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1-cocycles on the group of diffeomorphisms

By

Hiroaki SHIMOMURA

§1. Introduction

Let M  be a d-dimensional paracompact C"-manifold and Diff(M) be the group
of all C-diffeomorphisms on M .  Among the subgroups of Diff(M), we take here
the group Diffo (M) which consists of all g e Diff(M) with compact supports, that is
the  se t {Pe MI g(P)OP}  is relatively com pac t. U p  to  the  present time, unitary
representations (U, .r() of Diffo (M )  o r  o f  its subgroups (A ' is  th e  representation
Hilbert space o f U) are constructed and considered by many authors, for example
[4], [5], [6], [7], [8], [9], [10], [12] an d  [1 9 ]. T h e  first purpose of this paper is
a  t r ia l to construct some differentiable method to analyze these representations
(U, <hi of Diffo (M ) or of its subgroups. Roughly speaking, we wish to consider a
differential representation o f  a  given o n e .  S o  the  first step w e should d o  is to
define a  suitable Lie algebra Wo of Diffo(M), regarding it as an infinite dimensional
Lie group. For the case of compact manifold, it is well known fo r a  pretty long
time ago that Diff(M)=Diffo(M) is an infinite dimensional Lie group whose modelled
space is a Fréchet space called strong inductive lim it of H ilbert spaces by a  few
authors. (cf [13]). So after them, we are naturally derived that we should take the
set F o (M ) of all COE)-vector fields X  with compact supports as the Lie algebra W o ,
and it is appropria te  to  take the  map Exp(X) as the  exponential map exp from
Fo(M ) to D iff o(M), where {Exp(tX)} tE R  is  th e  1-parameter transformation group
generated by X e r o (M ) .  Thus formally we have self adjoint operators dU(X ) on
Yf by Stone's result,

U(Exp(tX))=exp(\/—ltdU(X)),

and sim altaneouly th e re  a rise  m any problem s f o r  su c h  dU(X ) an d  fo r  E x p
m aps. A m ong them  the following questions are fundamental.

(1) Does \ / -1 d U  become a  linear representation under suitable restrictions
of the domain of each dU(X)?

(2) Is the common domain of {dU(X)}, E , 0 0 ,0  rich such one like GArding space?
(3) I s  the subgroup generated by Exp(X),  Xe  F 0(M) dense in Diffo(M)?

It is easily expected that th e  linearity o f \ / -1 d U  mostly depends o n  th e  usual
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formula which is easily derived from Campbell-Hausdorff formula of which will be
made sure in the next section. In conclusion the question (1) is affirmative at least
for the finite dimensional representations. Now the theory of product integral is
so useful fo r  (3 ) . I t  tu rn s  th a t  th e  above subgroup is dense  in  the  connected
component Diff(X) of id, where id  is the identity m a p . T h is  will be carried out
also in  the  next section. As a direct cosequence of these results we will show in
Section 3 that there is no continuous finite dimensional representations of Dilr,(X)
except fo r a  tr iv ia l one . Lastly as for the question (2), it will be expected that a
lo t of discussions are required for satisfactory so lu tions. However since we will
only consider here the finite dimensional representations of subgroups of Difft(X),
so it has no  problem at the present tim e .  We will not concern with this problem
in this paper.

The second and main purpose of this paper is a  characterization of continuous
1-cocycles 0  defined o n  M x Diffo(M )  using th e  above differential m ethods. A
r-v a lu e d  function 0 is said to  be a  continuous 1-cocycle if

(1) for any fixed Pe M, 0(P,g) is  a  continuous function of g  with respect to
the inductive limit topology T  (later T  on Diffo(M ) will be explained exactly), and

(2) for any Pe M  and for any g, ,g, e Diffo(M ) w e have 0(P,g 1 )0(g 1-
1 (P),g 2 )

=0(P,g,g 2 ). These 1-cocycles, especially the following typical ones, appear in the
various kinds of representations of Diffo(M ). (cf. [5])

(a) c(g'(P))1c(P), which is called 1-coboundary type, where c is an  arbitrary
V-valued continuous function on  M.

( P) , which
d

(b)
yy -  i s

i s called Jacobian type, where y  is any a-finite smooth
dy

measure on M  which is locally equivalent to the Lebesgue measure on R d ,  f i g  is  the
image measure of y  under the map g and s is a  real parameter.

(c) q(g), which is called character type, where n  is any continuous unitary
character on Diffo(M).
W e call standard type continuous 1-cocycles which consist of 1-coboundary term,
Jacobian term and characer term. Section 3 is devoted to the study of 1-cocycles
and in it it is shown that if the manifold M is simply connected, then any continuous
1-cocycle is of standard type, w hich is expected by T .  H ira i in the local case
M = l e .  However th e  simply connectedness condition is  n o t  th e  necessary one,
because the  same results hold on compact connected L ie g ro u p s . O n  the  other
hand there exist also continuous 1-cocycles of non standard type on the manifold
M = R x t l . W e w ill give a  concrete example a n d  decide th e  general form of
1-cocycles on the cylinder in  the  second part o f this sec tion . The last section is
devoted to the study of natural representations (U9 (g),L(M)),

(10 (g): f(P)e Q M )1 - 0 0(P, g) (P)f(g - '(P))eL (M ).

It will be shown there that these representations are all irreduceible and they are
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equivalent if and only if the corresponding 1-cocycles are 1-cohomologus. These
results are simple consequences of the local form of such 1-cocycles.

Acknowledgement. I  express m y  th a n k s  to  Professor. T . H ir a i  a t  Kyoto
University for introducing m e this subject and  for k ind  advice . I a lso  thank  to
Professor. H . O m ori at Science University of Tokyo for giving me many valuable
informations on th is  top ics. In particular, the proof of Theorem 2.1 owe to him so
much.

§2. Diffeomorphism Group as an Infinite Dimensional Lie Grop

2 .1 .  Topology on Diffo (M ) .  Let K  be a compact subset of M  and put

Diff(K):= {g e Diffo (M)1suppg

W e shall introduce to the set Diff(K) a topology T K o f  uniform convergence
o n  K  w ith every derivative o f  h ig h e r  o rd e r . I t  is  c le a r  th a t  T ic  i s  a  group
topology. Now Diff(K) is naturally imbedded into an infinite dimensional Lie group
by the following procedure. Let us take a compact submanifold L  with boundary
containing K . L  is obtained by first covering K with finitely many open sets which
are diffeomorphic to  disks o f l e  and by next smoothing their boundaries. Next
we patch L  and the copy L ' together along the boundary of L  and form the double
N  of L , N :=L u L ' (the double of L). Then N  is  a com pact m anifold without
boundary and Diff(K) is regarded a s  a  subgroup of D iff(N ). Now it is already
known that Diff(N) is an  infinite dimensional Lie group whose modelled space is
a  strong inductive lim it  o f H ilbert spaces (cf. [13]), especia lly  it is a Fréchet
space. Consequently Diff(K) is locally connected. That is there exists a fundamental
system of arcw ise connected open neibourhoods olt a t  id. S o  th e  connected
com ponent D iff*(K ) is also arcw ise connected. N ow  it is clear that D iffo (M)
= u„Diff(K), where K  runs through all com pact sets. So it is natural to consider
the inductive limit topology T  of Tic on Diffo (M ) .  However the great care must be
taken for T ,  because T  is not a  group topology, unless M  is compact. (cf. [17] and
[1 8 ])  T h e  righ t a n d  left translations and the inverse operation is continuous.
However the map (g,h)H4gh is not continuous. Since Diff*(K) is an open subgroup
of Diff(K) which increases for K , so Difft(M):= u K Diff*(K) is a  connected normal
open and thus closed subgroup. It follows that DifP(M) is the connected component
of id in Diffo (M ) . N o te  that for any g e Difft(M), there exists a  continuous path,
t e [0, 1]1—,g, Difft(M) such that g o = id, g ,=g  and suppg, is contained in  a  fixed
compact set K.

2.2. Primitive Campbell - Hausdorff formula on the grop of diffeomorphism. The
following theorem is an extension of the usual formula which is easily derived from
Campbell-Hausdorff formula on (compact) Lie groups. Actually we can assure it
by operating all transformations in (1) and (2) in Theorem 2.1. corresponding to
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right invariant vector fields to the unit element of the compact Lie group.

Theorem 2.1. L et X , YE Fo (M ) and {Exp(tX)},E, , {Exp(t Y)},E,  be 1 -parameter
subgroups of diffeomorphisms generated by X, Y , respectively. T h e n  as n tends to + co,

(1) { E x p (-1X ) .E x p ( -117)} n converges to  Exp(t(X+ Y)), and

(2) { E x p ( —
t X )

. E x p

(  t Y )
. E x p

(  tX )
. E x p

(  t  Y)}"
converges to

\ Ft \F t \ F t

Exp( —t2 [X, Y]) in t i c  uniformly on every compact interval o f  t , respectively, where
K  is any  com pact set containing supp X  and supp Y.

