Modulo odd prime homotopy normality for *H*-spaces

By

Kenji KUDOU and Nobuaki YAGITA

Abstract

Given an *H*-map $i: Y \to X$, we say that *i* is mod *p* homotpy narmal if the commutator map from $X_{(p)} \times Y_{(p)}$ to $X_{(p)}$ can be deformed into $Y_{(p)}$. In this paper, we study necessary conditions of mod *p* homotopy normality for the cases that X are exceptional Lie groups with odd torsion in the cohomology, by using the Morava K-theory.

1. Introduction

When X is a homotopy associative H-space of finite cohomology type, the homotopy functor [-, X] takes its values in category of groups. Given an inclusion $i: Y \to X$ of H-spaces, we are interested in the property such that $i_*[Z, Y]$ are always normal subgroups of [Z, X] for all finite complexes Z. If the inclusion $i: Y \subset X$ has such property, we say that the map i is homotopy normal.

I. James ([4],[5]) notices that the homotopy normality is equivalent to the fact that the commutator map $c_2: X \times Y \to X$ can be deformed into Y. James ([4], [5]) and MacCarty [8] proved many facts about non homotopy normality for classical Lie groups. For example, the standard inclusions $U(n) \subset U(n+1) \subset U(n+2) \subset \cdots$ are not homotopy normal. Furukawa [1] studied the cases including exceptional Lie groups, i.e., inclusions $G_2 \subset F_4 \subset E_6 \subset E_7 \subset E_8$ are not homotopy normal.

The above facts are proved by using the Samelson product or the Hopf algebra structure of $H^*(X; Z/p)$. In this paper, we will study these problems by using the Morava K-homology $K(n)_*(X)$ and its Pontrjagin product structure [10], [11], [12]. Since the cohomology $K(n)^*(X)$ does not have a commutative product for p=2, we assume that p is an odd prime throughout this paper. Moreover we consider just the *p*-component. Hence we define that an *H*-map $i: Y \to X$ is mod p homotpy normal if its localization $i_{(p)}: Y_{(p)} \to X_{(p)}$ is homotopy normal. Here maps i and $i_{(p)}$ are not assumed injective.

In particular, we will study these problems when X are exceptional Lie groups. For example, suppose that $X = F_4$ and that $H^*(Y; Z/3)$ does not have any 19-dimensional primitive element. Then if an H-map $i: Y \to F_4$ is mod 3 homotopy

Communicated by Prof. A. Kono, September 29, 1997

normal, we will prove that $i^*H^*(F_4; \mathbb{Z}/3)$ is isomorphic to one of the mod 3 cohomologies of F_4 , Spin(9), G_2 and *a point*. However we do not know yet that the natural inclusions $G_2 \subset Spin(9) \subset F_4$ are mod 3 homotopy normal or not, while they are not mod 2 homotopy normal.

The authors thank to the referee who pointed out errors in the first version of this paper.

2. mod p homotopy normality

Thoughout this paper, let Y and X be simply connected homotopy associative H-spaces and $i: Y \to X$ be an H-map. Moreover we assume that X is of finite cohomology type, namely, $H^*(X) \cong H^*(Z)$ for some finite complex Z. The commutator map $c_2: X \times X \to X$ is defined by

$$c_{2}: X \times X \xrightarrow{d_{X} \times d_{X}} X \times X \times X \times X \xrightarrow{1 \times tw \times 1} X \times X \times X \times X$$
$$\xrightarrow{1 \times 1 \times \sigma \times \sigma} X \times X \times X \times X \times X \xrightarrow{\mu(\mu \times \mu)} X$$

where d_X is the diagonal, tw is the twisting map, σ is the inverse and μ is the multiplication map of X. Of course, when X is a topological group, $c_2(g,h) = ghg^{-1}h^{-1}$ for $g,h \in X$.

Define an *H*-map $i: Y \to X$ is mod *p* normal if $c_2(X_{(p)} \times i(Y)_{(p)})$ is deformed into $i(Y)_{(p)}$, namely, there exist maps $f_i: X_{(p)} \times i(Y)_{(p)} \to X_{(p)}$ such that $f_0 = c_2 |X_{(p)} \times Y_{(p)}$ and $f_1(X_{(p)} \times Y_{(p)}) \subset i(Y)_{(p)}$.

