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Introduction

T he purpose o f  th is paper is  tw ofo ld . T he first one  is to discuss various
group topologies on inductive lim its o f  topological groups, a n d  unitary repre-
sentations of inductive limit groups in a certain case, and the second one is to treat
group topologies in the case of the group o f diffeomorphisms.

Contrary to the affirmative statement in  [1] o r  in  [5], the inductive lim it of
topologies of an inductive system o f  topological groups does not always give a
group topology, or m ore exactly, the multiplication is not necessarily continuous
with respect to  the inductive limit topology (denoted by  r i d ) .  In  P art I  of this
paper, we show this by a simple example in the case of abelian groups, and then
discuss in general which kinds of group topologies can be chosen on an inductive
limit group under the condition that they are weaker than T Hid •

W e study in  particular the  case  where inductive system is countable and
essentially consists of locally compact g roups. (F or exact definition, see §2.3. and
such a  system is called a  countable L C G  inductive system in  s h o r t ) .  Then we
prove that the inductive limit topology r,„d gives a  group topology in  this case
(Theorem 2.7), and also that it is essentially a unique one under a  mild condition
(Theorem 5.6).

Further, for a countable LCG inductive system, we discuss in a certain extent
unitary representations and continuous positive definite functions of the inductive
limit group G = lim  G  and prove that, under the same condition as for TheoremJ

5.6, there exist sufficiently many of them so that the points of G can be separated
(Theorem 5.7). Since there does not exist in  general a  Haar measure o n  G, the
important point of the discussion is  the limiting process from the case of locally
compact groups GI  t o  G.

In Part II, we discuss the case of the group G =- Diffo (M ) of diffeomorphisms
with compact supports on a connected, non-compact, Cr-manifold M , 1  < r < co,
a n d  prove that the inductive limit topology  T j n d  never g ives a  group topology
(Theorem 6.1).
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The paper is organized a s  fo llow s. Part I consists of § 1 t o  § 5 .  In  § 1  we
give a counter example and discuss some generalities of group topologies, especially
for inductive lim it g ro u p s . In  §2 , we introduce a notion of a PTA-group, and
construct in the category o f PTA-groups, a  group topology rBs, called Bamboo-
Shoot (=BS) topology, on  the  limit group o f  a  countable inductive system, and
show that rBs is the strongest among the group topologies weaker than r in d. I i i  §3,
properties of BS-topology, and in §4, a generalization of BS-topology to uncount-
able inductive systems are discussed. In §5, positive definite functions and unitary
representations of the limit groups of countable LCG inductive systems are treated.

Part II consists of §6 to §9. After giving preliminaries and the main theorem
in  § 6 , we give in  § 7  a  lemma fo r a  C r-m ap  on  an  open  ball in  Rd  t o  b e  a
diffeomorphism. In §8, we study local properties of diffeomorphisms and give a
key lem m a, Lem m a 8.2. Then, in §9, we prove that the multiplication on G
Diffo(M) is not continuous in the inductive limit topology rind a s  a  result of the
non-compactness o f  M.

Part I. G ro u p  topologies and unitary representations for an inductive limit of
topological groups

§ 1 .  The inductive limit topology and possible group topologies

1.1. A counter example. An inductive system of topological groups is given
as follow s. W e have a family of topological groups (GŒ , z ), a e  A , indexed by a
directed set A , where TOE denotes the topology on  G ,, and  a  system of continuous
homomorphisms O  : G, —> G fl, for Œ,fi c A, a which satisfies the consistency
condition: 0 7,f l O f l ,„ =  0 7, ,  for any a / 3  y. Recall the notion of the inductive
limit group G = lim  G,, since it is essential here. Consider a disjoint union S :=
LicteA GŒ a n d  introduce the equivalence relation as: g„ g f i  for g„ c Ga , gfl E Gfi• if
giy,Œ (g,) = (by ,f i (gp) for some y a , f l .  Then G is the quotient S/ — as set, and the
multiplication in G is defined in a standard w ay. The natural projection from G,
to  G is denoted by O a , then, 0,6 • 0/3  =  0 ,  for a, fi e A ,  a  f l .  The unit elements
o f  G  and  G , are  denoted respectively by e  and e„.

N ote tha t in  the  case  where all the homomorphisms O are injective, by
identifying through O ,  we may consider inclusions, G„‘—> Gfl, and  then , G =
UOE E A G, as  an  abstract group.

The inductive limit of topologies r i n d = lim  Ta o n  G = hm G , is given in such
a way that a  subset of G is open if and only if its inverse image in G„ is open with
respect to T OE ( ra -open in short) for any a E A.

We see easily the  following fact o n  Tind•

Proposition 1.1. On the inductive lim it group G =lim  G,, the follow ing m aps
are  continuous w ith respect to  T ,,,d =liM  rOE:

(i) the inverse: G 9  g 1—> y- 1  e G;
(ii) the le f t and righ t translations: for a f ix ed  h E  G,

G n g -h g E G , G  g  1 — > g h  c  G.
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However the multiplication G x  G 9 (g!, g2) gi g2 D G is not necessarily 7",„d-

continuous as the following elementary example shows.

E xam ple 1.2. L et G,, = Q x F " , F  = R  o r Q  with the usual non-discrete
topology, and imbed Gn  into Gn + 1 as x (x, 0). Then, G  = lirn G,, = Q x F

n—■oo
(restricted direct product), and the multiplication is not -chid-continuous. Or, there
exists an r i n d - o p e n  neighbourhood U of e E G such that V 2  çt U  for any rm d-open
neighbourhood V  of e. In fact, put

U = {x = (xo, xi , ...,x n , .• •); lx.71 < Icos(ixo)1 (1

Then, since xo c Q , we have always cos(jx0) 0 0, and so

U n Gn  = { x  = (xo, xi , .  ,  x n );

is open in Gn  fo r any n  > 1, and so  U is r unt-open. Assume that there exists a
rind-open neighbourhood V of the neutral element e c  G such that V 2 c  U .  Then,
vn G1 contains an open interval (—E.,,EJ )F  in  F  with ei  >  0  such that

e0)Q  x ej)F OE {(xo, E Q x F ; x j  <  'cos( jx0)11.

This is  impossible if 2jE0 > 7r. A contradiction.

1 .2 .  The group topology defined by positive definite functions.

Generally speaking, why "ri n d does not give a  group topology is that "Ci„d has
too m any open neighbourhoods o f e. So we should have some criterion to
decrease the number of these neighbourhoods. In this context, we can refer the
case of locally convex topological vector spaces. In that case the criterion is the
convexity of neighbourhoods.

A s a  group topology on  G  weaker than r,,,d, one can propose at first the
topology rp  d. defined by means of the set 3» (r d ) of all positive definite functions
on G continuous with respect to r,„d. Note that a positive definite function f  is
rmd-continuous on  G  if  it is rind-continuous a t  e ,  because the topology T,n d  is
translation-invariant (by Proposition 1.1 (ii)), and the positive definiteness of f  gives
f (e) If (g)1, f (g - I ) = Conj{f (g)} , and Krein's inequality [7]

(g) — f(h)i 2 < 2f (e){ f (e) — 91(f (gh - 1  ))} (g  , h  E G).

By definition, an open neighbourhood of e  with respect to  rp . d  is  g iven  as
follows: take a  finite number of f i   Y ( T i n d ) ,  1  < j  < N , and an e >  0 ,  then

= {g e G;111 (g) — fj (e)1 < e(V j)}.

The topology rp . d  is also defined as the weakest topology on G which makes all
r ind-continuous unitary representations continuous.

Finally we note that ("rin(/) = "O(T p d )•

< Icos(jx0)1 (1 < j  < n)}
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1.3. Group topologies weaker than -t-m d.

Let us now discuss what kind of group topologies can be chosen on the
inductive lim it group G , in  between t wo  and rp  d

A fundamental system * of neighbourhoods of the unit element e of G for a
group topology is a  family of subsets of G  satisfying

(GT1) for a n y  U E U ne;
(GT2) for any U1, U2 E ' ,  Ul n U 2  contains a  V E 0/.1;
(GT3) for a n y  U E U-I = {/4 - 1 ; E  U }  contains a  V E V ;
(GT4) for a n y  U E and g c G, gUg -1  con ta ins a  V c
(G T 5 )  for any U E 1/, there exists a  V  E * such that V 2 U .
Starting from a  family .99 of subsets of G containing e, we want to construct

a  family V satisfying (GT1)-(GT5). To satisfy the conditions (GT1)-(GT4), it is
enough to enlarge .9 9 by applying repeatedly the following processes:

(a) for any  tw o  u 1 , u 2 ,  a d d  u l u 2 ;
(b) for any  U , add U - 1 ;
(c) for a n y  U  and g e G , add gUg - 1 .
However to satisfy the condition (GT5), we should assume a condition (GT5*)

on .99 f ro m  the beginning:

(GT5*) for any B E <99 , there exists a CEY such that C 2 OE B.

We call a family Y a seed of  neighbourhood system  if it satisfies the condition
(G T 5 * ) . Thus, we see that introducing a  group topology in  G  is equivalent to
giving a  seed 99 o f  neighbourhood system.

The introduced topology T is weaker than the one t i„d if the condition (GTind)
holds for „V:

(GTind) every B  c Y  is a Tm a-neighbourhood of e.

Lemma 1.3. Fo r th e  inductiv e lim it G =- lim G Œ, assu m e  th at a f am ily  of
subsets 'V  = { V (a,k ); a c A , k  = 1,2 , . .}  satisf ies the f ollow ing conditions:

(1) f o r an y  a ,  V (a,k )'s are rOE-open neighbourhoods of  e ,  in G„;
(2) f o r any  a Ofi,,,( V (a,k )) c V ( 16', k) (Y k);
( 3 )  f o r  any , 1 3 , k ,  t h e re  e x i s t s  a  y  s u c h  t h a t  0  ( V (ŒL k  +1))

07 , f l ( V (16 k + 1)) c V  (y, k).
Then, the f am ily  Y  = { U A =  U Œ EA 0Œ( V(oc,k)); k  -= 1,2, ...}  gives

neighbourhood system  satisfy ing the condition (GTind).