P ro o f  Using the notation in  2.1, we imbed Diff(K) in to  Diff(N) w hich is a
strong inductive lim it of Hilbert Lie group (S1LH-group). Put

h(s, t):= Exp(sX) o  Exp(s Y).

Then h  is  a  t-independent map which is so called C'-hair.  F o r  t h e  definition of
C '-hair w e quote the  following reference [14 ] o n  regular Fréchet groups. Since
SILH-groups are regular Fréchet groups, we are able to apply fundamental theorem

t y
4.1. in  [1 4 ] t o  G=Diff(N) a n d  h. T hen it fo llow s that {Exp(—

t X )

.Exp(— )

converges to some g, in  Diff(N) uniformly on every compact interval ot t  and that
g, satisfies the equation,

(2.1) —
d g ,  

= dR u, go = id,
dt gi

where u  is an  element in the L ie algebra Diff(N) such that

Exp(sX). Exp(s Y).
s=o

Now take a local coordinate system x 1 , •••,x d a t  g ,(x 0 ) ,  x0 is any fixed point,
and put g i(t):= x i(g,(x 0 )). Then we have

ds

dg ;d
dt ds s 0

x i(Exp(sX).Exp(s y) o g,(x o ))

  

= + nxi)X,g,(x0)).

So we have g i = Exp(t(X+ Y)).
(2) is derived in  a  similar w ay . T h is time we put

h(s, t):= Exp( — Exp( — fs. Y) o
 E x p ( i S X )

 o  Exp(is Y).

Then the limit point g , satisfies the equation,
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dgid— ( t ) = -  x i(Exp( - is X )  o  Exp( - Y) o
 E x p ( f s X )

 o  Exp(fs Y) o  gt(x0 ))
dt ds s _o

= -  [X , 11(x i)(g,(x 0 )). Q.E.D.

Now we proceed to the question (3) stated in the Introduction.

T heorem  2 .2 . P u t  F(K ):=IX EF o (M) I supp X  g  K l.  T hen the  subgroup GK
generated by Exp(X), Xe F(K) is dense in Diff*(K).

Pro o f . Let {g 1}0 , 1 D if fs* (K )  b e  a  continuous path connecting id  and
g eDiff*(K). Taking a  suitable partition of [0,1], 0= to < t, < •• • <t„ =1, we may
assume that g,-:g ,e ( V  ( i=0 ,• • • ,n - 1 ) ,  where 0/1 i s  a  neighbourhood of id  which
is diffeomorphic by a  m a p  t o  an open convex set containing the  origin of the
modelled ILH-space F(N). (N is the compact manifold containing K) The explicit
form of according to H. Omori in [13], is written as

(2.2) (u)(x)=expxu(x),

where the last means the  minimal geodisc for a Riem ann structure on N  starting
a t  x  a lo n g  the direction u(x). Thus there exists fo r each  i, ui eF(N ) such that
(u)=g 1 'g 1 0 1 a n d  (tti)(P)=P for all P e K `. So we get ui(P)= 0 for all P  IC and

u, are actually in  F (K ). Now put yi(t):= (tu ,). Then y i(t) is a C"-curve on Diff(N)
and v ,(t):=dR ,y , is also in  F (K ) . Because take any C"-function o n  M  and take
any P e  IC . Since y1(1)P=P for all 0 < t<1, we have for any C"-function o n  M,

f(exp p (svi(t))) = -
d  

f(y•(t)P)=0.
s=o dt

It follows that (vi(t)f)(P)= 0  for all PeK `.
By the way y (t) is just equal to the product integral RP +v t(s))ds, where the

product integral is defined as the limit of

Exp((a„ - Exp((a„ _ - a 2 )vi(a„_ 2 )). • • • o Exp((a, - a0 )v,(a0 )),

when the size Max, , i Iai -a ,_ ,I  of the partition, 0=a 0 <a t < ••• <a„=t tends to
0. For details see p63-p66 in  [1 3 ] . It follows that each )40 and y(t):=y o (t) • •• y„_,(t),
especially g= y(1) is approximated by the elements of GK. Q .E .D .

Here for the later discussions we shall list another version of Theorem  2.2. Let
A  be any fixed point of M  and consider all diffemorphisms g with compact supports
which leave A  inva rian t. Now put

Diffo,A(M):= {g e Diffo (M ) g(A)= A I, Diff,(K):= {g e Diffo ,„(M ) suppg g and
Diff(K):={ge DiffA (K )I there exists a  continuous path {g,} 0 , , , , DiffA (K) such
that g o = id  and g1=g1.

d
ds
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T heorem  2.3. Pu t F A (K):= {X e F(K) I X (A )= 01. T hen th e  subgroup GA,K
generated by  Exp(X), X eF A (K ) is dense in Diffli(K).

Proof  is derived in  a  quite similar way with the above o n e .  So we omit it.

The following theorem as an affirmative answere of the problem (3) is a direct
consequence of Theorem 2.2.

Theorem 2.4. The group generated by  Exp(X), X  el' o (M) is dense in Difft(M).

§3. 1-Cocycles on the Group of Diffeomorphisms

3 .1 .  Finite dimensional representation of Diffo (M).

Theorem 3.1. T here is no  continuous representations o f  DifP(M) to GL(n, C)
except for triv ial one.

P ro o f  L et U be a  continuous representation of Diff(M ) to  G L (n,C ). Take
X  from ro(m) and form a  continuous 1-parameter subgroup {Exp(tX)},0 ,. Then
there exists some and unique dU(X)e M(n, C) such that

(3.1) U(Exp(tX))=exp(tdU(X)).

By Theorem 2.1 dU is linear on  Fo(M ) and

(3.2) dU([X , Y ])= [dU(X ), dU(Y )],

for a ll X, Ye Fo (M ) .  Since

U(Exp(tX))—E„
(3.3) dU(X )= lim

where E„ is the unit matrix, dU is continuous on Fo (M) equipped with the inductive
limit topology of F(K)'s, on which we give the usual C '-topo logy. For, dUl F(K)
is a limit of continuous functions on F(K) by (3.3) and thus a set of all discontinuous
points of dU I F(K) is second category . On the other hand F(K) is a Fréchet space,
so there exists at least one continuous point of d U  F(K) by  Baire's theo rem . As
dUl F(K) is linear, it is continuous on all the points of F (K ). Hence dU is continuous
w ith the inductive lim it topology. W e w ish to  show tha t d U =0  and for it it is
enough to  adm it the  following lemma, because using a  partition  o f unity, X  is
decomposed to finitely many C'-vector fileds whose supports are contained in some
cubic neighbourhoods.

Lemma 3.1. For a positive number a, put U,,:= {x e  I  — < x <  ( i=  1  ,  ,  d ) } ,
and consider a L ie algebra „ consisting of  R d -valued C°° -functions F (x )-= (F i(x ))1< i< d
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on Rd  such that supp F  c  UŒ w ith  the L ie bracket,

[F ,G ]:= {F i (x) - (x)—G ; (x) U . (x)}.
1=1 ax, ax,

T hen there is no  continuous linear representations dU f rom  g OE t o  B (H ) except for
triv ial one, where the toplogy o f  W„ is  the usual one im posed on the space of  test
functions on U Œ and  B(H), the space of  all bounded operators on  a complex finite or
infinite dimensional Hilbert space H , is equipped with the w eak  operator topolology.

P ro o f  L et for 1 < k < d , i k b e  the function defined by its kth component is
equal to 1 and the other component is equal to 0. Further put

0" ap
du„(p):= M O O ,  [P ,  a ik := P a (P,ue C (U )) ,

ax„ ax,

where the set C ( U Œ)  consists o f  a ll C'-functions whose supports are compact
subsets of UOE • T h e n

(3.4) dUk(Cp,olk)—dUk(cOdUk(p)—dUk(OdUk(a)•

Now we claim that

(*) for any x 0  e UŒ there exists a  function p p„o eC,T(UOE)  such that

p(x 0 ) 0, and dUk (p)=0.

F or the  proof we carry  out it  a t  x 0 =0 f o r  sim plicity. Consider a  function
p e C ,T (U ) with supp p U„ and take a  6 from [-1 , V ] .  Put

Pr(x):= P(x) , • • x k  _ , xk + t, xk + , • • • xd ) (Id 6).

