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The Neumann problem on wave propagation in a 2-D
external domain with cuts
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1. Introduction

T he theory o f  boundary value problems fo r 2 -D  P D E 's  mostly deals with
connected domains bounded by closed curves. A  small number of investigations
are devoted to the problems outside cuts in  th e  p lan e . There are almost no any
results concerning the well-posedness of classical problems in domains bounded by
closed curves and containing cuts. It seems, that the difficulties in the analysis of
these problems proceed from the different technique of the proof of the solvability
theorems for domains bounded by closed curves and for plane with cuts. It is
very likely, that there is no great difference between these problems in  na tu re . In
th e  present n o te  we try to overcome technical difficulties for the Helmholtz
equation in an external domain with cuts and therefore to suggest approach to the
analysis o f similar problems.

The 2-D  Neumann boundary value problem for the Helmholtz equation in a
multiply connected domain bounded by closed curves is considered in monographs
o n  mathematical physics, fo r in stance  in  [1]. T h e  review o n  studies of the
Neumann problem for this equation in  the  exterior of cuts is given in  [4]. The
present note  is attempt to join these problems together a n d  to consider both
internal and external domains containing cuts. From practical stand-point such
domains have great significance, because cuts model cracks, screens o r  wings in
physical problems. We consider the case, when the parameter in the Helmholtz
equation is not an eigenvalue for corresponding single connected internal domains.

The D irichlet problem fo r  th e  propagative Helmholtz equation i n  a  2-D
external domain with cuts has been studied in [6]. The Dirichlet problem for the
dissipative Helmholtz equation in both internal and external domains with cuts has
been investigated in  [7]. The case of strongly dissipative Helmholtz equation has
been treated in  [8] under weakened conditions.

T he  present paper is organized a s  fo llow s. Form ulation of the boundary
value problem and the uniqueness theorem are given in the section 2. With the
help of potential theory, the problem is reduced to the boundary integral equations
in the section 3. The Fredholm integral equation of the 2-nd kind is derived in
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Fig. 1. A n external domain

the section 4. In  th is section w e also prove the solvability of the integral
equations and formulate the existence theorem for the boundary value problem.

2. Formulation of the problem

In the plane x = (x i , x2) e R 2 we consider the external multiply connected
domain bounded by simple open curves E l , .  , F I

AT, e C 2 , 2  and simple closed
curves 11, e A e (0, 11, so that the curves do not have points in
common. We put

r i _= u rnl , F 2  U F n2 , F  r i u F 2 .

n=1 n=1

The external connected domain bounded by F 2 w ill be called  g .  W e assume
th at each  cu rve T n

k i s  parametricized b y  th e  a rc  length s : F n
k  =  Ix : x

x(s) = (xi (s), x2(s)), S E n  = 1 ,  . . .  , N k ,  k  = 1, 2, so that al < bl < • • • <
4, <b) 1 < a? < b? < • • < a 2 <  bk, and the domain g  is to the right when the
parameter s increases on F . T herefo re  points X E F  and values of the parameter
s  are in one-to-one correspondence except w h i c h  correspond to the same
point x  for n = 1, . ,  N. B e lo w  the sets of the intervals on the Os axis

N IN 2 2 Nk

[ati, U U [al; b
n=1 k=1 n=1

will be denoted by F 1, F 2 and  F  also.
The internal domain bounded by F, be called g n , n =1, • • • N2.
We consider F 1 as a set of cuts. The side of F 1 which is on the left, when

the parameter s increases will be denoted by (F 1)+  and the opposite side will be
denoted by (F ').

We put C° ''(T n
2 ) = 1.97 (s) : ,Y;(s) E C°, r[anz,_ r e [0, 1] and

N2
c o,r ( r 2) n c o, r (r n2) .

n=1
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The tangent vector to I ' at the point x(s) we denote by Tx  =  (cos OZ(S), sin a(s)),
where cos (s) = x ;(s), sin ( s )  =  x ( s ) .  Let nx  = (sin Œ(s), —cos a(s)) be a normal
vector to F  at x ( s ) .  The direction of n, is chosen such that it will coincide with
the direction of r ,  if n, is rotated anticlockwise through an angle of m12.