P r o o f  Let us first prove that Uk is rind-open. Take a  f ic A  and check if
W := 6,1(uk ) is rp-open in  Gfi. For any a, there exists a y e A  such that y a,
[3 and s o  V (y, k) D  y ,,,,( V (a, k )), and Oy(V (y , k)) D OOE( V (a, k ) ) .  Therefore W --

Uy;y>-#0 :q I (6fiy( V (Y ,k ))). Since 0 6 =  0 y •  w e  have Oi l = 03 • (/0 -1 . Let N y =
0; 1 ({ey } ) be the kernel of 0 ), : Gy —> G .  Then, Oy Oy(V  (y, k)) = V  (y, k)N y =:-1

(p u t) . T h e n  Wy  i s  T y -open and  so  0 y
-

,
I
f ,( Wy ) i s  t a-open i n  G13 . T hus W

U y ,p0 y
- ,1fi( Wy) is r r open, as is desired.

a  seed of
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The fact (Uk+ 1)2U k ,  for k 1,2,..., can be seen easily and it guarantees
the condition (GT5*) for Y

•Q . E . D .

We denote by T( )  the group topology o n  G generated from '1/' through Y
above by the  process stated before. Then we have the  following result which
shows that our process is standard.

Proposition 1.4. L et r  be a group topology on G = lim  GŒ,  weaker than 'ri n d.
Then there exists a fam ily  of '17 "s satisfying (1)-(3) in Lemma 1.3 such that r is the
upper bound of  the topologies -c(i/)  's.

P ro o f  T ake a n  arbitrary r-open  neighbourhood U  o f  e e G .  Then we
can find a  series V k, k  = 1, 2, ... , of r-open neighbourhoods o f e e G  such that

=  U ,  ( Vk+ 1) 2V k .  P u t  V (0c, k) =- OOE I ( Vk) = OOE
I ( Vk n 0Œ(Ga)) GOE, and

{ V  (,k ); a e A , k  = 1,2, Then Y  satisfies the conditions (1)-(3) in
Lemma 1.3. Noting that V,. = U ŒE A0a(

V  (cx, k)), the assertions of the proposition
is easy to prove. Q.E.D.

Corollary 1.5. L e t  "CI b e  a  group topology  on  an  inductiv e  lim it group
G ---- lim G Œ . O n  each G OE, tak e the inverse image rOE through O a  o f  a s  its group
topology (which is not Hausdorff ff  0„ is not injective). Then r f is recovered by the
process in the proof  of  the proposition.

1.4. A note on inductive systems. In an inductive system {(G , Tot ) a  e  A ;
the homomorphisms O f l , are not necessarily assumed to be injective. Accordingly,

—> G need not be injective, and the inductive limit topology needs not be
Hausdorff.

However, ç& (r„ z,,,d)-continuous. Take the quotient group (GOE
-  , r OE- ) of the

-topological group (GOE ,TOE)  by the kernel NŒ = Ker(0 0, )  = 1OOE ( e ) ,  which is roc-closed
if r,„d on G is H ausdorff. Then (GOE

-  , )  is isomorphic to (0,(G Œ), (rOE)), where
0„(r,) is the image of "Cc,  through OOE. We have a natural injective homomorphism

—> Gi3- ,  which turns out to be continuous in T i n .  In  this way, we
get an inductive system {(Go7, Ç ) ;  Of i7 ,1  with injective homomorphisms 0 /37Œ .

Lemma 1.6. The inductive lim it lirn GOE
-  o f  th e  system { (G ,)Tc7 :

canonically isomorphic to the one G = lim  G Œ of  the original sy stem . In particular,
the inductive limits of  topologies of  { r}  and { ra }  are homeomorphic.

Thus we have also a  natural injective homomorphisms efic,-  :  GOE
-  —> G, which

gives the  natural identification of (GOE
-  4 - )  with ( Œ (GŒ), O E (ro,)).

As we see above, any inductive system of topological groups can be reduced
to such a system of injective type (that is, with injective homomorphisms). But we
keep to the general case some how and to the notations there, since it has certain
merits for clarifying the situations.
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§ 2 .  The system of Bamboo-Shoot neighbourhoods

Here we prove that, under a mild assumption on G  =lim  G , or rather on the
system {(G„, Tct)aeA) 0)8,0' we can construct the strongest group topology between
t in d  and Tp  d •

2 .1 .  PTA - group. A subset E of a group is called symmetric if E- 1  =-- E , and
a  symmetric subset E  of G = lirn GOE is called  a  PTA - se t if  it has the following
property for any a e A ,  a  y  with some fixed y:

( P )  for any Ta -neighbourhood WOE c  GOE of ea , there exists a Ta -neighbouhood
WOE' o f  e„ E G„ such that 0„( WOE') • E  E  •  (ifi,( Wa ).

Since E  is symmetric, the condition above is equivalent to the existence of T„-

neighbourhood WOE" such that E • 0,(W Œ") 00,( W ,) -  E . A neighbourhood in G is
called PTA -neighbourhood if it is a PTA-set, and a Ta -neighbourhood in GOE is called
PTA if its image in G is a PT A -set. An inductive limit group G = lim GOE is called
a  PTA -group if, for every a e A , (G„, -1- „)  has a  fundamental system of neigh-
bourhoods of ea consisting of open PTA-sets. (PT A  is an abriviation of Passing
Through A ssumption.) This condition is equivalent to that, for any a e A , the topo-
logical group (0„(GŒ), OOE(TŒ) )  as the quotient of (Gœ , TOE) h a s  the same property.

We see easily that G =lim  G OE i s  a  PTA-group if, for any a /3, the group
(0„(Ga ), Ø„(Ta )) ( G ,  r „ ,- ) is a direct product of a central subgroup of Of i (Gp) with
a  locally compact group.

Lemma 2.1. F o r a f l ,  le t  V , be a PTA -neighbourhood of  e, E  Go,  in TŒ, and
Vfi a  PTA -neighbourhood of 9 e Gfi in rfl. T hen  V oh(17„)0,5,, ,(V a ) Vfl is a  PTA -
neighbourhood o f  9  e G il in tfl.

2.2. Bamboo - Shoot neighbourhoods. Hereafter in  th is section, w e assume
that G = lim  G„ is a PTA-group. We also assume the index set A  be countable
and so put A  = N  as a set.

CASE 1 (MONOTONE INCREASING). We first study the case where j  j  1  ( V  j )
in A , or 30/ ± 1 ,i  : G1+1. For a system { U i } J  G N  o f  symmetric neighbourhood
U e i E  G1  i n  Ti ,  put

U (n, k) 0„(Un)0„--1(U„--1) • • k(Uk)0 k(Uk)0 k+i ( 14+1) • • • 0,,(U) k)

U [k] := UL U (n, k ),

then U[k] is rind-open a s  is proved below, and is called a  Bamboo - Shoot (or BS
in short) neighbourhood of G .  Denote by l i B s  the collection of all such U[k] for
{Ui }j , k  w ith  Ui 's  each running over symmetric neighbouhoods of ej  E GI in
j  > k  and k =  1 ,2 , ....

Lem m a 2.2. Ev ery  U[k ] is r i„d-open, and the sy stem  liB s  i s  a fundamental
system of neighbourhoods of e e G for a group topology weaker than rind on a PTA
group G.
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P r o o f  (i) Let us prove that U[k] is rind-open. For a system {0/ }J , N  o f
open symmetric neighbourhood of e, e G1,  put

00(n,k ):= O n(O n)0,1( 0 ,1-1) • • • Ok(Ok) (n k), 0 0 [k ] := U : k 0 o (n,k ).

Then Oo [k ] is  r i n d - o p e n .  W e  f ix  O is in  such a  w ay that 0 / OE U1 (V i)-
Now take an arbitrary element g E U [k ].  Then there exists a p  > k  such that

g  e  U (p ,k ) , and so, for n  > p  +1 ,

U (n, k) On(Un)On-i(Un-1) • • • Op+1(Up+1)U (p , k)

0,,(0,„)0,„_ i (On -i) • • • O p + 1 (°p + I)U (p ,k )D  00(n ,p  + 1)g.

Therefore we have

U[lc] =  U n
cc

 k  U (n , k )  = V i
c_p + 1 U (n, k) H 0 0 (n ,p + = Oo[p + ilg.

By Proposition 1.1(ii), this proves that g  is a  r ind-inner point of U[k ], or U[k] is
r ind-open.

(ii) The conditions (GT1)-(GT4) is easily proved for l i g s .  So we prove
only the condition (GT5).

Take a  U [k ] . Choose, for every j  k ,  ri -neighbourhood W e ,  c G, such
that kV! OE U ,.  Further, for this k , choose symmetric PTA-neighbourhood V k  Wk
o f ek E G k .  Then, choose inductively symmetric PTA-neighbourhood V , c
of e, e G, for which V (n,k ) 2 c  U ( n ,k )  holds for k n. For this, it suffices to
choose Vn ± i  so that V (n, k)0„± i ( V„± 1) ( W  1V  (n , k ) and O n + I ( V n + 1 ) V  (n, k)n+1‘ n+1,
c V  (n, k ) ( h

17 + 1
 ( W I ) Then we have V (n + 1, k) 2U  ( n  +  1  k ) ,  by the assumptionr n+

of induction and by using Lemma 2.1. From  this, ( V[1(]) 2 OE U[k]. Q.E.D.

