Modulo odd prime homotopy normality for H-spaces

By

Kenji KUDOU and Nobuaki YAGITA

Abstract

Given an H-map $i: Y \rightarrow X$, we say that *i* is mod p homotpy narmal if the commutator map from $X_{(p)} \times Y_{(p)}$ to $X_{(p)}$ can be deformed into $Y_{(p)}$. In this paper, we study necessary conditions of mod *p* homotopy normality for the cases that *X* are exceptional Lie groups with odd torsion in the cohomology, by using the Morava K-theory.

1. Introduction

When X is a homotopy associative H -space of finite cohomology type, the homotopy functor $[-, X]$ takes its values in category of groups. Given an inclusion $i: Y \rightarrow X$ of H-spaces, we are interested in the property such that $i \downarrow [Z, Y]$ are always normal subgroups of $[Z, X]$ for all finite complexes Z. If the inclusion $i: Y \subset X$ has such property, we say that the map *i* is homotopy normal.

I. James ([4],[5]) notices that the homotopy normality is equivalent to the fact that the commutator map c_2 : $X \times Y \rightarrow X$ can be deformed into Y. James ([4], [5]) and MacCarty [8] proved many facts about non homotopy normality for classical Lie groups. For example, the standard inclusions $U(n) \subset U(n+1) \subset U(n+2) \subset \cdots$ are not homotopy normal. Furukawa $\lceil 1 \rceil$ studied the cases including exceptional Lie groups, i.e., inclusions $G_2 \subset F_4 \subset E_6 \subset E_7 \subset E_8$ are not homotopy normal.

The above facts are proved by using the Samelson product or the Hopf algebra structure of $H^*(X;Z/p)$. In this paper, we will study these problems by using the Morava K-homology $K(n)$ ^{$\mathcal{L}(X)$} and its Pontriagin product structure [10], [11], [12]. Since the cohomology $K(n)^*(X)$ does not have a commutative product for $p=2$, we assume that *p* is an odd prime througnhout this paper. Moreover we consider just the *p*-component. Hence we define that an *H*-map *i*: $Y \rightarrow X$ is *mod p homotpy normal* if its localization $i_{(p)}$: $Y_{(p)} \rightarrow X_{(p)}$ is homotopy normal. Here maps i and $i_{(p)}$ are not assumed injective.

In particular, we will study these problems when X are exceptional Lie groups. For example, suppose that $X = F_4$ and that $H^*(Y; Z/3)$ does not have any 19-dimensional primitive element. Then if an H -map $i: Y \rightarrow F_4$ is mod 3 homotopy

Communicated by Prof. A. Kono, September 29, 1997

normal, we will prove that $i^*H^*(F_4;Z/3)$ is isomorphic to one of the mod 3 cohomologies of F_4 , $Spin(9)$, G_2 and *a point*. However we do not know yet that the natural inclusions $G_2 \subset Spin(9) \subset F_4$ are mod 3 homotopy normal or not, while they are not mod 2 homotopy normal.

The authors thank to the referee who pointed out errors in the first version of this paper.

2. mod *p* **homotopy normality**

Thoughout this paper, let Y and *X* be simply connected homotopy associative H-spaces and $i: Y \rightarrow X$ be an H-map. Moreover we assume that X is of finite cohomology type, namely, $H^*(X) \cong H^*(Z)$ for some finite complex *Z*. The commutator map c_2 : $X \times X \rightarrow X$ is defined by

$$
c_2:X \times X \stackrel{d_X \times d_X}{\rightarrow} X \times X \times X \times X \stackrel{1 \times \text{tw} \times 1}{\rightarrow} X \times X \times X \times X \times X
$$

$$
\xrightarrow{1 \times 1 \times \sigma \times \sigma} X \times X \times X \times X \stackrel{\mu(\mu \times \mu)}{\rightarrow} X
$$

where d_x is the diagonal, *tw* is the twisting map, σ is the inverse and μ is the multiplication map of *X*. Of course, when *X* is a topological group, $c_2(g, h)$ $=ghg^{-1}h^{-1}$ for $g, h \in X$.

