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Scattering theory for the perturbations
of periodic Schrödinger operators

By

Christian GERARD and Francis NIER

Abstract

In  this article, we study the short- and long-range perturbations of periodic
Schrddinger operators. The asymptotic completeness is proved in the short-range
case by referring to known results on the stationary approach and more explicit-
ly  w ith the  time-dependent approach. In  th e  long-range case, one is  able to
construct modified wave operators. In  both cases, the asymptotic observables
can be defined as elements of a commutative C*-algebra of which the spectrum
equals o r  is contained in the B loch variety. Especially, the expression of the
mean velocity as the gradient of the Bloch eigenvalues is completely justified
i n  th is  f ra m e w o rk , e v e n  w h e n  th e  B lo c h  variety presents singularities.

1. Introduction

This paper is devoted to the scattering theory for the perturbations of periodic
Schrödinger operators H„ = D 2  + Vr (x), where V, is a  real potential, F-periodic for
som e la ttice  F  in  R " . T h e  physical phenomenon related to this mathematical
problem is called im purity  scattering. The most basic result in  this domain is the
proof by Thom as [23] th a t th e  spectrum of H , is absolutely continuous if the
potential V , is  no t too  singu la r. O n  the  other hand stationary phase arguments
using the Floquet-Bloch transformation show th a t the  m otion  o f a  particle in  a
periodic potential should be ballistic. These two facts indicate that the scattering
theory for perturbations H = H 0 + V of 1/0  should be quite similar to the scattering
theory for the free Laplacian 4D 2 . H o w e v e r  u p  to  n o w  th e re  a re  only partial
results to support this belief. W e  m ention the w ork of Thom as [23] using the
Kato-Birman theory, Simon [21], using the Enss approach, and Bentosela [3] using
the Kato-Kuroda stationary approach. All these results either assume a decay of
the interaction V that is too strong or are valid only in a restricted range of energies.

In  this paper we reconsider this problem using the M ourre method, which is
based on the construction of a conjugate operator. This construction was made in
our previous paper [12]. W e prove the existence and completeness of the wave
operators fo r  th e  c o r re c t  c la ss  o f  short-range p e rtu rb a tio n s . F o r long-range
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perturbations, w e  construc t m odified  w ave  opera to rs a n d  characterize their
range. The range of the modified wave operators is described using a C*-algebra

of asymptotic observables which correspond to the energy and quasi-momentum
for the free Hamiltonian H , .  Using the algebra °le we can also justify the heuristic
fact that the velocity of a particle in a periodic potential is asymptotically given by the
gradients of the Bloch functions.

2. Definitions, assumptions and results

2 .1 .  The periodic free Hamiltonian.

We shall consider the free Hamiltonian

:=  D 2 + Vr (x), on  L 2 (R"),
2

where V , is a  real valued potential, F-periodic for some lattice F in /2":

V,- (x+y)= Vr (x), y E F.

We assume that

V , is A bounded with bound strictly smaller than 1. (2.1)

It follow s that H o i s  self-adjoint with domain H 2 (R"). A s we mentioned in the
Introduction, the first basic question about scattering theory for H , is whether the
spectrum of H o is absolutely continuous. Under the general assumption (2.1) this
question is  so  far unso lved . In [23], Thom as proved the  absolute continuity of
the spectrum if the Fourier coefficients of V , are in  some /P space (see [17, Thm.
XII.100] for a precise statement). The proof in [23] shows that if we replace (2.1)
by the stronger condition:

Vr  i s  ( - 4 ) 2 bounded  w ith  re la tive  bound  0 , (2.2)

then the spectrum of H o is absolutely continuous. Our results will have a simpler
expression in this c a s e . W e next specify our notations about the Floquet-Bloch
transformation and refer the reader for details to [17, 22]. W ith the lattice F, we
associate the torus T"=- R"IF, the fundamental cell

F:= {x
i=1

of which the volume for Lebesgue measure will be denoted by / 1 r ' th e  dual lattice

F*:= ly*E R" I <y, y*> e 2nZ  , Vy E

and symmetrically the se ts T" = R"IF*, F* and the volume /2„,«. F o r  x  R " , we
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define th e  integer p a r t  [x ]  o f  x  a s  th e  u n iq u e  y  e  F  so that x — y e F .  The
Floquet-Bloch transformation:

Uu(k, x):= /1,7.2 E e - 1 ( "u(x  + y), (2.3)

first defined for u e S(R"), extends as a  unitary operator

U: L 2 (R",dx) —■ L2 (T"*,dk ; L 2 (F, dx)).

The F*-periodicity w.r.t. k of Uu follows from its definition. The distinction between
the isomorphic spaces L 2 (F,dx) and  L 2 (T",dx) avoids confusion when one works
with smooth functions. W e shall use the notations

M := T"*, := L 2 (F,dx)

and it° := L 2 (T"*,dk ; L 2 (F,d x ))= f  f e 'd k  L 2 (R",dx).

The inverse of U is given by:

fU - 1 v(x + y) = p i= 
4 e i <"v(k , x )dk , x  e F, y  e F.

m

One easily deduce from (2.3) the identities

Ux U -  1 =x— D k

(IX ] U - 1 = - D , .

Conjugating H , w ith U yields

UH0  U =  f  H o (k)dk, (2.6)

with

H0 (k)=1 D 2  + V r (x),

D(11 o (k))= fu = V , V  e HIL(R")v(x + ei <"v (x ) , Vy e Fl.

In this representation, the Hamiltonian 1/ 0  satisfies the following properties (see [12]):

i) the m ap M 9 k  ( H o (k)+ i) - 1  is analytic w ith values in Y (Y (');
ii) for all k eM , the self-adjoint operator 110 (k) has purely discrete spectrum;
iii) the Bloch variety E := { (1,k)eRxM, A e o - (110 (k))1 is a n  analytic variety of M
and the projection p ,: E  (A, k) is proper.