We call the above topology BS-topology and denote it by T g s .  The group G
equipped with T g s  is also denoted by rBs-lim

CASE 2  (N O N -M O N O TO N IC). We consider the general case where G is are not
monotone increasing. Take an increasing sequence of integers 1 n (1 ) <  n (2 ) <
• • • < n(j) < • • • such  tha t n(j) -< n(j + 1 ) and  In ( j) l i e N  i s  cofinal w ith  A , for
instance, such as n ( j  +1 )  › -  n ( j ) , j .  Then, lim G„( i )  = lim  G , = G , and so we can
apply the result in the monotone increasing case, Case 1. The topology rB s on G
thus defined does not depend on the choice of the cofinal sequence In ( j) l i E N , and
Lemma 2.2 holds in  this case too.

The topology T g s  is characterized by the following property.

Proposition 2.3. A ssum e that the index  set A  is countable and G  = lim  G , is
PT A . T hen , the  BS-topology T g s  is the strongest one among group topologies on G
weaker than Tmd•

P r o o f  We prove the assertion only in the monotone increasing case, Case 1,
then Case 2  is  similar.

L et T  b e  a  group topology o n  G  w eaker than  r,nd• T ak e  a n  arbitrary
neighbourhood U of e e G  in r. Then there exist a  symmetric neighbourhood VI
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in r such that ( V1) 4 c  U .  Inductively choose symmetric r-neighbourhoods Vj  o f  e
in such a way that ( Vj + 1) 2 c  VI . Put W = 07 1 ( Vi ) c  GI and, for { Wi } I , N , take a
BS-neighbourhood W [1 ]. Then, we see easily U D W[1].

Corollary 2.4. Let (H , r)  b e  a  topological group and 0 an  algebraic homo-
morphism of  G = lim G., in to  H . T h e n  the following two assertions are mutually
equivalent:

(1) 0  is continuous as  a m ap f rom  (G,r,„d) to (H, r);
(2) 0  is continuous as  a m ap f rom  (G,r B s ) to  (H ,r).

W ithout any additional assum ption, th e  topology T B S  is not necessarily
Hausdorff, and we remark the  following facts.

Lemma 2 .5 .  L et M  be  the intersection of  a ll  U e  Bs.
(i) M  is a norm al subgroup of  G  and rBs-closed and so rind-closed.
(ii) M  =

j
 (M ) =  0 - 1 (M n ( G

.1•)) (resp J =  Mi l Nj )  is a ri -closed (resp.J 
r ; -closed) normal subgroup of  Gj  (resp. G7), and G1 / M ,  GI-  I M T  as topological
groups.

P ro o f  For (i), the rB s -closedness of M comes from the following general fact
fo r  a  topological group:

( * )  L et E  be  a  subset and  U  a  neighbourhood o f  e, then E U  contains the
closure of  E.

The rests of the assertions are easy to  prove. Q.E.D.

Note that M IK e r ( 0 1 )  from (i), and that, if Gj  is locally compact, then
so is G IM.

Jj I  
j
S o  it  is  in te re s tin g  to  a sk  w h a t is  the difference betweenJ 

MI  a n d  Nj . W e can also ask if the quotient topologies of r,n d  a n d  rBs o n  G/M
coincide with each other.

Lem m a 2.6. T h e  quotient GI M  w ith  t h e  q u o tie n t to p o lo g y  o f  Tind

(resp. 1" B s) is isomorphic to r i„d-lim G1 / M1 r in d-lim GI '/ (resp. rB s -lim Gi l Mj

rB s -hm G7/M7).

2.3. C a s e  o f  countable L C G  inductive system . T h e  c a s e  w here  A  is
countable and all the groups (G7, ri

- )  are locally compact (which are Hausdorff
by definition), is especially interesting and will be studied later on. A n inductive
system in  such a  case  is called a  countable LCG inductive system.

Theorem 2.7. For any  countable LCG  inductive system , the inductive limit
topology  r i„d on G  = lim G1 g iv e s  a  group topology  an d  it coincides w ith B S-
topology rns.

P ro o f  It is enough to prove 1 7 , 1  =  TBS. Since rind is stronger than C B S , we
prove the converse. It may be assumed that we are in the monotone increasing
c a se . In  this proof, we denote G I, chTi , 07 and TT simply by G1 , 0 1 , 0j  a n d  T./

respectively, omitting tildes.
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Take an arbitrary r Ind -open neighbourhood U .  Then Uj  = 01 1 ( U) OE Gj  is  r j -
open neighbourhood of ej  e  Gj , and ohj + i ,i (Uj ) U .  W i t h  respect to  TI , choose
a  relatively com pact, open symmetric neighbourhood W 1 o f  e l c G1 so that
Cl( W ? )  W i

3 OE U1, where Cl(-) denotes the c losure . T hen , 02,1 (Cl( W ?)) is  r2 -

compact, and so there exists a  relatively compact, open symmetric neighbourhood
W , o f e2 E G2 (in 1 2) such that Cl( W202,1( )  2

 W2) U 2 .  Inductively w e take
a  relatively compact, open symmetric neighbourhood W  of ej  e  Gj  ( in  rj ) so that
C1( Wi gSf ,j _ 1 ( Wj _ i ) • • 0 j ,2 (W2)0j , i ( M ) 2 01 ,2 ( W2) • • ( W i_i)W j) OE L. Then the

i., J EN•original U  contains a  BS-neighbourhood W[1] fo r T 
W  1 Q.E.D.

As a criterion to get a countable LCG inductive system, we have the following
simple one for the moment.

Proposition 2 .8 .  Fo r a countable inductive sy stem  {(G1 ,-17)}7 E N ,  assume that
every (G1 , r1 ) is locally  com pact, and that, w ith the topology 'rin d  (not necessarily  a
group topology), the lim it group G is a T o-space. Then Nj  coincides w ith Afj  and is
t1 -closed for any  j. S o  the  topological groups (GI (01(G1),01(r1)) are  all
locally  compact, and the system  {(G7, r7)}  

j  EN {(0j (G))) j (7,1)) L e N  is a countable
L CG inductiv e sy stem . T his sy stem  is of  injective type and gives as  its lim its the
sam e G  and rin d  = "Cgs.

To get the above To-property, it is sufficient for example that G Î  is closed in
GÎ+' for j  > 1.

Remark 2 .9 .  W e  w ill se e  i n  § 5  that there exist sufficiently m any -rind-
continuous positive definite functions o n  G = lim Go, f o r  a  countable LCG
inductive system, under a  mild condition (Theorem 5.7). Using this fact, we can
prove rin d  = -CBS = rp .d  in  tha t case in Theorem 5.6.

Example 2 .1 0 .  L et G = GL(oo , F), with F = R , C  o r  Qp ,  be  the inductive
lim it group o f  G„ = GL (n,F), n = 1,2, . . .  ,  where G , is imbedded into G„+ ]  a s

(  g  0
0  1 )

Then, by the above proposition, Ti m i  is a  group topology on  G .  A  basis for rind-
neighbourhoods o f e  is given by A . Y am asak i. W e give here another basis as
fo llow s. For g c G, put g = 1 + x , x  = (x 1);7j = 1 . Take K = ( Kif) i ,  with K0 >
and put

V(K) :=  fg = 1 + x; x  < (Vi, j)}.

Here we prove only that this topology r gives actually a  group topology on
G .  F o r  a  matrix z  = (z i j );7j = 1 ,  put

g

MZMHS =
2

Q= 1 )

1 / 2 1/2

11Zi.11 = U1IZ 2 ) =
i= 1 i=1

with z . =  (z — (--) ccT h e n ,  112'z/ 11/ i s(z,1 )1 1 , z . 1 —  ‘ ,11 1 1 1 1 11 Hs.
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F o r  x = x' = (xX i _l , le t  (1 + x)(1 +x') 1  +  y. Then, y  x+
x' + xx' and  Iyu l IxiiI + lx;i 1+ Ilxi.1111x:.]

For an x with 11.xlit i s  < 1, let (1 + x) - I  =  1 + y .  Then y = > i (-1)"xn, and
+11-xi.1111x../11( 1  — 11x111/s)-1 •

These evaluations show  th a t  the m ultiplication and the inverse in  G  are
continuous in  1", if the  following fact is taken into account: For any  e = (eu ) =1

with Cy > 0, there exists a matrix  K =- (x4 =1  with K u > 0 such that KMHs < 1 , and
ell 1lKi•

Unitary representations o f  this kind o f  groups fo r F = R o r  C are  studied
in  [10], and  those for U(cc) = lim U(n) etc . a re  also studied by many mathe-
maticians, see also §5.

§3 . Properties o f BS-topology and extended BS-topology

In  th is section, w e trea t the case where A  is countable a n d  G = lim G1 i s
P T A . Here we consider the image (MG» c G  together with the topology Of  (rj )
given as the quotient of (Gi ,rj )  by /Vj  = 071 (e), and identify them: (0./ (G1 ),Oj (rf ))

(G1-  , 1» ,  in the notation in §1.4. The restriction of TT onto GI-  is denoted by
777 I GÎ

3 .1 .  Properties o f BS-topology. L et us give some important properties of
BS-topology r-Bs o r  o f  -rBs-lim Gj .

Proposition 3.1. A ssum e that, f o r any  j -<  j', th e  im age Oi (Gi ) is closed
in (01 (G» ),O1 (r1 )), a n d  t h a t  the  in jec tiv e  homomorphism (01 (GI ),(A1 (r1 ))
(01, (G1),(01(ri , ) )  is  an isom orphism . If  a f ilte r °7e w ith a  countable base is r BS'
convergent in G  = lim G1 ,  then there ex ists an  n an d  an  F such that F OE
On(Gn).

