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Introduction

The purpose of this paper is twofold. The first one is to discuss various
group topologies on inductive limits of topological groups, and unitary repre-
sentations of inductive limit groups in a certain case, and the second one is to treat
group topologies in the case of the group of diffeomorphisms.

Contrary to the affirmative statement in [1] or in [5], the inductive limit of
topologies of an inductive system of topological groups does not always give a
group topology, or more exactly, the multiplication is not necessarily continuous
with respect to the inductive limit topology (denoted by 7). In Part I of this
paper, we show this by a simple example in the case of abelian groups, and then
discuss in general which kinds of group topologies can be chosen on an inductive
limit group under the condition that they are weaker than t;,,.

We study in particular the case where inductive system is countable and
essentially consists of locally compact groups. (For exact definition, see §2.3, and
such a system is called a countable LCG inductive system in short). Then we
prove that the inductive limit topology 7,4 gives a group topology in this case
(Theorem 2.7), and also that it is essentially a unique one under a mild condition
(Theorem 5.6).

Further, for a countable LCG inductive system, we discuss in a certain extent
unitary representations and continuous positive definite functions of the inductive
limit group G = lim Gj, and prove that, under the same condition as for Theorem
5.6, there exist sufficiently many of them so that the points of G can be separated
(Theorem 5.7). Since there does not exist in general a Haar measure on G, the
important point of the discussion is the limiting process from the case of locally
compact groups G; to G.

In Part II, we discuss the case of the group G = Diffy(M) of diffeomorphisms
with compact supports on a connected, non-compact, C"-manifold M, 1 <r < o0,
and prove that the inductive limit topology 7,y never gives a group topology
(Theorem 6.1).
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The paper is organized as follows. Part I consists of §1 to §5. In §1 we
give a counter example and discuss some generalities of group topologies, especially
for inductive limit groups. In §2, we introduce a notion of a PTA-group, and
construct in the category of PTA-groups, a group topology 7ps, called Bamboo-
Shoot (=BS) topology, on the limit group of a countable inductive system, and
show that 7gg is the strongest among the group topologies weaker than 7;,s. In §3,
properties of BS-topology, and in §4, a generalization of BS-topology to uncount-
able inductive systems are discussed. In §5, positive definite functions and unitary
representations of the limit groups of countable LCG inductive systems are treated.

Part II consists of §6 to §9. After giving preliminaries and the main theorem
in §6, we give in §7 a lemma for a C’-map on an open ball in R to be a
diffeomorphism. In §8, we study local properties of diffeomorphisms and give a
key lemma, Lemma 8.2. Then, in §9, we prove that the multiplication on G =
Diffo(M) is not continuous in the inductive limit topology 7;,; as a result of the
non-compactness of M.

Part I. Group topologies and unitary representations for an inductive limit of
topological groups

§1. The inductive limit topology and possible group topologies

1.1. A counter example. An inductive system of topological groups is given
as follows. We have a family of topological groups (G,,t,), « € 4, indexed by a
directed set 4, where t, denotes the topology on G,, and a system of continuous
homomorphisms ¢z , : Gx — G, for a,f € A,a < B, which satisfies the consistency
condition: @, 5 - ¢ , = ¢, , for any a < f <y. Recall the notion of the inductive
limit group G = lim G,, since it is essential here. Consider a disjoint union § :=
Uxe4 Gy and introduce the equivalence relation as: g, ~ gg for g, € Gy, gp € G if
$,.4(9«) = @, 5(gp) for some y = «,f. Then G is the quotient S/ ~ as set, and the
multiplication in G is defined in a standard way. The natural projection from G,
to G is denoted by ¢,, then, ¢p- g, = ¢, for a,€ A, « < . The unit elements
of G and G, are denoted respectively by e and e,.

Note that in the case where all the homomorphisms ¢, are injective, by
identifying through ¢[3,w we may consider inclusions, G, — Gg, and then, G =
Use4G, as an abstract group.

The inductive limit of topologies T,y = li_rp 7, on G = ligl G, is given in such
a way that a subset of G is open if and only if its inverse image in G, is open with
respect to 7, (t,-open in short) for any o € 4.

We see easily the following fact on 7.

Proposition 1.1.  On the inductive limit group G =lim Gy, the following maps
are continuous with respect to Tig = li_r'n Tyl

(i) the inverse: Gogw— g~ ' € G;

(i1) the left and right translations: for a fixed he G,

Gag—hgeG, Gagr— ghed.
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However the multiplication G x G 3 (g1,92) — ¢1g2 2 G is not necessarily 7;,4-
continuous as the following elementary example shows.

Example 1.2. Let G, =Q x F", F =R or Q with the usual non-discrete
topology, and imbed G, into G, as x — (x,0). Then, G = ll’n;lo G, =Qx]['F
(restricted direct product), and the multiplication is not ti,,d-cor';tinuous. Or, there
exists an t;,4-open neighbourhood U of e € G such that V2 U for any t;,4-open
neighbourhood V of e. In fact, put

U= {x=(x0,x1,..., X, ...); |x5] < |cos(jxo)| (1 <j)}.
Then, since xp € Q, we have always cos(jxg) # 0, and so
UNG, = {x=(x0,x1,...,%); |xj] <|cos(jxo)| (1 <j<n)}

is open in G, for any n > 1, and so U is 1;,4-open. Assume that there exists a
Tina-open neighbourhood V of the neutral element e € G such that V2 = U. Then,
VN G; contains an open interval (—¢;,¢)p in F with g > 0 such that

(—€0.80)q *x (=&, &) = {(x0,%) € Q x F; |x;| < [cos(jxo)|}-

This is impossible if 2jeg > n. A contradiction.

1.2. The group topology defined by positive definite functions.

Generally speaking, why t;,; does not give a group topology is that t;,, has
too many open neighbourhoods of e. So we should have some criterion to
decrease the number of these neighbourhoods. In this context, we can refer the
case of locally convex topological vector spaces. In that case the criterion is the
convexity of neighbourhoods.

As a group topology on G weaker than 7,4, one can propose at first the
topology 7,4 defined by means of the set 2(z;,y) of all positive definite functions
on G continuous with respect to 7;,,;. Note that a positive definite function f is
Ting-continuous on G if it is t;,4-continuous at e, because the topology 7t is
translation-invariant (by Proposition 1.1(ii)), and the positive definiteness of f gives
f(e)=1f(9)l, f(g7") = Conj{f(9)}, and Krein’s inequality [7]

1f(9) = F(WI* <2f(e){f(e) - R(f(gh™")} (9.h€G).

By definition, an open neighbourhood of e with respect to 7,4 is given as
follows: take a finite number of fj € P(Tind), 1 <j < N, and an & > 0, then

U(fi: oo nie) = {9 € G:1f;(g) — file)| <&(V))}.

The topology 7,4 is also defined as the weakest topology on G which makes all
Tind-cONtinuous unitary representations continuous.
Finally we note that 2(t/q) = 2(1p.4.).
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1.3. Group topologies weaker than t;,,.

Let us now discuss what kind of group topologies can be chosen on the
inductive limit group G, in between 7,y and 7,4.

A fundamental system % of neighbourhoods of the unit element e of G for a
group topology is a family of subsets of G satisfying

(GT1) for any Ue#, U>se;

(GT2) for any U,,Uye%, U NU, contains a V € %;

(GT3) for any Ue %, U™' = {u"';ue U} contains a V € %;

(GT4) for any Ue% and ge G, gUg™! contains a V e %;

(GT5) for any U e %, there exists a V € % such that V? c U.

Starting from a family & of subsets of G containing e, we want to construct
a family % satisfying (GT1)-(GTS). To satisfy the conditions (GT1)-(GT4), it is
enough to enlarge & by applying repeatedly the following processes:

(a) for any two U;, U,, add U, N Us;

(b) for any U, add U~!;

(c) for any U and ge G, add gUg~'.

However to satisfy the condition (GT5), we should assume a condition (GT5%)
on & from the beginning:

(GT5") for any B e &, there exists a C € & such that C?> c B.

We call a family % a seed of neighbourhood system if it satisfies the condition
(GTS*). Thus, we see that introducing a group topology in G is equivalent to
giving a seed & of neighbourhood system.

The introduced topology t is weaker than the one t;,, if the condition (GTind)
holds for &:

(GTind) every Be ¥ is a t;4-neighbourhood of e.