We say, that the function u(x ) belongs to the smoothness class K if
1) u E C°(g\F 1)n c2(2I\r'),
2) Vu E C °(9\F 2 \X ), where X  is  a  point-set, consisting of the end-points

of r l :

X = (x(a,I,) U x (b)),
I? =

3) in the neighbourhood of any point x (d) e X  for some constants > 0,
e > —1 the inequality holds

( 1 ) ' Ix —  x (d)r,

where x —> x (d ) and d = a  or d = b ,  n  1 , . . . ,
Let us formulate the Neumann problem for the Helmholtz equation in the

d o m a in  g \  .

Problem U. To find a  function u(x) of the class K  which satisfies the
Helmholtz equation

(2a) ux ,x ,(x ) + u, 2 (x) + fi 2 u(x) = 0, x  e  g\ F 1 , f i = const, f3 >0,

the boundary conditions

Ou(x)
= F +  (s),

x(s)e ( 0 +

au(x)
=

x(s)E(1-1 )-
(2b) an, an,

= F(s)
xcoe r 2

and the radiation conditions at infinity

a(2c) u = 0(1x 1/2
1- u

alx1

    

ou 0(Jx1- 112 ), lx1 = 2N/X 1
2
. ±  X 2  --+  CO .

All conditions of the problem U  must be satisfied in the classical sense.
On the basis of the energy equalities and the Rellich lemma [11, we can easily

prove the following assertion.

Theorem 1. If  F l E  C 2 ' 1 ,  F 2 e  C " , A e (0,1], then the problem U has at most
one solution.

Ou(x)
On,

We will prove the solvability theorem for the problem U under the additional
condition D.
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We say, that the condition D  holds if fl 2 is  n o t an eigenvalue of the internal
Dirichlet problem

(x) + u 2 2 (x) + fi2 u(x ) =  0 ,  x  g n ;  u(x) I x ( s )  e=  O.

for n =
It is well-known [1], that the condition D  holds, if, for example, the diameter

of the each domain g n  (n = 1 , N  2 )  is sm all enough. M ore precisely [1], the
condition D  holds if

2/32 [exp(d„) - 1] < 1 for n  = 1, N2,

where cln i s  the diameter o f the  domain gu.

3. Integral equations at the boundary

Below we assume that

(3) F ± ( s ) ,  F -  (s )  E  C "(F 1 ), F(s)  E  C " - (F 2 ), 2 E (0 11.

If a l (P ), a 2 (1- 2 ) are Banach spaces of functions given on  F 1 a n d  F 2 ,  then
for functions given on F  we introduce the Banach space a i (FI) f1a2(1- 2 ) with the
norm  II II,,*,,m,(0nge,(r 2 ) - + II • 162 (r2 ).

We consider the angular potential from [3], [4] for the equation (2a) o n  F 1

(4) wi [p] (x) = 4-1p ( o -) V (x, o-) do- .

The kernel V(x, o-)  is defined on the each curve F, n  = N1 by the formula
a

v(x, 0-) =
ena„ y

)(13ix  - Y ()i)ck ., aE nn i

where Y ( (
0

1) (z )  is  the H ankel function of the first kind

,ye (01)( z )N h e x p ( i z  -  in/4)
exp(-t)t-1 /2 (1 + i t y i

1
2 dt,

7EN/i 0 2z

Y = y ( ) = (Y ,(), Y 2()) ,  IX- y( = ( x l -  Y i( ) ) 2 + (x2 - .Y 2( )) 2

Below we suppose that ,u(a) belongs to the Banach space Cnw(F 1), w  e (0, 1],
E [0, 1) and  satisfies the  following additional conditions

(5) ,u(a) = 0, n = l , . . . , N 1 .