P ro o f  We apply repeatedly the next fundamental property o f a  topological
group:

(t) L et S be a  subset o f  a topological group H , and h 0 C l(S ). Then there
exists a  neighbourhood U of  the unit element o f  H  such that h 0 Cl(USU).

Now it may be assumed that we are in a monotone increasing case and that
..97  converges to  e. Take a  countable base {Fk} k e N  o f  .F.° such that Fk D Fk+1-
Assume that there exists no such n, or, Fk O ( G )  for any k, j. Then, there exist
an  increasing sequence Inkl k , 0 o f  natural numbers and gk e G , k 1, satisfying
for k > 1, gk  G (Onk(

G nk)\Onk_i( G nk-1)) n
By applying (t), from gj  q,,, (G,,0) closed in  (0 ni (G„,), b,, (t )), w e  have an

open neighbourhood V1 0„,(Gn , ) in  On , (r,,,) of the unit element such that gi

C1(1/1
2 )^  On i ( r „ , ) ,  where C1(•)^ T means the closure in  the  topology r. P u t W1 :=
V1 ).
By assumption, Cl( Vi )" On,(Tn1) =  On, (G,, 1 ) fl Cl( Vh A On, (Tn2), and On i ( G „ , )  is

c losed  i n  (0,(Gn,),0(T, 2 ) ) ,  a n d  therefore Cl( V ?) (b„ ern  )  Cl( V ?)" 0,2 2 (1- n2 ).
H ence, from  g2,gi C1(1/?)^ 0„2 (r„,), w e have b y  (t ) a  neighbourhood V 2 in

f o r any  i, j > 1.
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(On,(Gn2), On2e 
r
 n2 )) of the unit element such that g2, gi 0 C1( V2 V ?  V2) A n2(r n2) • Put

W 2 := 0,72
1 ( V2).

In  th is w ay , a t  the k-th step, w e  have b y  (1") a  neighbourhood V k  in
(6m (G„,), fin k ( r r y , ) )  of the unit element such that

gk gk - 11 g2, gi C f f  V  k  V k _i " • V 2 V ? V 2 .. V k-1 17k ) An k ) •• • 

Then put W k nki ( V k ).
Thus we get a T 5 -neighbourhood o f  e c G  as

CO

W[ 1 ] = U O n k ( Wk)' • 'On 2 ( W2)0n,( 14/1)0„,( Wi)(An2 ( W 2)' • • nk(
W k )

,

k=

which does not contain all of gk's. This contradicts to the convergence of .
the unit element e. Q.E.D.

Under another simpler assumption, the same assertion holds as seen below.
We denote by CBS I of  (G.,,) the restriction of rB s onto

Proposition 3 .1 ' .  A ssum e that, f o r any  j 61(G1) is closed in  (Op ( G ), ,),

T BS I ( G O ) .  If  a f ilter .F.° with a countable base is TBs-convergent in G =lim
then, there ex ists an  n  and an  F e g - such  that F

The proof of this proposition goes similarly as above. Only the difference is
to replace the topologies On k (Tn k )  by r es,nk := Onk(GnA )-

Proposition 3.2. A ssumptions are the sam e as in Proposition 3.1. Then, the
image 6k (Gk ) of  G k  is closed in r Bs-hm Gj , f or any  k. Furtherm ore, any  Ok(rk)-
closed subset of  q$(G k ) c G Gj is also TBs-closed in G, and so the topologies

k(tic) on  O k ( G k )
 and the restriction  CBS I k ( G k )  coincide with each other.

P ro o f  Assume w e  are in  the m onotone case . F or the first assertion,
it is  en o u gh  fo r  u s  to  p rove that, fo r a n y  g  6 k (G k ) , there exists a  BS-
neighbourhood V ' such that g V ' fl Øk(Gk) = Ø  or V' fl E with E  = g - I 0k(Gk)-
Let g e  6 ( G )  for an n  >  k .  Then E  6 ( G , , )  and is 0,,(r) -closed by assump-
tion. F u rth er , for any j  n ,  E  6 i (Gj )  is q$(t) -closed too. Choosing appro-
priately ri -neighbourhood Vi  of ej E G  j  > n, as seen below, we give V ' as V ' =
U j

x-n+10n+I(Vn+1)0n+2(V11+2 ) • 0 j
— i(Vi _ i ) 0 J ( V i) 2 ,  which is a  BS-neighbourhood of

e c G  by Lemma 3.3 below since G = lim G  assumed to be PTA.
F irs t  ta k e  Vn + i Gn + 1 i n  such  a  w a y  t h a t  0 , , + 1 ( v n + 1 ) 2  nE = Ø . B y

assumption, (6 (G  r  1 11'1+1. - n+I 11+1 ( n -1 -1
i s  e m b e d d e d  homeomorphically into

fl+2(G n+2)) th n+2(T 11+2)) a n d  s o  th e r e  e x is t s  a Vn +2 OE G n + 2  such that
n-1-1 n ,  O E  n+I (V n+1)•On+2 ( Vn+2) 2 n 6  (G +1 ) Then On+i(Vn+1)(On+2(V n+2) 2 n  n+1(G n+I)

O E O n+I(V  n+I) 2 . In a similar way we proceed by induction on j  = n + 2,n + 3........
Take V1 G1+ 1 as Om  ( )2 n efij (G,) 66(r/). Then,

On+i( V n+1)On+2( V n+2) • • Of ( V 1)01+1(v ,± 1)2  no,(G,)

o„+,(vn+ oon+2(v„+ 2) • • • vi)2.



562 Nobuhiko Tatsuuma, Hiroaki Shimomura and Takeshi Hirai

Finally we define V ' as above, then v' n 6 1 (Gn+ I n+1 +1,1 6  ( V  1 2 , and so  V ' does
not touch the subset E = g - I 0k(Gk) n(Gn) •

T  /7+ OE n 

For the proof of the second assertion, w e start from  a  Ok (rk)-closed subset
D  of k (G k ) . Then, replacing (fik (Gk) b y  D  and E  =  g '0 ( G k )  by  E = g - 1 D,
w e see that the above discussion proves without any change the existence of a
rBs-neighbourhood V ' of e c G such that V ' f l  E  = 0 . This proves that G \E  is
TBs- open and so  E  is rBs-closed. Q . E . D .

Lemma 3 . 3 .  L e t th e  in d e x  se t  A  =N  as  ordered se t  an d  G  =lim  G  be
PT A . T hen, f or any sequence of -cj -neighbourhood Vj  of  ej  E Gj  f or j k , th e  u n io n
U7=k0k( 17k)Ok+I(Vk +1) •  •  •  0./(V. ) i s  a  r B s -neighbourhood of e e  G.

P ro o f  Firstly take, for every j ,  ry neighbourhood Wi  o f  ej E G1  such  tha t
Wi

2 i / j . Then we choose inductively a symmetric rr neighbourhood U WI  of
ej  c Gj  in  such a  w ay that Of ( Uf ) OE G  is  a  PTA-subset and (bi ( Uf )U(j -  1 ,k )
U(j - 1, k )61 ( Wj ) w it h  U(n, k) = 6„(U„) • • Ok(Uk) 2 • • O n (U „)  a s  i n  § 2 .2 .  If
th is  is  d o n e , w e  h av e  U(n,k) Ok(Vk)Ok+I(Vk+1) • •  •  O n (V n ) an d  s o  a  T BS -

neighbourhood U[k] = U : k U (n ,k ) is contained in the union of the latter sets.
Hence the proof is finished.

Now, for n k ,  choose simply a  U„ W .  Assum e the choice is done until
n  = j  -  1. Then, the symmetric se t U(j -  1 ,k )  is  P T A  a s  a  product of PTA-
sets k  p  j  -  1. H e n c e ,  for n  = j, there exists such a  U„ W „  that
0„(Un ) U(n - 1,k) OE U(n - 1, k)6,„(W„) and 0„(U„) is  PTA. Q.E.D.

Proposition 3 . 4 .  A ssume that A  is countable and G = lim  G1  is  PT A . L e t G j

be t B s -closure of Oi (G1) in I B S - h m  G1  topologized with the restriction o f  rB s. If  G j

are  PTA -groups f o r j  > 1, then r Bs-lim Gj  = r Bs-lim  4.

The proof can be given by applying Corollary 1.5.

3.2. Extended BS-topology. We discuss here other group topologies weaker
than  T BS.

A subgroup H  with a group topology 1 H  is called a PTA-subgroup of G if I l l

h a s  a  fundamental system =  {Y ),} y e r  o f  neighbourhoods whose images are
PTA-sets in G .  Each Yy is symmetric by definition and, for any Yy , there exists a
Y6 such that ( Y6) 2 OE Y.

For a family {U,} i > k  o f  symmetric open neighbourhood of ej  c Gj  i n  r  w e
put U (y ,n ,k ) , n > k , as equal to

n(Un)0 n-1(Un-1) • • k(U  k) Yy0 k(U  k)0 k+1(Uk+1) • • n-1(Un-1)0 n(Un) ,

and define U[y, k] := U :  k U (y n, k). Let (1/' be the set of all such U[y, s ,  where
y e F  and  { UJ }J > k  r u n s  o v e r  a ll  possible families for k  = 1,2, .... T hen  the
conditions (GT1)-(GT5) in  §1.3 are clear for J1/' except (GT4).

Proposition 3 . 5 .  A ssum e that (H , 1 H )  i s  a  PTA -subgroup of  G  =lim  G j .
Then, in  case  H  is  norm al, the fam ily  1/' giv es a fundam ental sy stem  o f  neigh-
bourhoods of e e G f o r a  group topology (called an ex tended B S-topology). W ith
respect to this topology  the natural homornorphism from H  into G is continuous.
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§ 4. The case of uncountable inductive systems

Here we discuss when we can reduce an inductive system {(GŒ, ro,), e  A;
fl E A , cc /3} to  a certain equivalent one with a  countable directed set as

its index  se t. Then we know when the results in  the  preceeding sections can be
applied in  uncountable cases.