Then since

P f + h  Pta p t  (h 0)
h ax„

in the space of test functions, we get by the assumption on continuity

(3.5) aP
<ctuk (

t  
)e i 5 

e
2 / H  —

d

d t
\u U k lPtle t e 2 ,1 1ax„

for all e 1 ,e 2  e H . (<• ,•>, is  the scalar product o n  H.) Take a 0  e C ( U )  such that
a 0 1 o n  U 7Œ . T h e n  b y  the definiton of [ • ,•]„ and by (3.4) we have

8

Op(3.6) ad(dUk(aAdUk(P1)):=CdUk(P1),dUk(0-0]=dUk(—
t

.. ) •
oxk
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It follows from (3.5) and (3.6) that

d
(3.7) —<dUk(Pde , e2>7l = <ad(dUk(a A dUk(P))e ,e2>ndi

and repeating this procedure over n  times,

d "

(3.8) — <dUk(Pdei ,e 2 >11 = <ad(dUk(c ra nk ( P ) ) e l  ,  e2> H •
dt"

Here using again the assumption on continuity and the resonance theorem, we get

(3.9)M : =  sup 11 dUk (p )11 o p  <

Hence,

"

(3.10) sup I 
d
— <dU k(p,)e, , e2 >H I 2"M  l dUk(aØ)I P IleI IIHlle211H •

'hi dr

Therefore <dUk (pde, ,e 2 >11
 is  an  analytic function on  Itj <5  for any fixed e 1 ,e 2 e H,

a n d  t h e  sa m e  h o ld s  f o r  <dUk([p, p,]k)e, , e 2 ) H  . S ince  suppp nsupp p, = for

!< t<6 ,
2 —

dUk([P, MO= 0

for all It' Especially taking a  function of the form,

POO= 44x01//(x •  •  xk - xk + , • • • , xd),

0(0) = tp(o)= 1, 4y(o)= 0 and 41(t)>0 for sufficiently small t, we get a desired function
as the one in (*), as

dUk(CP, MO= 0 , [ P ,  P I ( 0 ) -= 4)t)> 0.

Now we will finish the p roof. F rom  (*) we have

dUk(u)= 0

for all o- ( JO E )  w ith  su p p  o- c  tx p x 0 (x) 001. Because we have o- = [px o  , s]k fo r a
s  defined by

f
X k  a

s(x) := px o - - 2-(x ,  ,  •  • • , xk _ ,  ,  t, X k  +  i , • • • Xd)C11.

—a P.,

Therefore using a partition of unity we get dUk(o- )-= 0 for all o- e  C ( U 2 )
and the conclusion follows. Q.E.D.
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From Theorem 3.1 we see that finite dimensional representations of Diffo (M)
actually come from the discrete group Diff0 (M)/DifP4(M). For example in the case
that M = T ',  Diffo (M) consists of tw o com ponents. One is  the Difft(T 1) and the
other is the component of the  reflection R .  So a  function x  defined by x =1  on
Difft,(T 1) and x = —1 on RDifft(T 1 ) is the unique non trivial unitary character on
Diffo (T 1).

3.2. 1 -cocycles of standard type. L et 0 be  a  continuous 1-cocycle stated in
the Introduction. The purpose of this subsection is to show tha t if the manifold
M  is sim ply connected, then any continuous 1-cocycle 0  consists of standard
ty p e . We begin with a study of unitary characters associated with 1-cocycles. Take
any point A e M  and fix it. Then the function

X: heDiff0, A (M)I— 0(A,h)e

is  a  unitary character. First we shall investigate such characters on D iq,„(M )
urcipilTI(K).

Theorem 3.2. L et x  be any unitary  character on Difft, A (M ) .  Then there exists
some real number s such that

x(4))--(MAW—  i s

f o r all 4) e DifPck,,A (M ), where Jo(A) is the Jacobian of  0  at A  (Jo(A) does not depend
on a particular choice of  the local coordinate systems at A).

P ro o f  (I) P u t  f o ,,(M):= {X e f o (M)1 X(A)= 0 ) .  T hen  fo r  any XE r o ,A (m)
there exists a  real constant 1(X) such that

(3.11) x(Exp(tX))=exp(\/-1t),(X))

for a ll teR , where 2 is a  linear functional on F 0 ,A (M ) which satisfies

(3.12) 2([X , 11)=0

for all X,Y  e r o ,A (M) by Theorem  2.1 . As before we analyze 2 locally. That is,
first we cover 1/11 u supp X  by  fin ite ly  m any  o p e n  cubic neighbourhoods U„
(n=0, •••, N )  such that A  belongs to only one of the sets U n ,  say U0 . T hen  u sing
a partition of unity, X  is represented a s  a  sum  of X„ E ['O A (M ) whose support is
contained in  U „ (n  =0 , , N ). It is not hard  to  see  that by virtue of Lemma 3.1
2(X „)=0 for all n 0. F o r  n =0 th e  following lemma is fundamental.

(II)

Lemma 3.2. Using the  sanie notation as in  L em m a 3.1, w e consider a L ie
algebra 1„

°
 :=1Fel,,I F(0)=01. Then f or each linear functional 1 defined on 1,?, with
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the property, 4 F,G ])=0  f o r all F,GEW  there ex ists a  real constant s such that

d .
2(F)=s E 

8 F

t(0).ax,

P ro o f  1-STEP. N oting  tha t xi Fe SŒ
° f o r  a ll Fe  l o„  le t  u s  prove first that

(3.13) 2(4F)=0

for each 1 < j < d .  Take any R-valued C"-function p  w ith supp p U,„ and put

.11 (p)= 1(4 pi

2 aaa PSince the jth component of [x i pi i ,x i ci i ] is equal to x i (p and the other
ax ;  a x ;

component is equal to 0, we have by the assumption

(3.14)
Ocr ap

.1,; (p  a x j — a  a x ) = 0 .

Hence we get from the last part of the proof of Lemma 3.1

2,.(p)=0.

Next for k O j we put

2k(P) = a(x.;pik).

aa Then noting that the kth component of [x ipi k ,x,cri k] is equal to xj  p
ax ka x k

and the other component is equal to 0, we have

Ilk(p ao-
— a

ap

) = 0 ,  and therefore 2 k(p)=0.ax„ ax,

Therefore (3.13) follows directly.

2-STEP. Next we shall prove that

(3.15) 2(xjx,,F)= 0

for all F e l c, and for all j O k .  Now for each / 0 j,k , put

A169)= 2((x., +x 0 2Pit).

Then the /th component of [(xi+ x k )Pii, (x.,+xk)all] is equal to (x i+x ) 2(P a u  a aP ) ,ax,
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and the other component is equal to 0, so we get

,11( p L
o- 

—  eL
p

)= 0, and thererore .1,(p)=0.
ax, ex,

Further if 1 is equal to one of f  o r  k , say j ,  then the jth component of [(x i + x k)pl i ,

(xi . -Fxk)ai i ]  is equal to  (xi + xk)2 p

a a  
c

e p )
 a n d  th e  other component is equal(

'
ax ax•

to 0. S o  w e  have .1.((xi + x k)2pi i )=0 a. ' before. It follows that A((x i + x k )2 F)= 0 and
(3.15) follows from (3.13).

3 - S T E P . Take any Fe W :,) a n d  expand it by Taylor's formula,

d  oF d 1 82F
(3.16) F(x)= E X X , I ( 1  t)  (tx )dt.

i =i ax, j,k = 1J 0 a X ia X k

Further take an R-valued CŒ)-function cp which is equal to 1 o n  a  neighbourhood
of supp Fu {0} and have a support contained in U Œ. Then we get from  1-step and
2-step,

dO F .
)1(F)=2(cpF)= E

,,,= ax,
where the number az j := ).(x i cpi ;) is actually the same one for every go which is equal
to  1  o n  a  neighbourhood of 0 and supp go U„, so  it  is  a  constant independent

of Fe l , ? .  Consequently for matrices A :=(a 1,.) and J (0) .—  a F i(o), 1F we
< i, j< d

have
(3.17) = tr(AJF (0)).

4 - S T E P .  Lastly we shall prove that A  is a  scalar m atrix . B y the assumption
and by the following equality,

(3.18) J[F,G] (0)-= JG (0)4(0)-4(0)JG(o),

we get

(3.19) tr(AJG (0)4(0))= tr(AJF(0 )JG(0 )).

Since for any matrix P E A d ), there exists an  Fe S c s u c h  th a t  J F (0)=P,

(3.20) tr(APQ)= tr(A QP)

for a ll P,Q ed/l(d ). N ow  let ei (1 <i<d )  b e  the canonical base of R d  whose ith
component is equal to 1 and  the  o ther is  equa l to  0 . F irst for each i0 j  choose
P, Q e .11(d) as follows,

P e= e , Pe k = 0 for k  i , and Qe i = ei  , Qek = 0 f o r  kéri.



Then
d  aF.F,(0,(4 =  E

A k = l a x k  ax,
d

'( t  O )  aa ai
x i .  ot(x)—

dt Aat axl
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T hen w e have  tr(APQ)= 0  a n d  tr(A QP)=a i j ,  a n d  therefore A  i s  a diagonal
m atrix. Next for each i 0 j, we set

Pek = 0 for k Oj and Qe i =e i , Q e k =0 for k Oi.

Then we have tr(A PQ)=a,,, and tr(A QP)=ai j , and therefore a H  ((l i<d ) are the
same one, say s  and we have A =sE.

(III) Put

Ot:= Exp(tX), and clo Exp(X) ( X e  FOA(M)).