Define an *H*-map *i*: $Y \rightarrow X$ is mod *p* normal if $c_2(X_{(p)} \times i(Y)_{(p)})$ is deformed into *i*(*Y*)_(*p*), namely, there exist maps f_t : $X_{(p)} \times i(Y)_{(p)} \to X_{(p)}$ such that $f_0 = c_2 | X_{(p)} \times Y_{(p)}$ and $f_1(X_{(p)} \times Y_{(p)}) \subset i(Y)_{(p)}.$

Let *h* be a commutative ring spectrum over Z/p and $h^*(-)$ be the induced generalized cohomology theory. Here we assume that, for finite complexes *X* and *X'*, the Künneth formula $h^*(X \times X') \cong h^*(X) \otimes h^*h^*(X')$ holds and that the Kronecker pairing induces a natural isomorphism $h_*(X) \cong \text{Hom}(h^*(X), Z/p)$.

Examples for such $h_-(x)$ are the mod p ordinary homology $H_*(-;Z/p)$ and the Morava K-theory $K(n)_*(-)$ with the coefficient $K(n)_* = Z/p[v_n, v_n^{-1}], |v_n| = 2(p^n-1)$ for an odd prime p. For these theories, $h_*(X)$ are Hopf algebras with the multiplication μ_* and the comultiplication d^* . Hence they are cocommutative but, in general, not commutative.

Lemma 2.1 ([10], [11]). *If* $x, y \in h_*(X)$ *are primitive, then*

$$
c_{2*}(x \otimes y) = [x, y] = xy - (-1)^{|x||y|} yx
$$

Proof. Since x is primitive, $\sigma(x) = -x$ and $dx_*(x) = x \otimes 1 + 1 \otimes x$. Similar equations hold for y . Hence we get

 $(1 \times tw \times 1)_{*}(d_{X} \times d_{X})_{*}(x \otimes y) = (1 \times tw \times 1)_{*}(x \otimes 1 + 1 \otimes x) \otimes (y \otimes 1 + 1 \otimes y)$ $= x \otimes y \otimes 1 \otimes 1 + (-1)^{|x||y|} 1 \otimes y \otimes x \otimes 1 + x \otimes 1 \otimes 1 \otimes y + 1 \otimes 1 \otimes x \otimes y.$

Applying $(1 \times 1 \times \sigma \times \sigma)_*$, we have

 $x \otimes y \otimes 1 \otimes 1 - (-1)^{|x||y|} 1 \otimes y \otimes x \otimes 1 - x \otimes 1 \otimes 1 \otimes y + 1 \otimes 1 \otimes x \otimes y$

Also applying $\mu_{\star}(\mu \times \mu)_{\star}$, we have the commutator map

$$
c_{2*}(x \otimes y) = -(-1)^{|x||y|} yx + xy = [x, y]
$$

Corollary 2.2. If $i: Y \rightarrow X$ is mod p homotopy normal and if $x \in h(x)$ and $y \in h_{\star}(Y)$ *are primitive, then* $[x, i_{\star}(y)] \in i_{\star}h_{\star}(Y)$.

Corollary 2.3. If $x, y \in h_*(X)$ are primitive, then so is $c_{2*}(x \otimes y)$.

Proof. Direct computation shows that $d\mathbf{x}^*$ [x, y] = [x, y] \otimes 1 + 1 \otimes [x, y].

3. H-spaces with one even degree generator

By the Borel theorem, the mod *p* cohomology $H^*(X;Z/p)$ is a tensor algebra of truncated polynomial and exterior algebras generated by even and odd dimensional elements respectively. In this section, we consider the case that the polynomial algebra in $H^*(X;Z/p)$ is generated by only one element y. By Kane [6], we know that $|y| = 2(p^t + p^{t-1} + \cdots + 1)$ for some *i* and $y^{p^2} = 0$. However all known examples satify that $i=1$ and $y^p=0$. Hence we assume

(3.1)
$$
H^*(X;Z/p) \cong Z/p[y]/(y^p) \otimes \Lambda, \qquad |y| = 2p+2
$$

where Λ is an exterior algebra generated by odd degree elements. Then it is also known by Kane [6] that there exists generators $x_0, x_0 \in \Lambda$ such that

$$
\mathscr{P}^1 x_0 = x'_0
$$
 and $\beta x'_0 = y$ with $|x_0| = 3$, $|x'_0| = 2p + 1$.