Let h be a commutative ring spectrum over Z/p and $h^*(-)$ be the induced generalized cohomology theory. Here we assume that, for finite complexes X and X', the Künneth formula $h^*(X \times X') \cong h^*(X) \otimes_{h^*} h^*(X')$ holds and that the Kronecker pairing induces a natural isomorphism $h_*(X) \cong \text{Hom}(h^*(X), Z/p)$.

Examples for such $h_*(-)$ are the mod p ordinary homology $H_*(-; Z/p)$ and the Morava K-theory $K(n)_*(-)$ with the coefficient $K(n)_* = Z/p[v_n, v_n^{-1}], |v_n| = 2(p^n - 1)$ for an odd prime p. For these theories, $h_*(X)$ are Hopf algebras with the multiplication μ_* and the comultiplication d_*^* . Hence they are cocommutative but, in general, not commutative.

Lemma 2.1 ([10], [11]). If $x, y \in h_*(X)$ are primitive, then

$$c_{2*}(x \otimes y) = [x, y] = xy - (-1)^{|x||y|} yx$$

Proof. Since x is primitive, $\sigma(x) = -x$ and $d_{x*}(x) = x \otimes 1 + 1 \otimes x$. Similar equations hold for y. Hence we get

 $(1 \times tw \times 1)_{\ast} (d_X \times d_X)_{\ast} (x \otimes y) = (1 \times tw \times 1)_{\ast} (x \otimes 1 + 1 \otimes x) \otimes (y \otimes 1 + 1 \otimes y)$ $= x \otimes y \otimes 1 \otimes 1 + (-1)^{|x||y|} 1 \otimes y \otimes x \otimes 1 + x \otimes 1 \otimes 1 \otimes y + 1 \otimes 1 \otimes x \otimes y.$

Applying $(1 \times 1 \times \sigma \times \sigma)_*$, we have

 $x \otimes y \otimes 1 \otimes 1 - (-1)^{|x||y|} 1 \otimes y \otimes x \otimes 1 - x \otimes 1 \otimes 1 \otimes y + 1 \otimes 1 \otimes x \otimes y.$

Also applying $\mu_*(\mu \times \mu)_*$, we have the commutator map

$$c_{2*}(x \otimes y) = -(-1)^{|x||y|}yx + xy = [x, y]$$

Corollary 2.2. If $i: Y \to X$ is mod p homotopy normal and if $x \in h_*(X)$ and $y \in h_*(Y)$ are primitive, then $[x, i_*(y)] \in i_*h_*(Y)$.

Corollary 2.3. If $x, y \in h_*(X)$ are primitive, then so is $c_{2*}(x \otimes y)$.

Proof. Direct computation shows that $d_{x}^{*}[x, y] = [x, y] \otimes 1 + 1 \otimes [x, y]$.

3. H-spaces with one even degree generator

By the Borel theorem, the mod p cohomology $H^*(X; Z/p)$ is a tensor algebra of truncated polynomial and exterior algebras generated by even and odd dimensional elements respectively. In this section, we consider the case that the polynomial algebra in $H^*(X; Z/p)$ is generated by only one element y. By Kane [6], we know that $|y| = 2(p^i + p^{i-1} + \dots + 1)$ for some i and $y^{p^2} = 0$. However all known examples satify that i = 1 and $y^p = 0$. Hence we assume

(3.1)
$$H^*(X; \mathbb{Z}/p) \cong \mathbb{Z}/p[y]/(y^p) \otimes \Lambda, \qquad |y| = 2p+2$$

where Λ is an exterior algebra generated by odd degree elements. Then it is also known by Kane [6] that there exists generators $x_0, x'_0 \in \Lambda$ such that

$$\mathscr{P}^1 x_0 = x'_0$$
 and $\beta x'_0 = y$ with $|x_0| = 3$, $|x'_0| = 2p + 1$.