Lemma 1.3. For the inductive limit G =1lim G,, assume that a family of
subsets ¥ ={V(a,k); ae Ak =1,2,...} satisfies the following conditions:

(1) for any a, V(a,k)’s are ty-open neighbourhoods of ey in Gy;

(2) for any a < B. ¢y, (V(a.k)) = V(B. k) (Vk),

(3) for any ok, there exists a y such that ¢,,(V(e.k+1))-
6,5 (V(Bk +1)) € V(p.k).

Then, the family & = {Uk = UyeqBa(V(e k) k = 1,2,...} gives a seed of
neighbourhood system satisfying the condition (GTind).

Proof. Let us first prove that Uy is t;,4-open. Take a ffe 4 and check if
W .= ¢I;'(Uk) is Tg-open in Gg. For any o, there exists a y € 4 such that y > «,
f and sol V(y.k) = ¢, (V(a,k)), and ¢,(V(y,k)) = qﬁm(V](oz,k)).l Thlerefore W =
Uy;y>/]¢/; (¢,(V(y,k))). Since ¢s=4,-¢,,, we have ¢5° =¢ 4, ¢ . Let N, =
¢;l({e,}) be the kernel of ¢,: G, — G. Then, ¢y_l¢y(V(y,k)) =V, k)N, =1 W,
(put). Then W, is t,-open and so -2 (W,) is tg-open in Gz. Thus W =

v ¥ AN B B

Uy>/,¢;},(W),) is tg-open, as is desired.
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The fact (Uk+1)2 c Uy, for k=1,2,..., can be seen easily and it guarantees
the condition (GT5*) for <. Q.E.D.

We denote by t(7#") the group topology on G generated from ¥~ through &
above by the process stated before. Then we have the following result which
shows that our process is standard.

Proposition 1.4. Let © be a group topology on G =lim G,, weaker than Ting.
Then there exists a family of ¥"’s satisfying (1)—(3) in Lemma 1.3 such that t is the
upper bound of the topologies t(¥")’s.

Proof. Take an arbitrary 7-open neighbourhood U of ee G. Then we
can find a series Vi, k=1,2,..., of t-open neighbourhoods of ¢ € G such that
Vi=U, (Vie)' Vi Put V(ek)=¢;' (Vi) = 8 (Vi N 4,(Gs)) = Gy, and
S ={V(v,k);ae A k=1,2,...}. Then & satisfies the conditions (1)-(3) in
Lemma 1.3. Noting that Vi = J,_,&.(V(x,k)), the assertions of the proposition
is easy to prove. Q.E.D.

Corollary 1.5. Let t' be a group topology on an inductive limit group
G =lim G,. On each Gy, take the inverse image 7, through ¢, of t' as its group
topology (which is not Hausdorff if ¢, is not injective). Then 1’ is recovered by the
process in the proof of the proposition.

1.4. A note on inductive systems. In an inductive system {(Gu,Ta),c 45 $p.o)>
the homomorphisms ¢, , are not necessarily assumed to be injective. Accordingly,
#, : Gy — G need not be injective, and the inductive limit topology needs not be
Hausdorf.

However, ¢, is (14, Ting)-continuous. Take the quotient group (G, 77’) of the
topological group (G, t,) by the kernel N, = Ker(¢,) = ¢, '(e), which is 7,-closed
if 7j,g on G is Hausdorff. Then (G, ¢,”) is isomorphic to (¢,(Gy), #,(74)), Where
#,(t4) is the image of 7, through ¢,. We have a natural injective homomorphism

$p.: Gy — Gy, which turns out to be continuous in (7;7,75). In this way, we

~

get an inductive system {(G;",7;"),c4:45,} With injective homomorphisms ¢y,

Lemma 1.6. The inductive limit lim G of the system {(G7, 7 )ye 454} IS
canonically isomorphic to the one G =lim Gy of the original system. In particular,
the inductive limits of topologies of {t;’} and {t,} are homeomorphic.

Thus we have also a natural injective homomorphisms ¢, : G;” — G, which
gives the natural identification of (G;,¢,) with (#,(Gy), @, (7a))-

As we see above, any inductive system of topological groups can be reduced
to such a system of injective type (that is, with injective homomorphisms). But we
keep to the general case some how and to the notations there, since it has certain
merits for clarifying the situations.
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§2. The system of Bamboo-Shoot neighbourhoods

Here we prove that, under a mild assumption on G = lim G, or rather on the
system {(Gy, Tu)ye 4> Pp.o}» WE can construct the strongest group topology between
Tind and Tpd.-

oaeA

2.1. PTA-group. A subset E of a group is called symmetric if E-' = E, and
a symmetric subset E of G =lim G, is called a PTA-set if it has the following
property for any a € A4, o > y with some fixed y:

(P) for any 7,-neighbourhood W, = G, of e,, there exists a t,-neighbouhood
W, of ey € Gy such that ¢,(W,)-Ec E-¢,(W,).

Since E is symmetric, the condition above is equivalent to the existence of 7,-
neighbourhood W, such that E - ¢,(W)) < ¢,(W,) - E. A neighbourhood in G is
called PTA-neighbourhood if it is a PTA-set, and a 7,-neighbourhood in G, is called
PTA if its image in G is a PTA-set. An inductive limit group G = lim G, is called
a PTA-group if, for every a € A, (G4, 1,) has a fundamental system of neigh-
bourhoods of e, consisting of open PTA-sets. (PTA is an abriviation of Passing
Through Assumption.) This condition is equivalent to that, for any « € 4, the topo-
logical group (¢,(Gy),#,(7.)) as the quotient of (G,,t,) has the same property.

We see easily that G =lim G, is a PTA-group if, for any o <, the group
(64(Ga), ¢4(7a)) = (G, 7;7) is a direct product of a central subgroup of @4(Gy) with
a locally compact group.

Lemma 2.1. For a < f3, let V, be a PTA-neighbourhood of ey € G, in t,, and
Vg a PTA-neighbourhood of ep € Gg in tg. Then Vydg ,(Va)dp o(Va)Vp is a PTA-
neighbourhood of ep € Gg in tp.

2.2. Bamboo-Shoot neighbourhoods. Hereafter in this section, we assume
that G = lim G, is a PTA-group. We also assume the index set 4 be countable
and so put 4 =N as a set.

CASE 1 (MONOTONE INCREASING). We first study the case where j < j+ 1 (V)
in 4, or 3¢, ;: G; — Gjy1. For a system {U;}; .y of symmetric neighbourhood
U; of ¢ € G; in 1, put

U(n, k) := ¢,(Un)@u1 (Un=1) -+ S (Uk) i (U) fir (Ui1) - - - $,(Us) (n = k)
Ulk] == {2, U(n,k),

then Ulk] is ti,q-open as is proved below, and is called a Bamboo-Shoot (or BS
in short) neighbourhood of G. Denote by #ps the collection of all such U[k] for
{Uj}; 5« with Uj’s each running over symmetric neighbouhoods of e; € G; in 1,
j=kand k=1,2,....

Lemma 2.2. Every Ulk] is ting-open, and the system Ugs is a fundamental
system of neighbourhoods of e € G for a group topology weaker than t;,y on a PTA-
group G.
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Proof. (i) Let us prove that U[k] is ziq-open. For a system {O;}; N of 7;-
open symmetric neighbourhood of ¢; € G;, put

Oo(n.k) := $,(0n)¢,_1(On-1) -~ $(Ok) (n 2 k), Oolk] := |J,2, Oo(n. k).

Then Og[k] is tj0-open. We fix O;’s in such a way that O; < U; (V)).
Now take an arbitrary element g € Ulk]. Then there exists a p > k such that
ge U(p,k), and so, for n > p+ 1,

Un,k) = ¢,(Un)dp-1(Un-1) -+ 11 (Up1) U(p, k)
2 0,(0n)u-1(On-1) -+ $p41(Op1) U(p, k) = Oo(n,p + 1)g.

Therefore we have
Ulk] = U, Un.k) = Uy, Ul k) > U241 O0(n.p + 1)g = Oo[p + 1]g.

By Proposition 1.1(ii), this proves that g is a t;4-inner point of Ulk], or Ulk] is
Tind-Open.

(i) The conditions (GTI1)-(GT4) is easily proved for #pgs. So we prove
only the condition (GTS5).

