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Limit theorem for symmetric statistics
with respect to Weyl transformation:

Disappearance of dependency

By

Hiroshi SUGITA and Satoshi TAKANOBU

1. Introduction

It is known that there are several kinds of deterministic sequences { x„} 1 o n
T m = [ 0 ,1 r  having  th e  follow ing property : F o r  any  func tion  F :  r n  R  of
finite variation, we have

N
R X)C1X — — E F(x„)

frn N  = 1
= 0(N - 1 + N —  o o .  ( v  e> 0) (1)

 

These sequences a re  called low discrepancy sequences ([2]). The convergence (1)
can be used for numerical integrations in  7" ", which is called the quasi Monte Carlo
m ethod. Since th e  u su a l M onte  C arlo m ethod (=random  sam pling m ethod)
converges a t  th e  ra te  o f  0(N - 1 1 2 ) ,  th is m ethod is more effective for numerical
integrations.

However, many authors have reported that the quasi M onte Carlo method
does not converge so fast as it is expected, if the dimension is very h ig h . In  extreme
cases, it is observed to converge a t  the rate  of 0(N -  " ) ,  namely, exactly as slow
a s  th e  M o n te  C a rlo  m e th o d . T h is phenom enon is often called "the  curse of
dimensionality", and it has been explained by some intuitive arguments (e.g. [15]),
but no rigorous discussion has ever been made to explain the observed convergence
ra te , fo r  example, 0 (N - 1 /2 ) i n  extreme cases . O f cou rse , even  th e  curse  of
dimensionality cannot contradict with the convergence rate (1), so  that it m ust be
a n  intermediate o r  transient state, which will eventually disappear and the rate
0(N - 1 + )  will appear after that.

In this paper, we tried to explain "the curse of dimensionality" in extreme cases
by a  rigorous probabilistic discussion for the low-discrepancy sequences generated
by the Weyl transformation ( =  irrational ro ta tion). In  doing this, we were inspired
by the following claim of Sobol' e t al. ([1 1 , 12]):

CLAIM (Sobol' e t al.). In high dimensions, the quasi Monte Carlo method is no
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more effective than the M onte Carlo method, that is, it seems to converge at the rate
of  exactly  0(N - 1 1 2 ), if  the integrands depend equally on each coordinate.

In  order to extract an essence from the phenomenon caused by the very large
dimensions, we investigated the  limit behavior when m  (= dimension) -4 ci. (One
may think that m—> oo is not realistic, but to  the contrary, it is getting more and
more realistic. For example, in a simulation of quantum field theory, we sometimes
have to implement more than 10 4 -dimensional numerical integrations.)

The above claim being in  our mind, we exclusively investigated the case when
the integrands are symmetric in  each coordinate . However, "symmetry" alone is
not enough. Indeed, w e have the following example:

Example 1. Define F : T m  R  by

F(x):= sin (2n E  x i ) , x=(x,,•••,x„,)E

T hen  F  i s  a  sym m etric function. B u t applying the W eyl transform ation with
irrational numbers (Œ 1 , • • a„ ,) to  F is nothing but applying the Weyl transformation
with an irrational number a, + • • • + a n , to a 1-dimensional function "sin 27rx". Hence,
it is very effective even if m  is very large.

The class of integrands which we finally found appropriate for the purpose is
that of symmetric statistics ([4]). Let o-,T(x; h) be the symmetric statistic on 1 '  with
a canonical kernel function h e L 2 (T )  (see, Definition 6 below for details). C onside r
the sequence 1m -

n / 2
cr n'n(x +nŒ (m) ; h)}  ,  where a ( m) i s  the first m-coordinates of an

irrational vector a e T", as a stationary process on (T m ,d x"). Then what we obtained
in  this paper is the following (M ain Theorem and its Corollary): Under a certain
condition, the sequence of  processes {m - "/2 a,T(x + na( m) ; h)} .  converges as ni -+ co
in  law  to the sequence o f  independent copies of  the m ultiple W iener integrals with
the kernel function h.

This result directly connects the purely deterministic sequences with the fully
random sequences, and it may well give a  probabilistic explanation to the claim of
Sobol' et al. for the Weyl transformation.

The authors would like to thank the referee for good advice which enabled us
to make proofs clear and considerably short.