(2.4)

(2.5)

As a consequence H0  belongs to the class of analytically fibered operators, introduced
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in  [1 2 ] .  We have proved there the

Theorem 2.1. There exists a discrete set t determined by H o  so that for any interval
I c  R \ T  there exists an operator A I , essentially self-adjoint on D(A 1)=W c'o r„,(M ;A ')
satisfying the following properties:

i) For all x eCL , p (I), there ex ists a constant cx >0 so that

X(Ho)[ilo,iAr]X(Ho) cx X(1 1 0)2 .

ii) The multi-commutators ad!!i i (H o ) are bounded for all keN .

iii) The operator A I  is  a f irst order dif ferential operator in k  with coefficients which
belong to °(M ; .r(Ye')) and there exists xece c".„,p (R\T) so that A i = x(1-10 )A 1 = A 1x(110 ).

Here are some other notations related to the free Hamiltonian which be used
in our analysis. On the Bloch variety E which is locally compact with the topology
induced by R x M, we shall consider the open subset

Ereg1 ( 0 )  e E, 3 We "KE (20  , k 0 ), V(A, k)e W,

dim 11,1)(H o (k)) ° = dim 1(4)(1/0(ko)PrI

w here -rx (x) denotes th e  s e t  o f  neighborhoods o f  x  i n  the topological space
X .  When (2 0 ,k 0 ) belongs to E„ g , there exists /e ^17

R (20 ), W e  'r m (ko )  a n d  a  real
analytic function 2 on  W  so that

I x W n E =  {(71(k), k), k e WI.

Besides 1, r„, there is another useful B ord  function defined on the Bloch variety.

Definition 2 .2 .  The function y is defined on  E  by

jv(A ,k)= k i(k) i f  (2= 71(k), k) e Er e g

tO else.

The function y will be used in Subsection 2.3 to define the asymptotic velocity
observable. W e close this review of properties of the free Hamiltonian by some
rem arks. First if pm : E  M  denotes the projection on M, then p m (E\E reg ) has zero
Lebesgue measure. Indeed this is a consequence of the stratification argument used
in  [1 2 ], which ensures that p m (E\E„ g) is covered  by  a  countable (finite if one
considers E np R

- 1 (K) with K c R compact) family of real analytic submanifolds with
non null codimension. Second, the function y belongs to L IT,c(E,pt d k ). This follows
from the local Lipschitz regularity of the eigenvalues of H o (k), which can be proved
by a minimax argument.
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2 .2 .  The perturbations.

We shall consider perturbed Hamiltonians of the form H =H 0 + V(x) with

V(x)= Ps(x) + Vi(x),

and where rs and V, are real-valued functions and satisfy for some p >0 and > O  the

Hypothesis 2.3. a) The operator 17 ,<x>1 + (— A + 1) -  I  i s  compact on L 2 (R").

b) The function V, satisfies: v,(x)i c o,<x>

We set

vs(x) := P+ 1/,(x) — vi([x]).

The reason for decomposing V  a s  Vs +  V,([x]) is  tha t the functions of the integer
part [x] become after the Floquet-Bloch reduction scalar pseudo-differential operators
(see the discussion be low ). In the sequel we will use the following consequence of

assumption a) of Hypotheses 2.3. We denote by R the operator <[x]> =(1 + l[x]12)/.

Lemma 2.4. Let xec6To m p (R). The operator RŒV,x(HORP is compact on OR")
if  a+ 13 < 1 + inf(p, ps ) and bounded if  a+ 13 =1 +inf(p, ps).

P ro o f  We will use the functional calculus formula:

x (H )=-
1

- 0 4 (z )(z — H )'d z  A df
2 n i c

(2.7)

where ie (e c"o n ,p (C) is an  almost analytic extension of x  satisfying:

< C N Ilin zIN , VNe N. (2.8)

Since there exists a constant C> 0 so that

C-  1 <x> _<[x]>_C<x>,

<X>

the operator R  can be replaced by <x> in  the  lemma. By Hypothesis 2.3 b), the
function

11+ 4 ( V i(X) — V i(EXD) = <X> 1 +

 f  <V V,([x] + s(x — [x])), x — [x] >ds

is bounded.Hence the operator <x>"1/,(1-10 —z) is compact if a <1 +inf(p,ps) and
bounded  i f  a = 1 +inf(p, ps)  w ith  a n  o p e ra to r  n o rm  0(lIm zi - 1 ) for Im z O.
Commuting inductively powers of <x> with (z —14) -  I , we see that for [3E Z, ,q< 0,
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11(11 0 + 0<x> fl — 1-1ro <x>1111= 0 (11
<
m
z >

z
N
1N
P , I'm zl 00.

By interpolation, this estimate extends to any real /3<0. W riting

<x>1 1/s(z — No r  <x>fi = <x>" + fi VP! 0 + 0-  '(1-10 + 0<x› -  fl(z— H0 )

and using formula (2.7) and estimate (2.8), we get the result.

N ow  that the action of conjugating with the Floquet-Bloch transformation U is
specified, a n  operator B o n  L2(R",dx) and its im age U BU o n  X,' will both be
denoted by B in the se q u e l. Formula (2.4) indicates that multiplication operators
on L2(R",dx) become after conjugation by U pseudo-differential operators on M
with operator valued symbols o n  X". Actually pseudo-differential operators on
M with operator valued symbols of negative order is the natural class of pertubations
of 1/0 fo r which a  clean scattering theory can be developed. A remarkable fact of
the pseudo-differential calculus on Tn* is that complete symbols can be associated with
pseudo-differential operators like i n  R ". W e re fe r to  A ppend ix  B  fo r  details.
Moreover, th e  right-hand side o f  th e  two next identities which a re  defined by
functional calculus. a r e  pseudo-differential operators (see Proposition B.3 iv)):

U RU = U<[x]>U = <DO. (2.9)

and UVU - 1 = U17 , U - 1  + (2.10)

Notation. W e denote by O pS"(M ) and OpSŒ(M; ..r( f r) )  th e  space o f  pseudo-
differential operators of order a e R on M with respectively scalar and Y( *")-valued
symbols. When h e (0, ho ) is  a  small parameter, OpS"(M) and OpS":"(M; Y(Y('))
denote the semiclassical version of these pseudo-differential classes.
The class of pseudo-differential operators that we consider is precisely defined in
Definition B.1. Complete symbols are well defined for this class and the operator
valued are defined like in [2]. The assertion iv) of Proposition B.3 gives

e OpS(M), (2,11)