For such *H*-space *X*, the Morava K-theory $K(2)$ ^{*}(*X*) is just a tensor product $K(2)^*(X) \cong H^*(X;Z/p) \otimes K(2)^*$, and the Hopf algebra structure is given in [12]

Theorem 3.1 ([12], [6]). *Let X be an H-spase satisfing* (3.1). *ThenH**(X ; Z/p) *(resp.* $K(2)^*(X)$) *has a quotient Hopf algebra* $Q^* = K[y]/(y^p) \otimes \Lambda(x_i, x_i | 0 \le i \le p-2)$ *with* $K = Z/p$ (resp. $K(2)^{*}$), $|x_i| = 2(p+1)i+3$, $|x_i'| = 2(p+1)(i+1)-1$ *such that the dual Hopf* algebra Q_{K*} *is multiplicatively* generated by *z*, *z'*, *y* with the relations $ad^{p-1}(y)(z) = 0$ $(resp. -v_2z), ad^{p-1}(y)(z') = 0$ (resp. $= -v_2z'$), $y^p = 0$ (resp. $= -v_2y$), and $ad(z)(z') = 0$ *where* $ad(y)(z) = [y, z]$ *. Moreover the K-module of primitive elements in* Q_{K*} *is generated by* $ad^i(y)(z)$, $ad^i(y)(z')$, *y* which are *duals of indecomposable elements* x_i , x'_i , *y respectively.*

Let us write $ad^{\prime}(y)(z) = z_i$ and $ad^{\prime}(y)(z') = z'_i$. From the above theorem $Q_{K*} \cong K[y]/(y^p) \otimes \Lambda(z_i, z_i | 0 \le i \le p-2)$) additively. So we can take a K-module basis

646 *Kenji Kudou and Nobuak i Yagita*

$$
(3.2) \tQ_{K*} \cong K(y^{k}(z_0)^{a_0} \cdots (z_{p-2})^{a_{p-2}}(z_0)^{a_0'} \cdots (z_{p-2})^{a_{p-2}})
$$

with $0 \le k \le p-1$ and $a_i, a_i = 0$ or 1. Let F_s be the filtration of Q_{K*} generated by monomials $y^k(z_0)^{a_0} \cdots (z_{p-2})^{a_{p-2}} (z'_0)^{a'_0} \cdots (z'_{p-2})^{a'_{p-2}}$ such that $\sum a_i + \sum a'_i \geq s$.

Then it is immediate that $F_sF_t \subset F_{s+t}$ and $ad(y)F_s \subset F_s$. Let $F_{1,+}$ be the module generated by $y^k z_i$, $y^k z'_i$ for $k \ge 1$, $0 \le i \le p-2$ and elements in F_2 so that $Q_*/F_{1,+} \cong K(y^s, z_i, z_i')$. Then note that $ad(y)F_{1,+} \subset F_{1,+}$.

Theorem 3.2. *Let* $i: Y \rightarrow X$ *be mod p homotopy normal for an H-space X satisfying* (3.1). Let $Q^* = Q^*_{\mathcal{R}(2)}$. Suppose that the quotient map to Q^* splits, i.e., $Q^* \subset K(2)^*(X)$ *as Hopf algebras.* Then i^*Q^* *is isomorphic to one of the following Hopf algebras*

$$
Q^*, Q^*/(y), K(2)^* \otimes \Lambda(x_i | 0 \le i \le p-2), K(2)^* \otimes \Lambda(x_i | 0 \le i \le p-2), K(2)_*,
$$

Proof. Recall that x_i and x'_i are duals in (3.2) of z_i and z'_i respectively. Suppose that $i^*(x_j) \neq 0 \in K(2)^*(Y)$ for some *j*. Then we see that there exists $\tilde{z}_i \in K(2)_*(Y)$ such that $i_{\star}(\tilde{z}_i) = z_i \mod(F_{1,+})$ because if $k \neq j$, then $\langle i^*(x_k), w \rangle = 0$ and $\langle i^*(x_k), w \rangle = 0$ for any $w \in K(2)_{2(p+1)j+3}(Y)$ by dimensional reason. From Corollary 2.2, the homotopy normality of *i* implies that there exists $\tilde{z}_k \in K(2)_*(Y)$ with $i_*(\tilde{z}_k) = z_k \mod (F_{1,+})$ for all $k \geq j$. Let $\tilde{z}_0 = v_2^{-1} \tilde{z}_{p-1}$. Then we get \tilde{z}_k for all $0 \leq k \leq p-2$. So the composition of maps

$$
K(2)_{*}(Y) \to K(2)_{*}(X) \to Q_{*}/(y, z')
$$

is epic. Therefore we have proved that if $i^*(x) \neq 0$ for some *j* then

$$
K(2)_* \otimes \Lambda(i^*(x_i) \,|\, 0 \le i \le p-2) \subset K(2)_*(Y).
$$

Similar fact holds for the cases $i^*(x_i) \neq 0$.

