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Generators of the cohomology of B V3

By

Masaki KAMEKO

1. Introduction

Let Pk = F2 [x1 . . . . . . k] be  a polynomial algebra over the field F2 generated by
x l , , xk . B y  assign ing  degree  1  to  each  x i ,  P k  is regarded as a graded algebra
over the ground field F 2 .  The mod 2 cohomology ring of the classifying space
BVk  of the elementary abelian 2-group Vk with rank k , is isomorphic to P k  as a
graded algebra. Through this isomorphism, we may regard P k  as an d-module
where d stands for the m od 2  Steenrod algebra.

From  early days of algebraic topology, topologists have been studying this
cohomology ring and by m aking use of this cohomology ring, topologists have
been proving many theorems. But our knowledge of this cohomology ring is not
deep e n o u g h . For instance, we do not know even the dimension of the vector
space QPIk' = (F2 10,9,/ PO n fo r  k  = 4.

In this paper, we determine the upper bound for the dimension of the above
vector space QP 1 and give a set of generators in terms of monomials in Theorem
5.2 and we will see that dim QP 1 < 21. In his thesis 14], the author gave the proof
for the linear independence of these monomials in  M I .  After his thesis was
submitted, the lower bound for dim QP;" is provided by Ali, Crabb and Hubbuck
in [1] and Boardman in  [2] investigating homology of B V3 instead of its coho-
m ology . In this paper, we do not give the proof of linear independence of our
generators but they actually form a minimal set of generators.

2. a(n) and fl(n)

W e begin with the definitions and elementary properties of a(n) and I3(n).
a(n) is  the number of 1 's in the dyadic expansion of n  and I3(n) is the smallest
positive integer that satisfies the condition a(n + I3(n)) < fl(n).

W e need the following properties of fi(n).

Proposition 2.1. a(n + m ) < m  if  and  only if  f i(n) < m.

P r o o f  The "only i f "  part is nothing but the definition of fl(n). The " i f "
part is shown as follows: if fl(n) < m , then
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Œ(n + m) = Œ(n + I3(n) + m — fi(n))

< a(n + 13(n)) + Œ(m — fl(n))

< fi(n) + m — 13(n)

=

Proposition 2 .2 .  n — I3(n) is non-negative and even.

P ro o f  Since a(n + n) = a(n) n ,  I 3 ( n )  n  by defin ition . Assume that
n — fi(n) is o d d .  T h e n  n + [3(n) — 1 is e v e n  a n d  non-negative. Thereby
a(n + fi(n) —1) = a(n + fi(n)) —1 f l ( n )  — 1. T h i s  contradicts the definition of
I3(n). Therefore n — fl(n) must be even.

Proposition 2.3. Suppose 13(n) = k. Then fi (n —
2

k  <  k .

Proof

(n— k  )  c( n +k )+k
2

a   
o

2
= a(n + k) k .

By Proposition 2 .1 ,  we get the desired result.

3. Monomials

In  th is section, we consider several properties o f monomials including a
theorem of W ood. Here, we adopt Boardman's notation in [2]. We assign to
each letter L  the monomial x(L ) of the form x e

i x 2
e2 • • • xk

ek where e, is 0  or 1. We
need 2" letters to make this correspondence one-to-one. We compose strings of
letters in the usual way, by juxtaposition and we also consider the length of string
in the usual way, by counting the number of letters in the string.

Let S  be a string Li L2 • • Lr where L 1 ,,  L , are letters. W e d efin e  the
monomial x (S ) by

X (S )  =  X (L i )X (L 2 ) 2  X ( L r ) 2 "

Let us define two sequences associated with strings. L e t  w,(S) =  deg x(L,)
where L, is the i- th  letter in the string S .  Let e,(S) = e, if x(S) =  4 ' • • • xi

e
ck. We

define w(S) and e(S ) as follows:

w(S) = (wi(S), ,w ,(S), 0, 0, ...),

e(S) = (e 1(S), , ek(S), 0 ,  0 ,  . . . )

where r  is the length of S .  w (S) is the weight vector of x(S).
We consider the lexicographic order on the set of sequences of non-negative

integers. Let e ( e  ( 2 ,... e'—(eç,e;, ...) be sequences of non-
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negative integers. We say e < e' if and only if there is a positive integer t  such
that e s = es fo r  all s  <  t and e t < e;.