VA— E OpS - "(M) (2.12)

and Ai  e OpS 1(M; Y(Ye')). (2.13)

We recall that the estimates of scalar pseudo-differential calculus carry over to the
411-valued case except the  commutator estimate which holds only when the
principal symbols commute. This latter condition is trivially satisfied when one of
t h e  s y m b o ls  is  s c a la r . W e  re fe r  t h e  r e a d e r  t o  [ 2 ]  f o r  operator valued
pseudo-differential operators. The next lemma ensures that V enters in  the  class
of perturbations considered in [12].
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L em m a 2.5 . The operator V is symmetric and satisfies f o r any  compact energy
interval I included in R\T

i) V(H0 +i) - 1  i s  compact;

ii) [V,iA i ]  is bounded;

iii) the function: s e " '  V C "  — V belongs to (61 + c(R ; r(Ye)) with 0<  E <int.  {1, it, p.,}

Moreover for H =  Ho + V , the function 
s _ , e i s A i v i + 0 - 1 6 , - 4 I

 be longs to  ce1 + E(R;
..r ( f ( ) )  with 0 <  < inf{ 1, it, its }.

P ro o f  T h e  compactness o f  V(Ho + V I f o l lo w s  a t  once  from Hypothesis
2.3. W e next w rite V as V+ V i( — Dk). For VA—Dk ), the pseudo-differential calculus
yields

adiA, V,( — Dk )R " eY (Y e) ,  Vje N. (2.14)

F o r  Vs ,  w e  r e c a ll  th a t  A t  = x(H0 )A, -=A,x(H0). T h is  g ives by  expanding  the
commutator:

A[Vs — V s .A = AIR -
1RX(1 1 0)Vs — V,XWORR -

1Al.

Using Lemma 2.4 we see that adA , Vs  is  b o u n d e d . This implies ii) and also that
s  e i s A l  v e — is A  V  i s  Lipschitz continuous if inf(ft„u s)= O. T h e  sam e m ethod of
expanding th e  com m utator shows that ad 1 V5 is  b o u n d e d  if inku„u s)> 1. T h e
assertion iii) is then derived for general (it, its ) by real interpolation between inffit, its) = 0
and inf(p,it s )=  1 .  It remains to check the regularity of r(s):= e isA i(H + i) -  e - isAi  w e

have

r(s)=(H+ i) -  — 1[A , H0 + 11(H + 1 e-  ' A idu

=(H + — i
fS 

r(u)el"A lA  ,  Ho + I le -
 l "A 'r(u) du. (2.15)

Using the first line of (2.15), we first deduce from iii) that r(s) is Lipschitz continuous,
and then using the second line of (2.15) that r(s) is (el  + E .

Rem ark 2.6. a) A bout the real interpolation result and the notation with
cxON for the Holder spaces, we refer the reader to [6].
b) T he property iii) is indeed stronger than what is needed to develop M ourre
theory (see [1] fo r  a  sharper version). However, it is convenient while checking
the last assertion which is used in  our propagation estimates.

By noting that < x > sR ' and Rs ( 1 +IA 11) -
s a re  bounded for any s e R, standard

results for 11= 110 + V reviewed in  [12] can be written in  the form
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Theorem 2.7. Let A I  be a conjugate operator for H o associated with an arbitrary
compact interval I c R\T. Then the following results hold:

0  For x E Wc
e'Do m p (i), there exist a constant ex > 0 and a compact operator Kx so that

x(H)[H, iA 
1 ] X ( H )

 c x x 2 ( H ) +  K .

A s  a consequence o (H) is of  f inite m ultiplicity  in  R\T and has no accumulation
points in R\-r.

ii) For each /le l\up p (H), there exists c>0 and c >0 so that

1[A- E,01+ t]( 1 ) [ 11, iA [A — +eJ(11 ) E,A+411).

iii) The limiting absorption principle holds on 1\o-
p p (H):

lirn <x > (N — /1+ ic) - 1 <x> - s ex ists and is bounded for all s > -
1

.
E- 4  + o 2

A s a consequence the singular continuous spectrum o f  H  is empty.

iv) W hen V,=0, the wave operators

s-urn eitne- ti H olc(110)=:W ±
t —1 ± op

ex ist and are asymptotically complete,

l c(H)Y (= W± .1f.

M oreover if  the condition (2.1) is replaced by  (2.2) then w e have 1 c(H0 ) = 1  and
W±  =s-lim „ F oo e' f fe- "H °.

The result iv) for the short-range case will be recovered via the time-dependent
approach as a byproduct of the long-range analysis. We close this paragraph with
another application of Lemma 2.5 to  minimal velocity estimates essentially due to
Sigal-Soffer [19]. Its proof is given in Appendix A.1.

Proposition 2 . 8 .  Let x E (eL i p (RVT u o-
p p (H ))).  For eo > 0 small enough, we have:

/R
)x(H)e - i  u  

2

—

d t

Vu E

and s-urn F(—:5_ro )x(H)e - '"=0 .
t r. + . t

Moreover the result also holds if  R is replaced by  <x>.
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2.3. Results.

P art o f these results have natural expressions in term s of C *-algebras. We
first specify this framework. Remind that the energy-momentum space E is closed in
R x M  and is endowed with the induced topology.

Definition 2.9. The commutative C*-algebra of which the elements are the

g(110 ,k):=- g(H o (k),k)dk, with gece2(E),
J M

is denoted by * 0 .

The mapping g  g (11 ,, k ) defines a  faithful representation of cgg(E). Therefore
V 0  is a C*-algebra with spectrum equal to E. Moreover, it is clear that the measure
(pm )*(dk) is  basic for V ,.  H e n c e , the Proposition 1.7.1 of [9] ensures that the
mapping g  g (1 1 0 , k )  w eakly o r  strongly extends as a  C *-isom orphism  from
L '(E,(p m )*(dk)) into the Von Neumann algebra (( 0 )". The family (10 (110 ,k )) for
D Borel subset of E  satisfies

1 Q i (H o,k) 1 02(110 , k)= 0 1 , 0 2 (H  ,k )

so that the next definition makes sense.