Take a Ulk]. Choose, for every j > k, zj-neighbourhood W; of e¢; € G; such
that sz < U;. Further, for this k, choose symmetric PTA-neighbourhood V), = W
of ex € Gx. Then, choose inductively symmetric PTA-neighbourhood V;c W;
of e; € G; for which V(n,k)2 < U(n,k) holds for k<Vn. For this, it suffices to
choose V.1 so that V(n k)@, 1 (Vi) € @y (Wyst)V(n k) and @, (V1) V(n. k)
c V(n, k)¢, 1 (Wus1). Then we have V(n + 1,k)* = U(n+ 1.,k), by the assumption
of induction and by using Lemma 2.1. From this, (V[k])? = U[k]. Q.E.D.

We call the above topology BS-topology and denote it by 7gs. The group G
equipped with 7ps is also denoted by 7ps-lim G;.

CASE 2 (NON-MONOTONIC). We consider the general case where G;’s are not
monotone increasing. Take an increasing sequence of integers 1 < n(l) < n(2) <
-+ <n(j) <--- such that n(j) <n(j+1) and {n(j)};cn is cofinal with 4, for
instance, such as n(j + 1) > n(j),j. Then, lim G, =lim G; = G, and so we can
apply the result in the monotone increasing case, Case 1. The topology 7zs on G
thus defined does not depend on the choice of the cofinal sequence {n(j)};cn, and
Lemma 2.2 holds in this case too.

The topology tgs is characterized by the following property.

Proposition 2.3.  Assume that the index set A is countable and G = lim G; is
PTA. Then, the BS-topology tgs is the strongest one among group topologies on G
weaker than t;,y.

Proof. We prove the assertion only in the monotone increasing case, Case 1,
then Case 2 is similar.

Let v be a group topology on G weaker than t,, Take an arbitrary
neighbourhood U of ¢ € G in 7. Then there exists a symmetric neighbourhood V,



558 Nobuhiko Tatsuuma, Hiroaki Shimomura and Takeshi Hirai

in 7 such that (V1)4 < U. Inductively choose symmetric z-neighbourhoods V; of e
in such a way that (Vj+|)2 c V. Put W= ¢j‘l(Vj) < Gj and, for {W}}, y, take a
BS-neighbourhood W[1]. Then, we see easily U > W[l].

Corollary 2.4. Let (H,1) be a topological group and ¢ an algebraic homo-
morphism of G =1lim G; into H. Then the following two assertions are mutually
equivalent:

(1) ¢ is continuous as a map from (G.Tig) to (H,7);

(2) ¢ is continuous as a map from (G,tps) to (H,7).

Without any additional assumption, the topology tps is not necessarily
Hausdorff, and we remark the following facts.

Lemma 2.5. Let M be the intersection of all U € Ugs.

(i) M is a normal subgroup of G and tps-closed and so t;4-closed.

(i) M;=¢;"(M)=¢;"(MN(G)) (resp. Mj" = M;/N;) is a tj-closed (resp.
th-closed) normal subgroup of Gj (resp. G7), and Gi/M; = GjN/ M as topological
groups.

Proof. For (i), the tgs-closedness of M comes from the following general fact
for a topological group:

(*) Let E be a subset and U a neighbourhood of e, then EU contains the
closure of E.

The rests of the assertions are easy to prove. Q.E.D.

Note that M; > N; = Ker(4;) from (i), and that, if G; is locally compact, then
so is Gj/M; = G7/M[. So it is interesting to ask what is the difference between
M; and N;. We can also ask if the quotient topologies of 7,y and t3s on G/M
coincide with each other.

Lemma 2.6. The quotient G/M with the quotient topology of Tina
(resp. tgs) is isomorphic to ti,,(1-1§n Gi/M; = Ting-lim G~ / M (resp. Tps-lim Gj /M =
tgs-lim G/ M[).

2.3. Case of countable LCG inductive system. The case where A is
countable and all the groups (G;”,7/) are locally compact (which are Hausdorff
by definition), is especially interesting and will be studied later on. An inductive

system in such a case is called a countable LCG inductive system.

Theorem 2.7. For any countable LCG inductive system, the inductive limit
topology tig on G =lim G; gives a group topology and it coincides with BS-
topology tgs.

Proof. It is enough to prove 7,4 = Tgs. Since t;,4 is stronger than tgs, we
prove the converse. It may be assumed that we are in the monotone increasing
case. In this proof, we denote G, ¢.;, 4 and 7 simply by G;, ¢ ;. ¢; and 7;
respectively, omitting tildes.
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Take an arbitrary 7;,4-open neighbourhood U. Then U; = ¢IT'(U ) < Gj is 15-
open neighbourhood of ¢; € G;, and ¢;,, ;(U;) = Ujy1.  With respect to 7y, choose
a relatively compact, open symmetric neighbourhood W, of e € G so that
Cl(W}2) =« W} < U, where CI(-) denotes the closure. Then, ¢, ,(CI(W})) is 12-
compact, and so there exists a relatively compact, open symmetric neighbourhood
W, of e; € G, (in ;) such that Cl(W2¢2’l(W1)2W2) < U,. Inductively we take
a relatively compact, open symmetric neighbourhood W; of ¢; € G; (in ;) so that
CIUWdy, (W) 5, 2(Wa)d (W) 2(Wa) -4y, (W) W)) € Uj. Then the
original U contains a BS-neighbourhood W{l] for {W}; - Q.E.D.

As a criterion to get a countable LCG inductive system, we have the following
simple one for the moment.

Proposition 2.8. For a countable inductive system {(Gj,7;)};cn, assume that
every (Gj,1;) is locally compact, and that, with the topology ti,q (not necessarily a
group topology), the limit group G is a Ty-space. Then N; coincides with M; and is
tj-closed for any j. So the topological groups (G, t7) = (¢;,(G;), ¢;(t;)) are all
locally compact, and the system {(G,t7)};cn = {(¢,(G)), ¢;(7))) };en is a countable
LCG inductive system. This system is of injective type and gives as its limits the
same G and Ty = Tps.

To get the above To-property, it is sufficient for example that G~ is closed in

G3, for j> 1

Remark 2.9. We will see in §5 that there exist sufficiently many t,-
continuous positive definite functions on G =lim G, for a countable LCG
inductive system, under a mild condition (Theorem 5.7). Using this fact, we can
prove Tj,q = Tgs = Tp4. in that case in Theorem 5.6.

Example 2.10. Let G = GL(o.F), with F =R, C or Q,, be the inductive
limit group of G, = GL(n,F), n=1,2,..., where G, is imbedded into G4 as

g 0
L d .
97\ 1

Then, by the above proposition, ;,; is a group topology on G. A basis for 7;,-
neighbourhoods of ¢ is given by A. Yamasaki. We give here another basis as
follows. For ge G, put g = 1 +x, x = (x;)7,_;. Take x = (k). with x; >0,
and put

Vik):={g=1+x |x4] <rj (Vi,))}.

Here we prove only that this topology 7 gives actually a group topology on
oC

G. For a matrix z = (z);_, put
- 12 . 1/2 w 1/2
2 2 2
Izl s = (Z |2 ) o lziell = (Z |21 ) lzoll = (Z |21 ) :
ij=1 J=1 i=1

with z;, = (Z,'j);il, Zej = (le)zl

Then, |[z2'|lys < 121l sll2"ll s
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For x = (x5); -y, X' = (x[;)[j=1, let (1+x)(1+x")=1+y. Then, y=x+
x4 xx' and [yl < xyl + x|+ xall x4,

For an x with ||x|| s < 1,let (1 +x)™' = 1+y. Theny =32 (-1)"x", and

-1

gl < Pl 4 il 11— 1l s) ™

These evaluations show that the multiplication and the inverse in G are
continuous in 7, if the following fact is taken into account: For any ¢ = (sg)?}:'
with g; > 0, there exists a matrix k = (K,'j),°3.=| with kj > 0 such that ||k||ys < 1, and
&j > |[Kiol| llojll for any i,j>1.

Unitary representations of this kind of groups for F =R or C are studied
in [10], and those for U(oo) = lim U(n) etc. are also studied by many mathe-
maticians, see also §5.

§3. Properties of BS-topology and extended BS-topology

In this section, we treat the case where A4 is countable and G = li_r}n G; is
PTA. Here we consider the image ¢;(G;) = G together with the topology ¢;(z;)
given as the quotient of (Gj,t;) by N; = ¢j"(e), and identify them: (4;(G;), ¢;(1;))
~ (Gj~,rj~), in the notation in §1.4. The restriction of 77 onto G~ is denoted by
TG

3.1. Properties of BS-topology. Let us give some important properties of
BS-topology 7ps or of rBs-liLn G,

Proposition 3.1. Assume that, for any j < j', the image $,(G;) is closed
in (4;(Gjr),¢;(zj1)), and that the injective homomorphism (¢,(G)),#;(t;)) —
(¢;(Gjr), #;:(zj1)) is an isomorphism. If a filter & with a countable base is tps-
convergent in G =lim Gj, then there exists an n and an F e F such that F <

$n(Gin).