We claim that

(3.21)
°  OF

Jo(A )=exp( E (o)),

where x, , • • x d  i s  a  local coordinate system at A  such that x i(A )=0 (i=1,...,d),

and X= Eli _ ,Fi(x) 
 a  

.
ax,

For, put

Oi(t, x)= x i . 0,(x).

(a •

Hence a  matrix A t := ( (t,0)) satisfies
ex ; i  • i , i 5 _ d

 f rIC I)A t , A 0 = E,

so we have A,=exp(J F (0)), especially

Jo(A)= det(A(1))= exp(tr(JF (0))).

( IV )  Returning to the notation in (I), for X which is written as X = X, + X , + •
+ X N  we have

x(Exp(X))
 d  F.

=exp(,/-1).(X))=- exp(N/ —1.1.(X0 )) =exp(.\ /— is E O ,
 (0))— (4„„(x0)(A ))— 's,

dA
(3.22)

where F 0 (x) is the ith component of X , with respect to the local coordinate system
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x 1 ,• • • ,x , a t  A .  Since A  belongs to none of supp X„ (1 < N ), Exp(X) is equal
to Exp(Xo ) for a  small neighbourhood of A .  Therefore we get

(3.23) X(ExP(X))= (.1 Exp(X)(A))s
 IS

for a ll X eF o ,A (M ) .  It follow s that x(0)=(.1 0(4 . /  i s for all in  th e  group G 0 ,A
generated by Exp X, Xe F o ,A (M )  and  the  assertion o f  th e  theorem follows from
Theorem 2.3. Q.E.D.

According to T . Hirai here we shall rewrite the original 0  as follows, using a
section sp e Diffo(M ), s ( A ) =P  by the map, ge Diffo(M)F—g(A)e M  a n d  a  function
c  defined by c(P):=0(A ,si l ),

(3.24) 0(P,g)=
c ( g - 1 ( P ) )

x(sp-Ig.sg- 1 (p ) ,
c(P)

where x  is  a  unitary character on Diffo ,A (M ) defined  by  (h) := 0(A, h). N ote that

dp dp dp(3.25) 1J ‘0.)(A )1 1l ( P ) ) ) ( P ) )  ( ( P ) )
dp dp dp

holds for any u-finite smooth measure tt on  M  which is locally equivalent to the
Lebesgue measure on  Rd

.

Now let us take locally finite open coverings ''Ki :=(V/i)tent (i = 1, 2, 6) which
satisfies

(1) V; is compact for each 1 < i<6 and le N,
(2) VI'  c  V I  for each 1 < i < 5 and leN ,
(3) V is diffeomorphic to Rd  fo r each 1 <i< 3 and le N  and
(4) ^K2 i s  a  covering which have a property such that whenever V  n i l  00,

then  V7 n V I is connected.
The existence of such coverings is derived from the theory of simple covering.

(c f. [15 ]) From (2) and (3), V  is  r e g a rd e d  a s  a  relatively compact open set of
Rd . Consequently for any fixed A i e Vi  there exists a section sipe Difft,(Vi

1
) ,  $ip(A)=P

su ch  th a t P e  Vi
2  s i

p eDif f '( I/1
1)  is  c o n tin u o u s . F o r  example exponential maps

generated by vector fields which are equal to A i P for all Pe V1
2 and  vanishes outside

some fixed open disk containing Viz  a re  desired ones.
Here we consider the following condition (*) for P e M  and g eDiff o (M).

(*) F o r  P e M  a n d  ge Diffo (M ), there exist som e i e N  a n d  a  continuous path
Diffo (M) connecting id and g  such that g1

- 1 (P)e V? for all 0 < t < 1.

If such condition is satisfied, then moves continuously in Diff,, A ,(M)
starting from id  and  ending to srg4-1 ( p)  a s  t  runs from  0  to  1 , and  it follows
that i ( p ) e  D i f f t , A ,(M ). H ence carry ing  ou t some calculations, we get from
Theorem 3.2,
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(3.26) X (Sip  gS i
g  -1 m ) -  (6111Sig n g -  (n)y -'1 S ;  ( d iuy  -  1 Sy

1 11 g(P)

where s, is some real co n stan t. Thus defining a  function ci o n  V i
2 as

du
c,(P ):= ( p)

r '
 0(A , s 1 ),

we get from (3.24) and (3.26),

(3.27) g)=ci(g -
c,(P) \dJl

-ls'lig(P ))

for all (P ,g) satisfying (*). We take and fix such s, and ci fo r each i. s ,  does not
depend on i, if M is connected. For, suppose first that V,2 and V  have a common
point P .  Take an  open  neighbourhood o f  U(P) of P  which is diffeomorphic to
Rd . Then taking a continuous path c  D i f f d  U(P)) such that g,- '(P)= P and
dug— (P)= a for each a >  0 , w e  see  tha t =s i  h o ld s .  The existence of such a  path is

assured by considering maps which act as similar transfomations near at P.
Next let ic, and j c, be arbitrary integers. Take P e Vi o  and  Qe V . T h en  th e re

exists a  finitely many { V„2,}, <, „  s u c h  th a t  k, = 10  , k N  =j o  a n d  Vk
2, 0 0 for

1= 0, • • L - 1. Consequently s io =s k , , s k , =4,, • •• s k = s i o  h o l d  b y  th e  above
arguments, and thus s i o  =  s .  L e t u s  denote this common value by s. Then we get

(3.28) 0 ( P ,  g ) = c , ( g  
l ( P ) ) ( c h i y -

,c, (P)

if (P ,g ) satisfies (*).
Now we claim that if V i n VI 0 0, then c, coincides with ci  u p  to  a constant

factor on this in tersection. In  fact take any point Po e V,2 nV i
2 a n d  fix it. Since

Vi
2 n 11 is connected, for any another point Q E  Vi

2 n  ,  th e r e  e x is t s  g e Diff 0 (M)
and  a  continuous path {g,} 0  <, < 1  connecting id and g  such that g, - 1 (P 0 )e V,2 n V i2
and g  " (P 0 ) = Q . Thus the conclusion follows from the equality,

ci(g-1(P0))(chtg(P — c -(g ' ( P 0 ))(cl,u
—A P )  

y
0) o •

c,(P0 ) dii ci(P0) dti

Let us put

K„:=C1(1q u • • • u 1/„) and /, t i  e  NI K „  V,3 O}.

Set
0/in := {g e Diff(K„) I 3 {g,} : continuous path connecting id  a n d  g s.t., g , e Diff(K),
g  1  (

 V , )
V  g  i ( V i 5 V , , ” i 3 v and g,( ,3)V , 2 h o ld  for all j e In and
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0<t<1}. o ll„ contains an open neighbourhood of id, and we have

Diff*(k) no/I.

for m> n. Let n(P) be  the smallest integer n such that P E V i 3 L ) • • • V V ,  for each
P  E  M .  Then a set {g(P)I g e ,, (p) } is a neighbourhood of P which is seen by similar
arguments with the construction s  in the preceding arguments. Thus there exists
a connected open neighbourhood Op of P such that Op g  {g (P )1g e  p ) }. Without
loss of generality we may assume tha t Op g  V , for some i e N .  Under the above
preparations we are now able to prove the following theorem.

Theorem 3.3. L e t M  b e  a  simply connected paracompacr C"-manifold. (In
particular it is connected.) T hen f o r any  continuous 1-cocycle 0, there ex ists a
continuous function c defined on M, a real parameter s and a unitary character ri such that

c ( g - i ( p ) ) (d i t y - Is
0(P,g)=

c(P) dit

where ir is any  but f ixed a-finite smooth measure on M  which is locally equivalent to
the Lebesgue measure on R d .  M oreov er s and j  are uniquely determined by a given
0 and c is determ ined up to a constant factor.

P ro o f  Proof is derived by the theorem of Principle of monodoromy which we
shall list it below for reference. (See, [1])

Theorem 3.4. Let M be a simply connected space. Assume that we have assigned
to every  P e M  a non em pty  se t E,„ to every point (P, Q )  o f  a certain subset D  o f
M x M  a  mapping 9,,,Q  o f  Ep into EQ , in such a  w ay  that the following conditions
are satisfied.

(1) T he set D is a  connected open set containing the diagonal in M x M,
(2) each 9 "  is  a  one-to-one mapping o f  Ep onto EQ ,  9 "  i s  the  identity

mapping, and
(3) if  9 " ,  9 (2 ,R , ( P p , R  are  all defined, we have 913 , R =  (PQ , R o (Pp , Q .

Then there exists a mapping tIr which assigns to every Pe M  an element tir(P)eEp in
such a  w ay  that tIr(Q )= 9 " (0 (P )) whenever go" is defined.