Definition 2.10. The projection valued measure SI —> 10 (H 0 , k) will be denoted
by  i 0 .  W ith any  B ore! function g  on E, will be associated the operator

g(H o ,k ):= g(A ,k )dit o (A,k), (2.16)

with D(g(H ,k))= ftl/ e Y e°, LOA, k)I2 d(0 , tt o (A, k)1/1)< 0 0 } . (2.17)

The first result is concerned with the  asymptotic observables associated with
a  class of continuous functions on  E.

Theorem 2.11. For any  ge(62(E), the strong limit

s- lim g(H 0  , k)e - '  1 c (H)=:g(H,k + ), (2.18)
t-• +

exist. These limits form a commutative C*-algebra oil + w ith spectrum  E\p,- 1 (o-
p p (110 )).

Moreover the lim it (2.18) equals g(H)1(H) if  g(2,k )=g,(2) depends only  on A.

Remark 2.12. T he index  , recalls that our def inition of  g(H,k + ) , includes the
projection on the continuous spectrum o f
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Corollary 2 .1 3 .  If condition (2.2) holds, then o-
p p (H 0 ) is empty  and the spectrum

of 07,1+ is equal to  E.

The family of projections indexed by open subsets Q of E  and defined by

10 (H, k + ),.= sup{g(H, V ), , g EWS(E), g <1 0 1,

satisfies

10 1 (H ,k + ),.10 2 (H,k + )c = 1 0 1 , 0 2 (H,k + )c .

Hence we can introduce the

Definition 2 .1 4 .  The projection valued measure s-/ 10 (H ,k + )c , whose definition
ex tends to any  Borel set Q  c  X, will be denoted by y + . W ith any Borel function g
on E , will be associated the operator

g(H, k + )c := g(2, k )dy + (A, k), (2.19)

with D(g(H , k - )c )= e dr, ig(A, k)i 2 d(tlf, 1.11/1., k)0)< oo} (2.20)

R em ark  2 .1 5 . O ne easily checks that this definition is compatible w ith the
previous result, that I/ + is null on  E \E \p , i (o-

p p (110 )) and that g(H2 O c is0 on 1 pp(.11 P ita

The asymptotic projection 1,, c g (H,k + ), is  of particular importance, especially
in  the  long  range  case . T he  states in  its  range have ra ther good propagation
properties and  should be considered a s  "regular" states. W e next introduce the
velocity observable associated to the function y given by Definition 2.2.

Definition 2 .1 6 .  T he velocity observable associated with H o i s  the vector of
commuting self-adjoint operators y„,,, := v(110 ,k). The asymptotic velocity observable
(for positive times) associated with H is the vector of commuting self-adjoint operators

= y(H,k + ),.

Theorem 2 .1 7 .  a) For any  xeceL n,p (R), we have

x(H)vt,= s-11m eu 1 1 x(H0 )v,,,e - ' r c g (H,k + ),.

b) For any function ,feceg(R"), we have

x
s-lime l( "f (--)e+ 1t11 [ l z _ s(H,k + )  +1  (H )]=f (v ) .c pp
t — . - F co



Periodic Schr5dinger operators 605

As we shall see in the proof, the first statement in Theorem 2.17 indeed comes
a t  once from the definition of vi i o  w hile  the second one is  d e e p e r . F o r the  next
two results, we distinguish the  sho rt and  long-range ca se . T h e  m a in  difference
between these two cases is: in short-range case, one is able to prove l E \ E „,(H ,k + )c = 0,
o r  in  other w ords that all the  states are  regular; in  the  long-range case, this can
be checked only in dimension n =1  or with artificial assumptions on the singularities
of E.

Theorem 2 .1 8 .  A ssume V ,= 0. Then the following properties hold:

a) A symptotic completeness: the wave operator

W  = e- "ll°1 c(H
± co

exists and the system is asymptotically complete:

W+A°"=-• ic(H) ,f f .

Moreover we have

( W + )*=  s-lim e'°e+ '1 ,(1 1)
t-.

 W t g ( H o ,k )=g(H,k + ), W + , Vg e (e2(E).

b) Existence and properties of  the asymptotic velocity: for fe(62(R "), we have

(2.21)

c) If  moreover the condition (2.2) holds, then the wave operator equals

W+ = s-lime""e -  i t"°.
t-+oo

Part b) in  Theorem 2.18 is  the justification of the common idea that the velocity
of a  particle in  a  periodic potential is given by the gradient of the eigenvalues of
110 (k). N o te  th a t th is  re su lt  h o ld s  in  t h e  presence o f pe rtu rba tions. In  the
long-range case one has to introduce modifiers e ' s ( '̀"°•k ) com m uting with H o in
order to define modified wave operators. Their construction, which will be completely
d o n e  in  S ec tion  4 ,  i s  lo c a l o n  E  a n d  involves so lu tions o f Hamilton-Jacobi
equations. The asymptotic velocity result is the one given in  Theorem 2.17.

Theorem 2 .1 9 .  The limit

W + := e"He 
i S ( 1 , 1 / 0 , k ) i  A H 0 )

t-+,0
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ex ists and its  range coincides w ith the range o f  1,,cR (H ,V ) c . M oreover we have

( W + )*=s-lime i s ( i' l l °•k)e- '1 ,J H ,k + )c ,

and g(H0 ,k)(W +)* = g(H , k ) c , Vg c (eg(E\p '(a (H o )) E„ g ).

Finally, if  the condition (2.2) holds, then the modified wave operator equals

W + =
i S ( t , H 0 , k )

.

In  the  sequel, we shall prove these results in  a  m ore  general case where the
operator V,( — D,) is replaced by a  general self-adjoint element Vi (k, D„)e OpS - "(M).
W ith this, the  reader will be convinced that the important condition is not that
the  sym bol 17 ,( - 17) (the complete symbol is well defined o n  th e  torus) does not
depend on k but rather that it is fiberwise scalar. All the proofs and the previous
results carry over to the more general framework proposed in  [12] with M  equal
to a compact real analytic manifold or to R .  I n  this general situation, the manifold
M  has to be endowed with a  Riemannian structure, the operator R is nothing but
the square root of 1— Am , with A m  e q u a l to  the  Laplace-Beltrami operator, and
the operator D, has to be replaced at some points b y  —i times the gradient. D ue
to  the lack of applications of this general framework, we prefer to stick to  the case
where M = T"* and to avoid additional definitions.