A  directed set A  is called of .fish-bone type if it has a  cofinal, totally ordered
subset Al m . Then, as a  totally ordered set, A ro t itself has a  cofinal, well-ordered
subset A , 0 , a s  is easily seen by using Zorn's lemma. We see easily the following
fact.

Lemma 4 . 1 .  A ssume that A  is of  f ish-bone type. Then

ind lim G, = ind lim Gfl -= ind lim G .
aeA /3EA. yeA„,.„.

For a well-ordered set B and fi E B, put f i + = minfy E B; y and define
as a  fo r which a +  =  fi, if  exists. Put further

B+  = {fl E B ; fi does not exist}, B -  =  {fl E B; a (Va e B+ )}.

Lemma 4 .2 .  (i) Fo r a well-ordered set B , the subsets B+ and B -  a re  well-
o rdered . (ii) The subset B -  is  at m ost coun tab le . (iii) I f  13-  0 ,  it  is  cofinal
w ith B , otherw ise B+ is  cofinal w ith B.

Now, take B  = A,,,„ in place of the directed set A , then we have two cases
depending o n  B -  0  o r  = Ø .

CASE 1 (B—  0 ) .  By Lemma 4.2, B -  is countable and cofinal with B, hence
with A .  Thanks to Lem m a 4.1, w e have

ind lim G  =  ind lim Gfl = ind lirn Gfl.
aeA fleB fleB-

Thus we com e to the case of countable inductive system.

CASE 2  (B-  =  0 ) .  In  this case, the set B+ is cofinal with B  and so with A
itself, and ind lim G ,  ind lim Gfl. Therefore we start again from B+ and consider

aeA f leB +

(B k ) .  I f  (Bk) - 0 ,  the situation is reduced to a case of countable inductive
system . I f  (B + )  =  0 ,  we repeat the process again.

There may exist the case where we cannot arrive a t a  countable case even by
such an induction on the well ordered sets.

§ 5. Positive definite functions and unitary representations

L e t  {(G1 , E N; J }  b e  a  countable L C G  inductive system and put
G = lim Gi . Then, -ch i d  coincides with T g s  and  is a  group topology fo r G  as is-
proved in  Theorem 2.7. In  this section, we study positive definite functions and
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unitary representations o f  G .  A lthough every Gi  a r e  assum ed to be locally
compact, G  itself is in  general no longer locally com pact, and so  the following
problem is interesting.

Problem 5.1. Construct suff iciently  many unitary  representations G  so that
elements o f  G  can be separated.

However th e  above  p rob lem  has a  na tu ra l lim ita tion com ing from  the
topology on G .  In fact, the normal subgroup M  =  u  E , „ „ s u in Lemmas 2.5 and
2.6 is a  natural bound, that is, the points in M  cannot be separated by continuous
positive definite functions.

Therefore we assume from the beginning that the induced topology 'rin d  on  G
is To and so Hausdorff (since rin d  = T B S  is now  a  group topology). Under this
assumption, we can replace the original inductive system by {(6fij (G.1 ) , Of (rj ))} j E N

to  g e t th e  sam e G , a s  seen in  P roposition  2 .8 . H ere 01 (G1 ) G  is actually a
subgroup o f  G  w ith topology O A ) .  T hus w e  can  assume th a t the inductive
system  is of injective type, th a t is , a ll  the homomorphisms 0 j ,,1 are injective.
Furthermore a s  is discussed in  C ase 2 in  §2.2, w e m ay assume without loss of
generality that Gj ' s  are m onotone increasing o r  A  =N  a s  directed sets. F o r
simplicity, we omit the notations and Of ,  and consider imbeddings
and  Gj  —* G .  Then G  = H../JeN G1•

To get an affirmative answer to Problem 5.1, we assume further that the above
injective homomorphisms Gj  —* Gi

, a r e  all homeomorphisms into.

5.1. Positive definite functions. To solve the  above problem we construct
sufficiently many T m d-continuous positive definite functions.

T a k e  a  r ind-neighbourhood 0  o f  e c G .  W e construct a  rind-continuous
positive definite function F  with supp(F) O .  Choose inductively a  symmetric,
relatively compact open neighbourhood Uj  in  T j  o f  e c Gi  ( s o , e E Uj  G i ) , for
j  =  1 ,2 , ... in  such a  way that

(1) (U1) 4G I  n o, and
(2) f o r  j  > 1, ui

2 n G,_, u(j, 1) := uf ü; (0; ) -
1u, G.;  n o  and

U(j, 1 ) n Gk U (k , 1) (1 k  < j)  with := C/j _ i =  U., Uj _i •
Then, taking into account the process in  the  proof of Theorem 2.7, we see that
such  a  system { Uj }/ E N  e x is ts . F u rth e rm o re  U [1 ] :=  V °  U (j 1 )  i s  an  openJ=I
neighbourhood in T B ,s  contained in  O.

D e n o te  b y  Co (GI ; ri ) (resp . C,T (Gj; CV (GI ; ti ) )  t h e  space o f  a l l  r 3 -
continuous functions yo o n  Gj ,  w ith compact supports (resp. non-negative, and
symmetric (i.e., yo(g) = q)(g - 1 ) )  in  a d d itio n ) . Further le t  /if  b e  a  right H aar
measure o n  Gj  n o rm a lized  la te r  ( in  abbreviation, clai (g) = di g ) , a n d  Aj (g) =
dtt1 (g- 1 )Ida1 (g) (g c Gj )  b e  th e  modular function, o r  a1 (g - 1  E) = 4 1 (g)u1 (E )  for
any Borel subset E  of G .  P u t ,

:= max{1,p k (U(k,1)) (k j ) } ;

and for functions yo,yoi ,yo, o n  G  o r  o n  G„, with m
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1 lç°1 1 Lq(G. ) ) 11 VI <(,01, 402>i := (0 (02(0 dig;
G,

and for functions 4  E  C o(Gi ; ) ,  1 = 1, 2, ... ,

(fn *n fn _  ) ( g )  := fn (gh -1 )L _ I  (h) dn-ih (g E G„),
heG„_,

fn  I n _ i  — f  * n fn - 1 *n— I L-2 *n-2 ' • • *2  f1.

Then, f n
 *

f l  f,7-1, in E  co (G n ; t o .  For 4  e Co(Gi ; r/ ), put ( fj ) := fg e  Gf ; f j (g) 01
and [4] := supp(4).

Lemma 5.2. Fo r fj  e C6F (G,;-rj ) ,  j  = 1, 2, ..

(fn) =  (fn)(fn-i)(fn-2) • • • (f2)(f1),

[fa ] [fn ] if,,-11 [ f.-2] • • -E hl[fi ] .

Now choose triplets { V ni,,,u n }  inductively as follows, where 17„ OE LT„ is  a
symmetric, relatively compact open neighbourhood (in  rn )  o f e E G „ and f„ c
CV (G.; TO

STEP 1. .611 (g) < 1 + 2 - 1  (g  c [fd[fi] c  V , ,  e ( f 1 ), and normalize p i as
11fillo c i ) =  1 .

S T E P  2. Assume that { f„, have been chosen for j  = 1, 2, ... , n , and
choose Vn + 1 in  such a  way that

4 „± l(g) < 1 + 2 "  ( g  Vn+1), and

L m in  — M L ( G )  < 2 - 2 - '  p „  (Vg e vn+ 1 n Gn),

where L(g)f„(h) = f,,(g - 1  h) (g,h e G„).
STEP 3. C h o o s e  4 + 1  a s  [ f o _i ][f,,+ ,[ e E ( fn + I ) , and

L
G.

+ 1 (h - I ) dnh = 1 -

Then, normalize ,u„ + ] a s  1,14n+111c2(G„+ ,) =  1.

Proposition 5.3. T here ex ists a z m d-continuous function f  e  C± (G; -ri n d) such
that, f o r any  f ixed j ,  f n  conv erges to f  uniform ly  on as n

The r i n d - o p e n  subse t (f )  = f g  e  G; f  (g) 01 is contained i n  U : 0 „ OE 0  and
( f ) n ui t 0.

Proof

in ilL.(G„) sup
ge G„

 

(fn+I(gh-1 ) f„(h) f i (h - l )f n (g)) d„h
G,,

 

L+1 (h - 1 )11L(h - 1 )4 dnh < 2-2n-4 
/pn,
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because suPP(fn-(1) V n +1 , and so h c G,, in the last integration. On the
other hand, (G) f;111L' (G k ) fo r  n  > m  > k . Therefore we
see that i n G ., converge uniformly to an f1 G ,  for any j. Since JIG , is  r i -continuous
for any j ,  the limit function f  is find-continuous.

Assertions for the support of f  are easy to see. Q.E.D.

Lemma 5.4. For any in L 2 (G; ;Itiff ix ed  j, I„ , G i conv erges to f1G, and
„

Ilmoo IIJ
1,

1'

P r o o f  F or k  > j, put

/k :-= 14  — 4-111 2/.2(G) ) = f f ( g )  - f 1 ( g ) 2 g .

Since g e ( fk ) n G n G1 U 1 U 1 , irk  is majolized by

f
u J O ,

—4-11 (0CL-(G,)dig ti1 .;) • Il f k f

<  p  2 7 4 k  / ( p k  ) 2  <  2-4k-4

and so, I l k  fk -1111,2 (G ,) „
L z 2 -2 k -2  fo r  k  >  j .  T his  proves the convergence inI  

L 2  (Gi ; iti ). Furthermore we have

11=1111110 G") - 11411L2(G,) - 111 k+1 fk lIL 2 (G,)

< E 2 -2/c-2 2 - 2 . / / 3 () (  j  ->  00  ) .