W e say, that p(s) E C qa )(F t )  if

N,
p(s) H s  -  a, 1,111 s  - b,l, e  co,c0(Fi),
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where C ° ' ' ( F 1)  is  a  Holder space with the index co and

11P(s)11cir(ri) =
Ni

p(s) H _ an' lq —  b,;1q
n=1 co—(1-1)

As shown in [3], [4] for such p(o- ) the angular potential wl [p ](x) belongs to the
class K . In particular, the inequality (1) holds with e = — q, if q E (0, 1). More-
over, integrating wi[p](x) by parts and using (4) we express the angular potential
in terms of a double layer potential

a ,
wiLul(x) _ J ( 1 1 1 x —  y ( a ) d a ,-r r i y

with the density
a

P(a) = P g ) c k ,
a,;

o- E [at; n = 1, . , NI.

Consequently, w i [p](x) satisfies both equation (2a) outside F 1 and the conditions
at infinity (2c).

Let us construct a solution of the problem U .  This solution can be obtained
with the help of potential theory for the Helmholtz equation (2a). W e seek a
solution of the problem in the following form

(7) W [v,p](x) = vi[v](x)+ w[pj(x),

where

vi[v](x)
 = J v (a )-Y tô l) (filx  —  y (a )l)d a ,

(8) w[P] (x) = w,[1-1](x) + w2[/.11(x),

w2  [fi](x ) =  .1, 2  fi(a)Y fô l) (13 ix —  Y(a)1) do

and wi [p ](x ) is given by (4), (6).
By fr k  . . .  du we mean

Nk

E
bk

Jk

... do-.

n = 1

W e will look for v(s) in the space co , 2 ( r 1 ).
W e w ill seek p (s)  from  the Banach space C ° (F 1) (1 C° ,2 /2 (T 2 ) ,  co e (0, 1].

q G  [ 0 ,  1 )  w ith  th e  n o r m  I  H cT(ri) n co Ao(r2) — II H + H.110 A/2 ( r 2 ) • Besides,
p(s) must satisfy conditions (5).

It follows from [3], that for such ,u(s), v(s) the function (7) belongs to the class
K and satisfies all conditions of the problem U except the boundary condition (2b).

To satisfy the boundary condition we put (7) in (2b), use the lim it formulas
for the angular potential from  [3 ] and arrive a t  the integral equation for the

(6)
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densities ,u(s), v(s):

(9a) v(s) + f

f

P. A. Krutitskii

(fiix(s)r , v(a) a
a
n x /( ôl ) Y(a)1) dd.

av o (x(s), do-
sin yoo(x(s), Y(0 )) do-( a ) , +

lx(s) — Yl6  )1 4

a

ti(a) a)
F 1 Onx

= F ±  (s), s E F 1 ,

27c

+ 
4 J

j r l

r , P(a) o
a n x

(filx(s)— y(u)1)d

(9b)
a

4 
f

r ]  

V ( 0 " )  —

e n x
filX(S) – y(a)l) d o-

1
27r

j f

j r l
f sin yoo (x(s), Y(a)) + i f f a \ a do. 21 i i ( s )

I-1 ( ) IX (S ) Y(a)1 - 4

duolx(s) _ y(a)1)

) r  ° V q 3  ) )

F 2  ,u(a) =- F(s), s c F 2 ,

where

a- a
vo(x,o-)= 

f
y ( ) 1 ) c[a n

l ,b,1], n

h(z) = ytor (z) —  ln .
it fi

By ço0 (x, y ) we denote the angle between the vector x—y) and the direction of the
normal nx . The angle ç90 (x, y) is  ta k e n  to  b e  positive if it is measured anti-
clockwise from nx a n d  negative if  it is measured clockwise from n,. Besides,
yoo (x, y )  is continuous in  x, y E F  if x  y.

Equation (9a) is obtained as x x(s) E (F 1 ) -± and comprises two integral
equations. The upper sign denotes the integral equation on (F 1 )+ , the lower sign
denotes the integral equation on (F 1 ) - .