For such *H*-space *X*, the Morava K-theory $K(2)^*(X)$ is just a tensor product $K(2)^*(X) \cong H^*(X; \mathbb{Z}/p) \otimes K(2)^*$, and the Hopf algebra structure is given in [12]

Theorem 3.1 ([12], [6]). Let X be an H-spase satisfing (3.1). Then $H^*(X; Z/p)$ (resp. $K(2)^*(X)$) has a quotient Hopf algebra $Q_k^* = K[y]/(y^p) \otimes \Lambda(x_i, x_i'| 0 \le i \le p-2)$ with K = Z/p (resp. $K(2)^*$), $|x_i| = 2(p+1)i+3$, $|x_i'| = 2(p+1)(i+1)-1$ such that the dual Hopf algebra Q_{K*} is multiplicatively generated by z, z', y with the relations $ad^{p-1}(y)(z) = 0$ (resp. $-v_2z$), $ad^{p-1}(y)(z') = 0$ (resp. $-v_2z'$), $y^p = 0$ (resp. $-v_2y$), and ad(z)(z') = 0where ad(y)(z) = [y, z]. Moreover the K-module of primitive elements in Q_{K*} is generated by $ad^i(y)(z)$, $ad^i(y)(z')$, y which are duals of indecomposable elements x_i, x_i' , y respectively.

Let us write $ad^i(y)(z) = z_i$ and $ad^i(y)(z') = z'_i$. From the above theorem, $Q_{K*} \cong K[y]/(y^p) \otimes \Lambda(z_i, z'_i | 0 \le i \le p-2)$ additively. So we can take a K-module basis Kenji Kudou and Nobuaki Yagita

(3.2)
$$Q_{K*} \cong K(y^{k}(z_{0})^{a_{0}} \cdots (z_{p-2})^{a_{p-2}}(z'_{0})^{a'_{0}} \cdots (z'_{p-2})^{a'_{p-2}})$$

with $0 \le k \le p-1$ and $a_i, a'_i = 0$ or 1. Let F_s be the filtration of Q_{K*} generated by monomials $y^k(z_0)^{a_0} \cdots (z_{p-2})^{a_{p-2}}(z'_0)^{a'_0} \cdots (z'_{p-2})^{a'_{p-2}}$ such that $\sum a_i + \sum a'_i \ge s$.

Then it is immediate that $F_sF_i \subset F_{s+i}$ and $ad(y)F_s \subset F_s$. Let $F_{1,+}$ be the module generated by $y^k z_i$, $y^k z'_i$ for $k \ge 1$, $0 \le i \le p-2$ and elements in F_2 so that $Q_*/F_{1,+} \cong K(y^s, z_i, z'_i)$. Then note that $ad(y)F_{1,+} \subset F_{1,+}$.

Theorem 3.2. Let $i: Y \to X$ be mod p homotopy normal for an H-space X satisfying (3.1). Let $Q^* = Q_{k(2)}^*$. Suppose that the quotient map to Q^* splits, i.e., $Q^* \subset K(2)^*(X)$ as Hopf algebras. Then i^*Q^* is isomorphic to one of the following Hopf algebras

$$Q^*, Q^*/(y), K(2)^* \otimes \Lambda(x_i | 0 \le i \le p-2), K(2)^* \otimes \Lambda(x_i' | 0 \le i \le p-2), K(2)_*.$$

Proof. Recall that x_i and x'_i are duals in (3.2) of z_i and z'_i respectively. Suppose that $i^*(x_j) \neq 0 \in K(2)^*(Y)$ for some j. Then we see that there exists $\tilde{z}_j \in K(2)_*(Y)$ such that $i_*(\tilde{z}_j) = z_j \mod(F_{1,+})$ because if $k \neq j$, then $\langle i^*(x_k), w \rangle = 0$ and $\langle i^*(x'_k), w \rangle = 0$ for any $w \in K(2)_{2(p+1)j+3}(Y)$ by dimensional reason. From Corollary 2.2, the homotopy normality of i implies that there exists $\tilde{z}_k \in K(2)_*(Y)$ with $i_*(\tilde{z}_k) = z_k \mod(F_{1,+})$ for all $k \geq j$. Let $\tilde{z}_0 = v_2^{-1}\tilde{z}_{p-1}$. Then we get \tilde{z}_k for all $0 \leq k \leq p-2$. So the composition of maps

$$K(2)_{\star}(Y) \rightarrow K(2)_{\star}(X) \rightarrow Q_{\star}/(y,z')$$

is epic. Therefore we have proved that if $i^*(x_i) \neq 0$ for some j then

$$K(2)_{\ast} \otimes \Lambda(i^{\ast}(x_i) \mid 0 \le i \le p-2) \subset K(2)_{\ast}(Y).$$

Similar fact holds for the cases $i^*(x_j) \neq 0$.