2. Observation of elementary case

In  this section, we will observe a n  elementary case to  see  the  heart of the
matter, which shows how naturally the disappearance of dependency takes place.

2.1. Presentation o f C .L .T . L et Tm=[0,1Y " be the m - dimensional torus and
let P m  be the Lebesgue probability measure o n  it . A s  usual, the addition in Tm is
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defined in  each coordinate with modulo 1. For each F: Tin R  and each ace 1 ',
we will regard the sequence of functions Ifl• +nct)1 0  a s  a  sequence of random
variables defined on  the  probability space (Tm, Pm).

To formulate the problem rigorously, we have to  let m  co so that our basic
probability space should be ( T ,P " ) ,  where 7") := [0, lr and  P") is  the  infinite
direct product of the 1-dimensional Lebesgue probability measure.

Let f  : T(:= T 1 ) - p R be a continuous function which is not a  constan t. Define a
function Fm T" --+ R, m e N, by

1
Fm(x):=   E (f(x i)- M ), x =(x 1 ,x 2 ,•••)e rc , (2)

Jm V f

where M f ( t ) d t  a n d  Vf  =f ,(f (t)- M 4 2 dt. N o te  th a t  th e  function F " ' i s  a
normalized symmetric statistic of order 1 (see Definition 6 below).

Definition 1. F or each probability measure p  o n  T, we put

{
1 m

Tir  :=  a = (oci),?°_ i e TOE' ; -  E SOE (dx) weakly converges to  p(dx) as in --+
0 0 1 .

In particular, if p is the Lebesgue measure, we denote it by Td , th a t  is,

{
1

T rx  := cx = (oci)r= i E  T ';  -  E S (dx ) weakly converges to  dx  as m -+ oo .
m 1=1

(3)

f d.
In the sequel, we use the following notation: By we mean the convergence of

random variables in each finite dimensional distribution.
Then, our first theorem is just a  central limit theorem (C.L.T.).

Theorem I. F o r  each a=(1, ,a,, • • •)e r°, def ine a sequence of random variables
IX,7̀ (•;a)}„"=,D on the probability  space (T ",P") by

X (x ; a):= Fm(x +na), x = (x , x, , • • •)e (4)

Then, if a e 7;" where p has a density with respect to the Lebesgue measure, the sequence
of  random variables IX„"'(•;a 0  converges to a strongly mixing stationary Gaussian
sequence. In particular, if  aeT fx ,  we have

f.d.
{ X ,N * ; N(0,1)-i.i.d. random sequence.

Here N (0,1) is the Gaussian distribution with mean 0 and variance 1.
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Before the proof, we will give some comments to the theorem.
We first note that w e are particularly interested in the case tha t the function

f  in the theorem is smooth, such as f ( t )= s in 2 7 a . It is because we want to emphasize
that even if the integrand is smooth, the generated sequence becomes very random
if the dimension is so high. (It is known that if a 1-dimensional integrandf : [0,1) —* R
is v e ry  ir r e g u la r ,  th e  q u a s i  M o n te  C arlo  m ethod genera tes very  random
sequences. This subject was discussed in  several papers, such a s  [3, 5, 13].)

Let i" "  be the set of all a=(c  , a2 , • • •)e 7;,") such that {1,Œ 1 , • • •, a„,} are linearly
independent over Q  f o r  each  m ,  a n d  th a t  e a c h  a;  is  a lg e b ra ic  o v e r  Q .  If
Œ , a2 , • • •)e ,  t h e  W e y l transformation w ith  (a , , • •• an,) generates low
discrepancy sequences in a ll 7" ( [1 0 ] ) .  A typical example of elements of t r„  is the
following:

a =(a i),°= , w ith  a ; = (mod 1), (5)

where p i is the i-th prime number (see [7, 8]). We guess that many people are using
this typical a in the quasi Monte Carlo method by means of the Weyl transformation
for high dimensional numerical integrations, because it was suggested by an influential
paper [8].

Note that the Weyl transformation with irrationals , • • am  is  uniquely ergodic
([14]), if {1,z 1 , • • a „ ,}  are linearly independent over Q .  Therefore if a e t;,x' where
,u has a  density, this implies together with Theorem 1 that the asymptotic relative
frequency distribution of the deterministic samples {X,,m(x; a)},T_ o  in  each dimension
is very close to that of the limit strongly mixing stationary Gaussian sequence. Hence,
i t  m ust be hard to  distinguish th e  deterministic samples {X,T(x; a)} ,3 f ro m  the
samples of the limit sequence by statistical tests.