3. Effective time- dependent dynamic and asymptotic observables

As we said just above, the perturbation V is the sum of the short-range part
Vs and a self-adjoint scalar pseudo-differential operator 1/1(k, D,). The first step of the
time-dependent approach consists in  introducing an effective dynamic associated
with some time-dependent Hamiltonian. We set

V 1(t, k, D,):= F log t 1 ) V  1(k, D,)F(—
R  

log t 1 )  , for t I.

,
One easily checks that such an operator belongs to OpS - " (M ), for any p" </i, so
tha t the estimates below follow at once from pseudo-differential calculus

ad, V,(t,k, DO= 0 0 .(t -

and adm o , 0 _ V k, D,,)= 0 ;L (t -  s'), V ,u' ,0 < <

Here and in the sequel, we drop the index and the operator A  has to be understood
as any A , .  The effective Hamiltonian is defined by
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H(t):= H o + V i(t,k ,D k)

Definition 3.1. T he unitary  propagator U(t,0) associated w ith H(t) w ill be
denoted by U 1 (1).

Proposition 3 .2 .  For all geW 2(E) the norm-limit

Jim U i (t)*g(H o ,k)U i (t) (3.1)
+

exists. M oreov er w e have:
a) There exist a unique densely defined self-adjoint operator H i

+ on .Y e so that the limit
(3.1) equals g R (H ,+ ) for g(2, k )= g ( )  E (OR).
b) The set of limits (3.1) defines a commutative C*-algebra with spectrum E, denoted
by .

P ro o f  By density, the  function g  can be chosen as the restriction to  E of
some element of We").„,p (R x M), still denoted by g .  Then it is clear using (2.7) that
g(Ho ,k ) belongs to (eL. p (M; Y(Jf')) and pseudo-differential calculus yields

11[8(1 1 0,k), k, DkUll = 0(t 1

Hence, the derivative of (3.1) is norm-integrable and the lim it exists. The construction
of H,"4

-  is standard (see for example [8]) and the density of its domain is a consequence
of the norm convergence. For b), we note that the representation of (eg(E) given
by (3.1) is faithful again due to  the norm convergence.

From this result, we can construct a projection valued measure by the standard
process recalled in  Paragraph 2.3 (definition of le ).

Definition 3 .3 .  The projection valued measure derived from the limits (3.1) will
be denoted by 1zj a n d  we set for any Borel function on  E

g(H i+ ,k i
+ ):= g().,k )dy t( k), (3.2)

E

with D(g(1/1+ , k 1± ))= ft/i e <Ye, f 012cAtfr, (A, OP) < co} . (3.3)

Propagation estimates given in Proposition 2.8 are also valid for U 1 (t) (see Appendix
A.1): for any x W ,,, p (R\T), we have

F(—
t  

E0)X(Ho)Ui (t)ti V u e lt (3.4)

  

and s-lim F (

R

- < F,0  X(H 0 )U 1(0= O.
No +co 1

(3.5)
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For the next result, we will also need the

Lemma 3 .4 .  For all xe(eL„,p(R), the following estimates hold.

i) [x(H),F(T E0 )1= 0(1 - 1 ).

ii) (X(H) —  X(1-10))F(—
R

0 )= 0(t —
 i n t "

" '
P

' " ) .

P ro o f  Using formula (2.7), the problem is reduced to getting estimates with
x(H) (resp. x(H0 )) replaced by the resolvent (z — H) -  (resp. (z — H 0)-  1 ). We have

[ (z F —R  E 0  = ( z  — H) -  1 [H, , F(  E 0 )](z — H) -

+(z—H) - 1 [V 1 , F(—R >E0 )](z — H)'

+(z — H) -  1 [V, , F (—R  > e0)](z— 1•

The first term writes

—(z — H) -  1 (H, + ( ( H o + F(—R > e0 )1(H0 + i)(z — H) -  1

and its norm is estimated via pseudo-differential calculus by Or 1)1in,z)z 2
1,. If F1 is

a function like F with F1 -= 1 on supp F, then the commutator in the second term equals

P 1,F( R >co )1F 1 (—R >E0 )+F( —R >co )[V I ,F 1 (—
R

>e0 )1

and pseudo-differential calculus ensures that its norm is 0(t - 1 - P). F or the  third
one, we simply use

F(—
R

> co)V s(z — I Ct - 1 - "1R 1 P v g -I+0 - 1 M(1 1  + i)(z —11) -

  

The statement ii) relies on the same arguments applied to

[(z - 11) - 1 — (z — Ho) 1]F(—R

(Vs + Vi)(z — 110 )- 1 F G  e 0 ) .
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Proposition 3.5. The limits

slirneith i U1 (t) 1 R\t(iii+ ) =  WI+ (3.6)

and s-urn U,(t)*e - '1 ,(H ) (3.7)
t-• +09

exist. Moreover the limit (3.7) equals (W i
+ )*. Finally, the wave operator W,+ defines

a  unitary  transformation f rom  1R\ ,(H i
+ ),Ye onto 1,(H),Y ( and we have

W 1
+ 11(W )*=H 1,(H ). (3.8)

P ro o f  The existence of the limits (3.6) and (3.7) rely on  the  same argument
a n d  w e shall only consider the existence of (3.7). W e choose uel,(H),Y e. By
density, we can assume u=x 2(H)u with x ece c°°0 „,p (R\o-

p p (H))o -r). We have

u i ( t ) * e - itHu  = u i (i )*x 2(H)e - itH u  u  1(0*
r  f l

to  X 2 (I I ) e "H u + o(1),

owing to Proposition 2.8. Lemma 3.4 then implies

= 1(1)*X (11
t  

E0)X(11)e - 0 ( 1 ) .