Proof. We apply repeatedly the next fundamental property of a topological
group:

(t) Let S be a subset of a topological group H, and h ¢ CI(S). Then there
exists a neighbourhood U of the unit element of H such that h ¢ CI(USU).

Now it may be assumed that we are in a monotone increasing case and that
Z converges to e. Take a countable base {Fi},.n of # such that Fy o Fiy.
Assume that there exists no such n, or, Fy & ¢;(G;) for any k, j. Then, there exist
an increasing sequence {n;},., of natural numbers and g € G, k > 1, satisfying
for k > 1, g € (¢, (Gu)\byy (Go))) N Fic.

By applying (1), from g1 ¢ ¢, (Gy,) closed in (,,(Gn,), é, (), we have an
open neighbourhood V| < ¢, (G,,) in ¢, (z,,) of the unit element such that g ¢
CI(V})" 4, (tn,), where CI(-)"r means the closure in the topology 7. Put W, :=
$nl (V).

By assumption, Cl( VIZ)A ¢/1|(T"|) = ¢11|(G’11) nC](VIZ)A ¢n2(1ﬂ2)> and ¢)1|(G"1) iS
closed in (¢,,(Gy,). 8,,(ts,)), and therefore CH(V2)" 4, (tn,) = CUVE)" B, (Tn,)-
Hence, from g;,9, ¢C1(V,2)A¢,,2(r,,2), we have by (f) a neighbourhood V; in
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(n,(Gn,), @y, (tn,)) Of the unit element such that ga, g1 ¢ CI(V2V{V2)" 4, (tw,). Put
W, = ¢, (V).

In this way, at the k-th step, we have by ({) a neighbourhood Vi in
(B, (Gn): @y, (tn,)) of the unit element such that

Gkr Gk=1, 92,91  CLUViViey -+ VaVEVa - Vit Vi) 8y, (Tn)-

Then put Wy := ¢, (V).
Thus we get a tps-neighbourhood of ee G as

Wil = IQ G (W) - - §,(W2) 8y, (W), (W), (W) - - B, (W),

which does not contain all of gx’s. This contradicts to the convergence of % to
the unit element e. Q.E.D.

Under another simpler assumption, the same assertion holds as seen below.
We denote by tps|¢;/(Gj) the restriction of tps onto ¢;(Gj).

Proposition 3.1'. Assume that, for any j<j'. ¢;(G;) is closed in (4;(Gy),
tas | 4;(Gy)). If a filter F with a countable base is tgs-convergent in G = lim Gj,
then, there exists an n and an F € & such that F < ¢,(G,).

The proof of this proposition goes similarly as above. Only the difference is
to replace the topologies ¢, (t,,) by Tas.n, := tas| 8, (Gn)-

Proposition 3.2. Assumptions are the same as in Proposition 3.1. Then, the
image ¢,(Gk) of G is closed in tgs-lim Gj, for any k. Furthermore, any ¢ (t)-
closed subset of ¢,(Gx) = G = lim Gj is also tps-closed in G, and so the topologies
(k) on @, (Gi) and the restriction tgs|@,(Gk) coincide with each other.

Proof. Assume we are in the monotone case. For the first assertion,
it is enough for us to prove that, for any g ¢ ¢,(Gy), there exists a BS-
neighbourhood V' such that g¥V' N ¢, (Gy) = & or V'NE = & with E = g4, (Gy).
Let g€ ¢,(G,) for an n > k. Then E < ¢,(G,) and is ¢,(t,)-closed by assump-
tion. Further, for any j>n, E < ¢,(G;) is ¢,(t;)-closed too. Choosing appro-
priately 7;-neighbourhood V; of e; € G; for j > n, as seen below, we give V' as V' =
U 1Bt Va1 ) b2 (Visa) -+ 851 (Vj-1)8;(V;)?, which is a BS-neighbourhood of
e€ G by Lemma 3.3 below since G = lim G; is assumed to be PTA.

First take V,4; = G,y in such a way that qﬁ,,+,(V,,+1)2 NE=g. By
assumption,  (@,,,(Gus1), 9,41 (th+1)) is embedded homeomorphically into
(6p12(Gns2), @uya(Tus2)), and so there exists a Vyp2 = Gypo such that
¢n+2(Vn+2)2 N @y11(Gur1) S @y (Vas1). Then (I$n+|(VrH-l)(15n+2(Vn+2)2 N @p1(Gus1)
< ¢n+](Vn+1)2. In a similar way we proceed by inductionon j=n+2 n+3,....
Take Vis1 © G as 6,1 (Vje1) N g(G)) = ¢(V;).  Then,

Gt Vs )i (Vus2) -+ 85V (Vie1) > N 4;(G))
< Gt Vi) busa(Var2) -+~ b1 (Vim) by (V)) .
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Finally we define V' as above, then V' N ¢, (Gy11) < ¢,,+1(V,,+|)2, and so V' does
not touch the subset E = g~ '¢,(Gi) < 4,(G,).

For the proof of the second assertion., we start from a ¢, (zx)-closed subset
D of ¢,(Gy). Then, replacing ¢,(Gy) by D and E = g~ '¢,(Gx) by E=g"'D,
we see that the above discussion proves without any change the existence of a
tgs-neighbourhood V' of e € G such that V'NE = ¢F. This proves that G\E is
tps-open and so E is tgs-closed. Q.E.D.

Lemma 3.3. Let the index set A =N as ordered set and G =lim G; be
PTA. Then, for any sequence of tj-neighbourhood V; of e; € G; for j > k, the union
U}Zk¢k(Vk)¢k+l (Vit1) -+ ¢;(V;) is a tps-neighbourhood of e € G.

Proof. Firstly take, for every j, 7,-neighbourhood W, of e¢; € G; such that
sz < V;. Then we choose inductively a symmetric 7;-neighbourhood U; = W; of
ej € G; in such a way that ¢,(U;) = G is a PTA-subset and ¢,(U;)U(j — 1,k) =
UG - LK) with U(nk) = 6,(Us) ¢ (U $,(U,) as in §2.2. If
this is done, we have U(n k) < ¢ (Vi)bpy1 (Vis1)---9,(Vy) and so a tps-
neighbourhood Ulk] = U;’C:k U(n,k) is contained in the union of the latter sets.
Hence the proof is finished.

Now, for n = k, choose simply a U, = W,. Assume the choice is done until
n=j—1. Then, the symmetric set U(j —1,k) is PTA as a product of PTA-
sets ¢,(U,), k < p<j—1. Hence, for n=j, there exists such a U, = W, that
6, (U)U(n—-1,k)c Un—1,k)¢,(W,) and ¢,(U,) is PTA. Q.E.D.

Proposition 3.4.  Assume that A is countable and G = lim G; is PTA. Let G;
be tps-closure of ¢;(G;) in tps-lim G; topologized with the restriction of tps. If G;
are PTA-groups for j > 1, then tps-lim G; = tpg-lim G;.

The proof can be given by applying Corollary 1.5.

3.2. Extended BS-topology. We discuss here other group topologies weaker
than 7gs.

A subgroup H with a group topology 7 is called a PTA-subgroup of G if ty
has a fundamental system % = {Y),}yE r of neighbourhoods whose images are
PTA-sets in G. Each Y, is symmetric by definition and, for any Y,, there exists a
Ys such that (¥;)* Y,.

For a family {U;};,, of symmetric open neighbourhood of ¢; € G; in 7;, we
put U(y,n k), n >k, as equal to

¢n(Un)¢n—l(Un—l) t ¢k(Uk) Yy¢k(Uk)¢k+l (Uk+1) e ¢,,_|(U,,_|)¢,,(U,,),

and define Uy, k] := | )72, U(y.n,k). Let %' be the set of all such U[y, k]'s, where
ye I and {Uj}jzk runs over all possible families for k=1,2,.... Then the
conditions (GT1)-(GT5) in §1.3 are clear for %' except (GT4).

Proposition 3.5. Assume that (H,ty) is a PTA-subgroup of G = lim G;.
Then, in case H is normal, the family %' gives a fundamental system of neigh-
bourhoods of e € G for a group topology (called an extended BS-topology). With
respect to this topology the natural homomorphism from H into G is continuous.
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§4. The case of uncountable inductive systems

Here we discuss when we can reduce an inductive system {(Gy,14), @ € 4;
¢M,a,ﬁ € A, o X B} to a certain equivalent one with a countable directed set as
its index set. Then we know when the results in the preceeding sections can be
applied in uncountable cases.