2.2. Proof of C .L .T . For any L EN  and any A, , • • •, [31, _  ER, we consider the
linear combination

L — 1

16. X.'"(• ; a). (6)
n= 0

Note that for each a = (a, , a2 , • • •)e 7 ,  (6) is a sum of independent random variables
as follows:

E Zmi(•
i=1

where {Z„, i( • ; are defined by

1 L — 1
Z m i(X  ; a):—    E )6.(fix, + noci) — M1 ), x  =(x i , x 2 , ...)e

,./m V f n=

By the definition, their expectations E " [ Z , , ; (• ;a)] = 0 and

(7)

(8)
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L— 1
iz m i (x  ; 01 4 )

E 211f11.1 < vi , m , vx e  T . ,_  —
n= o in V f

from which a triangular array {Z„, i( • ; a)} 1 , i ,„, satisfies the Lindeberg condition. To
apply the Lindeberg-Feller theorem (see Theorem 27.2 of [1 ]) , let us check the

convergence of E L'EZ„, i( • ; a)2 ] as m  o o .  We first compute E E"[Z „, ;(• ;1) 2 ] as
i =

E E "[Z„, ;( • 0) 2 ]
i =

m 1L - 1
=E  E  ,6„/3 E '[(  f (x i + na i)— M f )(f(x i +n'a i)— M 1 )]

n,n'=

m1 L — 1—E E M d . (f (t + na i)— M f )(f (t +n'a i)— M f )dt
i= MV f n,n . = 0

L— 1 1 m
=  E f (f (t)— M f )— E (f ( t+(n ' M f )dt,

n ,n' = 0 V  
T

where in  th e  last line  w e have used the translation invariance of the Lebesgue
m easure. Since a = (x 1) . ,  To'  ,

1 "1

lim  — E ( f ( t  +(n' — n)ai)— M 1 ) = (f(t +(n' —  n)s)—  M f )tt(ds).
m , 00 m i =

Substituting this into the expression above we have
rn L— 1

iim E E '[ Z m i(•;cx) 2 ] =  E 13„,8„,1? (n' —n),
co = n,,e=o

where

1
R "(k )= (f (t) — M f )dt (f (1 + ks)—  M f )t.t(ds), k e Z. (9)

V  f T

Consequently, by the Lindeberg-Feller theorem, the linear combination (6) converges
L -1

in law to a Gaussian random variable with mean 0 and variance E fi„f3„‘.1? (n' — n),

and hence, the  sequence {X,T( • ; ot)}„1 0  converges in law  to  a stationary Gaussian
sequence with covariance function R "(•).

If L E  T , nam ely, p  is the Lebesgue measure, we see 12"(k)..- 0 for k 0 0 , which
shows the limit is a  Gaussian i.i.d. random sequence. For a  general p which has a
density, it is easy to see by the Riemann-Lebesgue lemma that

f  ( t  + k s ) —  M f )ti(ds) — ■ 0, as 

which shows R ( k ) —> 0 as lk —+ co, that is, the limit sequence is strongly mixing. Now
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the proof is done.

Remark I. S ince w e w ish no more complicated calculations, we will not state
the assertions in the forthcoming sections for general probability measure p, but only
for the Lebesgue m easure. Nam ely, we will deal w ith only the cases where the
dependency disappears.

3. General case

We will investigate the cases when the integrands are symmetric statistics of
general orders. At this time, m ultiple W iener integrals appear as their limits.

3.1. Preliminaries. W e will here introduce necessary notions by following
Dynkin-Mandelbaum [4].

Definition 2. For each n e N, we define

221 := L 2 (T",P")= L 2 ([0, 1)" ; d x , • • • dx„).

If n= 1, we will write Y1 simply by . f 2 .

Definition 3 .  (i) We define the symmetrizer : o2"2 Y n 2 by

h)(x, , • • • , x „):=1  E h(x,„,,•••, x , ( 0 ), he
n! crEs„

where S„ is the symmetric group over the set Il, 2,

(ii) .99 „r"2 :=  t h  2 1 ; Y h= hl. If n= 1, w e  have " f ' = 2 ' 2 .