We continue the proof of Theorem 3.3.
(I) Definition of E,, and D: Set E,, :=  T ' for each P E M, and D := upE m (Op x Op),

which is a connected open set containing the diagonal.
(II) Definition of cpp,,2 : For each (P ,Q )eD , there exists some ie N  such that

(P, Q)e x Vi
6  . So we put

ci(Q)
9p,Q (z)— z.

ci(P)



_ (dfig,g_ is

c

ci (R)
0 1 Q ,  g 3 g 4  ( Q ) ) •and
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This definition does not depend o n  a  particular choice o f  vr by  th e  above
discussions. Especially, Ç 0 P Q  i s  a  b ijec tio n . Moreover, if (P, Q)e 0, x

 O x  , (Q, R)
e Oy  x O ,  a n d  (P ,R )eO z x  0 ,, then P =g, (X ), Q =g 2 (X ) fo r some 02/1 2 - n(X)
Q=g 3 ( Y ), R=g 4 ( Y ) fo r some g 3 , g4 e ( y ) ,  a n d  Ox  g  3 Vi6  , y  g  3 ,  O  g  3 V:
for some i, j, k  N . Thus, we have g i eV I (i=  1, 2, 3, 4) for /:= Max(n(X), n( Y)) and
KI n V,6 00, K, n 11 0 0. Take pathes g i a  (i = 1, 2, 3,4) which have properties described
in the definiton of W,. W e  have

g 2  g c  g 4 , . g2,,( V) c g ,  . ( V f) c C  7 i2

Consequently the diffeomorphism g:=g i .g »  o g 3 .g 4
- 1 and the point P satsfies the

condtion (*). It follows from (3.27) that

- i s ck(R)(dti )•/- i s
0(P, g)—

c , ( R ) ( d l i g

(P) — g(P)
c1(P )  chi ck(P) dp

where the last equality follows from P, R e 0 , g  V .  S im ila rly  w e  have,

0 113,g ig 2- 1 1— c i ( Q ) ( d t ig lg 1(P)Y

-  i s

O P )  d,u

c k(R) _ O R )  c 1(Q)
So w e get  and the equality gop,, = cpQ ,, follows. It follows

ck ( P )  c3(Q) c ,(P)
from the above arguments that there exists a T 1 -valued function c(P) such that

(13, Q )e  D  (V i
6 X I/P) implies that c i(Q ) c ( Q )

ci(P) c(P) .

(III) Next we cover K finitely many open sets O p, (i=  I, 1), where P,
be longs to  V?• u • • • u 11 .  Choose a n  o p e n  covering IG i 11 , 1 , 1 o f  K„ such that
Gi c O,, .  < i < /) a n d  G, are  a ll com pact. Then there exists a n  neighbourhood
gi n o f  id  in  Diff(K„) such that if g eqi„' , there exists a  continuous path {g,} 0 < 1 < 1

connecting id  a n d  g  such  tha t g,- 1(Gi n K „ )c  Op ,  fo r e a c h  1 < i< / a n d  fo r  all
0 < t <  1 . T h u s  f o r  a n y  f ix e d  p o in t  Pe IC„ a n d  f o r  any g

 ° , 1  , w e  have
g ,

-
1(P)e Op, c  3 VP (0  <  <  1), where ie N  is  a  num ber such  that PeG i n K „ .  It

follows from (3.27) that

g ) _ c i ( g  ' ( 13) ) dil c(g  ( 1 ))(clitg y-1 8

c ( P )
d i t (11

ck(P) )

because (P,g - 1(P)) also belongs to D (1 1  x II ) .  N o w  put for all P E  M  and for
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all g EDiff 0 (M),

c (g  '(P))(cluy
g (P)c(P)

Then we have ((P,g)=0(P,g) for any Pe K„ and for any g e V;,. Thus it holds
a ls o  f o r  a l l  g e D ir(K „), because gl,, generates t h e  w h o le  g ro u p  Diff*(K„).
Consequently we have 0=C on  M x Difft,(M) due to K 1  M.

(IV) L et us check th a t  c  is  a  continuous funciton. F o r  it  tak e  an y  point
Po e M  and take a local continuous section sp, s1.(P0 )= P, around P o which satisfies

= id. T h e n  the continuity of c a t  P0 follows from the equality,

c(P) -
=0(P0 ,s i 1)=(

d ,u
(Po)

c ( P 0 )  

0
(V) N ext w e shall prove that q :=-  is  a  unitary character, which is derived

from the following theorem.

Theorem 3.5. A ssume that a paracompact )-manifold M is connected. If  a
continuous 1-cocycle q is identically equal to 1 on Diff'(M), then it is a unitary character.

P ro o f  T ake  any  P e M, any g o e Difft(M) a n d  any  h e Diffo(M ) .  W e have

0(P, hgo) ?AP, 0 1 (h  1(P), go) = (P, h).

Since the group Difft(M) is normal, q(P,h)=q(P,g 0 h) also holds and thus we have

0(1 ) , h) = 11(1 3 , go-
 1 h)= 11(P, g ,  1 )11(g0(P), h)= rggo(P), h).

Hence q(P,h) is independent of P, because DifP4(M) acts transitively on M, and I/ is
a  unitary character. Q.E.D.

(V I )  Uniqueness. W e restrict 0 to  Difft(M) in  order to  om it the character
te rm . Then the  uniqueness of s  is derived by taking some transformations such
one like similar transformations at P,, where P, is any fixed p o in t .  So 1-coboundary

l (P))
term  

c ( g

 remains under considerations, however c  is  de te rm ined  up  to  a
c(P)

constant factor by virtue of the transitivity of Difro (M ) .  Consequently the remainder
term of unitary characters should coincide with each other. Q.E.D.

From  the above proof we see that the assertion of Theorem 3.3 holds if we
can take a global continuous section sp on M .  As a special case of it we have the
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following corollary.

Corollary 3.6. I f  M  is a  compact connected L ie group, then the sanie result
as in Theorem 3.3 holds for continuous 1-cocycles O. Namely, every continuous 1-cocycle
is of standard type.

Remark 3.1. If the M  is not connected, then the general form of continuous
1-cocycles 0 consists of 1-coboundary type, of Jacobian type and of the following type
of 1-cocycles

Namely, decompose M = ,M , into connected components M i (i=1,•••,N ).
Then Diffo(M )/D in(M ) acts as a(g) on 11, •-, N I such that g(M i)=M 9 i . Under
this notation the above 1-cocycle is  ch a rac te rized  as

(P,g)=-ai,a(g)),

where i s  a n  arbitrary 1-cocycle fo r  th e  a c tio n  o f  a  o n  th e  discrete space
{1, •, NI x Diffo (M)/Difft(M) and i is number such that PE M i .

It follows that the simply connectedness condition is  no t a  necessary one for
the arguments of the canonical form of these 1-cocycles. Moreover Theorem 3.3
is  no longer true if we om it the simply connectedness cond ition . We will give a
counter example for it  in  the  next subsection.

3.3. 1 -cocycles on the cylinder. In  this subsection we consider continuous
1-cocycles 0  o n  M = R x T ` .  The elements in  M  w ill be  deno ted  by  (u, z), or
(u, exp(\/—  10)). L e t  g eDifP(R  x T ')  a n d  ta k e  a  continuous path  {g
connecting id  an d  g. Then for each fixed (u,z)e R  x  T ', th e  second  component
Z(t,u, z) of 1 (u, z) has an  continuous angular function 0(t, u, z).

Lemma 3.3. Put cpg (u ,z ):=0(1,u ,z )-0(0 ,u ,z ). Then cp:=cpg  does not depend on
a particular choice o f  {g,} 0 < 1 < ,.

P ro o f  I t  i s  a  d ire c t consequence o f  th e  properties o f  th e  covering space
(R' V )  and suppg. Q.E.D.

For any real number S2 we put

(3.29) ,((u,z),g):=exp(.\/— ILI(p(u,z)).

Lemma 3.4. G, is a  continuous 1-cocycle on Difft,(R x T 1 ).

P ro o f  First of all we shall prove the cocycle equa lity . Let g, he Difft(R x T ')
and ,  be continuous paths connecting id  a n d  g ,  id  a n d  h,
respectively. Then a path defined f ,:=4,

2 , f o r  0  t < 1/2 and f r : - = g h 2 t -  for 1 / 2 < t < 1
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connectes w ith  id  and  f := g h .  L e t u s  p u t g - 1 (u,z )=(v ,w ) a n d  take continuous
angular functions Og (t, u, z) along {g,}0 , , ,  0,(t, w) along {h,}0 .,,, 1 ,  respectively.
Then we have

Og(1, u, z)= 0 ,  y, w)+ 2kir

fo r  a  k e Z .  Hence Of (t, u, z) defined a s  below  is a  continuous angular function
along t ftl o , , ,
Of (t, u, z):= 0 g (2t , u, z) - 2 k n  f o r  0 < t <  1 /2 , a n d  Of (t, u, z):= 0 ,(2t — 1, v,w) f o r  1 / 2
< t < 1. It follows that

1 (u, z )= h(1 , v, w)— 0 g ( 0 ,  u, z) + 2kn

=  g (u, z)+ (ph (v,w),

and therefore we have

(,((u, z),gh)=Cd(u,z),g)•C 0 ((v, w),h)

= C ((u, z), g) • -1(u, z), h).