Next suppose that $i^*(y) \neq 0$. Then there is $\tilde{y} \in K(2)_*(Y)$ with $i_*(\tilde{y}) = y$. Hence $[y, z] = [i_*(\tilde{y}), z] \in i_*K(2)_*(Y)$ for all $z \in K(2)_*(X)$. This implies $i^*Q^* \cong Q^*$.

To consider the mod p ordinary homology version of the above theorem, we recall the connective Morava K-theory $k(n)_*(-)$ with the coefficient $k(n)_* = Z/p[v_n]$. The usual Morava K-theory is just the localization $K(n)_*(-) = [v_n^{-1}]k(n)_*(-)$. Moreover we know that the condition $K(n)_*(X) \cong K(n)_* \otimes H_*(X; Z/p)$ implies $k(n)_*(X) \cong k(n)_* \otimes H_*(X; Z/p)$ by the naturality of the Atiyah-Hirzebruch spectral sequence. Since k(n) is a connective spectrum, there is the natural Thom map for reduced theories $\tilde{k}(n)_*(X) \to \tilde{H}_*(X; Z/p)$ which is an isomorphism if $* < 2(p^n - 1) + 2$ for spaces X in (3.1), since $|v_n| = 2(p^n - 1)$.

Theorem 3.3. Let $i: Y \to X$ be mod p homotopy normal for an H-space X satisfying (3.1). Let $Q^* = Q_{2/p}^*$. Suppose that there does not exist any primitive

element of degree $2(p^2-1)+3$ nor $2(p^2-1)+2p+1$ in $H^*(Y; Z/p)$ and that $Q^* \subset H^*(X; Z/p)$ as Hopf algebras. Then $i^*(Q^*)$ is isomorphic to one of the following Hopf algebras

$$Q^*, Q^*/(y), \Lambda(x_i | 0 \le i \le p-2), Z/p.$$

Proof. We consider the mod p-cohomology version of the proof of Theorem 4.2. Suppose first that the there is x'_j such that $i^*(x'_j) \neq 0$ in $H^*(Y; Z/p)$. Then we see that there exists $\tilde{z}'_j \in H_*(Y; Z/p)$ such that $i_*(\tilde{z}'_j) = z'_j \mod(F_{1,+})$. Moreover $|\tilde{z}'_j| < 2(p^2 - 1) = |v_2|$ implies that we can identify $\tilde{z}'_j \in k(2)_*(Y)$. The mod p homotopy normality for i implies that there exists $\tilde{z}'_k \in k(2)_*(Y)$ for all $k \geq j$ with $i_*(\tilde{z}'_k) = z'_k = ad(y)^k(z') \mod(F_{1,+})$. For $p-2 \geq k \geq j$, by the dimensional reason such that $|ad^k(y)(z')| < |v_2|$, we can take \tilde{z}'_k also in $H_*(Y; Z/p)$.

The crucial case is k = p - 1 where $i_*(\tilde{z}'_{p-1}) = ad^{p-1}(y)(z') = v_2 z' \mod(F_{1,+})$. Hence there are two possibilities; there exists \tilde{z}' such that $i_*(\tilde{z}') = z' \mod(F_{1,+})$ or there exists a $k(2)_*$ -module generator \tilde{z}'' such that $i_*(\tilde{z}'') = v_2 z' \mod(F_{1,+})$. For the later case, by the dimensional reason, \tilde{z}'' is also in $H_*(Y; Z/p)$.