(iii) WYY1 := h c 29291; [ x i , • ", xn - t AdY = 0, a.a.(x , • • •, x„ - 1){ }

An element of W Y Y I is called canonical. If n= 1, we write

WY' nr  = (622 2 = { he ,99 2 ; f h(y)dy = 0} .

Definition 4. We define
co

H :={{ 11,,};T= 1 ; h, G (62220n2 ; E — < oo} .
n! 2

Then H  is a Hilbert space with an inner product

(h( ) ) , h(2)) , := E —(k 1 h(„2)).4 , h1)—{h(nol„0 h(2)= {111,2)} ;,°, Eli
n =t n!
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Definition 5 . ( i)  For , • • •, tk„ e I ' ,  w e  put

0 , • • • (//„(x, , • • •,x„):-= t/i 1(x 1) x • • • x tfr„(x„)e .99 1.

In particular, we pu t te n  := t/JC) • • • DP e „r "2

(ii) F or OE W..r2 , we put hd) := e H.

If {49„110 i s  a  complete o rtho no rm al system (abbreviated as CONS) in2 '  then
Ick i , • • is a CONS in

Definition 6 . ( i)  For each h e ,r..,r"2 , we define the symmetric statistic o-T(x;h),
xe T " , by

E h(x i„•••,x ), n <m
{1 < ;,<.••<i mo-„"(x;h):=

(ii) For h = {h„} 1. e H , we define

OD

Y„,(x; h):= E m - ./20.7(x ; h„).
n=1

T h e  func tion  Y„,( • ; h )  is a n  infinite-dimensional a n a lo g u e  o f  th e  symmetric
statistics. The coefficients m - "/2  a r e  normalizing fac to rs . It is  easy  to  see  tha t
Ym ( • ; h)e L 2 (7 , Pc ( ) ) . Our m ain theorem below will be stated for each aT  as well
as • A n d  then, independent multiple Wiener integrals will appear as the limits.

Definition 7 . L et {11 0 )10 0 < t s  IpEN defined o n  a  probability space (0 ,
be a sequence of independent 1-dimensional Brownian motions starting at the origin.

(i) For o5 e we define th e  W iener integral by

PIP) (0):=f 0(s)dB ( P ) (s) .

0

(ii) For h eY ,2 "2 , we define the multiple W iener integral by

l 11
Pn

P ) (h):= f • • • h(s,,•••,s„)dB ( P ) ( s,)•••dB ( P ) ( s„).
o 0

Proposition 1 ( [ 6 ] ) .  ( i )  For each 49 e 2 ' 2 , w e have

11
'Si

1;14(0® n) = n! 4o(s ,)d13( P )(s ,) Os 2 )dB ( P ) ( s 2 ) • • •

Jo io
IS0 - 2 Sn - 1

• • • 0 ( S p , W B(P)(S,, 49(S )dB (P)(S n)

0, n>m .
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=n!llOirse2
1 1 . ( 1 (14 (  

(I) ) ) ,
M y ,/  I

where {H} 0 are Herm ite polynomials : H,,(0=
(  

e 4 2 1 2   d n  
 (e - 4 2 / 2 ) .

n! cg"

(ii) For each he YYn2 an d  each ke •9'4 1 , we have

E[i,P)(h)]=0,

E M P ) ( h ) 1 i t ( k ) ] =

1 0 if n m
n!(h,k),3 if n=m.

3.2. Presentation of Main Theorem. Now, it is possible to  mention the main
theorem of this paper.

Main Theorem. For any h={1 }„̀°_,, e H, we consider {Y(x+pa;h)} pE ,,,, a e T ,
to be random  variables defined on the probability  space ( T ' , P x ) .  Then w e have

f.d. r c o
{Y „,(x + pa ; peN E - I n k ) }

co n = n• peN

if  and only  if  aeTrx .

Corollary. For any sequence h= {h„}"_, such that each h,, is  in  W•9 Y'12 , the
p m E t vdistribution of an array of random variables Im - "12 o-,T(x + pa ; h„)} on the probability

space ( T ,  P )  converges to that of  an array  of  i.i.d. random variables {anP ) (hn)} p,neN
if  and only  if  ae T rx

Obviously, Theorem 1 (C.L.T.) in case a e 77,), is an easy consequence of this
corollary.