Next suppose that $i^*(y) \neq 0$. Then there is $\tilde{y} \in K(2)$ (Y) with $i \downarrow (\tilde{y}) = y$. Hence $[y, z] = [i_{\infty}(\tilde{y}), z] \in i_{\infty}K(2)_{\infty}(Y)$ for all $z \in K(2)_{\infty}(X)$. This implies $i^*Q^* \cong Q^*$.

To consider the mod *p* ordinary homology version of the above theorem, we recall the connective Morava K-theory $k(n)_*(-)$ with the coefficient $k(n)_* = Z/p[$ *u* The usual Morava K-theory is just the localization $K(n)_*(-)=[v_n^{-1}]K(n)_*(-)$. Moreover we know that the condition $K(n)$ $(X) \cong K(n)$ $\otimes H$ $(X; Z/p)$ implies $k(n)$ $(X) \cong k(n)$ $\otimes H$ $(X;Z/p)$ by the naturality of the Atiyah-Hirzebruch spectral sequence. Since $k(n)$ is a connective spectrum, there is the natural Thom map for reduced theories $\overline{k}(n)_{*}(X) \rightarrow \overline{H}_{*}(X;Z/p)$ which is an isomorphism if $*<2(p^{n}-1)+2$ for spaces *X* in (3.1), since $|v_n| = 2(p^n - 1)$.

Theorem 3.3. *Let* $i: Y \rightarrow X$ *be mod p homotopy normal for an H-space X* satisfying (3.1). Let $Q^* = Q_{Z/p}^*$. Suppose that there does not exist any primitive

element of degree $2(p^2-1)+3$ *nor* $2(p^2-1)+2p+1$ *in* $H^*(Y;Z/p)$ *and that* $Q^* \subset H^*(X; Z/p)$ *as Hopf algebras.* Then $i^*(Q^*)$ *is isomorphic to one of the following Hopf algebras*

$$
Q^*, Q^*/(y), \Lambda(x_i | 0 \le i \le p-2), Z/p.
$$

Proof. We consider the mod p-cohomology version of the proof of Theorem 4.2. Suppose first that the there is x'_j such that $i^*(x'_j) \neq 0$ in $H^*(Y; Z/p)$. Then we see that there exists $\tilde{z}_j \in H_*(Y;Z/p)$ such that $i_*(\tilde{z}_j) = z'_j \mod F_{1,+}$. Moreover $\langle 2(p^2-1) = |v_2|$ implies that we can identify $\tilde{z}_j \in k(2)_*(Y)$. The mod *p* homotopy normality for *i* implies that there exists $\tilde{z}'_k \in k(2)$ (Y) for all $k \geq j$ with $i_*(\tilde{z}'_k) = z'_k$ $= ad(y)^{k}(z')$ *mod*($F_{1,+}$). For $p-2 \ge k \ge j$, by the dimensional reason such that $|ad^{k}(y)(z')| < |v_{2}|$, we can take \tilde{z}'_{k} also in $H_{*}(Y;Z/p)$.

The crucial case is $k = p - 1$ where $i_*(\tilde{z}_{p-1}) = ad^{p-1}(y)(z') = v_2 z' \mod (F_{1,+})$. Hence there are two possibilities; there exists \tilde{z} such that $i_*(\tilde{z}) = z' \mod(F_{1,+})$ or there exists a $k(2)$ *i*-module generator \tilde{z}'' such that $i_*(\tilde{z}'')=v_2z' \mod (F_{1,+})$. For the later case, by the dimensional reason, \tilde{z} " is also in $H_*(Y;Z/p)$.