We introduce the Heisenberg derivative

a
D ,B =—+ iH(t)B — iBHat

and we get

D i[X( 1 1  0)F (
— R  

Eci)X(H)1=

R R
— Z(1 1 0) F' (—t co )x (H)+x(H o t H o , iF(—

R

x(H)

-F[x(110 ),iV i(t,k,D„)]F(—
R

co )x(H)

+ X( 1 0)[Vi(l,k, Dk), iF (—
R  

> c(,)1x(H)

+x(F10 )F(—
t

eo )(iV i(t,k,Dk) — (V)x(1-1).

By pseudo-differential calculus, the third and fourth terms are 0(t -  1 - '1), with 0 < ' <p.
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The last term equals for large enough t

A li o )iF(—R  _>co )[1/,+V ,(F(—
R  

log(t) > co )  — 1)1(H)

= Z(Ho )iF( 1-  > E0)1/ ,F ( —R e o ) x(H)+ 0(t - 1 - '19
t 1

=x(H 0 )[F(—
R

1/1]F(—
R  

log(t)_e o )x(H)+ 0(t - 1 - "1

=0(1 - 1 - i nnke '"s)).

F o r  th e  s e c o n d  te r m  w e  s e t  i(u)=(u+i)x (u) a n d  w e choose som e cut-off
F(u=c 0 )e (eL . p ((C -  'c o , CEO) with C> 1 chosen so that F(u=c o ) .  1 on supp F '(u  co ).
We have

X(1 1 0)[1 1 0,iF(
—R 

__Ec ,)]x(H)

= — ii(H0 )[(H0 + i)  1 , F(-t-R  > co )1(H 0 + i)x(H)

=  i ( 1 1 0)[(1 1  0 + i) -  , F( —

t  
- E13)1[2(1 1 )— VX(1 1 )]

,i Dk F , R > E 0  F  R _ e 0
= — ii(HOF(—R =E0)-1 V1,[(1-10(k)+0 -

t R t

obl(1 1 )—  V(11)]+ 0(1 - 2 )

i ] Dk= — ijc(H 0 )F (—R  = V k[(Ho(k)+ R > F  R  _ 6 0  i ( H )

t t R t t
+ 0(t -

Hence the complete Heisenberg derivative writes

D 1[X(H ( —R > So  ) (H) ]  2(110 F  R  — E°  
11(t) F  R  °= E i(H)t t t 
+ 0(1 - 1  i f n f ( i ' s )

)

with 11/3(t)11= 0(1). By referring to Proposition 2.8, to  the propagation estimate
(3.4) for U 1(i) and to the version of the Cook method recalled in Lemma A.2 b), we
conclude that the observable x(I/o)F(11 E o )x(H) is integrable along the evolution.
Thus the limit of (110 e - i t 11l' as t +  CO exists. Let (P i

+  denote the limit (3.7). The
fact that 17V,+ -=( W,4")* will follow from the properties:

W c  1,(H),Xt (3.9)

and 1,\,(H,+),Y (. (3.10)
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For E E  p p (H ) ,  E e X ' so  that HiPE = EtfrE  a n d  u e 1,41 -11
+ ),It, we have

(t PE  , W i
+ u)= lim e (ç1iE,U,(t)u).

t•-• +

A s a  consequence of the m inim al velocity estimate (3.5) fo r  U ,(t), U ,(t)u  weakly
converges to  0  and this yields (3.9). L et us consider (3.10). W e first check that
the convergence

s- limUl(t) * (X(1 1 0) —   (M e  "H  1,(H) = 0, (3.11)
+

holds for any function x e ce,"o m p (R ) .  Indeed for ecel„ p (R \ (r  o-
p p (H ))), we infer

from  th e  m inim al velocity bound fo r  H  sta ted  in  P roposition  2 .8  a n d  from
Lemma 3.4 ii) that

U1(1)*(x(Ho)— x(11))e - "H i(H)
+ ot,

=s - limUi(t) * (X(Ho) — X V IV ( -

1

E0)e -  i tH  k(H ) =O.
t-.+09

This yields the strong convergence of (3.11). This and the definition of H,+ ensure that

(4-71+ X(1-1 ) =  X ( H
 I
+

)  -W  ,  X6  Womp(R). (3.12)

Since 1(H)=1 R 4H)1 c(H), we get that

u / i — 1 c( H ) = 1 R \ TV I 1+ ) 17V1+

and theorefore (3.10). The unitarity o f CV,+  now follows at once: It is  one to  one
as an  isometry and the surjectivity is a  consequence of (3.6) and (3.7). This also
gives -07 , = Wr and the identity (3.8) comes from (3.12).

Next we shall prove Theorems 2.11 and  2.17 about asymptotic observables.
Beside the information that they bring about observables, these results are important
for the long-range problem. W ith them, one is able to develop a local analysis on
E . W e  b eg in  w ith  a  Lemma which in  th e  e n d  allows the identification of the
spectrum of 4".

Lemma 3.6. Let E be a countable subset of R ,  then the closure in E of EV R
- 1

(E u t ) equals E\p„-  ( o -
p p (H o )).

P ro o f  We first note that E\p,- 1  (E u t )t) c  \ p ' o )) because o-
 p p " )  c  T.

If  (20 ,10E E  does no t be long  to  E \p„--1— (Eu T), then there exist /e 17-W4) and
W e'r,a lc o )  so that p„(lx  W r -,E ) is included in Eut.   Since p, is continuous and
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E u t  is countable, we have necessarily p(Ix  W  ( -)X)= Hence 2 0  belongs to
p p (1-10 ). We have proved

EV) R 1 10" pp(' I on  E \ p ' (E u

and we conclude by taking the closure in E.