Proposition 5 .5 . Put F„(g):= (R(g)f ,„ f„> L 2( G )  for g e G„, where R(g)f„(h) =
f, i (hg), h e G .  T h e n  the series of  positive def inite functions F„ on G„ converges, as
n co, to a non-zero f unction F on G, uniform ly  on each .fixed Gi . The function
F  is positiv e def inite on  G , continuous in  'rin d = T g ,  an d  supp (F) OE U[1] OE O.

The proof o f this proposition needs rather lengthy calculations and  will be
essentially carried out in the proof of Lemma 5.9 below. Note that the function F
here is nothing bu t the  limit function <R (g)f ,f > in  Lemma 5.9.

5.2. Coincidence of topologies, r i„d ,  rB s ,  and r d .  A s  is proved above we
have F e (r i„d) with supp(F) c U[1] for a  previously chosen r B s -neighbourhood
U [1 ]. This means that rp . d. is not w eaker than rB s . Since Ti„d = T B s is already
known, we get the coincidence o f all these three topologies.

Theorem 5.6. For a countable LCG inductive system {Gi }iE N , assume that the
topology  r in d  on  G  = lim  G ;  i s  T o  ( a n d  s o  Hausdorf f ), and th at  the injective
homomorphism of q 1 (G1)  to  Op (G1

, )  is  homeomorphism into f or any  j  j ' .  Then,
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the topologies Tind, TBS and Tp.d. on G coincide with each other: -rind = TBS t p . d  and
there exist sufficiently many continuous positive definite functions on  G.

From  the result in Proposition 5.5, we have thus

Theorem 5 .7 .  For a countable LCG inductive system {Gi }. / E N ,  let assumptions
be as in Theorem 5.6. Then, there exist on G  =lim  GI  sufficiently many continuous
positive definite functions with respect to the unique group topology r in d  =  -CBS —

5 .3 .  Unitary representations. L et us construct a  continuous unitary repre-
sentation o n  a  space generated by the function f  =  l i m f .

n- co

Let q ',  q ',  p  E  C (G ) . Under the assumption of existence, put

J - '

IMIL2(9,) ,q ) 2 ) <Ç°1 q)2>j•
0 0

Then, for any g E G,

R(9)60112 11012,

and Lemma 5.4 gives 11112 =  1'

Lemma 5.8.

<R(g)(p 1 , R(g)q)2 > <q'! , q'2>
,

L. d g  f i ( g h ) f „( g )  d „_ ih  ( 1  —  2
G ,

-2n-2 -1

Proof
2

linlq,2(G„) = d„g f n (gh - 1 )4_ 1 ( h ) d ih
G„_1

fn(gh - l )f„(gh -1-1 ):4-1( 11).41-1(hi) du-1h

= (.1G i G„
f n (gh i ) fn (g) do) <L ( 1111)f,-1 , fn-l>11-1 dn-lhl

where <L(1117 1 )4_ 1 ,f,,_,> n _  = 1.1„_1(hih)f,,_1(h) dn _ h.
In the last two integarations, ghi E ( fn ) , g E (fn ) , and so, hl E (f„)(.f, i ) n

=: C(put) OE n Gn _i. Further,

—  Ilf„-11121.2( G,„ ) 1

110 1 1 1 ):4-1 f a -111L2 ( G „ )  Hi n- 1111.2 (Gn-1)

< ttn i(cn • (in_1))' 12 11L(h■ l )in_1

( p n  0 1/22-2"-2/pn<  2 - 2 , 2  (since 11;11L2(G; ) 1, P

1 =

= dn g
G„G 1  G „ _ 1
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Hence we get successively,

2-2n-2 2-2n-2,
<1, 01  I )4-1 in -1> n -1

1 =- Cfnil2L2(G„) > (1
2-2n-2) fn(ghi)fn(g) dn g dn _ihi ,

G„

f n (g h ) f n (g )  dn-ih dg( 1  -  2-
2 n - 2 ) - 1 .

fG,, fGi
Lemma 5 .9 . L et f =  lim  f n . T hen, both  o f  11R (g ) f  1112 an d  <R ( g)i ' f >

exist f or g  e G , and continuous on  G , where R(g)f(h) = f (h g ).  Furthermore the
convergences of lirn 

MR ( 9 ) f — A I L 2 ( G ; )
 an d  lirn <R(g)f , f >i  are  uniform on each Gk.--+ co j—poo

P ro o f  It is enough to prove the assertion for 11R (g )f —111
2 .

(1) CONVERGENCE AS j — > co. L e t  g  G G k an d  take any j  k, then

111R (O f -  L2( )

 - R ( g ) f 1  -
00

Ell(R(ofs, - (R(g)f, — i s )  L2(G)
s=i

CO

(11R(9)(f41 —1)42(G; ) + Ilfs+1 fslIL2(Gi)) 2-2f-1/3.
s=j

O n the other hand,

11R(g).4 —.M2L2(G.i) = d ig ' f fG;

•(f i _ i (hg) —1;_1(h))(.4-1(hig) -

= di-iht 4(0104(90 digi)
G , G,

•

{

( f i i (hg) — fi _ i (h))(1/_ 1 (hihg) —
G _,

Then,

f• • •1 = <R(g)4_
1 — L(h1)(R(g)ii_1 —

< fi-11121..2( )•

H ere, O i l E  (4 ), gl E ( f1 ) h1 E (6)(4)n Gi _i Ai _i (hi) <1 +
Hence by Lemma 5.8,

MR(g)fi — fill 2L-2(G; ) .< - 2 - 2 J- 2 ) - 1  (1 + - .6_11 2

< ( 1 + 2 - -/± 2 ) II R  ()4 _  —4_1 11;.2(G,_, ).
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Put i i ( g )  = Fl is-k( 1 + 2 - s + 2 ) - 1  . 11R(9)// --.4422(G ;)• Then the above inequality
shows that 0 IJ ( g )  l i _ 1 ( g ) .  So Ii ( g )  converges a s ]  -4 c o .  On the other hand,
fl k( 1 + 2-

s+2 )-1  is a l s o  convergent, w h e n c e  w e  h a v e  th e  existence ofis= 
lim MR (g ) f i  - 442(G4.

Thus the existence of lim  R ( g ) f  -  Ill L 2 ( G ) ) -  1 1 R (g )1  -  f 112  is now guaranteed.
j — c J

(Ii) C O N T IN U IT Y . C hoose  a  symmetric, relatively compact open neigh-
bourhood W,, V, (in tn)  of e  E G „ as

liR(04 -442(Go  < 2 ( g  E  Wn)

and define a  system of of neighbourhoods of e  c G  in C B S  as

r
 -147;  with fii/sr =  Wr W r + 1  •  Ws (S. r ) .

Let us prove that, for a fixed r>  0, there exists an r  such that 11R(h)f
c ( sd h  E Wr ). In  fact, for h e  W r ,  ta k e  s > r  su c h  th a t  h c W .  T h e n , h =
h r h r ± i •  h s  w ith  som e hi, E W k  ( s  k  r ) .  Hence

11R(h)J -1112 E 11R(hrhr+, • • • hk_ihof -  R(hrhr-Ei • • • hk-)f112
k=r

= 11R ( 1 1 ) f  — f 112
k=r

From  the inequality at the end of (i), we get, for hk e W k , k

void;  - iri d2 ( G.,)I I  (1 + 2-111+2 ) 11R(hk)Jk - f 2 (Gk )
m=k+I

< 2-2k-8
1.1m=1L. with C  =  ( T r °  (1 ± 2 -m+ 2)) 

1 / 2

.

Further, from the inequality proved at the beginning of (i), we get

11R(hof -1111,2( G.,)  ._11R(hk)f;
< 2-k-4C ±  2_211/3.

Letting j  -> cc , w e  ob ta in  11R(hk),/ - ./112 k-4 C.
Take r  such that 2- r- 3 C < c ,  then finally we have, for h e  W r,

11R (h ) f  — f 112 11R(h)I — f 112
CO

< E  2— k - 4  =  C - 2 - r - 3  <  E.
k-+r
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(iii) UNIFORM CONVERGENCE ON G k .  N ote  th a t th e  limit function J(g) :=
R (g ) !  — f 2  is continuous in  g e G, and tha t the series o f continuous functions

li (g )>  0  in  (i) is decreasing and pointwise convergent to  a  continuous function
F r  + 2 _ + 2 Y 1 •  J(g).s=k T h e n  w e  se e , b y  D in i's  T h e o re m  o n  a  decreasing
sequence of non-negative continuous functions on a compact, that the convergence
is uniform o n  every Gk.

Lemma 5.9 is now completely proved.

Let ,Yt be the space spanned by {R (g)f;g  E G } .  Then, by the results above,
we can introduce on it a G-invariant inner product <•, •>. Let A f  be the kernel of
this inner product, then ,Y(/.)1( becomes a pre-Hilbert space. D enote by Y f ( f )  its
com pletion. Then the  right translations R(g), g E G  o n  it give a  unitary repre-
sentation o f  G  as follows.

Theorem 5.10. F o r  a  countable L C G  inductive sy stem  {(Gj ,-cj )} J E N , let
assum ptions be a s  i n  T heorem  5.6. T hen, there ex ists a  continuous unitary
representation {R (g ), Y f(f )}  w ith a  unit cyclic vector f .  Its spherical function
<R(g)f-  ,f> is equal to the positive definite function F(g) = lim <R(g)f,- „f,- ,>L 2( G )  in

17- 4  CO

Proposition 5.5.

5.4. Induced representations. In the case where the limit group G =  lim  Gj

is  no longer locally compact, there does not exist an invariant measure o n  G
similar to Haar measures. However, we show here, in a certain circumstance, the
notion of induced representations can be carried over for G and its subgroup Gm.