In addition to  the integral equations written above we have the conditions (5).
Subtracting the integral equations (9a) we find

(10) v(s) = (F +  (s) — F-  (s)) e c° , À(P ).

W e note th a t v(s) is found completely and satisfies all required conditions.
Hence, the potential y1 [v](x) is found completely as well.

We introduce the function f (s ) on F  by the formula

(1 1 ) f (s) = F(s) —  fr i (F± (a) — F -  (cr)) 
a

(#1x(s) — Y(a)1) d u , S E  r,
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where

F(s) = (F+ (s) + F -  (s)), s  e r i .

A s shown in  [4], if S E  T ', then f  (s) c C " (F I ). Hence, f (s)  E C ° '2 (F).
Adding the integral equations (9a) and taking into account (9b) we obtain the

integral equation for p(s) o n  F

(12) p(a)p(a)
1 f sin yo0(x(s), Y(a)) d a

27rj r i lx(s) - Y(a)I

1
+ -

0 Vo(x(s), a) da -  -
2

6(s)p(s)
4  r Nix

i f 0
+  J ) (f ilx (s) - Y (u)l)da = (s),  S E T,o

where 6(s) = 0 if  s e r l a n d  (5(s) = 1 if s E F2, f  (s) is given in  (11).
Let us show  that any integrable o n  F 1 a n d  continuous o n  T 2 solution of

equation (12) belongs to C°,2 /2 (F 2). Indeed, it follows from [3], [4] that if s e F 2,
then the  kernel of the  integral term in  (12) can be expressed in  th e  form

Io (s, a)
s -  a-

where /0(s, a) E C ° '2 (F 2 X r) ,  I, (s, a) e C° '1/2(F 2 x I ')  and /0(s, s) = 0. From [5]
we obtain

Io(s,( s ,  o - )
+ (s, a ) =

s -  a - a11-42 
+  ( s , a ) ,

where I2(s, a) e 0 ' 4 2 (1- 2  X  r ) .  In accordance with [5], due to this representation
the integral term from (12) belongs to C° '1/2 (F 2) in s. Since f  (s) e C ° '2 ( r 2 ), the
solution ,u(s) o f (12) belongs to C°,1 /2(F 2).

T hus, i f  p ( s )  is a  s o lu t io n  o f  equations (5), ( 1 2 )  fro m  t h e  space
C (T 1) fl C° (F 2), w  e (0, 1], q e [0,1), then p(s) E Cqa)(F 1) fl C"/ 2 (F 2) and the
potential (7) satisfies all conditions of the problem U.

The following theorem holds.

I f  F 1 e  C2,2 , T 2 e  0 ,2Theorem 2. conditions (3) hold and  the  system  of
equations (12), (5) has a solution p(s) f rom  the Banach space C ° (T i ) fl CV 2 ),

E (0,1], q e [0,1), then a solution of  the problem U is given by  (7), where v(s) is
defined in  (10).

Below we look for p(s) in  th e  Banach space C V O  n co(r2 ).
If s E T 2 , then (12) is an equation of the second k ind . If s e F 1, then (12) is a

singular equation 151.
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O ur further treatm ent w ill be aim ed to the  proof o f  th e  solvability of the
system (5), (12) in the Banach space C ( F 1 ) fl C ° (F 2). Moreover, we reduce the
system (5), (12) to  a Fredholm equation of the second kind, which can be easily
computed by classical methods.

Equation (12) o n  F 2 w e  rewrite in the form

(13) ht(s) + f f t(o -)A2(s, a) da = —2f (s), S E  F 2 ,
r

where

A2(S, = (1 — 6(a)) an ,, V (x(s), o-) + 2 6(a) an x
i 0 i a

12 (s, a)
—112 + (s, 0-),

—  

)(fllx(s) — y(g)I)}

V (x , u) is  th e  kernel o f  th e  angular potential (4) a n d  /j  (s, e  0 ,4 2 (F 2 x F),
j  =  1, 2, as shown above.