3.3. Proof of Main Theorem. We begin with two lemmas.

Lemma 1. c.l.s.{h 0; e W.,r2 1 = H . H e re  the term "cis.” stands for closed linear
span.

P ro o f  Let he(c.l.s.{h0 ;4EWY 2 })1 . Then for any OeceY, and any teR, we
have

a o  tn
(h,h̀O)H =  E - (h„ , (/)® n)y n = O.2

ry n!

Thus we see (h„, 0 " ) , 2 = 0 for any 0 E Ce.,r2 and any
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Now, let tit , • • e c e .r 2 , (t 1 ,•••,1„)e  R n . By the above fact, we see

( h , t
)

= o.
i =1_ r 3

)But we can expand (  ( i /

\ O n

(E )  = E ti„tfril o  oc„i= il,•••,i„=

=ÊE E
n! t7p

p=  1  15 ii< •••< i p S n  a i , • , a p > 1; P  a 1 ! ••• a!P*
+  +  a p = n

x 99 0 / i „ • • O., • 0 , „ • • 0 , p ) ,

a ia p

so that we see

E E E t7p
p= 1  1 .ç ii< •••< i p < n  a t,— ,a p > 1; P a i ! • • • a l

a l+  ••• +a p =n

x (h .,(P i i ® ••• OtP ® • • • 0 0 0 . v 1 =1 3 ' v (1 1, — , 0 E R " .

op

Consequently, f o r  1 a i +  • • •  + a p = n ,  we
have

(h.,t1/11 0  • • •  0 0 6 ®  • • •  0 1Pip0  •••

al ap

In  pa rticu la r, w hen p = n ,  w e  have i 1 =  l ,  i 2  = 2, • • •, i„ =  n ,  a l = • • •  =a 0 = 1 ,  so
that

(h„ , otpoys,= 0 , v0 tP„ E Ce—r2 , v n > 1 .

This means that h  O H M_ 1 = 0.

Lemma 2. For any h = i e  H , p ,m  E N , c e r ° ,  we have

n 1 ) 1 On GIY .( •  +Pot ; h)111.2(7. - ; P - ) =  E ( 1 - m 1 ) - ( 1 m  ti!n=1

P ro o f  The assertion follows from the identity:

E " [o -,T(- +pa; h)o- ;;!'( • +p a;h )]=E '[o -,T (•;h ) o;,'!'(•;17')]

n!
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(in  A M ) 2 vhe h' E=  ' P M '
(6,9',291, v

. (10)

Definition 8 .  In  th e  sequel, w e take th e  system o f  trigonometric functions
as our standard CONS of £f' 2 . T h a t  is,

1, {4),
} IT, = { /cos2nkx, N/isin2n1x} k ,,E N .

Recall that for x=(x,)e T " ,  m,k e N,

11 m
--ar1x;450=  E Ok(xi) •m

Theorem 2. I f  ae T fx , we have

ai ( x+PŒ;01}
.1 r—n peN,411€582' 2  / / 1 - ,

{  1 id .

{11P)(0)} pN ,t/teW 22 •

P r o o f  For each 11 e(6.29
2 , it follows from (10) and Proposition 1 that

2

 ( TT( • +p ;E ('I" 01)  ( •  +pa; (ki)
1=1 L 2(T c°;P°')

2 co

AP) (0) — (0, 01)1?) (01) = E 1( , , 0,)12o .
L2(12;P) 1= L+ I L—■ co

Hence Theorem 2 is reduced to the following: For each n e N,

1= 1

And according to Cramér-Wold's theorem (see Theorem 29.4 of [1]), this is equivalent

to  the statement that for each fap k l i , p ,k ,„ such that E  a p2k =i,
I p,k

1E o-T(x+pot;44) N (0,1) in  law . (11)
1.11,1c n m co

We will therefore show (11).
Put

xp )(x ):=  E  ap k Ok (x i + pa ), x =(x) e T " ,  i e N.

Then we see
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E a
p k

1 1n i m  X (x )ovx +pa ; 00— E a
p k E (hoc, +pati)= E 

1 p , k M  i=  I i = 1

It is easy to see the following by the definition of X :

, a re  inependent voce

E '[XŒ ) ] = 0, v ie N , vcXET ,

IX 2 ) (x)1< f 2 n ,  vie N ,  x, a e T .