A directed set A is called of fish-bone type if it has a cofinal, totally ordered
subset 4,,. Then, as a totally ordered set, A,, itself has a cofinal, well-ordered
subset A,,., as is easily seen by using Zorn’s lemma. We see easily the following
fact.

Lemma 4.1. Assume that A is of fish-bone type. Then

indlim G, = ind lim G = ind lim G;.
aed BeAi Y€ Awo.

For a well-ordered set B and f € B, put f, = min{y € B:y > f}, and define f5_
as a for which o, = B, if exists. Put further

Bt = {BeB; p_doesnotexist}, B ={feB;a<p (YoeB)}

Lemma 4.2. (i) For a well-ordered set B, the subsets B* and B~ are well-
ordered. (i) The subset B~ is at most countable. (iil) If B~ # &, it is cofinal
with B, otherwise B* is cofinal with B.

Now, take B = A4,,. in place of the directed set A4, then we have two cases
depending on B~ # J or = .

CasE 1 (B~ # ). By Lemma 4.2, B~ is countable and cofinal with B, hence
with 4. Thanks to Lemma 4.1, we have

indlim G, = indlim Gg = ind lim Gj.
BeB peB-

acA
Thus we come to the case of countable inductive system.

Cast 2 (B~ = &). In this case, the set B* is cofinal with B and so with 4
itself, and ind lj‘m G, = ir}}d }iim Gp. Therefore we start again from B* and consider
oe eB*

(BT)". If (B*)” # (&, the situation is reduced to a case of countable inductive
system. If (B*)” = (J, we repeat the process again.

There may exist the case where we cannot arrive at a countable case even by
such an induction on the well ordered sets.

§5. Positive definite functions and unitary representations

Let {(Gj.7;), jeN; ¢, ;} be a countable LCG inductive system and put
G = liln G;. Then, 1,4 coincides with 735 and is a group topology for G as is
proved in Theorem 2.7. In this section, we study positive definite functions and
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unitary representations of G. Although every G; are assumed to be locally
compact, G itself is in general no longer locally compact, and so the following
problem is interesting.

Problem 5.1. Construct sufficiently many unitary representations G so that
elements of G can be separated.

However the above problem has a natural limitation coming from the
topology on G. In fact, the normal subgroup M = ﬂu G%SU in Lemmas 2.5 and
2.6 is a natural bound, that is, the points in M cannot be separated by continuous
positive definite functions.

Therefore we assume from the beginning that the induced topology z;,s on G
is Ty and so Hausdorff (since 7,4y = tps is now a group topology). Under this
assumption, we can replace the original inductive system by {(4,(G)), 4;(7j))};en
to get the same G, as seen in Proposition 2.8. Here ¢,(G;) = G is actually a
subgroup of G with topology ¢;(z;). Thus we can assume that the inductive
system is of injective type, that is, all the homomorphisms @, ; are injective.
Furthermore as is discussed in Case 2 in §2.2, we may assume without loss of
generality that Gj’s are monotone increasing or 4 = N as directed sets. For
simplicity, we omit the notations ¢, ; and ¢, and consider imbeddings G; — G;-
and Gj—G. Then G =|J, \G;

To get an affirmative answer to Problem 5.1, we assume further that the above
injective homomorphisms G;— G; are all homeomorphisms into.

5.1. Positive definite functions. To solve the above problem we construct
sufficiently many t;,4-continuous positive definite functions.

Take a t;4-neighbourhood O of ee G. We construct a t;4-continuous
positive definite function F with supp(F) = O. Choose inductively a symmetric,
relatively compact open neighbourhood U; in 1; of e € G; (so, ee U; = Gj), for
j=1,2,... in such a way that

(1) (U)* <G No, and

(2) for j>1, UPNGi< U, U(G.1):=Uli(0) 'UjcGNO and

U(,DNGy c Uk, 1) (1 <k <j) with U := UUj_y = U;Uj_y --- Uy
Then, taking into account the process in the proof of Theorem 2.7, we see that
such a system {U;}; N exists. Furthermore U[l]:= Uz, U(,1) is an open
neighbourhood in 7gs contained in O.

Denote by Cy(Gj;1;) (resp. C{(Gj:tj), Ci'(Gj;t;)) the space of all tj-
continuous functions ¢ on Gj, with compact supports (resp. non-negative, and
symmetric (i.e., ¢(g) = ¢(g~')) in addition). Further let 4 be a right Haar
measure on G; normalized later (in abbreviation, du;(g9) =dg), and 4;(g) =
du(97")/du;(g) (9 € G;) be the modular function, or u;(g~'E) = 4;(g)u;(E) for
any Borel subset E of G;. Put,

p; = max{l,u (U(k, 1)) (k < j)};

and for functions ¢,¢,,¢, on G or on G, with m > j,
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0l Laq) = lelGllLacg):  <@1 02D = JG 01(9)02(9) diy;

and for functions fi€ Go(Gyity), j=1,2,...,
o o)) :=j S(@h™V fo (W) duth (g € o),

/IGG,,_|
Ju = Jo#nSucy = Fuxn fusy %ot fuzg *no2 - %2 S,

Then, f, *u fu_1, /u € Co(Gu;Ta).  For f; € Co(Gj;1y), put (f)) = {g € Gj: f;(g) # 0}
and [f] := supp(/)).

Lemma 5.2. For f, e Cj(G;yy), j=1,2,...,
() = U Uo) Ua2) - () (),
[.fn] = [f;1][fn—l][f;r—2] T [fZ][fl]

Now choose triplets {V,, f,,u,} inductively as follows, where V, < U, is a
symmetric, relatively compact open neighbourhood (in 7,) of e€ G, and f, €
Cy*(Gui ).

STep 1. 41(g) < 1+27" (g€ V1), [fill/i] = Vi, e€ (f,), and normalize z; as
||f|||L!(G,) =L

STep 2. Assume that {V}, f;,i;} have been chosen for j=1,2,...,n, and
choose V,.; in such a way that

Apii(g) <1427V (ge V,y1), and

”L(g)f;r _j;“L"'(G) < 2—2"—4/1711 (Vg € Vn+1 n Gll)7

where L( )"(h) f( lh) (g,hG Gn)
Step 3. Choose f,,; as [f,.1][/is1] © Vas1, €€ (f,4)), and

| A an=1.

n

Then, normalize ;| as ||f,41ll12G,,,) = |-

Proposition 5.3. There exists a Tind-CORIINUOUS Sfunction f € CY(G; Ting) such
that, for any fixed j, f converges to f _uniformly on Gj, as n — oo.

_ The tiug-open subset (f f) = {9 € G; f(g) # 0} is contained in U, 1U" < O and
NG =Gy (= 1),

Proof.

j s GH () = foar(h™) Fo(9)) dh

n

”fn-{—l f||L=o(G = sup

ge Gy

< J ./;H»l(h I)”L(h n - n“L“°(G d"h <2 - 4/pnv

n
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because supp(f,,;) < Vus1, and so he V, ;i NG, in the last integration. On the
other hand’ ”fn-rl _fnl
see that f,[; converge uniformly to an f|; for any ;. Since f|g, is 7j-continuous

Lo (Gy) = ||f,,+1 —fullL-(g,) for n=m > k. Therefore we

for any j, the limit function f IS T;,4-continuous.
Assertions for the support of f are easy to see. Q.E.D.

Lemma 5.4. For any fixed j, f,,|GJ_ converges to flG,- in LZ(Gj;,uj) and

jll.n;) “flGJ“LZ(G,) =1
Proof. For k > j, put

I = “jk —fk—l

b = | VA ol
Since g € (f,)NG; = (f)NG; = U;U;, I is majolized by
jUU_ W~ il 6y di9 < (U0 1k = s 2 o

<p- 2% (pioy)® <274

and so, |f, —fk_,||L;(Gi) <2722 for k> j. This proves the convergence in
L?*(Gj; ;). Furthermore we have

1%

26y — U =11z = I

o0
L6yl < Z 1f ks = fill 2,
k=j

oG
<> 2FT=29/350 (jo o).

k=j

_ Proposition 5.5.  Put F,(g) := CR(9)f, [y 12(6,) for g € Gy, where R(g)f,(h) =

f,(hg), he G,. Then the series of positive definite functions F, on G, converges, as
n — o0, to a non-zero function F on G, uniformly on each fixed G;. The function
F is positive definite on G, continuous in tj,q = tgs, and supp(F) < U[l] = O.