Next we check the con tinu ity . For it, we have only to  show t h a t  ,((u,z),g)
is continuous at id as a funciton of g Diff*(R x 71 ) for each fixed (u, z). Evidently,
for any given c > 0 there exists a  neighbourhood 01/ of id  such that geall implies
th e re  e x is ts  a  c o n tin u o u s  p a th  {g,} 0 , , , ,  connecting i d  a n d  g  such  tha t
11g,-  '(u, z) — (u, z)11 <c fo r  all 0 1 .  So we have Iexp(„/— 10(t, u, z)) — exp(\ / — 10)1

<c, where 0 is an argument of z, and therefore icp(u,z)l< 2 arcsin -

c  

. Thus we have
2

Krr((u, z), g)— 1 I  lexp(.\ / — 19(u, — 11 < 2arcsin . Q.E.D.
2

Lemma 3 .5 .  Co  is not of standard type, unless f le Z . W hile if  12=neZ , then it

i s  a 1-coboundary . N am aly ,

projection from R x T 1 t o  T'.

(PAg 
z

'cu, z»Y
)  , w here P 2 i s  a second

P ro o f  For the  first part we have only to show an example such that g = id
holds o n  some neighbourhood P o = (uo , zo ), while W P 0 ,g )0  1. F o r  it  ta k e  an
R-valued C"-function p with compact support such that p(u)= 1 on a neighbourhood
o f u ,  a n d  define gED if I(R  x T 1)  such  tha t g(u,z):-=(u,exp(2n,/ — 1p(u))z). Then
g t :=(u, exp(2it,/— ltp(u))z) defines a  continuous path connecting id  an d  g , so we
have C,(Po , g)= exp( 2.7r.„/— 10). While g  is equal to id  on  some neighbourhood
P 0 . T h e  seco n d  p a rt is obvious. Q.E.D.
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Next we shall extend the domain o f  ( ,  to  the whole group Diffo (R x T 1). S o
let ge Diffo (R x V ) and take R  such that g(u, z)=(u, z) holds for all lul> R .  Then
P 2 (g(u,z)) describes a  continuous curve o n  T 1  as u  runs from  - R  t o  R .  We will
denote its continuous angular function by 0 (u ,z ) . Put

Q(z):=4)(R,z)- R, z).

Lemma 3.6. Q(z) is a  continuous function of z e T'.

P ro o f  Since g  is uniformly continous o n  R x V ,  fo r any given c> 0 there
esists (5>0 such that

(3.30) lexp(.\/- 1(45(u, z )- 0(u, z ')))- 11 11,g(u, z) - g(u, <

for all z , z ' such that lz -  z 'l  <5 . We may assume that

10( R , z ) -  (1)( - R, < 2arcsin-
2

so we get from (3.30)

10(R, z)- O(R, z')1< 2arcsin-E and therefore 1Q(z)- Q(z)1< 2 arcsin- + arcsin-
c

2 2 2
Q.E.D.

By the above, Q(z) takes a constant value, say 2nn, n e Z , o n  T  which will be
deno ted  by  R o t(g )= n . Put for all n E Z

G„:= {g e Diffo (R x T 1 )1 R ot(g)= n1.

Lemma 3 .7 .  Each connected component of DiffdR x T i ) is contained in som e G.

P ro o f  Let be a  continuous path connecting g  and g'. Then there
exists a partition of  [0,1] : 0 = t o < t i < • • • < t„, = 1 such that

sup{11g,,(u, z )- g _ 1(u, z)11 ( u ,  z)e R x V} <c

fo r  all 1 < i < m .  T ake  a  continuous angular function Oi(u,z ) o f g „ .  W e have

lexp(,/- 1 (4)i(u , z ) - 4 .  ,(u, z)))- z ) - 1(u, z)Il <6.

Since we may assume that c/),(- R, z)= _ ,( - R, z),

- 0 ; _ ju, z)l< 2arcsin-
c  

and thereforeIQ
g t ,

 (z) - Qgt, (z)I < 2arcsin-.
2 -1 2

Thus for a sufficiently small c, we have Rot(g,,)=Rot(g t,_ t) for all i •_m. Q.E.D.
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Conversely,

Lemma 3.8. If  Rot(g)= Rot(g'), then g and g ' belongs to the same componet.

P ro o f  F o r  t h e  p ro o f  w e  u s e  th e  follow ing w ell know n fact privately
communicated by H. Omori.

F a c t :  F o r  any g  Diffo (R x T ')  there exists some go E Diff,(R x T 1)  consisting of
the form, gdu, z)= (u, h(u, z)) such that g  and g ,  belongs to the  same component.

A  proof of this fact is an application of the uniqueness and the continuity of
Riemann mapping theorem to a  suitable domain of the unit disk derived from the
diffeomorphism g.

Consequently we may assume that

g(u, z) = (u, h(u, z)) and g'(u, z) = (u, h'(u, z)),

so we have

h(u, z)= exp( —  14)(u, z)) and h'(u, z)= exp(.1 1  10'(u, z)).

A s w e  m ay  a lso  assume th a t  4)( — R,z)= —  z ) ,  w e have b y  th e  assumption
0(R, z)= z). Put

g,(u,z):=(u,h,(u,z)), where ht(u, z):= exp( 1(145'(u, z) + (1 — t)ck(u, z))).

Then we have go = g , g ,=g ' and ht(u,z)-= z for all R .  W e claim that g, is  a
diffeomorphism f o r  e a c h  t. F o r  it w e  c h o o s e a n d  (fir which satisfy

R, z)= 0'(— R, z)= 0 for z = exp( — 1 0) with 0  0 < 27t. Then 4)(u, exp( \,/ — 10))
is  a  continuous function of 0  for each fixed u, as is seen from (3.30). It follows
that 0(u, exp( .\/— 10)) is  a  C"-function on  R x (0, 2m), because it coincides with an
argument of h(u, exp(i—  10)) on a neighbourhood of each point in R x 2 7 r ) .  Thus
the same holds for ht(u, exp(\/— 10)) for each t e [0,1 ]. T o  s e e  the differentiability
of h, at (u, 1), we replace 4, and 4i with 0, and 0'1 which comes from the following
condition likewise 0 and 0',

4) 1( — R, z)= R, z)= 0 for z = exp( — 10) with —  < 0 <

Since we have

i (u, z)+ 2n = 4)(u, z) if 0<0  a n d  4) 1(u, z)= 0(u, z) if 0 > 0

and the same holds for 0', and 0', h, is still invariant under the change 0, 0' to
4), , 4fr . So repeating th e  above arguments fo r  4), a n d  cb', , w e see  tha t h , is
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everywhere C"°-differentiable for each t.
Next we check that g , is a  b ijec tion . It is easy to see that Jg (u,exp( \ /-10)),

Jacobian of g  a t (u,exp( \ /—  10)) (0 < 0<27r), satisfies

a a
(3.31) Jg (u,exp(\ /—  10)) = 4 ) (u, exp(,/ 10)), a n d  

4)( R, exp( — 10)) = 1.ao ao
a

S o  w e  have 
° (u,exp(.\/ - 1 0 ) ) > 0  fo r u e R  a n d  0 <0< 27r. T he  sam e holds for
(30

0'. It follows that g, is an injection for each t and the Jacobian g, does not vanish
everywhere. Finally, the surjection of g  implies that

(3.32) lim {0(u, exp(.\/ — 10)) —  0(u,1)} = 27r.
0-* 27r -

Since the same holds for 4)', we have

(3.33)

Jim ftcY (u, exp(.\ / — 10))+(1— t)0(u, exp(.\/ — 10))—(14i(u,1)+ (1 — 00(u,1))1 = 27r.
0 - .2 7 r -0

This shows that g, is a surjection and that g, actually belongs to Diffo (R x T 1). The
continuity of the map, t —)g, is easily checked. Q.E.D.

In conclusion we have the following results which seem to be well known, but
we list them for our later discussions.

(1) Go =Difft(R x T 1).
(2) G„=gG 0 =G 0 g  for each geG„.

Take an R-valued C"-function p(u) on R such that p(u)=0 on (— co, 0] and p(u)=1
o n  [1, cc), and define gp a s  gp (u, z):= (u, exp(27r\ /— lp(u))z).

(3) g;e G„, and Diffo (R x T 1 ) = u _ g G 0 ,
(4) Diffo (R x T 1)/Difft,(R x Z.

This group isomorphism is given by the homomorphism, ge Diffo (R x T 1)1—+Rot(g)
E Z.