Now we are ready to define the order on the set of monomials.
Let x (S ), x (S ') be monomials in P k .  We say x (S ) < x (S ') if and only if one

of the following holds:
1. w(S) < w(S')
2. w(S) = w (S ') and e(S ) < e(S ')
For the proof of the following lemma, we refer the reader to  the proof of

Lemma 2.2 in  [3].

Lemma 3 .1 . For any  m onom ial x (S ) and a e

ax(S) = x(5')
s,

where w(S') < w(S) f o r e ac h  S '.  H e re  d + is  the set of positive degree elements
in  .s4

Definition 3.2 . A  monomial x (S ) is said to  be inadmissible if there exists a
finite set of monomials x (S ') < x (S ) such that

x(s) x(si)
s,

modulo the image of the Steenrod a lg e b ra . A  monomial x (S )  is  sa id  to  be
admissible if it  is  n o t inadmissible.

It is  c lea r tha t the set of admissible monomials in  P k  is  a minimal set of
generators of Pk.

In addition, we define strictly  inadmissible monomials.

Definition 3.3 . We say x (S ) is strictly inadmissible if and only if there exists
a  finite set of monomials x (S ') < x (S ) such that

x(S) x (S ')

modulo the image of s i(r ) where r  is  the length of string S  and .d  (r ) is  the
subalgebra of .91 generated by Sg l , • ,  5 g2r

The advantage of considering strictly inadmissible monomials is displayed by
the following Theorem 3.4, w hich is our principal tool.

Theorem 3 .4 . L e t  S  S 0 S3S2 h e  a s trin g  o f  letters. I f  x(S i ) is strictly
inadmissible, then x (S ) is  inadmissible.

P ro o f  Let ro  b e  the length of S o and let r1 b e  the length of S i .  The
assumption is that x(S i ) is  a  sum of monomials x ( S )  where x (S ;) < x(Si ) and
polynomials ax(Sf') where a c .91+ (ri). Here d + (r i )  stands for the set of positive
degree elements in  sl(r 1 ). T hus x (S )  is  a  sum  of monomials x(S0S;S2) and
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polynomials

x(So) (ax(S;')) 2 '' x(S2) 2 'l +"

where a E s t f (ri). It is  c lear th at x(S0S;S2) < x (S ) .  So it suffices to show
that

x(S0)(ax(S'))2'' x(S2) 2 " 0

is  congruent to  a  sum o f monomials x (S ") < x (S )  modulo the image of the
Steenrod algebra.

Recall that

(a X (S n  2 r "  =  ( x ( S n  )

fo r  som e a' E s t f (ri + r o ) ,  th a t  i f  a' E  ,sz i+ (ri +  ro ),  then  x (a') is a l s o  in
d + (r t+  ro) and that for each x(a ') E V + (ri + ro), z (d )x 2 '1+ '  =  O. H ence, by
Peterson's lemma,

x(So)(ax(S 1') ) 2 '0 X(S2) 
2' 

I + " x ( so ) a' (x(S') 2 '° ) ) x ( s2 ) 2 "r°

(X (d)x(So))x(S) 2 r0 x(S2) 2 " 0

modulo the image of the Steenrod algebra. By Lemma 3.1, each monomial x (S ')
in  (z(a')x(S0)) is smaller than x (S 0 ).  Hence, each monomial in

(Z (d )X (S0 ))X (Sn 2rO X(S2) 2 " 0

is also smaller than x ( S ) .  This completes the proof.

We end this section by recalling a  theorem of Wood.

Theorem 3.5 (Wood). L et x (S ) be  a  m onom ial of  degree n. I f

oc(n + w i (S ))>  w i(S ),

then x (S ) is  in the im age of  the S teenrod algebra.

For the proof of Theorem 3.5, we refer the reader to [5]. For our purpose
the following modification is convenient.

Theorem 3.6. L et x (S ) be a monomial of  degree n. If  ,g(n) > k then x (S ) is
in the im age of  the S teenrod algebra.

4. Reduction

In this section we define functions 0 and tp which assign monomials of P k  to
monomials of P k .  By making use of these functions we reduce the problem of
finding a basis of the vector space QI);,' to the cases 13(n) < k. Let us assign to the
letter A  the monomial x (A ) =  Xi • • • xk of degree k.
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Definition 4.1. L et x (S )  b e  a  monomial. Define monomials 0(x (S )) and
tP(x(S)) by

0(x(S)) = x(AS),

tlf(x (S )) =  x (S ') (if S = AS'),

tgx(S )) =  O. (otherwise).

It is clear that 0 and çli induce homomorphisms between vector spaces Pk  and
p (kn-k )12 a s long  a s  these vector spaces a re  well-defined. T he  following is the
theorem o f  this section.