The proof of this proposition needs rather lengthy calculations and will be
essentially carried out in the proof of Lemma 59 below. Note that the function F
here is nothing but the limit function {R(g)f.f) in Lemma 5.9.

5.2. Coincidence of topologies, 7,4, Tps, and 7,,. As is proved above we
have F € ?(t;q) With supp(F) c U[1] for a previously chosen 7gs-neighbourhood
U[l]. This means that 7,, is not weaker than rgs. Since 7;,¢ = tps is already
known, we get the coincidence of all these three topologies.

Theorem 5.6. For a countable LCG inductive system {G;}, ., assume that the
topology ting on G = li_rp G; is Ty (and so Hausdorff), and that the injective
homomorphism of ¢;(G;) to ¢;(Gj) is homeomorphism into for any j < j'. Then,
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the topologies Tina, Tgs and t,4. on G coincide with each other: Ting = Tps = Tp.d., and
there exist sufficiently many continuous positive definite functions on G.

From the result in Proposition 5.5, we have thus

Theorem 5.7. For a countable LCG inductive system {G;}; N, let assumptions
be as in Theorem 5.6. Then, there exist on G = lim G; sufficiently many continuous
positive definite functions with respect to the unique group topology tina = Tps = Tpd.-

5.3. Unitary representations. Let us construct a continuous unitary repre-
sentation on a space generated by the function f = lim f,.
n— 0

Let ¢,9,,9, € C*(G). Under the assumption of existence, put

lell, := lim ||g| LX(G)) @1, 92 = lim {p;. 1),
jo®o jo®

Then, for any g € G,

||R(g)(p||2 = ||(/)||27 (R(9)p1, R(9)py> = L9y, 02,

and Lemma 5.4 gives | f]||, = 1.

Lemma 5.8.

[ dng j ) f(g) durh < (1 —27272)71
Gy Gp-1

Proof.

2
L= 1fil 2, = j dug

n

jG F(gh™ Y, () -y

:jG d,,ng jG L(gh™ (g Vs (e (1) dy

- (j fi(gh)fi9) d,,g) CLOT Y1 Fot Su i,
Gy G,

where CL(h7 "), 1 fooi Dot = Jg, Jact (AN, () i
In the last two integarations, gh; € (f,), g € (f,), and so, hy € (f,)(f,,) N Gy-
=: Cy(put) € V,NG,-1. Further,
|<L(h]_1).i;1-—] vj:z—] >n—l - ||jll—] “iz((i,,_l)l
< IL(h7)f, - ~fo 226, 1) [ 226,
<ty (Co - ) PILT Voms = faci (6,000

< (py)P277 poy <2777 (sinee |||

L) =Ly =)
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Hence we get successively,

<L(hl—l)f;1—l ’f~n—l >n—l = ”fn—l ”iZ(G,,_l) - 2_2"_2 =1- 2-2"_27

L= ey > (1 -2 | |, Sam)sio) dugduoii,

Gy JG

j j GV fo(g) durhdng < (1 — 272727,
G, JG,_y

Lemma 5.9. Letr f = lim f,- Then, both of |R(g)f —fl, and {R(9)f.f>

exist for g€ G, and continuous on G, where R(g)f (h) =f(hg). Furthermore the
convergences of lim ||R(g)f — f|l 2, and lim {R(g)f, f>; are uniform on each Gi.
Jooo ! j—o

Proof. 1t is enough to prove the assertion for ||R(g)f —f||2.
(i) CONVERGENCE AS j — c0. Let g € G, and take any j > k, then

| ||R(g)f —f“U(Gj) - ||R(g)f;~ _f;'HL:(G,)l
<> I R@ i1 = fr1) = (RGO, =)l 26
s=j

O
< SCURG) Fonr =Pl + F s —Fllizgy) <2727 /3.
s=j
On the other hand,

IR@Y -1t = | dan| | ftan )

j Gj-1 J Gy

(fi=1(hg) = - (W) (fi_1(mg) = fi_y (1)) dioyhdj—ihy

:J di—1h (J fj(glhl)fj(gl)d/g|>
G Gi

: {L (fi-1(hg) = fia () (fi-1 (i) —f,»_.(h.h»dj_]h}

Then,
{} = R@S_y —f LT DYR@S -y — f1)
< d;1(l )”R(Q)f;’-l _f;‘—l ||i2(0,_1)-

Here, gihi € (f), g1 € (f)) = h e (f)(,)NGj_1 = 4i1(ln) < 1427+
Hence by Lemma 5.8,

IR@); = flli2) < (1= 2727 (1 + 27 IR@)f -1 = f-il 726,

<(1+ 2*,/+2)||R(g)]§_| —f;_|||22(6,_.)'
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Put [i(g) = [T, (1 + 272" - |R(9)f; - £l Then the above inequality
shows that 0 < lj(g) <Ii_i(g). So Ii(g) converges as j — co. On the other hand,
I (1427 s‘“2) is also convergent, whence we have the existence of

11m IR(g )f fj“L2(G

= |R(g)f — f]|, is now guaranteed.

(i1) CONTINUITY. Choose a symmetric, relatively compact open neigh-
bourhood W, = V, (in 1,) of e€ G, as

IR(9)f, _j;tlle(G,,) <27 (ge W)
and define a system of of neighbourhoods of ee G in s as
Wr=J2, W, with Wi=W, W W, (s>7).

Let us prove that, for a fixed ¢ > 0, there exists an r such that ||R(h)f—f||2 <
e (Vhe W'). In fact, for he W', take s>r such that he W/. Then, h=
hhyy - hg with some hy € Wy (s >k >r). Hence

IR(D = F1l, < Z”R(hhm Siethif = Rlhohiy - i)

=Y RGBS =11,
k=r

From the inequality at the end of (i), we get, for hy € Wi, k < j,

j - -
H 1+ 2—’"+2) . ||R(hk)fk _fk“iz(Gk)

m=k+1

1/2
—2k-8 (2 : _ «© —m+2
<2-%-8C2 with C = (Hmzl(l 42t ))
Further, from the inequality proved at the beginning of (i), we get

IR = 2y < IR = fllxy +2777'/3
<27k4C 4 27¥ 13,

Letting j — oo, we obtain ||R(k)f —f|, <27%4C.
Take r such that 27773C < ¢, then finally we have, for ke wr.

IR(A)f — fll, < ZHR(hk)f £l

< C-Zz—k—“: C-27"3 <
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(ili) UNIFORM CONVERGENCE ON Gy. Note that the limit function J(g) :=
IR(9)f —f I, is continuous in g € G, and that the series of continuous functions
Ii(g) > 0 in (i) is decreasing and pointwise convergent to a continuous function
H;‘ik(l+2‘”2)_' -J(g). Then we see, by Dini’s Theorem on a decreasing
sequence of non-negative continuous functions on a compact, that the convergence
is uniform on every Gy.

Lemma 5.9 is now completely proved.

Let # be the space spanned by {R(g)f;g € G}. Then, by the results above,
we can introduce on it a G-invariant inner product <{-,->. Let 4" be the kernel of
this inner product, then #/.4" becomes a pre-Hilbert space. Denote by #(f) its
completion. Then the right translations R(g), g€ G on it give a unitary repre-
sentation of G as follows.

Theorem 5.10. For a countable LCG inductive system {(Gj,tj)};cn, let
assumptions be as in Theorem 5.6. Then, there exists a continuous unitary
representation {R(g), #( f )} with a unit cyclic vector f. Its spherical function
(R(9)f.f> is equal to the positive definite function F(g) = "lLrEO <R(g)f~,,,f~,,>Lz(G”) in

Proposition 5.5.
5.4. Induced representations. In the case where the limit group G = lim G;j
j—oo

is no longer locally compact, there does not exist an invariant measure on G
similar to Haar measures. However, we show here, in a certain circumstance, the
notion of induced representations can be carried over for G and its subgroup G,.

At first we remark the following fact [13]. Recall that a Borel measure v on a
locally compact group H is called positive definite if, for any ¢ € Co(H),

JH ([H WU (A) dh,) dv(h) > 0.

A measure v of the form dv(h) = f(h)dh (h € H) with a continuous function f and
a right Haar measure dh on H is positive definite if and only if the function f is
positive definite, and the unitary representation of H associated to v through the
GNS construction is equivalent to the one associated to f.