2

By (14) a  tr ia n g u la r  a rra y  X,V:=  1  _ Xl" ) c l e a r l y  s a t i s f i e s  th e  Lindeberg
(. „srm t s im

condition, and so if we have

lim E Eco[(x,m2] = 1, (15)
m-.01=1

then (11) follows from the Lindeberg-Feller theorem.
(15) is show n in  th e  sam e way a s  in  th e  proof o f Theorem  1. Indeed we

expand the su m  E ( n t i)) 2 as
i = 1

E (X:nai) ) 2

i= 1

I  m1 m
= E apk _  E ok (xi +pa i)2 + E ap k a,,— E ok(x, +pa i)(/),(xi + qai )

(p,k)m i = 1 (p,k)# (q,I)m  = 1

1 m1  m= E a — E ok(x, + pa i )
2  

- FE  E apkap,— E k(x + pa i)( + pai )
(p,k) n1 i= 1 p  k #  I n li=  1

1 m+ E Eapk a,,— E (/),(x i + pai)49,(x i + qa i),
p# q k,I n1 i = 1

and then taking expectation, we see

1 m
E (Az )2] = E ap2k + E Eapk aq ,— E o k (00,0 + (q — p)ai)dt

i= 1 (PA) p# qk,I l n i = 1  T

I m

= E Eapkag if ok(t)— E + (q — p)a i )d t (16)
p#q  k ,IT m = 1

Since, by a e Td7,

m
lim 1— E op+ (q — p)a ,) f  i(t + (q — p)x)dx = 4 ) 1(x)dx = 0,

m- mi=



{

1 untIx 
+ p ;

 4 4 }
NFn peN,044_2'2 m--0 oo

i d.

{1(1P)(0) }peN,Oeif_r2
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we therefore have (15). The proof is complete.

The converse of Theorem 2  also holds.

Theorem 3. L et oc=(a)ix± i e r ° .  If  we have

then oce Tfx  .

P roo f. For k ,leN , put

1
X,(x):=  1 ,_Ok (x i +cci )+  1(x1+2a1), i> 1, xe

\ /2

Then obviously,

{X } =  are independent,
E [X ]=O , (17)
X i(x)I 2.

A s in the proof of Theorem 2

1) 2 ] 1 m=  +J ok (t) E OP+ cci)dt.
.s Fn M  i  1

{ 1 m'
L et {m'}  be  a n  arbitrary subsequence o f  {1,2, •••}. S in c e  — E 6„(dx) is

in'i-t ' m•
tight, we can take a  subsequence {m"} of {m'} a n d  a  probability measure u(dx) on
T such that

m-

E 6„(dx) u (d x )
in  =

as m" --+ co.

This implies

E i ni (  1   X i ) 2 1 = 1 + 1 u(dx)f Ok(1)4),(t +x)dt as m "  cc.( 1 8 )
i- I  „An' ,

T T

The Lindeberg-Feller theorem together with (17) and (18) implies

m"
E N(o, 1 +J ti(dx) Ok( 1)0,(t+x)dt)

T T

O n the other hand, by the definition of X i and  the  assumption,

as m "  CO.
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E x i  a(x+/; 4)0+ 0-71x + 2 ;  4)1))
11/ 1 1

.\7 7 1  i =  1 ' N / i
= (  1  

 N /
1

(1(11 ) (0k) +1(12)(4
) )  N ( 0 ,1 )

Combining two convergences above we have

IT T
f t(dx) f  O k (t)(/),(t + x)dt = 0 for vk, 1> 1.

Recalling the definition of Ok , k > 1  (see Definition 8 above), we see that for y k>1

Ji i ( d x )  cos2nkt cos2nk(t + x )dt= 0,

u(dx) f  cos2nkt sin2nk(t + x)dt =O.fr T

This implies

f t(k )= e 2 -/ - 1 1 r"p(dx )=0,

and hence ti(dx )=dx , so that

1- E (5„,(dx) d x
m n i= 1

as m" GO.

Since this holds fo r  a  subsequence {m"} of any subsequence Im'l of {1,2, •••}, we
must have that a e T .  T h e  proof is complete.