Proof o f Theorem 2 .1 1 . The existence of (2.18) with g e(g2(E\p„- o - ( H ) ) )
is a direct consequence of Proposition 3.2 and Proposition 3.5. This limit equals

Wi+ 811 1  t+ k 1+ 11W1+ 1* . (3.13)

This result extends to any g e4(E) by noticing that

s- IiInL(H)= 1,(11 ),
n - . o p

for some sequence of functions xn E WaRVo-
p p (H)u T)), 0 which a.e. converges

to  1 . T hen  w e  have

g(H, ), = s-limg(H, k+ ),X„(H).
n—■op

Thus, the last statement of the Theorem is a  consequence of (3.8). We next verify
that the C*-morphism

(62(E\p,- 1  (a p p (H )u  g  g (H ,  k + ),

defines a  faithful representation of Wg(E\pR
- 1  (o-

p p (H)u r)). T h i s  will imply that the
spectrum of jii + equals EV/ R

- 1  (a p p (H)u-c)=E\p R
- 1 (o-

p p (H o )), according to Lemma
3.6. Indeed  it is  enough  to  check that this morphism is one to  one, or

sup
lig(1 1 ,k + 1,11 

E\P R1 (a(11)
Ig I,

   

Vg e (E \ 6  1 (0-p ,(1 )u (3.14)

By taking a  sequence of functions xn a s  above, we get

sup II x„(H)g(H, .

We refer to (3.13) while replacing g  by x ng  and we recall that W,+ is unitary from
1R \ r (H,+ )Y ( onto l (H )Y r .  We obtain

sup
Z.(1 0g(H, k + =  X ,, (H  k (1 1 1+ ,k 1+ )11 =

E\PR'10-pp(H)u -0 1 z n g

By combining the two previous inequalities and by taking the sup-limit as n oo,
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we deduce (3.14).

Proof o f  Theorem 2.17. L et us first prove a). Since x(H o )v,i 0  i s  a  bounded
operator, since we have

l E _ . (11,k + ), =1,.. 0 .(11,k + ),1,411)1 c (H)

a n d  since 
1 , , „ \ p _ 1 ( 7 p p ( H ) u r )  

i s  the pointwise lim it  o f  a  sequence in ceg(Er eg\ P 12— 1

(o- p p (H )u T)), the qRuantity 1 E r ,,g (H, k + ), can be replaced by g(H,k + ), with g E (OE r eg\ P 12— 1

( 0 "  (H)u T)). With Theorem 2.11, we getPP

s- litneunx(Ho)vijoe - k +),= H x(Ho )u(H, ,k)g(H o  , k)e '
t- + 0.0 t- + 00

= x(H)v(H,k + ),g(H,k + ),

because u is smooth o n  E „ g  •

L et us now  prove b). B y the density of T c'°„„,p (R") in  ceg(R"), we can assume
( 6 Tomp(R"). Then we note that we have, for such a  function, the estimate

sup
xERn

f ( xt  f
(

xt 1)

  

As a consequence, the time-dependent observable f ( 2,r) can be replaced by f ( 1), which
becomes f ( —P,k) after conjugating with the Floquet-Bloch transformation. One
easily checks

s-lim em f(— e-itiflpp(H)=f(0)1 p p (H ) .

t-+

By its definition, vi; satisfies

v+ 1 (H)= 0,H  pp

which shows that

s-lime i t t if (— D
t

k ) e - i r l l  I pp(H )
=

f (4 .
-
1)1 pp(H).

t 00

It remains to check that

s-lime i t Hf (— D ) e - i f H lEr c g (H,k + ), =.Aviii)lc(H).
t-+00

For the same reason as in the proof of a), 1,, c .(H, k + )c can be replaced by e (H ,k + ),. with
g  (6 g(Ereg \PR—  1(t o- p p (H ) ) ) . Since p R (su p p g )n  = 0, we deduce from the construction
of the set r given in [12] that iv(2, k)I is bounded from below by a positive constant
o n  su p p g . T h is  implies

P v t.' = 0, for f  e (eL„,p (B(0, co )), co «  I .
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Using the minimal velocity estimate in Proposition 2.8 leads to

_e ' f ( 
t

— D k ) e g(H, k+ ), — 0, f  6  C cOmp(t,+
B(0, co)),

.  

fo r c 0 > 0  sm a ll e n o u g h . T h u s  it  su f f ic e s  to  p ro v e  b )  fo r  f  e ceLf„p (R"\101).
Proposition 3.5 and (3.13) reduce the problem to the existence of

s—lim U1 (t) * f ( — 
D k

 ) U ,(t)e(H i
+  ,k i

+ ). (3.15)

By taking a  locally finite partition of unity on E r e g V ,V (ru o- p p (H)), we can assume
that g  is supported in some small enough neighborhood I, x V 0  of (2 0 , k0 ) so that
ir(k)= 1 o (H o (k)) = 1 a(k )} (H 0 (k)) and 1(k) are real analytic w.r.t. ke V0 . W e in troduce
t h e  un ita ry  p ropaga to r U2 (t) g en e ra ted  b y  t h e  time - dependent Hamiltonian

H 2 (0= X(k)71(k)n(k) -E V k, DO, (3.16)

with x  T c'co m p ( V0 ), x  1  o n  su p p g . N o te  that

H o g(H 0  , k)-= x(k)71(k)n(k)g(H 0  , k). (3.17)

Moreover by pseudo-differential calculus, we have

[g 2(11 0 , k), f (  Dtk)1 = 1) (3.18)

andI I  [g 2 (1/0  , k), Vi (t,k, D,,)]11 = 0(t -  - (3.19)

We next apply Proposition 3.2 and estimate (3.18) so that the existence of the limit
(3.15) is equivalent to the one of

s-lim U 1 (t)*g 2 (H0  , k) f (— k ) g 2  (H 0  , k)U1 (t).
+

Then we infer from (3.17), (3.19) the existence of

s-lim Ui (t)*g(H 0  ,k)U2 (t) and s-lim U2(t)*g(Ho  k)U i (t).

Hence, it suffices to check the existence of

D k
U2 (t)*g(H 0  , k) f ( — --) g(1- ,k)U 2 (t).

We first check the estimate

II(D, + tak( x-r)(k) n(k))u2(oR - 1 =  0 (11 (3.20)
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L et D 2  denote the  derivation g+i[H 2 (t),] and let 2? b e lo n g  to  ' n,p (Vo )  so that
1 on supp x. We have

D 2 (D k + tak(x -Ak)n(k)+ i[O k n(k), in(k)])

= k(X-)1107r(k) — k1X1101 (107410 — a kVt1t k, D

— X(1071110[ 7t(k), kn(k), 7410 ]]

+ D t k(X1)(10n(k) + k n(k), in(k)]] •

By pseudo-differential calculus, th e  last te rm  a n d  Ok Vi (t, k, Dk)  a re  0(t - "'). The
remainder equals

—  X(071(101a kIr(k) + [n(k), kit(k), n(k)]]) = 0.