Theorem 4.2. If  I3(n) = k, ill induces an  isomorphism o f  vector spaces

OP: Q1 ) 11
Q  -  k ) I 2

w ith the inverse Q0.

P ro o f  Suppose that a n d  0  induce homomorphisms o f vector spaces

Q p kiQ p ( : -  1 0 1 2

and
Q 0 :  Q p (r k)12 Qpk,

Then, OP o Q0 is the identity and  Qt/i is o n to . O n  th e  other hand, by Theorem
3.6, Q0 is also o n to .  Therefore the theorem holds. Thus we may complete the
proof by proving that NJ a n d  Q0 are well-defined under the  above conditions.

Let a e d + a n d  le t  S  be  a  s tr in g . T h en , if  S  =  A S ', then

ax(S) = x(A)(a'x(S')) 2x ( S " )

for some a' c .91+  o r

ax(S) = (S")
It

where wi (S ") < k .  If wi (S ) < k, then ax(S) is a  sum of monomials x (S ") with
w1 (S") <  k .  Since t4 i m aps above x(Sn 's to  zero, m aps the im age of the
Steenrod algebra to the image of the Steenrod a lg e b ra . So, Qt// is well-defined.

O n the  other hand, if a c .sz +, then

x(A)(ax(S)) 2 =  x(AS) + (S")
/ I

for some a' c .21+  and  iv! (S " ) <  k . Since x(Sn's are in the image of the Steenrod
algebra by Theorem 3.6, 0 also maps the image of the Steenrod algebra to the image
of the Steenrod a lg e b ra . So, Q0 is also well-defined. This completes the proof.

By Theorem 3.6, if I3(n) > k, then

dim QP'I, = 0
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and by Theorem 4.2 and Proposition 2.3, we may reduce the rest of the problem of
finding the (minimal set of) generators of P k  to  the cases f l(n) < k .

5. Generators o f H* BV3

We assign to each letter L  from A  through H  the monomial x (L ) according to
the table:

A H

1X1X2XI X2X3x(L) X3X2x iX2X3Xi X3

D G

One may verify the following lemma by direct computation of the action of
the Steenrod algebra on P 3  up to degree 22. So we leave the proof of Lemma 5.1
below to the reader.

L em m a 5.1. T he monomials correspond to  the following strings are strictly
inadmissible.

weight vector w(S) string S

(0, 1) HE, HF, HG

(0, 2) HB, HC, HD

(0, 3) HA

(1,1) FE, GE, GF

(1, 2) EB,
FB,
GB,

EC,
FC,
GC,

ED
FD
GD

(1,3) EA, FA, GA

(2, 1) DE

(2, 2) CB, DB, DC

(2, 3) BA, CA, DA

(1, 1, 1) EEF, EEG, FFG

(2, 2, 1) CCF

(2, 2, 2) BBC, BBD, CCD

(2, 1, 1, 1) BEFG, CEFF, CEFG,

(2, 2, 1, I) BBEG, BBFG, BCEF, CCEF

(2, 2, 2, 1) BBBG
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By looking at the strictly inadmissible monomials o f length 2  in the table
above, it is clear that if x (S ) is admissible then the letters in the string S  is in the
alphabetical order. Thus, by additional observation of the strictly inadmissible
monomials o f length greater than 2  and  x (D E ), w e have Theorem 5.2 below.
The expression of our m ain theorem in  this form is due to Boardman in  [2].

Theorem 5.2. The set of  monomials x (S )  that correspond to all strings S  that
m atch any  of  the follow ing nine patterns generates QP3.

A *B*E*, A* B*[E]F* , A* BBG*,
A *[B]C*E*, A *CEF, A *[B]C*[E]G*,
A *[B ][C]D*F*, A *[B ][C]D*[F]G*,
A s[E][F]G*.

where
L * matches any sequence (0 or m ore) of  copies o f  L;

[L] matches L  or the null string.

From Theorem 5.2 , w e have the following tab le  o f the  upper bound for
dim Q./11 fo r  I3(n) 2 , which is , a s  a  matter of fact, dim Q ./1 itself.

s = 0 s = 1 s = 2 s = 3 s = 4 s > 5

t = 0 1 3 7 10 13 14

t = 1 3 8 15 14 14 14

t = 2 6 14 21 21 21 21

t > 3 7 14 21 21 21 21

Table of (the upper bound of) dim Q Pq where n = 2s± ' + 2' — 2.
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