Suppose that \tilde{z}'' is a $k(2)_{*}$ -algebra generator. Taking the dual, we know that there exists a primitive element in $H^*(Y; Z/p)$ of degree $|\tilde{z}''|=2(p^2-1)+2p+1$. By the assumption of this theorem, there does not exist such an element and so we get $\tilde{z}' \in H_*(Y;Z/p)$. Next suppose that $\tilde{z}'' = \Sigma u w$ in $k(2)_*(Y)$ with $u \neq 0$, $w \neq 0$ in $H_*(Y;Z/p)$. In the projection image to $k(2)_*\otimes Q_*,$ we see $\sum_{k=1}^k u^k v^k = v_2 z' \neq 0$ $\epsilon F_1/F_2$. Since $F_1F_1 \subset F_2$, there is *u* and *w* such that $i_*(u)$ (or $i_*(w)$) is not zero in F_0/F_1 , namely, is $y^k \mod(F_1)$ for $1 \le k \le p-1$. This means $i^*(y^k) \ne 0$ in *H*^{*}(*Y*; *Z*/*p*). So *i*^{*}(*y*) \neq 0 and *i*^{*}(*x'*₀) \neq 0 since $\beta x'_{0} = y$. Hence for all cases we have $z' \in H^*(Y; Z/p)$. Thus from corollary 2.2, there is $\tilde{z}'_k \in H^*(Y; Z/p)$ for all $0 \le k \le p-2$.

Here we note that $\mathscr{P}^1(x_0) = x'_0$ and that $i^*(x'_0) \neq 0$ implies $i^*(x_0) \neq 0$ also. Hence we get also the existence of \tilde{z}_k for all $0 \le k \le p-2$ by the mod *p* homotopy normality. So the composition of maps $H_*(Y;Z/p) \to H_*(X;Z/p) \to Q_*(y)$ is epic. Therefore we have proved if $i^*(x'_j) \neq 0$, then

$$
\Lambda(i^*(x_i), i^*(x_i') \,|\, 0 \leq i \leq p-2) \subset H^*(Y; Z/p).
$$

If $i^*(x) = 0$ for all $0 \le k \le p-2$ and $i^*(x) \ne 0$ for some *j*, then by the non existence of primitive element of degree $2(p^2-1)+3$, we get similarly

$$
\Lambda(i^*(x_i) \mid 0 \le i \le p-2) \cong i^*Q^*.
$$

Thus we have shown the theorem.

For the cases $p = 3,5$, the quotient Hopf algebra Q^* are isomorphic to $H^*(F_4; Z/3)$, $H^*(E_8; Z/5)$ respectively [9],[7].

$$
H^*(F_4; Z/3) \cong Z/3[y_8]/(y_8^3) \otimes \Lambda(x_3, x_7, x_{11}, x_{15})
$$

$$
H^*(E_8; Z/5) \cong Z/5[y_{12}]/(y_1^5)(\otimes \Lambda(x_3, x_{11}, x_{15}, x_{23}, x_{27}, x_{35}, x_{39}, x_{47})
$$

where subscript means the degree, i.e., $|x_i| = i$. The reduced powers are also known

 $\mathscr{P}^1 x_i = x_{i+2(p-1)}$ (i.e., $\mathscr{P}^1 x_3 = x_7$, $\mathscr{P}^1 x_{11} = x_{15}$ for $p=3$). Note that this means $\mathscr{P}^1 x_i = x'_i$ in the notations in Theorem 3.1.

Corollary 3.4. *Let i:* $Y \rightarrow F_4$ *(resp.* E_8 *) be a mod* 3 *(resp.* 5*) homotopy normal map.* Suppose that there does not exist any primitive element in $H^*(Y;Z/p)$ of *degree* 19 *(resp.* 51). *Then* $i*H*(F_4; Z/3)$ *(resp.* $i*H*(E_8; Z/5)$) *is isomorphic to one of the following Hopf algebras*

*H**(F_4 ; $Z/3$), $H^*(F_4; Z/3)/(v_8)$, $\Lambda(x_3, x_{11})$, $Z/3$ *(resp. H*(E₈</sub>; Z/5),* $H^*(E_8; Z/5)/(y_{12})$, $\Lambda(x_3, x_{15}, x_{27}, x_{39})$, Z/5).