It can be easily proved that

sin ygo (x(s), y(a)) 1  
E C

0
 ( F 1 X  r i )

1X(S) Y (a)i a — 2

(see [3], [4] for details). T here fo re  w e  can  rewrite (12) o n  F 1 in  th e  form

(14)
1

— I  11(0)
da

 + tt (a-) Y (s, a) da = —2f (s), S E P ,
r iF

where

Y (s, = _ 6(0 [ 1  ( sm 0(x(s), Y(a)) 1  ) • a 
MS) — Y( 0 )1 a — s 2 an, 

V o ( x ( s ) ,  cr)1

2 an,
) (filx(s) — Y(a)i)} E c"0(r 1 x  n,

Po = A if  0 < A < 1 and p = 1 —  E0 for any eo E (0, 1) if A = 1.

4 .  The Fredholm integral equation and the solution of the problem

Inverting the  singular integral operator in  (14) w e arrive a t  the  following
integral equation of the second kind [5]:

1 N — I

(15) ,u(s) + 
Q 1

1

( s ) r
it(a),40(s, a) da + Gas"

Ql( s )  n=0

1
5E  F l

Qi(s)
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where

Ao(s, o-) =
1 f a)  

Q i ( )

Qi (s) =
n=1

— anl Vb ni — s sign(s —

0 0 ( s )  = 1  [  
2 Q i ( a )  f  ( a )  

do-,
7ri ri s

G0,... GN , _1 are  arbitrary constants.
To derive equations fo r  G0, . . • , GN I _ 1  we substitute p ( s )  from  (15) in the

conditions (5), then we obtain

N i - I

(16) p(a)1,(o-) da + Bum H ry n = 1, . . • • NI,
117= 0

where

111(01  = (s)A0(s, a) ds,
r

(17) B,„„ = — Q171 (s)s'n ds,

H„ = — Q-
1
-1 (s)0 0 (s) ds.

r,;

By B we denote the N1 x N 1 m atrix w ith the elements B„„, from  (17). As shown
in [4], the matrix B is invertible. The elements of the inverse matrix will be called
(/3- 1 )„„,. In v e rtin g  the matrix B in (16) we express the constants G0, ,  G N i _ i  in

terms of p(s)

Iv I

G„ =( B '
— J p ( o -)l„,(a) d

m.=1 f

We substitute G„ in (15) and obtain the following integral equation for p(s) on T I

1 
(18) + ( s ) ]  (s, o-) d o- = ( s ) Ol(s), se F I ,

where

NI-1 NI
A 1(s , a) = A o (s, a) — s" (13-1 )„„i lm((7),

n=0 In-=1

NI-1
0 1(s) = 0 0(s) — (13-1) H„,.

n=-(1 m=-1
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It can be shown using the properties of singular integrals [2], [5], that 0 0 (s),
Ao(s, o-)  are Holder functions if se F I , a c F .  Therefore, 01(s), A i(s, a ) are also
Holder functions if 5 E F 1, a e T .  Consequently, any solution of (18) belongs to
Cw1/2 (F

1)  and below we look for p(s) on F '  in  this space.
W e put

Q(s) = (1 —  5(s))Qi(s) + 5(s),  S E T.

Instead of p(s) G  C r/2 ( r i ) fl c° (r2 ) we introduce the new unknown function
(s) = p(s)Q (s) e  C "(F 1) n co(r2 ) and rewrite (13), (18) in  th e  form  of one

equation

(19) (s) + (a)A(s, a) da = 0(s), S E T ,

where

A(s, = (1 — 6 (s))A (s , + 5(s)A2(s, a),

0(s) = (1 —  b(s))01(s) —  26(s)f(s).

Thus, the  system o f  equations (12), (5) fo r p (s)  has been reduced to  the
equation (19) for the function i t ( s ) .  It is clear from  our consideration that any
solution of (19) gives a solution of system (12), (5).

A s noted above, 01(s) and  A  (s, a )  a re  Holder functions if  s e  F I ,  a E T.
M o re  precisely (see [4], 1 5 1), 01(s) e c°,P(r1), p  = min{1/2, A } a n d  A  (s. a)
belongs to COEP(F I ) in  s  uniformly with respect to  a E T.