N ext w e w ish to show th a t it  is  able to extend C, to  the whole group as a
continuous 1-cocycle. F or simplicity we shall write i n s t e a d  of

Definition 3.1. L et gp  b e  as abov e . For any  ac  T 1 and f or any  neZ , put

OP,,,,gp
- "h4)

Ca(P,4):— a"
((P0 ,h)

Po=( 0 , 1 ) and h e Go is  a  m ap such that h -  1 (P0)= P.where
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First of all let us assure that this definition does not depend o n  a  particular
choice of h. So let h , k  be in  Go such  tha t 11-  1 (P0 )= k  i (P0 ). Put i (Po)= (u1,
exp( N./  — 10,)), k f

- 1 (13
0 )=(v 1 ,ex p(,/ — 1 cp,)), w here  {h1}0 1 < 1 , { 1( 1}0 , 1 , I b e  p a th s

connecting id  and h, and id  and k  respectively. W e have

gp
- "ht

- 1 g;(1)
0 )= gp nh t ( P 0) = (u t  exp(,/ — 1(0, — 2nnp(4).

Thus,

C(P0 , gp
- "hg;)_ exp(,/— l (— 27Enp(u1)+0,-00))_ 

e x p (  —  2 7 t N /  —  IS I n p ( u , ) ) .

(P0  , h) exp(N/ — 1S2(0, — 00 ))

Similarly we have

P 0  gP
 1 1 k g

;') — exp(-27k / — 1 nnP( 1)0).
«P 0  , k)

So the definition is well defined by virtue of u1 =v 1 .

Lemma 3 .9 .  For any n, me

g;)Ca(g; n(P)'
 g ' )

g ; r f

P ro o f  Put

P:=h - '(P 0 ), g "(P) := k - '(Po) , ht-  (Po):= (u„ exP( N/ — 1 0t)),

k ï ' (P 0) := exP(. —  1 (Pt)).

Then

Ca(P, g;)= anexp( —2nv  — 151np(u 1)), „(gp
- "(P),g 7

p")= amexp( — 27t/ — 1S-Imp(vi»,

and

Ca (P, g;+"1)=a" +  mexp( — 21z.\/ — 1f2(n + m)p(u,)).

This completes the proof.

Lemma 3 .1 0 .  For any f  E Go  and f or any n e Z,

op g ; f g  p- (AT), g p o g  p- t ( P ) , f g a (f  -
 ' g

 p- n(p) , g

P ro o f  Put

P:=h - '(P0), gp- n (P):=k - '(P0), ht- '(Po):=( 11„exP(N/ — 1 0 ,)),

k t
- I (P0 ):=(v„exP( N / —1(PM.
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Then we have

f- igp -n (P )= (k f) - '(P 0 )

and the right hand side of the equality in the lemma is equal to

(P c, ,g;"hg;`)
 ( ( g

 " (P )

C(P0,g;kgp-")

OP0, 11) . g  P' ' )  )  • op,k p

((P o ,gp
- "hg;)• (g,;- "(P), f) . ( ( P 0  , g ;k f g p

- ")

C(P0,h) 0,10•08p-"(P),f)
o p 0,gp-nho.C (P0,4k gpn) op,  g  f g  n)

( ( P  0 h) OPo,k)

= exp( — 2 ir.\/ — 151np(u Mexp(27-c.,/ — In n & g;fgp

=((P,g ;f g p
- "),

where the last equality follows from u, = v 1 . Q.E.D.

Definition 3 .2 .  For any n E Z and for any  heG o , put

G?,a(P,g;h):=G,(P,g;)((g p
- "(P),h).

Lemma 3.1 1. ( 0 ,0  i s  a  continuous 1-cocycle on  M x D if f o (M ) an d  i t  i s  an
extension of G ? .

P ro o f . For the cocycle equality, we have only to show that

( 0 ,a(1 ,g ;h )4 00 0 ) —  ' (P), g; k) = ( 0 ,0 (P, g;hg;k)

for all n, me Z and for all h, k e Go . The left hand side of the above equality is equal to

U P ,0 0 g p
-  n(p),hg a(h - 1 g p-  "(P), g;)((g 'gp-"(P),k).

While the right hand side is equal to

(.0,a(
1 , g; + "'gp-  mhgVc)= COE(P, g; +  " )(( g  "  " 1(P), g p

- mhep"k)

=„(P,g;""")((g p
- "-  m(P), gp

- mhg;')((gp
- mh - 1 gp

- "(P),k)

(0(P , g;)(a(g p-  n (P) , g)(a(g p- g  p -  m ) '

((g  "(P ), h)(a(h - 1 gp
- "(P), 4")C(gp

- mh - 'g p
- "(P),k)

= ( a (P, g x ( g p - nul, h)(a(h -  1  g p- 1P), g;')C(g p- g  „,- " (P ) ,k ) .
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So the both sides coincides with each other. The continuity of Co,a  is clearly reduced
to  the continuity of C„ which is already proved. Q.E.D.

Lemma 3 .1 2 . If 1-cocycle 0 on Diffo (R x T ')  is an extension of ( 0 , then there exists
som e ae T i such that 0 =Cfz,a•

P ro o f  Put a:=0(P 0 ,g p ). Then we have for any h e G0 ,

0(P0 ,ga- "h4)
0(h-'(Po),g;)—  o(p0,gp-n)0(P0,h)

CD(P o , gp- n h g;) 

Further,

0(P,4h)=0(P,g;)0(g p
- n(P),h)=C o ,„(P, 4)(,,„(g p

- "(P),h)=Cp(P,411).

So we get 0 = (,. a . Q.E.D.

Remark 3.2. A  function ria  defined by ga (g;h):=an is  a  unitary character on
Diffo (R x T ')  and we have rf2,a CI-1,111a •  Thus the essential part of the extension C,,a is
CO, which will be denoted again by C,.

Theorem 3.7. T he general form  o f  continuous 1-cocycles 0 o n  th e  manifold
M =R x  7.1  i s  as follows:

0 ( p ,  g ) _C(g 1 (11)(0g y — i s

- - (P ) (,(P,g)n(g),
c(P)

w here  seR  an d  O<S1< 1. B esides, s, n  an d  q  are  uniquely  determ ined and c
is determined up to a constant factor for a given O.

P ro o f  Put

I,:={ teR l— k <t<k } , (11 :=Iz e  T'lz0 — 11, U2 :=1ze 1z01),

7.1 lz+  11>e}, V2 ,,:={ z e 7' 1 11z-11>E}

f o r  a  given E >0, a n d  p u t  Kk := /k x . T h en  it is  e a s ily  d ed u ced  fro m  the
d isc u ss io n s  in  3 .2  th a t  th e r e  e x is t s  a n  arcw ise connected neighbourhood

of id  in  Diff(Kk) such that

(1) g  1(Ik x  / ) c  x V,  f o r  all g  671k, , and
(2) for any P e  x V ,  and fo r  any gealikj,

=a"
Co(P0,h)

=CD,a(h - '(Po), 4 ) .
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0(P, g)-=
O

c t ( g  - 1 ( P ) ) ( 11-11 17)) '/

P) du

where C. i s  a  function defined o n  Ik + iX C i ( i=  1,2) and s  are actually also
depend on (c,k), c i = c,,,, k , s . However if we assign to the value of ci (i= 1,2)

at (0, ‘ /- 1) the same value, say 1, then since C 'f ,  <  k' > k) is locally constant,

using the connectedness we see that  { c , , k},>  , k o i defines a function c, on R x U .  The
independence s of (E,k) is m ore c lear. Further the above consideration also implies
that

c ,(t,z)= c 2 (1, z) if Im z>  0, and c,(t, z) = exp( - 2tr ‘ /- 1S2)c 2 (t, z) if Im z <O,

where S2 (O< <1)<1) is some constant derived from exp(2n.\ /- 152):- 
c2 (0 , 1 )

c 1 (0 , -  -  1 )
Here le t u s  take functions q,(z) on U . su c h  th a t qi (z):=exp(.\ /-10,) (i=  1,2),

where 0, is  an argum ent of z  which satisfies, -n < 0 , < n  and  0 <0 2 < 2 n . Then,
c, (u, z) c 2(u, z)

 f o r  all z e U 1 n  U 2 , and thus a  function

c i(P ) c2(P)c(P):-  on R x (11 a n d  c(P):= on  R  X  U 2,
9 1(1 :1 2(P )) 2(P 2(P))

is well defined on the whole set. Now we define a  new 1-cocycle by

(ditC(P,g):= 0(P, g)
 c ( P )

-
(
P)

1-
c (g  1(P)) cly

 ) -

Then we get for any P e I k x J/ f o r  any geqtk,c

4' (p , g ) = q1(P2(g ( P ) ) )
•qi(P2(P))

Now set P :=(u,exp(.\/  10)) and g  t (P):=(u„exp( \ /  10,)) for P E IkX V,
fo r a  continuous path {g,}0 , , < ,  c  connecting id  and ge Wk . ,. W e  c h o o se  an
angle 0 such  that -n  <0 <n, from which we get - n  <0, <n  fo r  a ll 0 < t  <1 .  So
q)(u,exp(.\ /  10))= 0, - 00 , a n d  it follows that

(n (P,g)=exp( \ /  1S2(0, - 00 )) = q 1 (P 2 (g  ( P ) ) )  =C(P,g).
ql(P2(P))

q 1(z) q2 (z)

Sim ilar argum ents de rive  t h e  sa m e  re su lt  f o r  P e I k x  V ,  a n d  f o r  gealik,f•
Consequently for any P e Kk and for any g E a 1 I

,  w e have CdP,g)=C(P,g). As 514,E
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generates the group Diff*(Kk), we get C o =  on  Kk  x Diff*(Kk), and thus

is
0(P,g)— c ( g - 1 ( P ) ) ( at - (''tg P)Y  - ,-,(P,g)

c(P) dp i

on  M x  D iff(M ). T he  rest of the proof is immediate and the uniqueness follows
from similar considerations with those for Theorem 3.3. Q.E.D.