At first we remark the following fact [13]. Recall that a Borel measure y on a
locally compact group H  is called positive definite if , fo r any q E Co (H),

)0(h ) d h  ) d v ( h )  0.

A measure y of the form dv(h) = f (h)dh (h e H ) with à continuous function f  and
a  right Haar measure dl, o n  H  is positive definite if and only if the function f  is
positive definite, and the unitary representation of H  associated to y through the
GNS construction is equivalent to the one associated to f

Lemma 5.11. L et v„ be a positive definite measure on G„, and define a measure
v0-1 on  Gn+1 by

dvn + i (h) = (.4„(h)1 /1„± i (h)) 1 d v „ (h ) (h  E G„).

T hen, v„+ , i s  positiv e def inite o n  G„+ 1 . T h e  unitary  representation o f  G„+ ,
associated to v„+ ]  th ro u g h  th e  GNS construction is equiv alent to  th e  induced
representation (from G„ to  G„+ 1 )  of  the unitary representation of  G„ associated to
v„.

Assumption A .  The sequence A„,n = 1, 2, ... , converges on  G in such a  way
tha t on  each G1 i t  converges uniformly in  the  wider sense.
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Theorem 5.12. L e t {Gi } 1 E N  be  a countable  LCG inductive system , and the
assumptions be as in  Theorem 5.6. Take any subgroup G,„ of  G = u rn  G . T hen ,
under Assumption A , the unitary representation of  Gm  associated to a positive definite
Borel m easure y  on  G„, can be induced up to a unitary  representation o f  G.

P ro o f  P u t  v„, = v. T h e n , f o r  a n y  n > m ,  the m e a su re  dy„(h) =
(.4,„(h)1.61,(h)) 1 1 2 • dyn ,(h) (h e  G„) is positive definite on Gn  by Lem m a 5.11, and
it is  supported  o n  Gm . By Assumption A , the series o f measures yn  (n = m.
m + 1, ...), considered as measures on G„,, converges to a  measure on G„,.

The following function is a continuous positive definite function on G and the
cyclic representation associated to it is the induced representation looked for:

<<U(g)i, I )  := <R(hg)f ,f> dp(h)
G„,

= iim <R(hg)fp f j >./ (4,„(h)14i (h)) 1 1 2 dy„,(h).
G„,

The representation U is realized on the space spanned by f ,  similarly as for
L em m a 5.11. This proves our assertion.

Part H. Group topologies for the group of diffeomorphisms Diffo(M)

§ 6. Preliminaries and main result

Let M be a connected, non-compact, a-compact Cr-manifold with 1 < r < oo.
D eno te  by  D iff(M ) th e g ro u p  o f all diffeomorphisms an d  by D iffo(M ) its
subgroup consisting of diffeomorphisms with compact supports. Here we study
group topologies on the group G = Diffo(M).

Usually, as seen in the beginning of [6], we have been considering on G the
topology 1- given by the following way of convergence: a sequence gk, k = 1, 2 
converges to g if supports of  g and of  all gk are contained in a compact subset K and
gk g  on  K  uniformly together with all derivatives.

This topology r is normally understood as an inductive lim it of topologies
o f canonical subgroups Gf, /  G , n oo, a s  fo llow s. F irst take  an  increasing
sequence Mo OE M1 M 2 • • • o f  relatively compact open subse ts  so  tha t

— M  and tha t each  K„:= M„, the closure of M n ,  is  a manifold with
boundary. Put

G„ = Diff(K„) := fg e G; supp(g) K„ 1.

Then we have an increasing sequence of subgroups as

Go GI OE G 2 • • • U x  G G' n = 0  n

The topology r,, on G„ is given by considering G,, as a topological subgroup of the
Fréchet Lie group D iff(M ,'), w here IT , ' is  the compact manifold obtained by
patching M„ and its mirror image M ,  through the b o u n d a ry . For the Lie group
structure of the group D iff(N ) of a compact manifold N, we refer [8] or [I 1 ].
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In  an  algebraic sense, G  =  lim  Gi„  a n d  a s  a  topology on  G , w e  have
rind = lim r iz . On r tinthe o th e r  hand, as suggested by the results in Part I, the
phenomenon that d o e s  n o t  g i v e  a group topology seems to be rather general
for the case of non-locally-compact groups. The purpose of this part is to prove
that, when M  is non-compact, this is actually the case for G = Diffo(M ) with the
inductive system consisting of highly non-locally-compact groups G .

Thus our main theorem here is the following (cf. Proposition 1.1).

Theorem 6.1. L e t M  be a  connected, non-compact, a-compact Cr-manifold,
1 < r < co. Fo r th e  group G = D iffo(M ), the m ultiplication Gx GD (gi,g2)
gig 2 e  G , is not continuous with respect to the inductive limit topology Tin d .

This fact does not affect so m uch the theory of unitary representations of
the group G  (for instance, in [2], [9] and [14] etc.), because we can take, as our
background, the group topology t p  d . o n  G which is defined by means of the set
g(r,„d) O f r ind-continuous positive definite functions (cf. § 1 ) .  However it has
certainly some effects, for instance, for determining continuous 1-cocycles a(g, p),
(g , p) EG x  M , depending on which continuity we choose (cf. [3], [12]).

Note that if a sequence gk e  G, k  1, 2, ... , is r ind-convergent to g e G, then
there exists a compact subset K of M  such that supp(gk) and supp(g) are contained
in K , and the convergence is as in [6]. To see this, we remark that the restriction
on G, = Diff (K„) of the inductive limit 'ri n d on G is exactly the original r„. In fact,
let O„ be a r„-open subset of G„, then, for k  > n, we can choose inductively a tk-open
subset O k  of G k  such that O k n c k _ i  =  O k - 1 ,  since the restriction of rk  onto Gk-]
is equal to  T k _ i .  Put 0  =

§7 . Preparation for the proof of the theorem

Let d = dim M .  T o express G = D iffo(M ) as an inductive limit, we choose
Mo OE M I OE • OE M„ OE • • • u n d e r the following additional condition: There
exists a coordinate neighbourhood ( Vm, im) containing the closure M I  such that,
with respect to a Cr-class Riemannian structure on M , the subsets Mo and M I are
open balls with the common center, and that, under the coordinate map tm ,  the
Riemannian structure is  of the canonical form on M I :

ds2  =  d  + d  + •  •  •  + d  1,3 for p = (p 1 e  M1 Rd.

Denote by p(p, q) the distance of two points p, q e  M .  We fix the origin 0 of
the coordinates on the boundary 0M0 o f  M o, and put P(P) = p(p, 0).

Let Cr(Mo, M I) denote  the set of all m aps from  M o  into M I w h ic h  are
restrictions on M o  of C r-m aps from  som e open sets containing M o  i n t o  M1.
Take (••A e  Cr(M o , ). For 1 k  r ,  finite, and p E M o, put alike a jet a t p

.4'30 =  (a'," a°2̀2 •  •  •  acc;d0(p))c, 1

0
with 0; = , = (11,0(2, • • • • atd), = 1Y2 ± • • • + ad•

°P i

Ukc• n Ok, then 0  is rind-open in  G  and on G„ On.
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Considering this v a lu e  a s  a n  element o f  a  Euclidean space (Rd )^4 fo r  a n
appropriate N k ,  w e take its norm:

:= ( E  11q1 aT •  •  •  a G jd  0(p)112.

and put for 0,0 e C r (M o,M 1) Cr(M o, R d ),

d k (0 4 )  :=  s u p  11.4,c (0
//Gk .()

W e put also, taking the k-th homogeneous part,

4 k) (b := ( 0 i ( .1 • • • .10(P))11=k d(k)(0, := suP II4k) (0 OA.
pe Mo

The next lemma is a  key of our proof of Theorem 6.1. Let Di, D2 c  R d  be
connected open sets, and Cr(DI, D2) be the set of all Cr-class maps 0 from D I to

dD 2 . For 0 = e Cr(DI,D2), w e have 4 1) 0 = (0.)0,)1<ij<d. Considering it
as a linear map on R d  canonically, we denote its operator norm by 11/(1)011p o p , where
w e take 11.4  =  (xf +  4 + • • • + x3) 1 / 2  a s  th e  norm  of x = (x,)  c  Rd .

Lemma 7.1. L et D c  R d  be  an open ball and denote by id the identity map on
D .  Assume f o r 0 c Cr(D, D), the support supp(0) := Clfp e D; 0(p) p  =  id(p)}
is compact, and

1141) (0 — 1 d)110p = 11
(
1)0 < 1 (V p E D),

where ld  denotes the d x d  identity  m atrix . T hen 0  is a  diffeomorphism on D.

P ro o f  Since det(J, O 0) 0 (Vp c D ), b y  the theorem of implicit functions,
we see that 0  is an open m ap and locally diffeomorphic.

On the other hand, 0 is globally 1-1. In fact, for p,g e D R d ,  p  g, take
p — g E R d  and put Pt = g + t(p—  g) (0 t :5_ 1), then

' d0(p)—  0(g) = .1 —  (p)  =  ( .4 1) 0)(p — g)dt.
0 dt t ( )

From  the similar formula for i/J = —  id , w e have

(P) (9)11 Ilip,0411p — q11dt < 11P — 911.
o

Hence 110(p)— 0(011 IIP —(111— Iltli(P)— 0(011 > O.
Now let us prove that 0 is o n to . To do so, it is enough to prove that 0(D) is

relatively closed, i.e., Dr-10(D) = 0(D ), because we know already that  ç(D ) i s
open . T ake  a  pE D  (10(D ). Then there  exists a  sequence gn  E  D  such that
0(g„) p  as n co. Since 0 is  1-1 and = id near the boundary a(D), g„ has an
accumulation point q  in side  D .  Thus we get p = 0(g). Q.E.D.

