposition 2.4 and the last inequality lead to the desired estimate.

Proposition 2.6. When Vi>0, we have
leglly +yr < CIA ™2l
Proof. As in the estimate of n in the proof of proposition 2.4, we solve
diva=0, a,|lr=u,lr, a,|r=0, a|z=0
and set ¢ =A%"'a to (2.9). Then, we obtain
(2.21) Villugl2y e S COMIA" 2ullo + A" Mully + A2 Fllo) | Aallo -

Since [A'allo < Clluyll, +yr from Lemma 1, Proposition 2.4, 2,5 and (2.21) lead to
the conclusion.

We have obtained
(2.22) A Yully + 1A 2ullo + il 44 + lttnlly +3,r <CIAT2F 4.

What we have to show is the estimates of normal derivatives. We do this following
the process in [SS].
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First, we can obtain the corresponding pressure field p as a function satisfying
A@)=(p.div @) where I(-) is the functional /(¢):= K(u; ¢)—(F,¢). This p exists because
I(-) is defined and bounded on {peH':¢|z=0}, and vanishes for divergence free
¢@. These p and u satisfy

(2.23) K(u; )~ (p,div o) =(F, ¢).

for ¢ not necessarily divergence free, and then, (u,p,n) satisfies equations (2.1)~2.5)
classically. For estimates for pressure p, we solve

divg=p inQ @lr=0, @lz=0
and set @=A2""YG in (2.23). Then, we obtain
MA 72U, A @)+ | A" pll3+ <A u, AT ) + BAT iy, AT TG, = (AT 2F AT).
Since Il/\'"‘(f)ll,+||(7),,l|,_i_,-s||A"‘p||0 from Lemma 1, using (2.22), we obtain
IA™ "pllo< CIA"2F .

Now, because u, n and p satisfy equations classically, we can write normal
derivatives of u as u,,= —div,u, and u,,=—Au,—Au,—V,p+F,, and we can
show the needed estimates inductively for integer . We can show the desired
estimates for general r by interpolation.

Remark. The pressure p for the solution (u,n) exists and satisfy | pl Kot
<ANFlgr-2+ 0 fllgr-2.40). We did not include this in the statement of Proposition
R -vY

2.1, because we do not need this in section 4.

3. The linearized system

In this section, we are concerned with the linearization around the equilibrium
(1.8):

1 . .
Prfu,+Vq=Au+Ra0Vy+F, divu=0 in Q,
r

0,=A0+u,+F, inQ,

'7:=“Z|r,

T H=(—0,A,+Gii +(MaV,(0—n)— ViAu,)t+f on T,
0,+Bi(0-n)=f, onT,
u=0,0=0 on B

Here Q={—1<y<0} is the domain occupied by the fluid at the equilibrium and
I'={y=0} and B={y= —1} are its boundaries. The differential operators A, and
V, which appear in the boundary conditions is (%)> and & and the vectors T and
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t are normal and tangential unit vectors of I', (0,1) and (1,0). The constant g, and
Ma is determined as o(T)=0,+Ma T+ O(T?).

This is the Stokes system with a deformable surface + heat equation + lower
order terms. We will show that this linear system has exponentially decaying
solution, when Ra and |Ma| are small enough.

This linear system can be written as

G.1) M=z
(3.2) K(u,0,1;®)=(F, ®)—(f, ®)r
(3.3) Ko(u, 0,15 ®)=(Fo,¥)—(/fo.¥)r

for all smooth ®(x) and W(x) with div® =0, ®|;="¥|;=0, where
1 .
K(u, 0, " ; ®) = P_ (u, N (D) + <u, (D> + b(}'], d)z) + vl(thl N th)l)r
r
—Ra(0, ®,) + Ma((0 —n), V,®)r
Ko(u~ 0» n; \P) = (01 ’ lP) + (VO» V\P) + B'(O» lP)l‘ _(uz s \P)

For this system, we prove the following result.

Proposition 3.1. Assume Ra and Ma are sufficiently small. For data F,
FOEKi;fO,, f f;,eK'_;f;)%(r), the equations (3.1}-(3.3) has a solution u, 0 K", ),
ne K 30T, which satisfies

(34 llu, 0| ket 71l K am S C(||F, Fo“xr_-y2 + £, foll Kr;yl-i(r))-

1

When Vi is positive, u, € K" I3*¥T") and ||Vfu,|l,<,_.yz,§m < AIF Folg-» +

||fxf0 || K'_"VZ«"z(r))-

Proof. Existence will be obvious, once the estimates in the statement of the
proposition have been shown. Applying Proposition 2.1 to (3.1)~3.2), we obtain

Hullxr_y + ||’1||Kzg,§(r)+ IV3u, ”kr_--yz*i(r)
< CIF g2+ 1f ey + Ral0ll -3+ [Mal 10, 7] -2
Similar estimates can be shown for heat equation and we can obtain
100k , < COlFollkr2+ 1 foll =3y + 1l -3+ Bill 1l -3 -

Combining these two inequalities, we obtain
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lus/Ra0llk: + 11l s dary + IVE g2y
<CIF,/RaFo llge-2+ £ /Rafy llxr-3r)
+Cy/Ra flu, /R0 [z, + CIMal[[0, 7l g, )+ Co/Ra [Billl e 2ry

and we obtain (3.4) for Vi>0 when Ra and |Ma| are small. The case Vi=0
can be shown exactly in the same way.