Lemma 5.11. Let v, be a positive definite measure on G,, and define a measure
Vil OR Gn+l by

AVpi1 (h) = (Ap(h) ] dper1 ()2 dva(h)  (h € G,).

Then, v,y is positive definite on G,.i. The unitary representation of G|
associated to v,y through the GNS construction is equivalent to the induced
representation ( from G, to G,y)) of the unitary representation of G, associated to
V.

Assumption 4. The sequence 4,,n=1,2,..., converges on G in such a way
that on each G it converges uniformly in the wider sense.
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Theorem 5.12. Let {G;};.n be a countable LCG inductive system, and the
assumptions be as in Theorem 5.6. Take any subgroup G, of G =1lim G;. Then,
under Assumption A, the unitary representation of G,, associated to a positive definite

Borel measure v on G, can be induced up to a unitary representation of G.

Proof. Put v, =v. Then, for any n>m, the measure dv,(h)=
(A(h)] An(h))'? - dv,(h) (h € G,) is positive definite on G, by Lemma 5.11, and
it is supported on G,. By Assumption 4, the series of measures v, (n = m,
m+1,...), considered as measures on G,,, converges to a measure u on G,.

The following function is a continuous positive definite function on G and the
cyclic representation associated to it is the induced representation looked for:

U@ Y :=j CR(hg)fF> du(h)

Gm

= lim J (RS J5,(Am(h) | (1)) dv, (h).
The representation U is realized on the space spanned by f , similarly as for
Lemma 5.11. This proves our assertion.

Part II. Group topologies for the group of diffeomorphisms Diffy(M)
§6. Preliminaries and main result

Let M be a connected, non-compact, g-compact C"-manifold with 1 <r < oo.
Denote by Diff(M) the group of all difftomorphisms and by Diffo(M) its
subgroup consisting of diffeomorphisms with compact supports. Here we study
group topologies on the group G = Diffy(M).

Usually, as seen in the beginning of [6], we have been considering on G the
topology 7 given by the following way of convergence: a sequence gx, k =1.2,...,
converges to g if supports of g and of all g, are contained in a compact subset K and
gr — g on K uniformly together with all derivatives.

This topology 7 is normally understood as an inductive limit of topologies
of canonical subgroups G, / G, n— oo, as follows. First take an increasing
sequence My < M) =« M, < --- of relatively compact open subsets so that
UHZOM,, = M and that each K, := M,, the closure of M,, is a manifold with
boundary. Put

G, = Diff(K,,) := {g € G; supp(g) = K,.}.
Then we have an increasing sequence of subgroups as

Goc G cGyc -, UZ‘;OG":G,

The topology 7, on G, is given by considering G, as a topological subgroup of the
Fréchet Lie group Diff(M,), where M,’ is the compact manifold obtained by
patching M, and its mirror image M, through the boundary. For the Lie group
structure of the group Diff(N) of a compact manifold N, we refer [8] or [I1].
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In an algebraic sense, G =lim G,, and as a topology on G, we have
Tind =li_rp 7,. On the other hand, as suggested by the results in Part I, the
phenomenon that 7;,;, does not give a group topology seems to be rather general
for the case of non-locally-compact groups. The purpose of this part is to prove
that, when M is non-compact, this is actually the case for G = Diffy(M) with the
inductive system consisting of highly non-locally-compact groups Gj.

Thus our main theorem here is the following (cf. Proposition 1.1).

Theorem 6.1. Let M be a connected, non-compact, o-compact C'-manifold,
1 <r<oo. For the group G = Diffo(M), the multiplication G x G 3 (g1,92) —
gi192 € G, is not continuous with respect to the inductive limit topology Ting.

This fact does not affect so much the theory of unitary representations of
the group G (for instance, in [2], [9] and [14] etc.), because we can take, as our
background, the group topology 7,4 on G which is defined by means of the set
P(tind) of Tig-continuous positive definite functions (cf. §1). However it has
certainly some effects, for instance, for determining continuous 1-cocycles a(g, p),
(9, p) € G x M, depending on which continuity we choose (cf. [3], [12]).

Note that if a sequence g € G, k =1,2,..., is T;,4-convergent to g € G, then
there exists a compact subset K of M such that supp(gx) and supp(g) are contained
in K, and the convergence is as in [6]. To see this, we remark that the restriction
on G, = Diff(K,) of the inductive limit 7;,4 on G is exactly the original 7,. In fact,
let O, be a 7,-open subset of G, then, for k > n, we can choose inductively a tx-open
subset Oy of Gy such that Oy N Gyx_; = O_y, since the restriction of 7, onto Gy_;
is equal to 7. Put O= UZOZHOk, then O is t,4-open in G and ONG, = O,.

§7. Preparation for the proof of the theorem

Let d =dim M. To express G = Diffy(M) as an inductive limit, we choose
MycM,c --- =« M, < --- under the following additional condition: There
exists a coordinate neighbourhood (¥s,2p) containing the closure M, such that,
with respect to a C'-class Riemannian structure on M, the subsets My and M, are
open balls with the common center, and that, under the coordinate map 1, the
Riemannian structure is of the canonical form on M;:

ds® = dp} +dp3 +---+dp} for p=(p)_, e M; <R

Denote by p(p, g) the distance of two points p,g € M. We fix the origin O of
the coordinates on the boundary dM, of My, and put p(p) = p(p, O).

Let C"(My, M;) denote the set of all maps from M, into M; which are
restrictions on M, of C’-maps from some open sets containing M, into M;.
Take ¢ e C"(My, M;). For 1 <k <r, finite, and p e My, put alike a jet at p

Jp# = (9705 - 03 (P)) 1y < o

with 5,':5, o= (0. 00,...,00), |al =01 +op+ -+
i
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Considering this value as an element of a Euclidean space (RY)™ for an
appropriate Ny, we take its norm:

1/2
iyl = (Z na;’"a?---a;%(p)uz) ,

lo] <k
and put for ¢,y € C"(My, M) = C"(My,RY),

d“(¢,¥) := sup |lj, (¢ — ).

pPeMy

We put also, taking the k-th homogeneous part,

0= (0703 - 03 (P AP ($¥) = sup [/ (¢ = W)lI-
peM,

The next lemma is a key of our proof of Theorem 6.1. Let D,D; c R? be
connected open sets, and C"(D;, D,) be the set of all C"-class maps ¢ from D; to
D;. For ¢ =(¢,)_, € C"(D\,D;), we have J"¢ = (9¢)1<;j<q- Considering it
as a linear map on R? canonically, we denote its operator norm by || j[(,”¢||op, where
we take |x|| = (x2 4+ x2+ -+ x2)'/? as the norm of x = (x;), e R’

Lemma 7.1. Let D < R? be an open ball and denote by id the identity map on
D. Assume for ¢ € C'(D, D), the support supp(¢) := Cl{p € D;¢(p) # p =1id(p)}
is compact, and

1 (¢ = id)l,, = I1i$"¢ — Lall,, <1 (¥pe D),
where 14 denotes the d x d identity matrix. Then ¢ is a diffeomorphism on D.

Proof.  Since det( jz(rl)¢) # 0 (Vpe D), by the theorem of implicit functions,
we see that ¢ is an open map and locally diffeomorphic.

On the other hand, ¢ is globally 1-1. In fact, for p,ge D = RY, p # g, take
p—qeR? and put p,=q+1(p—¢q) (0<t<1), then

1
o) = o) = | Gotpaai = G0op - a)at

0

From the similar formula for ¢ = ¢ —id, we have

1
1W(p) — w(@)ll < L Wil — gllde < 1 — 4l

Hence [¢(p) — d(@)ll = [lp — qll = ¥ (p) — ¥(q)l > 0.
Now let us prove that ¢ is onto. To do so, it is enough to prove that ¢(D) is

relatively closed, i.e., DN@(D) = ¢(D), because we know already that ¢(D) is
open. Take a pe DN@(D). Then there exists a sequence ¢, € D such that
#(qx) — p as n — co. Since ¢ is 1-1 and = id near the boundary d(D), g, has an

accumulation point ¢ inside D. Thus we get p = ¢(q). Q.E.D.
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§8. Behavior of a diffeomorphism on M, and M,.

8.1. A basis of neighbourhoods of ¢ € Gy. We denote the identity map id on
M also by e as the unit element of G. Put

Q:={geG;gMyc M} cG.