Proof. Suppose that $i^*(x_j) \neq 0$. Then $i^*(x_j) \neq 0$ since $\mathcal{P}^1 x_j = x'_j$. Since there does not exist any primitive element in $H^*(Y;Z/p)$ of degree $2(p^2-1)+3$, we get $i^*(x_0) \neq 0$ from the argument in the proof of Theorem 3.3. Therefore $i^*(x_0) \neq 0$ from $P^{1}x_{0} = x'_{0}$. Thus we have the corollary (without the assumpion for the degree $2(p^2-1)+2p+1$

The advantage of using the Morava K-theory for $X = H^*(F_4; Z/3)$ is just to exclude the Hopf algebras $\Lambda(x_{11})$, $\Lambda(x_{11}, x_{15})$ which seem not to be proved by only using reduced powers and the Hopf algebra structure of $H^*(F_4;Z/3)$. The homotopy group $\pi_{11}(G_2)$ is isomorphic to $Z/3$ and it defines the generator x_{11} in $H^*(G_2; Z/3)$. This induces $\pi_{12}(BG_{2(3)}) \cong Z/3$. So there is a map $S^{12} \to BG_2$ which represents a generator of $\pi_{12}(BG_2)$. Then we have a map of loop spaces

$$
(\Omega S^{12})_{(3)} \cong S^{11}_{(3)} \times (\Omega S^{23})_{(3)} \to G_{2(3)} = \Omega BG_{2(3)} \subset F_{4(3)}.
$$

We know that $i^*H^*(F_4; Z/3) = \Lambda(x_{11})$ and hence this map is not mod 3 homotopy normal.

Next consider the cases exceptional Lie groups E_6 , E_7 for $p=3$. The cohomologies are known

$$
H^*(E_6; Z/3) \cong H^*(F_4; Z/3) \otimes \Lambda(x_9, x_{17})
$$

$$
H^*(E_7; Z/3) \cong H^*(F_4; Z/3) \otimes \Lambda(x_{19}, x_{27}, x_{35})
$$

with $\mathscr{P}^3 = x_{19}$, $\mathscr{P}^1 x_{15} = x_{27}$, $\mathscr{P}^1 x_{15} = e x_{19}$ ($e = \pm 1$). Denote also by z_i the dual of x_i . The Pontrijagin product structre in $H_*(E_6; Z/3)$ (resp. $H_*(E_7; Z/3)$) is given by

$$
ad(y)(z_9) = z_{17} \text{ (resp. } ad(y) \ (z_{19}) = z_{27}, \ ad(y)(z_{27}) = z_{35}).
$$

Lemma 3.5. *The Pontriagin product structure in* $K(2)_{\ast}(E_6)$ (resp. $K(2)_{\ast}(E_7)$) is *given by* $ad(y)$ $(z_{17}) = -v_{2}z_{9}$ (resp. $ad(y)$ $(z_{35}) = -v_{2}z_{27}$).

Proof. Since $y^3 = -v_2y$, we always have

$$
ad(y)^3(z_i) = ad(y^3)(z_i) = -v_2ad(y)(z_i).
$$

Since ad(y) (z₁₉) is primitive, we see that $ad(y)(z_{17}) = \lambda v_2 z_9$, $\lambda \in \mathbb{Z}/3$, from the dimenisional reason. Then

$$
v_2 z_1 \cdot z_2 a d(y) (z_9) = -a d(y)^3 (z_9) = -a d(y) (ad(y) (z_1 \cdot z_1))
$$

=
$$
-ad(y) (\lambda v_2 z_9) = -\lambda v_2 z_1 \cdot z_2
$$

Thus we know $\lambda = -1$. The case E_7 is proved similarly.

Corollary 3.6. *Let* $i: Y \rightarrow E_6$ (resp. E_7) *be a mod* 3 *homotopy normal map. Suppose that* $K(2)_*(Y) \cong K(2)_*\otimes H_*(Y;Z/3)$ *and there does not exist any* primitive element in $H^*(Y;Z/3)$ of degree 19 nor 25 (resp. 19 nor 43). Then $i*H*(E_6; Z/3)$ (resp. $i*H*(E_7; Z/3)$ is *isomorphic to one of the following Hopf algebras.*

$$
H^*(E_6; Z/3), H^*(E_6; Z/3)/(y), \Lambda(x_9, x_{17}), H^*(F_4; Z/3)/(y), \Lambda(x_3, x_{11}), Z/3
$$

(resp. $H^*(E_7; Z/3)/(y, x_{19}), H^*(F_4; Z/3)/(y), \Lambda(x_3, x_{11}), Z/3)$