11 1
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§ 8 .  Behavior o f a  diffeomorphism on M o an d  M o.

8 . 1 .  A basis of neighbourhoods of e E Go. W e denote the identity map id on
M  also by e as the  unit element o f  G .  Put

:=  fg e G; gM0 M 1 } c: G.

Then Q is T md-open in  G, as is easily  seen. N ote that, for g e Q , its restriction
gl k o  o n  M o  belongs to Cr(Mo, Mi)•

We define subsets W k o f Q  a s  follows depending on  the  class C r :

W k  = f g  e  Q;d k (g,e) < l/k} in Case  r= c c ,

W k  = f g  e fl;c1 r (g,e) <11k} in Case r<  oc.

Then we have the following lemma.

Lemma 8.1. Put W k,0 := W k n Go for k = 1, 2, .... Then they form a basis of
neighbourhoods of  the unit element e E Go with respect to  the topology T .

8.2. Convex combination of m aps. Take g e Q .  For 0 <  s <1, we can put

(8.1) g, := s id Iv,  + (I — s) • glmo E  C r (M0)M1).

M ore generally we put, for Ø  e C'(Mo•

05 :=  s • id iq o  + (1 — s) • e  C r (Mo,MO•

Further put

k(Ç6 ) = inf {s ; 0 s 1, dk  (Os, id) 1 / k }  in Case r = oc,

otk(0) : = inf {s; 0 s dr(Opid) I /k} in Case r <

Since dk (05 , id) = sup Ilj p
k (0, — =  ( 1 — s) • dk (0, id), we have according as r =

pE Mo
co o r  r < CO,

(8.2) ak(0) .--= 0 v (1 1
k • dk , id)

)
in Case r = oo,

(0

(8.2') ak(0) = 0 v  ( I
1 )

in Case r<  co.
k • d r  (0, id)

Define further, fo r 0 e Cr(71-40 , M 1),

= 0«k(0) c k̀ ( °) i ciM° 4 -—  c it
k('7))

E  C r ( M ° '  M 1 ) .

Then we have the following facts.

(a) L et g c Wk OE Q .  Then ak(g) = 0 , whence P k g  =  R o .
(b) Let g e Go Q .  Assume g e Wk,0 W k  n Go with k  2. Then, for any

s,0 < s <1, w e can ex tend g, outside of  M o  a s  g, = id , and get g, e Go OE G.
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P r o o f  Since Mo is an open ball, we have gs e Cj", (Mo , M o ) . Moreover, for
any p e Mo,

11.41) (9.s – d(I)(gs, id) (gs, id) 1/k < 1.

By Lemma 7.1 applied to D = Mo, we see gs e Diffo(Mo) OE Go OE G. Q.E.D.

8.3. A crucial inequality o n  M o . N o w  put for g e Q

(8.3) /3k f  p(g(p))dp  = in f  f
g 6  Wk 0 M og  E  W k  0  

Moll g ( P) 11 dp i dp2 • • • dPd,

where p = (p,) 1, dp = dp i d p2 • • - dp i , a n d  Mg(p)11 -- (E"l_ i g,(p) 2 ) 1 1 2  with g(p) =
(g,(p)) i . The inequality in  the following lemma reflects the fact that Go is not
locally compact and is crucial for our proof o f Theorem 6.1.

Lemma 8.2. L et k  > 2. T hen, f or any g e  W k ,0  =  Wk rl Go , we have

p(g(p))dp > fi k .
M o

P r o o f  STEP 1. Since g e G0, supp(g) M o  and so g  and the identity map
id have, a t  the  origin 0 , Cr-class c o n ta c t. Hence

j '  (g) .4"; (id) (Vk' r, finite).

We can consider g – id  a s  a n  element o f  Cr (M I , Rd ) ,  then

j' (g  –  id) = O (V k ' r, finite).

Fix k  > 2, and take k ' = k  in Case r = co, and k ' = r in Case r < o o . Then
there exists an open neighbourhood Um  o f  0  in  M  such that

1
11.ipk ' (9 id)11 <  —

2 k  (V p  G  Um n M o ),

ipk' (g – id) = 0 ( V p  M o ).

N ow  take an 1 1 =  (I/ ) =1 e C( UM n M 0 , R d )  satisfying

(8.4) a n d  14 1/11 = IH < – diam(Mo)},

where diam(M 1)  denotes the  diameter o f M I .  P ut 0 = g – Then,

0(Mo) OE M 1  a n d  0 = id  o n  M I \ Mo,

± 1 1
11.ipk ' (0 id)11 < —

2
1

k  2 k  k  
(V p n mo.

Hence 0 G C r (MI, M 1 )  and, for any p E

114 1) (0 – id)Hop – id)11 < I .
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Therefore w e can apply Lem m a 7.1 to 0  and D  = M 1, and see  tha t 0 e
Diffo(M i). Since supp (0) ¢ M o, w e get 0  e  Go = D iff(M o) and so  0 e  Wk,0 =
Wk n GO

STEP 2. Let us compare the following two values:
112

A  : = p(g(p))dp = ( E g , ( p ) 2 )  d p ,
XI- 0 1=1

112
B : = p (0 (p ))d p  = _ (g,(p) — ri i (p)) 2 )  d p .

R om o

It is enough for us to  prove A  > B  ( > f i k ). For this, it is sufficient to have

gi(P)1 IM P) — (P)1 (Vi, Vp e  MO) ,

Igio (P O  )  >  g10 (po) — qio (PO ) ( Rio,]Po e MO).

On the other hand, since the maps g and id are sufficiently near to each other
o n  Um fl M o, there certainly exist io and p o  e  Um  fl M o such  that gi0 (p0 ) O.
Then there exists a  small neighbourhood U(p 0 )  of p o  such  that, for E =  1 or —1
and some K > 0 ,  e  g 0 (p) > K  (V p E U(p o )).

We can choose i = (g i )d
i _ i c  Q U ( p 0 ) n Um  n mo, Rd ) satisfying the condition

(8.4) in  such a  w ay that rh =  0  for i i o ,  and

E • 'i3O (po) > 0, K • i 0 (p) 0 (V  p).

Under this choice of t h e  above sufficient condition for A  > B  holds. Q .E .D .

§ 9 . A To ld-neighbourhood of e E G.

9.1. Neighbourhood U .  W e define a  Tind-neighbourhood U  of e c G , for
which it w ill be proved that V 2 ¢  U  for any 7,,,d-neighbourhood V  of e E G.

Let N—mvuo, and put, for g c Q  G ,

(9.1) Fk(g) := L.

 P“Pk g)(P))dP f ik + p(g(p), id(p))dp.

  

where id(p) = p .  Then the following fact is a  consequence of Lemma 8.2.

Lemma 9.1. L et k  > 2. T hen, Fk (g)> 0 (Vg G Q).

P ro o f  Assume that the 2nd term in F ( g )  is equal to zero. Then, g = id on
N . ,  and so supp(g) c Mo whence g E Go Cr (M O  M I ). Then,

Pk g e Cr(M o , M I ) c C r(M i ,

supp(Pkg) s u p p ( g )  ¢  M o  a n d  d k ' (Pkg, id) 1/k < 1.

where k ' = k  o r =  r  according a s  r = oo  o r r < co. T herefore  w e can  app ly
Lemma 7.1 to 0 =  Pk g and D = M 1 , and see that Pk g E Diff(Mo) = G o . Then by
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Lemma 8.2 we get

(P (Pkg)(P))dP > f l .

This m eans that the 1st term  in  (8.4) of Fk(g) is  positive, and so  Fk(g) > O.

9 .2 .  Proof of Theorem 6 . 1 .  Choose non-empty open sets O k  in such a way
tha t O k  OE M k \M k — i for k  > 2. Fix y >  1, and for k  2, put

U k  := { g  Q ; Fk (g )> y • p(g(p), id(p)) dp} .
ok

Since G, = Diff(M n) = {g e G; supp(g) M n } ,  we see that, if n  < k , then g = id
on O k .  Then, by Lemma 9.1, Uk fl G„ = Q fl G ,, and this is rn-open in G .  I n
particular, Go = Q n Go U k .  Put U := n: 2  Uk  OE Q.

Lemma 9.2. The subset U  is rin d-open i n  G.

P r o o f  For any n > 2, the intersection un Gn i s  rn-open in  G„, because

U n Gn  =  n 2 ( U k  n con (Q n Gn).

Now we come to the final stage of the proof of Theorem 6.1, and it is enough
for us to  prove the following lemma.

Lemma 9.3. There does not exist any rm d-neighbourhood V  of  e c G such that
V 2 c  U.

P r o o f  Suppose the contrary and let V be such that V2  U .  Since V n Go
is ro-open and Wk, o 's form a  basis of ro-neighbourhoods of e e Go, there exists a
W k ,0 such  tha t V n Go  W k , 0 .  Put V k =  y  n Diffo ( Ok ). Then

Wk,o Vk OE V2 O E  U OE Uk OE Q.

Hence, for any g e Wk , o ,  h E Vk,

Fk (g o h) > y • p((g o h)(p), id(p))dp.
ok

Note tha t supp(g) OE M o ,  s u p p ( h )  M k \ M k _ i, and that

g o h = g  on M o , g o h = h  on O k ,  g o h =  id anywhere else.

Then we have

P((Pkg)(P)) dP f i k > (y — 1) • p(h(p), id(p))dp.
Ok

Further, since g c Wk,0 W k  n Go, w e have Pkg = g , and the above inequality
turns out to be

p(g(p)) dp —  k  > (y — 1) • p(h(p), id(p)) dp.
MoO k
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Taking the infimum over g E W k ,o , w e get 0  on the left hand side and so

Hence h = id.

0 p(h(p), id(p)) dp.
Ok

This m eans that V n Diffo(ok) = 0 0 . A contradiction. Q.E.D.
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