Then Q is 7;,4-open in G, as is easily seen. Note that, for g € Q, its restriction
gly, on M, belongs to C"(M,, M,).
We define subsets W, of @ as follows depending on the class C”:

Wi :={geQ;d"(g,e) <1/k} in Case r = oo,
Wi:={ge2:d(g9,e) < 1/k} in Case r < o0.
Then we have the following lemma.

Lemma 8.1. Put Wy := Wi NGy for k=1,2,.... Then they form a basis of
neighbourhoods of the unit element e € Gy with respect to the topology 7.

8.2. Convex combination of maps. Take ge 2. For 0 <s <1, we can put
(8.1) gs:=s-idg + (1 =) -gly, € C" (Mo, My).
More generally we put, for ¢ € C'(My, M),
¢, :=s-idg + (1 —s)-pe C" (Mo, M)).
Further put
(@) : = inf{s;0 < s < 1,d*(¢,,id) < 1/k} in Case r = oo,
ax(f) : =inf{s:0 <s<1.d"(¢,,id) < 1/k} in Case r < co.

Since d¥(¢,,id) = sup ||j¥(¢, —id)|| = (1 — s) - d*(4.id), we have according as r =
s r V4 s

peMy
0 Oor r < oo,
(8.2) o (P) =0 v (1 _m> in Case r = o0,
(8.2) o(9) =0 v (l —m) in Case r < 00.

Define further, for ¢ € C"(M,, M;),
Prd = o g = (@) - idgg, + (1 — ax(9)) - ¢ € C"(Mo, My).
Then we have the following facts.

(a) Let ge Wy < Q. Then a(g) =0, whence Prg =gl -
(b) Let ge Gy = 2. Assume g€ Wy o= Wi NGy with k = 2. Then, for any
5,0 <s<1, we can extend g, outside of My as g, =1d, and get g, € Gy < G.
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Proof.  Since M, is an open ball, we have g, € C} (Mo, My). Moreover, for
any p € My,

178795 = id)l,, < dM(gs,id) < d'(g,id) < 1/k < 1.
By Lemma 7.1 applied to D = M, we see g; € Diffy(My) = Gy = G. Q.E.D.

8.3. A crucial inequality on M,. Now put for ge Q

63)  fo= inf | pato)dp = inf j_ lo(p)l dp1 dps - dpy,
9eWeo J p, 9eWio )y,
where p = (p,)L,, dp = dp\dp,---dp,, and |lg(p)]| = (XL, ¢i(p)*)'" with g(p) =

(gi( p))f.l:l. The inequality in the following lemma reflects the fact that Gg is not
locally compact and is crucial for our proof of Theorem 6.1.

Lemma 8.2. Let k> 2. Then, for any ge Wy o= Wi, NGy, we have

j_ p(9(p))dp > fi.

M,

Proof. STEP 1. Since g € Gy, supp(g) = M, and so g and the identity map
id have, at the origin O, C’-class contact. Hence

& (g) = Jj& (id) (YK’ < r, finite).
We can consider g —id as an element of C’ (M.,R"), then
j&(g—id) =0 (VK < r, finite).

Fix k > 2, and take k' = k in Case r = o0, and k' = r in Case r < co. Then
there exists an open neighbourhood Uy of O in M such that

! . 1
1% (g — id)|| < % (Vpe Uy N M),

J¥(g—id) =0 (Yp¢ M,).
Now take an n = ('7:‘)?:1 € CJ(Um N My, R?) satisfying
& 1 ) | .
84) Myl <5z and ljgnll = lInll < 5 {diam(M,) — diam (M)},

where diam(M,) denotes the diameter of M,. Put ¢ =g —#. Then,
¢(A_40)CM| and ¢=ld on M[\Mo,

/ 1 1 1
-k _ o o
7y (@ =il < 5p+ 57 =7

Hence ¢ € C"(M,, M,) and, for any pe M,,

(Vpe Uy N My).

1 = i), < 175 (¢ —id)l| < - < 1.

x| —
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Therefore we can apply Lemma 7.1 to ¢ and D = M,, and see that ¢e
Diffo(M,). Since supp (¢) = My, we get ¢ e Gy = Diff (M) and so ¢e Wy o=
Wi N Gy.

STEp 2. Let us compare the following two values:

A:=JM p(9(p)) d J (Zgl(p >/2dp,
1/2
B:—j pbp) = | (Z(g,<p ) .

It is enough for us to prove 4 > B (> f,). For this, it is sufficient to have
lgi(p)l > lgi(p) —mi(p)l  (Vi,¥p e My),

19is (Po)| > |9is(Po) — ﬂio(P0)| (Jio,3po € Mo)-

On the other hand, since the maps g and id are sufficiently near to each other
on Uy N My, there certainly exist iy and py, e Uy N My such that g;(p,) # 0.
Then there exists a small neighbourhood U(p,) of p, such that, for e=1 or —1
and some k >0, ¢-g;,(p) >« (Vpe U(py))-

We can choose # = (17,»)?'=l e CJ(U(py) N Uy N My, RY) satisfying the condition
(8.4) in such a way that n; =0 for i # i, and

e My(po) >0, x=e-n(p) 20 (Vp).
Under this choice of # the above sufficient condition for 4 > B holds. Q.E.D.

§9. A 1;,4-neighbourhood of ¢ e G.

9.1. Neighbourhood U. We define a 7t;,4-neighbourhood U of ee G, for
which it will be proved that ¥? ¢ U for any t;,4-neighbourhood V of e € G.
Let M§ = M\M,, and put, for ge Q c G,

9.1 Fi(g) =

+j p(9(p).id(p)) dp
»

0

j_ P((Peg)(p)) dp — B
M,

where id(p) = p. Then the following fact is a consequence of Lemma 8.2.
Lemma 9.1. Let k >2. Then, Fi(g) >0 (Vge Q).

Proof. Assume that the 2nd term in Fi(g) is equal to zero. Then, g = id on
M¢, and so supp(g) = M, whence g € Go = C"(My, M,). Then,

Pige C'.(M(),Ml) < Cr(Ml»Ml)»
supp(Pxg) = supp(g) = My and d* (Prg,id) < 1/k < 1.

where k' =k or =r according as r=00 or r < oo. Therefore we can apply
Lemma 7.1 to ¢ = Pyg and D = M,, and see that P,g € Diff(M,) = G,. Then by
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Lemma 8.2 we get

[_ P((Peg)(p))dp > .

My
This means that the Ist term in (8.4) of Fi(g) is positive, and so Fi(g) > 0.

9.2. Proof of Theorem 6.1. Choose non-empty open sets Oy in such a way
that Oy = M\M,_; for k >2. Fix y> 1, and for k> 2, put

Up = {geQ; Fi(g) > J p(g(p),id(p))dp}

Ok

Since G, = Diff(M,) = {g € G;supp(g) = M,}, we see that, if n < k, then g = id
on Of. Then, by Lemma 9.1, Uy NG, = 2N G,, and this is 7,-open in G,. In
particular, Go = QN Gy < Uy. Put U := ﬂ,tozz Uy c Q.

Lemma 9.2. The subset U is ty4-open in G.
Proof. For any n > 2, the intersection UNG, is t,-open in G,, because
UNG, = ),,(U«NG,)N(2NG,).

Now we come to the final stage of the proof of Theorem 6.1, and it is enough
for us to prove the following lemma.

Lemma 9.3. There does not exist any tj,4-neighbourhood V of e € G such that
VicU.

Proof.  Suppose the contrary and let V be such that ¥2 < U. Since V' NG,
is 7g-open and Wj o’s form a basis of typ-neighbourhoods of e € Gy, there exists a
Wio such that VN Gy > Wy o. Put Vi = VNDiffy(Or). Then

Wi oVi < V2e Uc U c Q.

Hence, for any ge Wy, he Vi,

Fegoh) >y j p((g 0 B)(p).id(p)) dp.

O

Note that supp(g) = My, supp(h) = M\M;_;, and that
goh=gon My, goh=hon O, goh=idanywhere else.

Then we have

j_ P(Peg)(p)) dp — Be| > (7 — 1) j p(h(p).id(p)) dp.
M, Ok

Further, since ge Wy o= W, NGy, we have Prg =g, and the above inequality
turns out to be

j_ pg(p))dp — By > (7 — 1) ] p(h(p).id(p)) dp.

Mﬂ Ok
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Taking the infimum over g € Wy, we get 0 on the left hand side and so
0| plhtr).id(r))dp.
k

Hence h =id. This means that V' NDiffy(Ox) = {id}. A contradiction. Q.E.D.
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