§4. Natural Representations of the Group of Diffeomorphisms

4.1. Irreducibility. In  this subsection we consider natural representations U,
of Diffo (M ) on  L (M ) defined by,

(4.1) U0(g): f(P) 0(P,g) dit
)f(g - 1 (P)).

du

First we show that they are all irreducible, if M  is connected.

Lemma 4.1. L et P  be any  f ixed point in  M  and g  be  in  DifP(M) such that
there exists a  continuous path connecting id  and g such that g t(P)=P for
all 0 < t <1. Then f o r any continuous 1-cocycle 0, there ex ists s E R  such that

y - "
0(P,g)=(— (' P) .

P ro o f  This lemma is nothing but Theorem 3.2 in 3.2. Q.E.D.

Theorem 4.1. If  M  is connected, then the representations (U, I DifPo (M), L(M))
of  DifPok(M ) are  irreducible f o r all continuous 1-cocycles O.

P ro o f  Let ,O,9  ( 0 0 )  be  an invariant subspace of the representation. Take a
non zero f  e l e  and an open set U c M  which is diffeomorphic to R d  such that f u 00,
where f u  is a  function defined by f u (x): -= f(x) for x e U and f u (x) :=0, otherw ise. Put
Diff(U):= {ge Diffo (U) D i f f o ( U ) :  continuous path connecting id and
g l .  Then by virtue of Theorem 3.3. we have

0 ( P , g ) — c ( g - 1 ( P ) ) ( d l i

g(P)
)

c(P)

for all PE  U and for all ge Dig(U) with a suitable continuous function c on U .  Thus,
the restricted representation of Difft) (U) on the space -1_,,(U) of all square summable
functions vanishing outside of U is equivalent to the usual representation (Us , L,i(Rd ))
of Difft(R d ),

(big ) 1+ t
(4.2) U Os(g): f(x) R') f (g-1(x))e L,i(Rd),
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where A is the Lebesgue measure on R d ,  and the later one is irreducible (cf. Lemma
4.2). In particular, there exists some g o e Difrt(U) such  tha t Uo( g o ) f u O fu . Now
for any PE U `, we have by Lemma 4.1, 0(P,g)= 1. Hence h:=U 8 (go ) f —f  is a non
zero element which belongs to L,L

2 (U)n.Y19 . Again by the irreducibility, we see that
L(U) is generated by U 0 (g)h, g e Difft(U), so we get 1. .,(U) c .re . By the assumption,
D iR (M ) acts transitively on M .  It fo llow s tha t for a n y  P E M  there exists a
neighbourhood Up o f P  such that L ( U )  A ' .  As L0

2(M ) is generated these
I_, (Up)'s, we get that l f  = Lo

2(M). Q.E.D.

4.2. Equivalence. Next we consider the mutual equivalence of (U0 , L(M)).
For the bigger group Diffo (M) the assertion which is more general than the following
one is already known as Lemma A.1 in Appendix in [ 5 ] .  However for the group
Difft,(M) here we list it as the next lemma and prove it for completeness and for
our later use.

Lemma 4 .2 .  L et A be the Lebesgue measure on Rd and consider f o r each se R
a  representation Us o f  Difft(Rd) defined by (4.2). Then if  there exists a non triv ial
intertwing operator T from (Us ,L,i(R d)) to (U,,,L,i(R d)), we have s=s' and T =71c1
with some constant oc e C.

P r o o f  Let B e.11(d) and take for each n e N  an R-valued C'-function p(x )
with compact support such that pn = 1 on {x e Rd  I 11 x 11 <n}. Then for a 1-parameter
transformation subgroup cp1 (x):=Exp(th,7)(x ) genera ted  by  a  vector field ,„
Ijn (x):= p n (x)Bx, Uk,9 1 ,„) converges strong ly  to  Us , ,  on O R ')  as n —t co, where
A :=expB and U A  i s  a unitary operator on L ( R d )  such that

(4.3) Us,A(f)(x):=Idet f ( A -  x) (f  e Ll(Rd)).

By the same procedure we can find a sequence {1//r}./sr c D i ro (Rd) such that U ( i i )

converges to  Ta for each a e Rd , where

To(f)(x):=f(x— a) ( f  e Ll(Rd)).

It follows that

(4.4) T o US ,A= U s , ,A

(4.5) To T= To T

for A E GL o (d):= {A e GL(d) I det A > 0} and a e Rd .
Here we change T  to  S :=.9iT 5 - 1 ,  using the Fourier transform

: f (x )i— exp(2//\ / - 1 < ,x > ) f  (x)À(dx).
Rd
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Then from (4.5) there exists some c e L ( R d)  such that

S(f)(x)=c(x)f(x).

Further (4.4) implies that for all A e GL o (d) we have

(4.6) c(A x)= c(x)(det A)-s/ - 1 q

for 2-a.e.x, where q := s — s' . In  particular taking A  from SO(d), we see that c(x) is
rotationally-invariant. Namely there exists a Borel function y  o n  [0, co) such that

(4.7) c ( x ) : = Y ( 1 1 x 1 )

for 1-a.e.x . Next we take A  from similar transformations, A x  =k x . Then it follows
from (4.6) that for all k > 0 we have

(4.8) Y1k x = Y(11x101e/ 
1 q d

for 2-a.e.x . Hence by virtue of Fubini's theorem there exists some x o  0  such that

(4.9) x011)= xo "d

for a.e.k and therefore

(4.10) y(k)=ock/-1qd

X 011)for a.e.k with a non zero constant a :-= It follows from (4.6) and (4.10) that
11X q

lq d  =  X 1 q d (det lq

fo r /1-a.e.x. So w e should have q= 0 a n d  c(x ) becomes a  constan t a. Q.E.D.

Theorem 4 .2 .  L e t M  be a paracom pact C'-m anifold and assum e that M  is
connected. Then two representaions (U 9 1 , Lu

2(M )) and (U9 2 ,L (M ))  o f  Difft(M) (of
Diffo (M) resp.) is equivalent if  and only if 0 1 and 0 2 are 1-cohomologous in Difft(M)
(in Diffo (M ) resp.). T hat is , there ex ists a  r  -valued continuous function c on M

such that 01(P,g)-=02(P,g)
c ( g  - 1 ( P ) )  

for all P e M and for all g e Diff;*) (M) (geDif f o (M)
c(P)

resp.).

P ro o f  T h e  sufficiency is obvious. W e prove th e  necessity . L e t  T  b e  an
intertwining unitary operator from (U01 ,L (M )) to  (UO2 ,1,m

2.(M ) ) .  Take any open
neighbourhood U for each Pe M  which is diffeomorphic to  R°  a n d  form a  space
1,,2(U) of square summable functions zero outside of U .  Further take any non zero
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ko EQ U ) and take some g o e Difft,(U) such that Uo i (go )ko — ko 0 0 . Then we have

T(U91(g0 )k0 —k0 ) =U O2(g0 ). Tk o — Tk0 ,

which belongs again to  L i (U) due to Lemma 4.1. So we have shown that there
exists a non zero kelLm

2 (U) such that Tkel.,4
2 (U ) .  It follows that T(Lm

2(U))=L(U),
a s  (U01 1Di11t(U),L it

2 (U )) is  irreducib le . N ow  o n  th e  s e t  Ux DifP(U), w e  have

0 p , o _ci(g - 1 (P lc fg411 p ) y
ci(P)

with a T'-valued continuous function ci a n d  a  real constant si (i=  1,2). Therefore
by virtue of Lemma 4.2, w e have s, = 2  a n d  there exists some c e T t such  that

c ,(P)
(TP(P)=au - - f(P )

c2(P)

f o r  a ll f eL ii (U ) .  P u t  cu (P):= au

c l ( P )

. Clearly, c =c v  o n  U r  V , unless this
c2(P)

intersection is  em p ty . T hus Icu l u  defines a  continuous T'-valued function c on
M  such that

(4.12) )(P)=c(P)f(P)

for all f EL,,(M ). Consequently for all geDifft(M) and for all f  eL (M ) we have

du du
(4.13)c ( P ) 0 , ( P ,  g)

'  
(P)f(g - 1 (P))=c(g -  (P))0 2(P,g) .j (P))

dtt

for p-a.e.P . Therefore the desired result follows directly. The same proof works
in the case of Diffo (M). Q.E.D.
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