Suppose that \tilde{z}'' is a $k(2)_*$ -algebra generator. Taking the dual, we know that there exists a primitive element in $H^*(Y; Z/p)$ of degree $|\tilde{z}''| = 2(p^2 - 1) + 2p + 1$. By the assumption of this theorem, there does not exist such an element and so we get $\tilde{z}' \in H_*(Y; Z/p)$. Next suppose that $\tilde{z}'' = \Sigma uw$ in $k(2)_*(Y)$ with $u \neq 0$, $w \neq 0$ in $H_*(Y; Z/p)$. In the projection image to $k(2)_* \otimes Q_*$, we see $\Sigma i_*(u)i_*(w) = v_2 z' \neq 0$ $\in F_1/F_2$. Since $F_1F_1 \subset F_2$, there is u and w such that $i_*(u)$ (or $i_*(w)$) is not zero in F_0/F_1 , namely, is $y^k \mod(F_1)$ for $1 \le k \le p-1$. This means $i^*(y^k) \ne 0$ in $H^*(Y; Z/p)$. So $i^*(y) \ne 0$ and $i^*(x'_0) \ne 0$ since $\beta x'_0 = y$. Hence for all cases we have $z' \in H^*(Y; Z/p)$. Thus from corollary 2.2, there is $\tilde{z}'_k \in H^*(Y; Z/p)$ for all $0 \le k \le p-2$.

Here we note that $\mathscr{P}^1(x_0) = x'_0$ and that $i^*(x'_0) \neq 0$ implies $i^*(x_0) \neq 0$ also. Hence we get also the existence of \tilde{z}_k for all $0 \leq k \leq p-2$ by the mod p homotopy normality. So the composition of maps $H_*(Y; Z/p) \to H_*(X; Z/p) \to Q_*/(y)$ is epic. Therefore we have proved if $i^*(x'_i) \neq 0$, then

$$\Lambda(i^{\ast}(x_i), i^{\ast}(x_i) | 0 \le i \le p-2) \subset H^{\ast}(Y; \mathbb{Z}/p).$$

If $i^*(x_k) = 0$ for all $0 \le k \le p-2$ and $i^*(x_j) \ne 0$ for some *j*, then by the non existence of primitive element of degree $2(p^2 - 1) + 3$, we get similarly

$$\Lambda(i^*(x_i)|0\leq i\leq p-2)\cong i^*Q^*.$$

Thus we have shown the theorem.

For the cases p = 3,5, the quotient Hopf algebra Q^* are isomorphic to $H^*(F_4; Z/3)$, $H^*(E_8; Z/5)$ respectively [9],[7].

$$H^{*}(F_{4}; Z/3) \cong Z/3[y_{8}]/(y_{8}^{3}) \otimes \Lambda(x_{3}, x_{7}, x_{11}, x_{15})$$

$$H^{*}(E_{8}; Z/5) \cong Z/5[y_{12}]/(y_{12}^{5}) \otimes \Lambda(x_{3}, x_{11}, x_{15}, x_{23}, x_{27}, x_{35}, x_{39}, x_{47})$$

where subscript means the degree, i.e., $|x_i| = i$. The reduced powers are also known

 $\mathscr{P}^1 x_i = x_{i+2(p-1)}$ (i.e., $\mathscr{P}^1 x_3 = x_7$, $\mathscr{P}^1 x_{11} = x_{15}$ for p = 3). Note that this means $\mathscr{P}^1 x_i = x'_i$ in the notations in Theorem 3.1.

Corollary 3.4. Let $i: Y \to F_4$ (resp. E_8) be a mod 3 (resp. 5) homotopy normal map. Suppose that there does not exist any primitive element in $H^*(Y;Z/p)$ of degree 19 (resp. 51). Then $i^*H^*(F_4;Z/3)$ (resp. $i^*H^*(E_8;Z/5)$) is isomorphic to one of the following Hopf algebras

 $H^{*}(F_{4}; Z/3), H^{*}(F_{4}; Z/3)/(y_{8}), \Lambda(x_{3}, x_{11}), Z/3$ (resp. $H^{*}(E_{8}; Z/5), H^{*}(E_{8}; Z/5)/(y_{12}), \Lambda(x_{3}, x_{15}, x_{27}, x_{39}), Z/5$).

Proof. Suppose that $i^*(x_j) \neq 0$. Then $i^*(x_j) \neq 0$ since $\mathscr{P}^1 x_j = x_j'$. Since there does not exist any primitive element in $H^*(Y; Z/p)$ of degree $2(p^2 - 1) + 3$, we get $i^*(x_0) \neq 0$ from the argument in the proof of Theorem 3.3. Therefore $i^*(x_0) \neq 0$ from $\mathscr{P}^1 x_0 = x_0'$. Thus we have the corollary (without the assumption for the degree $2(p^2 - 1) + 2p + 1$).