Proof. By the assumption $K(2)^*(Y) \cong K(2)^* \otimes H^*(Y; Z/3)$ it follows that $i^*(x) \neq 0$ in $H^*(Y; Z/3)$ implies $i^*(x) \neq 0$ in $k(2)^*(Y)$. For the case $X = E_6$, if $i^*(y) \neq 0$, then $-[z_9, y] = z_{17}$ shows $i^*(x_{17}) \neq 0$. The non existence of any $k(2)$. algebra generator $z'' \in k(2)$ *(Y)* such that $ad(y)(z_{11}) = i*(z'')$ nor $ad(y)(z_{17}) = i*(z'')$ implies the corollary for this case. When $X = E_7$, facts that $i^*(x_{19}) = 0$ and $\mathscr{P}^3 x_{15} = x_{27}$ can prove the corollary. Here we use the nonexisence of any primitive element of degree $|ad(y)(z_1)|$ and $|ad(y)(z_{35})|$.

Corollary 3.7 ([1]). *The naturad inclusions* $F_4 \subset E_6 \subset E_7$ *are not mod* 3 *homotopy normal.*

4. **H-spaces with two even degree generators**

In this section, we consider a simply connected homotopy associative H -space *X* such that

(4.1)
$$
H^*(X;Z/p) \cong Z/p[y,u]/(y^p,u^p) \otimes \Lambda, \quad |y| \neq |u|.
$$

However the known example is only the case $p = 3$ and $X = E_8 \times X'$ for some X' such that $H^*(X'; Z/3)$ is isomorphic to an exterior algegra. Therefore we only consider the case $p=3$ and $X=E_8$ hereafter. The ordinary mod 3 cohomology of *E ,* is ([9], [7])

$$
H^*(E_8; Z/3) \cong Z/3[y_8, u_{20}]/(y_8^2, u_{20}^2) \otimes \Lambda(x_3, x_7, x_{15}, x_{19}, x_{27}, x_{35}, x_{39}, x_{47})
$$

The reduced powers are also known

$$
\mathcal{P}^{1}x_{3} = x_{7}, \ \mathcal{P}^{1}x_{15} = e x_{19}, \ \mathcal{P}^{1}x_{35} = x_{39} \ (e = \pm 1)
$$

$$
\mathcal{P}^{3}x_{7} = x_{19}, \ \mathcal{P}^{3}x_{15} = x_{27}, \ \mathcal{P}^{3}x_{27} = -x_{39}, \ \mathcal{P}^{3}x_{35} = x_{47}.
$$

$$
\beta x_{7} = x_{8}, \ \beta x_{19} = \mathcal{P}^{3}y_{8} = u_{20}
$$

The Morava K-theory $K(3)_{\star}(E_8)$ is given in [12].

Theorem 4.1 ([12]). *There is a* $K(3)_{*}$ -algebra isomorphism $K(3)^{*}(E_8) \cong K(3)^{*}$ $\otimes H^*(E_8; Z/3)$. Let z_i (resp. $y,u) \in K(3)_*(E_8)$ be the dual elements of x_i (resp. y_8 , $u_{20} \in K(3)^{*}(E_8)$. The Pontrjagin ring $K(3)_{*}(E_8)$ is generated by two elements, $u, z' = z_1$, with the relations $u^9 = 0$, $ad(u)^8(z') = 0$. $(z')^2 = 0$ (and $u^3 = -v_3y$). The *adjoint map is given by the following arrows*, *i.e.*, $z \rightarrow [u, z]$,

$$
z_{19} \rightarrow z_{39} \rightarrow -v_{3}z_{7}
$$
, $z_{7} \rightarrow z_{27} \rightarrow z_{47} \rightarrow -v_{3}z_{15}$
 $z_{15} \rightarrow z_{35} \rightarrow -v_{3}z_{3}$, $z_{3} \rightarrow 0$.

Theorem 4.2. Let i: $Y \rightarrow E_8$ be a mod 3 homotopy normal map. Let (a_0, \dots, a_7) *be the ordered set* (19, 39, 7, 27, 47, 15, 35, 3). *Then i*K(3)*(E⁸) is isomorphic to one of the following Hopf algebras*

 $K(3)^* \otimes \Lambda(x_{a_i}, x_{a_{i+1}}, \cdots, x_{a_7})$ for $0 \le j \le 7$, $K(3)^* [y]/(y^3) \otimes \Lambda(x_{a_j}, \dots, x_{a_7})$ for $0 \le j \le 2$, $K(3)^*$ *and* $K(3)^*(E_8)$.