Lemma 3. L et (1) e 2  and  K E N .  Pu t (k( K )  :=  E (4), 4)04)k • Then we have
k= 1

'VS) O K>(1 + 11 011 .22' -(1)(1'11 2•

Pro o f . Noting an  equality

a ,• • • a n — b ,•••b „= E b, •••b k _ 1 (ak —b k )ak + ,• ••a„,
k = 1

we see, for any 0,0e(e2 2 , that

1146 ® " — O® n llsel

=(I (4)(x ,)••• 4)(x )-0(x ,)•••111(x„)) 2 c1x,•••dx„
(own

ak5bk E R,

as m -*oo.
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)1 /2
= (1 E tox i) • • • oxk_ ixoxo-oximoxk+ i) O

2

• • • d n)) ••dx i • dx,,
[o,i] k= 1

E x 02 • • • Oxk_ oxk) - ox0i 2 Oxk, 1) 2 • d)(x.) 2 dxi • dxn)O
112

= 011,-21 dor,-,k
k= 1

110 — max{110112,111/111.2,21"-
Using this inequality,

no
11111) — 10(K ) =  E — 2v2,

n= in!

Œ 1
< -110- o(K)11 2 n 2 1411.22

(

'n - 1 )

2
n = i n!

n 2 (1 1 4 )1 1 -2 9 ')"
1

—  114) — 01'4.22,
2 .

n= 1 n!

Now we have only to use the following easy identity to obtain the required inequality:

n2x" - 1

— (1 - F x)ex, x e R.
n=1 n!

Before the proof of Main Theorem, we introduce an auxiliary theorem.

Theorem 4 .  If  oceT Z ,

{1 + Y „,(x + pa ; h0)}
f.d.

,OECY2 •PEN,OEWSP2 fel( pcNr)(0) - 1 11011. 1

P r o o f  For 4) E (e.Y 2  K E N ,  w e  put 4)(K) := E (0, o)ok . Then — 0(1° 11 2
lc = 1

00

=  E  ( 0 , 0 ) 2 -  0 as K — > ce. B y  L e m m a  2, we have
k=K+

Ym(' + PO I ; h46) Yd• + P a  d K))112 = +Poe ; — h°5(x ) )II2

— h°K ) 11 if •

Then it follows from Lemma 3 tha t for each 4) E C r 2 ,

sup sup Eql Y( • +poc;h0) —Y(• +poc;h 0 (K ) )12 ] - -+  O.
p,rnEN ae Too K -0 op

k = l(f[0,1]"
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Thus we have now only to prove, for each K E N , that

11+ Y ff,(x+ pa;le " )}pEni,fre.r,

f.d . 1 K
tel k= )Pt(

)

1
J pEN,O€W.r2

voc  T . (19)

By definition, we have

o.„)_ kyi,) 

-0'77
so that

1+ Y„,(y; 1/11') = 1+  E m — fa,71(y;t1J ® ")
n=1

00 , 0  tP (Y i„)
n = 1  1  < .1 //-2

= (1 + 14 ) ) i ) ) .
i =  1  \ In /

This expression and 4)(K ) .= E ckok where ck = (0 ,44), reduce (19) to
k =  1

i n  n,
1 < < m

1
E ckok(x, +pŒ i )  p e N , ( c i , • • • , c i d e R K

in k= 1

f.d .
2

te I t- 1ek1(11( 144)— C . ,
p eN  ,(c i,•  •  •  ,c i)e ltx  •

O n the other hand, since Theorem 2  says

f.d .

{
14 4 ( x i + P a i ) } ViP)(44)}p,kenr, v g 6
M  = p ,k eN

and the law of large numbers implies

— E (COX-xi - EX() kl
m 1 1 m - ■ co

(20) is now reduced to

K

H (1 + — ck44(x, +pc())
m  k =1

1

(20)
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- ■  0  in propability, Vc.E T ,  Vp  e N, v (c , • • •,c,de

Let us show (21). Note first that

1+x= ex - l+ r (x), r(x)=1.x 1
2 dy

0 1 +
(v{v1 < 0,

(21)

Ir(X)1 1X13( V I X 1 3

Take S >0  such  tha t E IC
k

1 6  <-
2

.
k = 1 3

we have

Under the condition { max max 10 k (x t +poci)1
i < k < K  1 .çi m

1 K
Ck (111(X i PCti)

2E icko <-
3

,
k = 1

1 < V  < M ,
M k= 1

and hence

 Ec k o k (x i+p /i)
K

ck =ET-- 101,(2c; + Pad =- 1(40k44x; + Pa)

  

Ick -o n E""= ickk(xi+Pai)
— lEf,̀ ,1 = ickcimi r,"=,(0k0■Xxi+pa)

I   K
I r (

, / —
m

E k = ICIAk(X l+P I I)) —  I

k = 1

EK — E T (x,+pŒ, -1ET (0k0,Xxi-Fpc0< e  - 1  k o n k k.,-, kk.