The advantage of using the Morava K-theory for $X = H^*(F_4; Z/3)$ is just to exclude the Hopf algebras $\Lambda(x_{11})$, $\Lambda(x_{11}, x_{15})$ which seem not to be proved by only using reduced powers and the Hopf algebra structure of $H^*(F_4; Z/3)$. The homotopy group $\pi_{11}(G_2)$ is isomorphic to Z/3 and it defines the generator x_{11} in $H^*(G_2; Z/3)$. This induces $\pi_{12}(BG_{2(3)}) \cong Z/3$. So there is a map $S^{12} \to BG_2$ which represents a generator of $\pi_{12}(BG_2)$. Then we have a map of loop spaces

$$(\Omega S^{12})_{(3)} \cong S^{11}_{(3)} \times (\Omega S^{23})_{(3)} \to G_{2(3)} = \Omega B G_{2(3)} \subset F_{4(3)}.$$

We know that $i^{*}H^{*}(F_{4}; \mathbb{Z}/3) = \Lambda(x_{11})$ and hence this map is not mod 3 homotopy normal.

Next consider the cases exceptional Lie groups E_6 , E_7 for p=3. The cohomologies are known

$$H^{*}(E_{6}; Z/3) \cong H^{*}(F_{4}; Z/3) \otimes \Lambda(x_{9}, x_{17})$$
$$H^{*}(E_{7}; Z/3) \cong H^{*}(F_{4}; Z/3) \otimes \Lambda(x_{19}, x_{27}, x_{35})$$

with $\mathscr{P}^3 = x_{19}$, $\mathscr{P}^1 x_{15} = x_{27}$, $\mathscr{P}^1 x_{15} = ex_{19}$ $(e = \pm 1)$. Denote also by z_i the dual of x_i . The Pontrijagin product structre in $H_*(E_6; Z/3)$ (resp. $H_*(E_7; Z/3)$) is given by

$$ad(y)(z_9) = z_{17}$$
 (resp. $ad(y)(z_{19}) = z_{27}, ad(y)(z_{27}) = z_{35}$).

Lemma 3.5. The Pontrjagin product structure in $K(2)_{*}(E_{6})$ (resp. $K(2)_{*}(E_{7})$) is given by $ad(y)(z_{17}) = -v_{2}z_{9}$ (resp. $ad(y)(z_{35}) = -v_{2}z_{27}$).

Proof. Since $y^3 = -v_2 y$, we always have

$$ad(y)^{3}(z_{i}) = ad(y^{3})(z_{i}) = -v_{2}ad(y)(z_{i}).$$

Since ad(y) (z₁₉) is primitive, we see that $ad(y)(z_{17}) = \lambda v_2 z_9$, $\lambda \in \mathbb{Z}/3$, from the dimensional reason. Then

$$v_2 z_{17} = v_2 ad(y)(z_9) = -ad(y)^3(z_9) = -ad(y)(ad(y)(z_{17}))$$

= -ad(y)(\lambda v_2 z_9) = -\lambda v_2 z_{17}.

Thus we know $\lambda = -1$. The case E_7 is proved similarly.

Corollary 3.6. Let $i: Y \to E_6$ (resp. E_7) be a mod 3 homotopy normal map. Suppose that $K(2)_*(Y) \cong K(2)_* \otimes H_*(Y; Z/3)$ and there does not exist any primitive element in $H^*(Y; Z/3)$ of degree 19 nor 25 (resp. 19 nor 43). Then $i^*H^*(E_6; Z/3)$ (resp. $i^*H^*(E_7; Z/3)$ is isomorphic to one of the following Hopf algebras.

$$H^{*}(E_{6}; Z/3), H^{*}(E_{6}; Z/3)/(y), \Lambda(x_{9}, x_{17}), H^{*}(F_{4}; Z/3)/(y), \Lambda(x_{3}, x_{11}), Z/3$$

(resp. $H^{*}(E_{7}; Z/3)/(y, x_{19}), H^{*}(F_{4}; Z/3)/(y), \Lambda(x_{3}, x_{11}), Z/3$)