Proof. The a_j is ordered so that $ad(u)(z_{a_j}) = z_{a_{j+1}}$ or $-v_3 z_{a_{j+1}}$ in $K(3)_*(E_8)$. By the arguments similar to the proof of Theorem 3.2 and the facts $\beta(x_7) = y$ and $x_7 = x_{a_2}$, we can prove the theorem.

By arguments quite similar to the proof of Theorem 3.3, we get the following theorem.

Theorem 4.3. *Let* $i: Y \rightarrow E_8$ *be mod* 3 *homotopy normal map. Suppose that there does not exist any primitive element of degree* 55,59 *nor* 67. *Then* $i^*H^*(E_8; Z/3)$ *is isomorphic to one of the following Hopf algebras*

 $A(x_{a_i}, x_{a_{i+1}}, \dots, x_{a_7})$ for $0 \leq j \leq 7$, $Z/p[y]/(y^3) \otimes \Lambda(x_{a_j},...,x_{a_7})$ *for* $0 \le j \le 2$ $Z/3$ *and* $H^*(E_8; Z/3)$.

Using the Hopf algebra structure of $H^*(E_8; Z/3)$ and the reduced power

operations, we get the similar result as above, however it seems difficult to exclude the case $\Lambda(x_{15}, x_{35})$.

There is well known chain of inclusions of simple Lie groups $SU(3) \subset G_2 \subset Spin(7)$ \le *Spin(8)* \le *Spin(9)* \le $F_4 \subseteq E_6 \subseteq E_7 \subseteq E_8$. Furukawa [1] showed that any *H* \le *G* above is not homotopy normal.

Corollary 4.4 ([1]). *Let* $i: H \subset E_8$ *be any inclusion of above except for* $H = SU(3)$ *nor G ² .Then i is not m od* 3 *homotopy normal.*

Proof. For each subgroup *H*, there is not any primitive element in $H^*(H; Z/3)$ of degree 55, 59 nor 67. For the case $H = E_7$, $i^*(x_{19}) \neq 0$ in $H^*(E_7; Z/3)$ but $i^*(x_47)=0$. This contradicts the theorem. For other cases, $i^*(x_1) \neq 0$ but $i^*(x_3) = 0$ implies the non mod 3 homotopy normality.

> FACULTY OF EDUCATION IBARAKI UNIVERSITY e-mail: pmkudou@ mito.ipc.ibaraki.ac.jp, yagita@mito.ipc.ibaraki.ac.jp

References

- [1] Y. Furukawa, Homotopy normality of Lie groups I, II, III, Quart. J. Math. Oxford, 36 (1985) 53-56, 38 (1987) 185-188, Hiroshima J., 25 (1995), 83-96.
- [2] Y. Hemmi, A nonexterior Hopf algebra and loop spaces, Topology and its Applications, 72 (1996), 209-214.
- $\lceil 3 \rceil$ M. Hopkins, Nilpotence and finite H-spaces, Israel J. Math., 66 (1989), 238-246.
- $[4]$ I. M. James, On homotopy commutativity, Topology 6 (1967), 405-410.
- [5] I. M. James, On homotopy theory of classical groups, Ann. Acad. Brasil. Cienc., 39 (1967), 39-44.
- [6] R. Kane, The homology of Hopf spaces, North-Holland, 1988.
- [7] A. Kono and M. Mimura, On the cohomology operations and the Hopf algebra structures of the compact exceptional Lie groups E_7 and E_8 , Proc. London Math. Soc., 35 (1977), 345–358.
- [8] G. MacCarthy, Jr., Products between homotopy groups and J-morphism, Quart. J. Math. Oxford, 15 (1964), 362-370.
- [9] M. Mimura, Homotopy theory of Lie groups, Handlook of Algebraic Topology edited by I. M. James, (1995), 951-991
- [10] V. R. Rao, *Spin(n)* is not homotopy nilpotent for $n \ge 7$, Topology, 32 (1993), 239-249.
- [11] N. Yagita, Homotopy nilpotency for simply connected Lie groups, Bull Lodon Math. Soc., 25 (1993), 481-486.
- [12] N. Yagita, Pontrjagin rings of the Morava K-theory for finite H-spaces, J-Kyoto Univ., 36 (1996), 447-452.