In the next section, we need results for more general form of inhomogeneous
terms as following;

(3.5) K(u,0,n;®)=(F,®)+(F',V®) —(f, ®);
(3.6) Ko(u,0,n;®)=(Fo, ¥)+(f5. V¥) = (fo. ¥)r

where F'={F}}, F}={Fg} and (F',V®)=[,F;0,0dx.

Proposition 3.2. Assume Ra and Ma are sufficiently small. For data F,
FoeK™ %oy, F's FoeK ™ lon [o SO€K 2], there exists a solution u, 0€K”, ),
neK 3, (I), which satisfies

b

G Ol + 10l < CUFFo a4+ I1F F g+ 1 fifollke-2 4

When Vi is positive, u, € K" 22*4T and Vit llge-240y < CUIF, Follg2 +

£ Soll k-2

This proposition can be reduced to the previous proposition using [oF': V®dxdy
=—[divF"' - ®dxdy+ 1 F'- ®dx.

4. Existence for the nonlinear problem

In this section, using the result in the previous section, we show an existence
result for (1.1)~(1.7).

First, we write equations for perturbation (#,0,1) to the equilibrium solution
(1.8). We substitute 7=T+0 to (1.9) and (1.10). Because

®-V(Gy+Ray?/2)dxdy — RaJ 0®,dxdy

(1)

J —®-Vyp(T)dxdy = J
Q1)

Q)

= I (Gy+Ray?/2)® nds— RaJ~ 0, dxdy,
')

1)

(1.9) becomes
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1 1
“4.1) j —u,-®+Ra 0®2dxdy+j (— —— u®u+2D): Vddxdy
Q@) r Q1)

r

+ J (Gy+Ray?/2)®-nds+ J o(I-T®n): Vdds =0.
rae r®

(1.10) becomes

4.2) J 0, + u,)Wdxdy + I (—0u+V0)- VWdxdy
Q) Q0)

+ J Bi0Wds+(| —¥ dxdy+ j Wds)=0.
()

2(t) @)

We use a transformation t=7, x;=X(%,,I) (i,a=1 or 2) determined by the
shape of the deformable boundary y

4.3) x=X4Y;*n,
4.4 y=y++p;*n.

Here, ¢; and y; are §¢(-/§) and $y(-/5), and ¢ and ¢ are smooth functions with
compact support satisfying [¢=1 and [y =0. = denotes the convolution product
in %. This transformation maps the time-dependent fluid domain Q(f)={—1
<y<n(x,1} to a fixed domain {—1<j<0}=Q.

By this transformation, the independent variables are transformed as
=5+ +Dopn: 4+ Yiend, =X, %, and dxdy=Jdidj=/1+nidx.

As in [Beale], we define velocity field on Q by

ui=J_1X,-‘al«7a

where J=det x; , is the Jacobian determinant of the transformation. By this choice,
divu=0 and #,=wu,—uyn |, are transformed to div;i=0 and n;=d,|. We
transform test function @ in the same manner. Then, the new test function ® runs
through {div®=0,®|,=0}.

By these changes of variables, the integrals in (4.1) and (4.2) become integrals
over Q and I" and the integrands are written in terms of 4, 0, n, @, ¥: we write
obtained equations as K(Z; ®)=0, Ry(z;¥P)=0 where =(i,0,n). The difference with
the left hand side of the linearized system, K(Z;®)—K(Z;®), can be written as
[o(F2)- ®+ F'(2): V®)dxdy — [rf(?)- ®d%.  Similarly, we set Ko(Z;P)—K(Z;P)
= [o(Fo)¥ + F3(2): VP)dxdy — [ fo(2) V5.

We write the linear system treated in the previous section (3.1), (3.5) and (3.6) as

Pi=F, where £=(i,0,n), F =(F.F,.F',F}, f. fo)

Then, the transformed problem can now be written as
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(4.5) Fi=F(2), Zl-9=%,

where Z(2)=(F2), Fo(2), F'(2), F3(2), D). fo(2)), and Z, is determined by z,.
We fix y chosen according to Proposition 3.2 and consider

X’={z~=(17,5,r1):
me=i,|r, divi=0in Q, ilz=0, §]z=0, Jn:O
r

i,0eK",. ne K1), Via, lre K"¥I)}
Y ={F =(F.Fo,F'F§. [ [o):
F,Foe K™%, F', FyeK™5', f, foe K75 4I)

-y

and X and Yg be the spaces with KT, replaced by K%, ,. We note that, when
2<r<3, Y§ is equal to Y" from Remark in section 2.
Let Q={(x,y,0:1>0, —1<y<y(x,n)} and K(Q)={uly:ueK'({y>—1}xR").