Proof. By the assumption $K(2)^*(Y) \cong K(2)^* \otimes H^*(Y; \mathbb{Z}/3)$ it follows that $i^*(x) \neq 0$ in $H^*(Y; \mathbb{Z}/3)$ implies $i^*(x) \neq 0$ in $k(2)^*(Y)$. For the case $X = E_6$, if $i^*(y) \neq 0$, then $-[z_9, y] = z_{17}$ shows $i^*(x_{17}) \neq 0$. The non existence of any $k(2)_*$ -algebra generator $z'' \in k(2)_*(Y)$ such that $ad(y)(z_{11}) = i^*(z'')$ nor $ad(y)(z_{17}) = i_*(z'')$ implies the corollary for this case. When $X = E_7$, facts that $i^*(x_{19}) = 0$ and $\mathscr{P}^3 x_{15} = x_{27}$ can prove the corollary. Here we use the nonexistence of any primitive element of degree $|ad(y)(z_{11})|$ and $|ad(y)(z_{35})|$.

Corollary 3.7 ([1]). The natural inclusions $F_4 \subset E_6 \subset E_7$ are not mod 3 homotopy normal.

4. H-spaces with two even degree generators

In this section, we consider a simply connected homotopy associative H-space X such that

(4.1)
$$H^*(X; \mathbb{Z}/p) \cong \mathbb{Z}/p[y, u]/(y^p, u^p) \otimes \Lambda, \quad |y| \neq |u|.$$

However the known example is only the case p=3 and $X=E_8 \times X'$ for some X' such that $H^*(X'; Z/3)$ is isomorphic to an exterior algebra. Therefore we only consider the case p=3 and $X=E_8$ hereafter. The ordinary mod 3 cohomology of E_8 is ([9], [7])

$$H^{*}(E_{8}; \mathbb{Z}/3) \cong \mathbb{Z}/3[y_{8}, u_{20}]/(y_{8}^{3}, u_{20}^{2}) \otimes \Lambda(x_{3}, x_{7}, x_{15}, x_{19}, x_{27}, x_{35}, x_{39}, x_{47})$$

The reduced powers are also known

$$\mathcal{P}^{1}x_{3} = x_{7}, \ \mathcal{P}^{1}x_{15} = ex_{19}, \ \mathcal{P}^{1}x_{35} = x_{39} \ (e = \pm 1)$$

$$\mathcal{P}^{3}x_{7} = x_{19}, \ \mathcal{P}^{3}x_{15} = x_{27}, \ \mathcal{P}^{3}x_{27} = -x_{39}, \ \mathcal{P}^{3}x_{35} = x_{47}.$$

$$\beta x_{7} = x_{8}, \ \beta x_{19} = \mathcal{P}^{3}y_{8} = u_{20}$$

The Morava K-theory $K(3)_{*}(E_8)$ is given in [12].

Theorem 4.1 ([12]). There is a $K(3)_*$ -algebra isomorphism $K(3)^*(E_8) \cong K(3)^* \otimes H^*(E_8; \mathbb{Z}/3)$. Let z_i (resp. $y, u \in K(3)_*(E_8)$ be the dual elements of x_i (resp. y_8 , $u_{20} \in K(3)^*(E_8)$. The Pontrjagin ring $K(3)_*(E_8)$ is generated by two elements, $u, z' = z_{19}$, with the relations $u^9 = 0$, $ad(u)^8(z') = 0$. $(z')^2 = 0$ (and $u^3 = -v_3y$). The adjoint map is given by the following arrows, i.e., $z \to [u, z]$,

$$z_{19} \rightarrow z_{39} \rightarrow -v_3 z_7, \qquad z_7 \rightarrow z_{27} \rightarrow z_{47} \rightarrow -v_3 z_{15}$$
$$z_{15} \rightarrow z_{35} \rightarrow -v_3 z_3, \qquad z_3 \rightarrow 0.$$

Theorem 4.2. Let $i: Y \to E_8$ be a mod 3 homotopy normal map. Let (a_0, \dots, a_7) be the ordered set (19, 39, 7, 27, 47, 15, 35, 3). Then $i^*K(3)^*(E_8)$ is isomorphic to one of the following Hopf algebras

 $K(3)^* \otimes \Lambda(x_{a_j}, x_{a_{j+1}}, \dots, x_{a_7}) \text{ for } 0 \le j \le 7,$ $K(3)^*[y]/(y^3) \otimes \Lambda(x_{a_j}, \dots, x_{a_7}) \text{ for } 0 \le j \le 2,$ $K(3)^* \text{ and } K(3)^*(E_8).$

Proof. The a_j is ordered so that $ad(u)(z_{a_j}) = z_{a_{j+1}}$ or $-v_3 z_{a_{j+1}}$ in $K(3)_*(E_8)$. By the arguments similar to the proof of Theorem 3.2 and the facts $\beta(x_7) = y$ and $x_7 = x_{a_2}$, we can prove the theorem.