W e arrive a t  the  following assertion.

T 1 e  C 2'2,Lemma. F2 e e  ( 0 ,  1
,

,I f ] 0(s) e C ° 'P(r I ) n c0(r2 ),
p = 1/21, and ,u ( s )  from  C° (F )  satisfies the equation (19), then /L (s) e
c0 , P(r')n c°(r2 ).

The condition 0(s) G C°'P (On c°(r2 ) holds if  f (s )  G C°'A (r).
Hence below we will seek  i t ( s )  from  c0(r).
Since 2,11 (s, a) e co(F' x T ) and due to  the special representation for A 2 (s. o-)

from  (13), the integral operator from (19):

A p,, (o-)A(s, a) do-

F

is a compact operator mapping C° (F )  into itself. T h e re fo re , (19) is a Fredholm
equation of the second kind in  the  Banach space C° (F).

L et us show  that homogeneous equation (19) has on ly  a trivial solution.
Then, according to Fredholm's theorems, the inhomogeneous equation (19) has a
unique solution for any right-hand side. W e will prove this by a contradiction.
L et ii (s) G C (F)  b e  a non-trivial solution of the homogeneous equation (19).
According to th e  lemma ,u,11(s) E COEP(F 1 ) n co(r2), p  = min“, 1/21. Therefore
th e  function p ° (s) = 1t(2(s)Q -1 (s) E 

CP
/2 (F

I ) n 0)(r2 ) converts the  homogeneous1 
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equations (13 ), (18 ) in to  iden tities. U sing  th e  homogeneous identity (18 ) we
check, tha t e ( s )  satisfies conditions (5). Besides, ac ting  on  the  homogeneous
identity (18) with a  singular operator with the kernel (s —  tr i w e find that p° (s)
satisfies t h e  hom ogeneous equation (14). Consequently, y ° (s) satisfies the
homogeneous equation (12). O n the basis o f theorem 2, W [0, p ° ](x) w[p°](x)
is a  s o lu t io n  o f  th e  hom ogeneous p rob lem  U . A ccord ing  to  theo rem  1:
w[p ° ](x) 0 ,  X E  g \  F  1. Using the  lim it formulas for tangent derivatives of an
angular potential [3], we obtain

lim w[ii0](x) lvE/1°1(x) = /1° (s) =. 0, s e F l .
x—,c(s)e (F T  OTxv - - , c ( s ) e e t

H ence, w[p°](x )= w 2[A (x ) =— 0 ,  x  E 9 ,  a n d  p° ( s )  satisfies th e  following
homogeneous equation

f 0, ,  (0(20) —
O 

k s )  +  jp , -7) an.\ 0  (f ix(s) —  y(o-)1) d  = 0, SE F 2.

The Fredholm equation (20) is well-known in classical mathematical physics.
We arrive a t (20) when solving the Neumann problem for the Helmholtz equation
(2a) in  th e  dom ain g  b y  the single layer po ten tia l. A ccording to [1], if the
condition D holds, then the equation (20) has only the trivial solution p° (s) 0  in
C° (F2). To prove this w e note, tha t w2 [p° ](x )  satisfies the  following Dirichlet
problem

+ 132w2 = 0  i n  9,,, = 0,

f o r  n = 1 , . . . , N , ,  w h e re  A l is  L a p la c ia n . I f  th e  c o n d itio n  D  holds, then
w,[p°](x) 0  in g „  (n = 1, . N ,) and due to  the jum p of the normal derivative
of the single layer potential w,[p°](x ) on  F 2 w e  ob ta in  p° (s) 0 , s E F 2.

Consequently, if s E T, then  e ( s )  0, j41(s) =- y ° (s)Q' (s) 0  and we arrive
a t  the contradiction to  the assumption that p ( s )  is a non-trivial solution of the
homogeneous equation (19). Thus, the homogeneous Fredholm equation (19) has
only a trivial solution in C° (F).