Proposition 4.1.  Suppose r>2 and Z=(ii,0,n)€ X" be given. Then, corresponding
u and T are well-defined and belongs to K'(Q). If Ze X" is a solution of (4.5), (u, T, n)
is a solution of (1.1)—(1.7).

Proof. Regularity of nEK’_‘;i is sufficient for i+ u and 0 0 to be well-defind
on the class K. See [Beale], especially Lemma 5.2.

If initial condition noe H'"¥T) and ug,0,e H ™ (Q0)), uq, |r€ H ~T(0)) is
small, Z,=(iiy.0,,1,) is also small and we can construct their extension z®e X" to
t>0. This can be chosen to satisfy [z©y.<C(||n,l, —yrtluoll—y + 110, -
+ gy ll, - yr)- (This can be shown by using extension theorem for Kr See [Beale].)

We substitute 7=z +Z and we obtain the equation for Z:

Li=F(O+5 -2,  Z|,_,=0.

According to previous section, the restriction of the linear part % to Xg,
ZLo: X5 — Yi has a bounded inverse. Thus, the problem has been reduced to
a fixed point problem

=L [ F (V45— £29].

N

We can show existence of solution Z for small initial data by verifying that the
right hand side define contraction mapping on a small ball in X centered at the origin,
if the following estimates for the nonlinear terms hold.

Proposition 4.2.  When r>3,

(4.6) 1Z@ly-<Cllzl%-.
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4.7 |7 (z,) = F(zx)ly- < Cmax(lzy I x-, |z2llx)zy — 25l xr-

Transforming back (#,#,0) to the variables defined on physical domain, we can
obtain a solution (y,u, T') of the system (1.1)-(1.7).

Theorem. We assume 3<r<3, constants Ra and Ma are sufficiently small and
Vi is zero or positive. Initial conditions nye H" ™4 and uy, Toe H™({ — 1 <y <no(x)})
periodic in horizontal direction are given and satisfy [n,=0, divuy=0, uy|z=0 and
Tolg=—1. Then, there exists >0 so that for initial conditions satisfying
ol r-4+ ol gr- 1+ 1 To—Tllg--1<8 (in the case Vi>O0, moreover, satisfying

llug -T|y=,,0|| ur-1<0), there exists a solution neK’_"yi(]“ x (0, 00)), u, Te K" (Q) periodic
in x with the same period of initial condition. When Vi>O0, moreover, we have
u Ty, € KZHHI X (0, c0).

Remark. Even when Ra and Ma are not small, we can show Proposition 3.1
with some positive y and, working in spaces like K"(Qx (0, T)), obtain an existence
of the solution in finite time for general Ra and Ma.

Proof of Proposition 4.2. We don’t present full detail. We describe the proof
for (4.6);(4.7) can be shown similarly. For estimates of these nonlinear terms, we
use the following inegqulities.

(4.8) 1/glks<Cllflx-lglks (fEK", geK’, r>2, 0<s5<),

4.9 I £g ks < ClUSf kel € ks dery

3
(f € K"YIN), ge K>}, r>2, 0<s<r).

((4.8) is proved in [Beale], Lemma 5.1. (4.9) can be proved by the same argument.)
Using (4.8), when r>2, we obtain

(4.10) IFllkr 2 < CIVX =Tl el Vil 2+ 1001k:.-2),
@11 1Follgr—2 < CIVX =T1kA10;, 0 g2+ 1l - 2)
4.12) IF - < CIVX =Tl Vil g + Clidl el e ),
(4.13) 1F3llxep < CIVX =Tl V00 s + Cllall 101 ko).

and, we obtain the required estimates from ||\~7X—l||,(rsC||n||,(,_+y5a-,, which can be

shown from the definition of X (see [Beale]).
The last integral in (4.1) becomes



270 Takao Iohara
J 0oHD 1 —Ma(t- VY0 —n)® T+ Ma(@— n)H® -1 + 00— n)*)t - VO T
Ia)
+Vi(t- Vu 1)t - VO -1)ds.

Because H = (—14+0nx)Mzz» TVut = (—14+0Mm)i, ;+ OMsnzsi) and  ds
=./1+n%dx, recalling the definition of f(Z), when r>3,

I£1 Ko 2in S Clingl Kro) Salinll Km0 +10—nl koorant Villd, z:l Kr;yz—%(r))

+CI10—n| Kr_-yl-%m”o —n ”K'_’yl-i(l')

and, with ||0] K S C| 0] P this leads to the desired estimates for f(Z). By
similar computation, we can obtain || fo(2)ll k- 24 S Clnll Kr_.iv(,-)(llnll k-3 + 101 K'.‘,’-%(r))

and we have completed the proof.
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