By arguments quite similar to the proof of Theorem 3.3, we get the following theorem.

Theorem 4.3. Let $i: Y \to E_8$ be mod 3 homotopy normal map. Suppose that there does not exist any primitive element of degree 55,59 nor 67. Then $i^*H^*(E_8; Z/3)$ is isomorphic to one of the following Hopf algebras

$$\begin{split} &\Lambda(x_{a_j}, x_{a_{j+1}}, \cdots, x_{a_7}) \text{ for } 0 \leq j \leq 7, \\ &Z/p[y]/(y^3) \otimes \Lambda(x_{a_j}, \cdots, x_{a_7}) \text{ for } 0 \leq j \leq 2 \\ &Z/3 \text{ and } H^*(E_8; Z/3). \end{split}$$

Using the Hopf algebra structure of $H^*(E_8; \mathbb{Z}/3)$ and the reduced power

651

operations, we get the similar result as above, however it seems difficult to exclude the case $\Lambda(x_{15}, x_{35})$.

There is well known chain of inclusions of simple Lie groups $SU(3) \subset G_2 \subset Spin(7) \subset Spin(8) \subset Spin(9) \subset F_4 \subset E_6 \subset E_7 \subset E_8$. Furukawa [1] showed that any $H \subset G$ above is not homotopy normal.

Corollary 4.4 ([1]). Let $i: H \subset E_8$ be any inclusion of above except for H = SU(3) nor G_2 . Then *i* is not mod 3 homotopy normal.

Proof. For each subgroup H, there is not any primitive element in $H^*(H; \mathbb{Z}/3)$ of degree 55, 59 nor 67. For the case $H = E_7$, $i^*(x_{19}) \neq 0$ in $H^*(E_7; \mathbb{Z}/3)$ but $i^*(x_{47}) = 0$. This contradicts the theorem. For other cases, $i^*(x_7) \neq 0$ but $i^*(x_{35}) = 0$ implies the non mod 3 homotopy normality.

FACULTY OF EDUCATION IBARAKI UNIVERSITY e-mail: pmkudou@mito.ipc.ibaraki.ac.jp, yagita@mito.ipc.ibaraki.ac.jp

References

- Y. Furukawa, Homotopy normality of Lie groups I, II, III, Quart. J. Math. Oxford, 36 (1985) 53-56, 38 (1987) 185-188, Hiroshima J., 25 (1995), 83-96.
- [2] Y. Hemmi, A nonexterior Hopf algebra and loop spaces, Topology and its Applications, 72 (1996), 209-214.
- [3] M. Hopkins, Nilpotence and finite H-spaces, Israel J. Math., 66 (1989), 238-246.
- [4] I. M. James, On homotopy commutativity, Topology 6 (1967), 405-410.
- [5] I. M. James, On homotopy theory of classical groups, Ann. Acad. Brasil. Cienc., 39 (1967), 39-44.
- [6] R. Kane, The homology of Hopf spaces, North-Holland, 1988.
- [7] A. Kono and M. Mimura, On the cohomology operations and the Hopf algebra structures of the compact exceptional Lie groups E₇ and E₈, Proc. London Math. Soc., 35 (1977), 345–358.
- [8] G. MacCarthy, Jr., Products between homotopy groups and J-morphism, Quart. J. Math. Oxford, 15 (1964), 362–370.
- [9] M. Mimura, Homotopy theory of Lie groups, Handlook of Algebraic Topology edited by I. M. James, (1995), 951-991
- [10] V. R. Rao, Spin(n) is not homotopy nilpotent for $n \ge 7$, Topology, 32 (1993), 239-249.
- [11] N. Yagita, Homotopy nilpotency for simply connected Lie groups, Bull Lodon Math. Soc., 25 (1993), 481-486.
- [12] N. Yagita, Pontrjagin rings of the Morava K-theory for finite H-spaces, J-Kyoto Univ., 36 (1996), 447-452.