W e have proved the following assertion.

Theorem 3. I f  T i
 E  C 2''1, F 2 E  C " ,  2 E  (0 , l b  th e n  (1 9 )  i s  a  Fredhohn

equation of  the second k ind in the space C° (T). M oreover, if  the condition D holds,
then equation (19) h as a  unique solution /L (s) c  C° (F) f o r an y  0(s) E C ° (F).

A s a  consequence of the theorem 3  and the lemma we obtain the corollary.

C orollary. I f  T i c C2,A, F 2  E C l A , 2 G (0 .1 ] ,  th e  condition D  ho lds and
0(s) E co , P(ri)  n C° (F2) , where p -= mini 2 ,1 /21 , then the unique solution of  (19)
in  C°(T ), ensured by  theorem  3 , belongs to c°, P (r')  n co (r2).

W e reca ll tha t 0 ( s )  be longs to  th e  class o f  smoothness required in the
corollary if f (s) E C t) ''1 (F ) .  A s mentioned above, if y , (s) E ( " ( T ' ) n o ( T 2 )  is
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a  so lu tion  of (19), then u(s) = ,u(s)Q -1  (s) c Cfp  (F I ) fl C ° (F 2)  is  a solution of
system (12), (5). W e obtain the  following statement.

Proposition. I f  F 1 E C 22 , F 2 E C I A ,  f ( s )  E C I3' 2 (F ), e (0, 1] and  the
condition D  holds, then the  sy stem  of  equations (12), (5 ) has a solution p(s) E
CP/2 (F

1) n co (r2), p  min{1/2,1 },  w hich is ex pressed by  the form ula p(s) =1 
/4(S)Q - 1 (s ), where f i , (s )e  0 4)(1-1 ) fl C° (F 2)  is the unique solution of the Fredholm
equation (19) in  C° (F ).

W e rem ind, that if conditions (3 ) hold, then f (s ) E co, A(r) an d  th e  solu-
tio n  o f  equations (5 ), (12 ) ensured by the proposition be longs to  cf312 (r1)n
0-1/2(r2 ). O n the  basis o f the  theorem 2  w e arrive a t  the final result.

Theorem 4 .  I f  F 1 E C 2.A,  F 2 E C " ,  and conditions (3) and D  hold, then the
solution of  the problem U exists and is given by (7), where v(s) is defined in (10) and
,u(s) is a solution of  equations (12), (5) f rom  cf/ 2 (r 1 ) n c c ( F 2 ) ,  p = min{1/2,
ensured by  the proposition. M ore precisely, ,u(s) E (1'12 (0 n 0 , 42 (r2).

It can  be  checked  d irec tly  tha t th e  so lu tio n  o f  th e  problem U  satisfies
condition (1) with e = — 1/2. Explicit expressions for singularities of the solution
gradient a t the end-points of the open curves can be easily obtained with the help
of formulas presented in  [4].

Theorem 4  ensures existence of a classical solution of the problem U  when
F 1 E C 2 'A , F 2 E C l 'A an d  co n d itio n s  (3 ) a n d  D  h o ld . T h e  uniqueness of the
classical solution follows from the theorem 1. O n the basis of our consideration
we suggest the following scheme for solving the problem  U . F irst, w e find the
unique solution p ( s )  of the Fredholm  equation (19) from  C° ( F ) .  T his solu-
tion automatically belongs to CQP(F I ) n o (r 2 ), p = 1/ 2} . Second, we
construct th e  so lu tio n  o f  equations (12 ), (5 )  f ro m  cr /2 (ri) n co(r 2 )  b y  the
formula it(s ) = tz„(s)Q -1 (s). This solution automatically belongs to CI:12 (1- 1 ) n
c0, 20(r2 ). Finally, substituting v(s ) from  (10) and ,u(s) in  (7 ) w e obtain the
solution of the problem U.

Modern methods fo r numerical analysis o f  integral equations with singular
integrals are presented in  [91.
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