Em
i= 1

K
E  ckok(xi +pŒ))
Mk = 1

e --1 E ' r ( - 1=Ef IckSbk(X i +Pa1))1

   

1 1
< e l kK= I Ck=

s /M
E 7 1 ° k ( X i + P a d — l IkK.I = IC k e l—M I T - -1 (4 4 0 1 X X i + P a i )

Icko
1 E ckOk(xi +p g i)

2 2 1 K
e -S1 T= 11— =,,/ m

E k=l e kOk(X 1+ Pœi)12

k = 1 = 1 m  k  1

=_ e Et=ick,7==m/;"_- 144 + p ) - = icke,w,E7= ild, k40(x, -Fpc0
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1 m

E (OkOixxi +padelE:c.,_.,,,,c,,„' ET_ icokoixx,-4-pco6 E led E  C k C i-
k= 1 k,I = 1m = 1

Consequently, for any ti>0, we have

 

K
 E ck o k (x i+Pli)

rnk= 1

 

P '

    

e ' 1 k 1 k .c - L E " ' 4. (x - 1 =0
,)-K _41 (440,Xxi+pai)k= .shn  I - 1 - I M •?/

     

m a x  m a x  10k(x i +pa i)1> f l n ( 5 )
1<k<K  1.<i-çrn

/
1 1 x 1

e g = 1 C , - ;7,-, /  E T= 1 çb k( X i + PI I
) - -2:E 1,1= I C liC IWE r= i(440,Xx■+Pli)

K K I  m

E c ,j E c kc,— E (4kOIX X i - l- pati)
k = 1 k,I = 1 ini= 1

ZEK f A  A v x  „ co ti
x  e 3 i >

— 6

Letting m -+ co, we see

lim (The 1st term) = 0, va e T ,  vp e N,

K K 2
Jim (The 2nd term) < P e=ickPf)(44)-1g=  k

2

E  icki E ,
k =1k = 1 6

v
a e T , vp e N, v (c i ,•••,c K ) E R K .

Hence

lim 1in (The 2nd term)=0.
6-.0 co

Thus (21) is proved, and hence the proof of Theorem 4 is done.

Proof of M ain T heorem . Since the "only if' part was done in Theorem 3, we



n= in! i=1
E _/,;P)( )E to p .  — E _/„P)o n )

n= in!

co co

D1E
I i

 E t ier. — hn )
n = in! i=1

2

L2 (0 ;P)

2 co 1

—
L2(0;P) n= in .

E tor. — h,,
=

2
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here prove th e  " if "  p a r t . So we assume a e T .
Take any h = e I I  and  fix it. L e t  e > 0 . B y L em m a 1, we can take

, •  t p ,  e (e 9 ' 2 and  t 1 , . . . , t 1 e R so that E t , < e. Then Lemma 2 implies
i = 1

Y„,( • +pot; h)—  E t i Ynt( • +Pot ; hIk')11 — E
i 1i = 1

vp, m e N , v ote Tx.

Theorem 4  implies

{ /
E t i Ym (x+poc ; h'I'')}

f .d.

i= 1
i  ii(ePIP*i)- 12- 111frii1 2 _  1 )

p e N  m- . co i =  1 peN

V I  e T .

O n the other hand, Proposition 1 (i) shows

= 1 4_ ill i°211n(IIP)(  =  1 + O l e n ) ,
n 1

and hence
co

A  1)—  E --/„P)( t o P n ) ,E t i(e ■ r " E
7, =  i n ! i  = 1i=1

And Proposition 1 (ii) shows

vp e N.

2
<ez, vp E N.

H

 

From the above estimates, we can finally derive that
f .d .  { co

{ Ym (x +pa;h)}  peN E — /;,P)0,,)}
m

.- Go n= tn• peN
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