Indeed the relation 7r2(k)= n(k) yields

aknli0= a 0 2 (k) = cr(k)n(k)+ ir(k)a k n(k)

and 7r(k)a k n(k)n(k) = 0.

The estimate (3.20) is then derived by integrating from 0 to t. The assertion iii)
of Proposition B.3 provides the decomposition

f  ( - 11—  f  (a k(XX)(10)= R 110 (—D k +  k(x--4.0)+ R 2(t), (3.21)

w ith  R 1 (0= 0(1), R 2 (t) = 0(1 - 1 )  a n d  therefore R i (t)‘ = O W . S ince  f (0) = 0 and
n(k)g(H 0  ,k)= g(H , k), we have

g(H  k)[f (—  
D k

t
) — f k(g)(k)n(k))1g(11 0 ,

Dk= g(H , k)[f(— —
t

) — f (a k(g)(k)*(k) g(H 0  , k)

 

= g(H , k)R i (t)[—L' + k1X1X0r(k)ig(H ,k)+ 1).

The estimate (3.19) (with g 2  replaced by g ) provide the existence of

U2 (t)*g(H 0  , k)U 2 (t).
+ co

Moreover we deduce from (3.20)

g(H , k)R i (t)(
D

 -  +  k(x)xonvo)u = 0(t - "'), Vu e D(R).
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By using (3.21), we get

Dk
s-urn g(H 0 5 k)(f k(X,5)(k)ir(k)))U 2 (t) = 0

+ cc

and, going back to the evolution U,(t),

Dks-Jim U1(t) *g(Ho  , k ) ( f ( - -

t
k(XA-1(k)n(k)))g(H o  , k)U 1(0

+ co

„s-firn U1( 1) *  ( f (  
Dk

(°  h it) (k )n (k ) ) )g 2(H 0 , k)U 1(t)= O.
+ co

Then Proposition 3.2 implies

u1(t)*g 2 (1-10,k)f(ak(xX)(k)7t(k)k 2 (1-10,k)U1(1)
t — . + co

= f (a k(x1)(k ))7c(k jf  )g 4 (H , kiF

and provides the existence and the expression of (3.15). Finally, this one is nothing
but f  (v (II ,k  ))g 4(111

+  ,k1') because x -_---- 1 on suppg.

We close this section with the proof of the short-range result.

Proof of  Theorem 2 .1 8 . Proposition 3.5 implies part a) of Theorem 2.18 because
when V 1 =O we have U JO = e -  ' I I °  and H  H0 . Moreover it follows from part
a) that:

g(H,k + ),-= W + g(H ,k)(1Y  +)* for all Borel functions g  on E.

B y  t h e  rem ark  after D efin ition  2 .2 , w e  h a v e  1 E \ E „ (1-10  , k)— 0  a n d  therefore
1 e g (H,k +),= O. T h u s , part b) of Theorem 2.18 is a consequence of Theorem 2.17.

4. Existence of modified wave operators in the long-range case

The first step of this analysis is the construction of local (on E) modified wave
opera to rs. Let (4 , k 0 ) e I

r e g  •  
We consider small neighborhoods Qo e -r,r e p o , /co ),

10 e R (20 ), v o  G "V 1(k 0 )  a n d  V0  G Af(k 0  so th a t  no l o  X  V 0  a n d  V0 c  c  .
Indeed /0  a n d  P0  a re  chosen so that n(k)=1, o(H o (k)) = 1 x0 0 (H0 (k)) and X.(k) are real
analytic w.r.t. k e .  We take Z E (g c

m
o m p ( PO, x = 1 on V0 . When 170  is small enough,

it can be identified with some open subset of R" and the construction of Appendix A.2
provides a solution to  the Hamilton-Jacobi equation

{ S o (t, k)= x(k);-(k)+ x(k)[Re V d(t, k, — kS 0 (t, k)), k G
S o (T,k)= 0,

(4.1)
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with the estimates for ,It' <

aZ(S01t, — tX(10 1 (10  O (t ' - 4 ), V k e V ,  Va e N". (4.2)

Note that we introduced the cut-off x in order to have a global definition of S o (t,k):
This solution Sdt, • ) belongs to We'"o m p (M; R) and is supported in  Po for all t > T. If
the variable k is restricted to V0 , then one can drop the cut-off x in the estimates (4.2) in
equation (4.1) and all relations locally derived from this equation.

W e will need some other propagation estim ates. The expression U2 (t) again
denotes the unitary propagator associated with the time-dependent Hamiltonian H 2 (t)
given by (3.16). F or the  sake of simplicity we assume T=0, which can be done
after changing the tim e origin.

Lemma 4.1. L et g belong to ceL„,p(10 x Vo ) with suppg I
2 0 Z .  T hen w e have

ak s o (t,k))g (Ho ,k)U2 (t)R -  '11 = 0(1), (4.3)

and 111Dk+akso(i,k))g(110,k)e- 0u,k)R-111_ 0 (1). (4.4)

P ro o f  The estimate (4.4) is rather easy. Indeed the identity

Dke iso(f,k) e - iso(t.k)(D
k —  k S

implies

(Dk + ak s o (t, k))g(H 0 , k)e- 
iS o ( t ,k )  

g ( f l o , k ) e -

 iS o ( t ,k ) D k

+[Dk ,g(Ho,k )]e- iSo(t,k ).

But since g ° (/0  x  V0 ), the com m utator is bounded. This implies (4.4).
The proof of (4.3) is more involved. For g  (C3

0 „,p (4, x V A  with k- .1 on suppg,
and for p e N  we set

Gp:= e ( H o ,k).

Pseudo - differential calculus yields

(Dk +OkS,(1,k))g(H o ,k)=g(11 0 ,k)Gp (Dk + ak So (t,k))Gp+ 0(1).

Hence the problem is reduced to checking that

Fp (t) =U 2(1)*Gp (Dk +OkS o (t,k))Gp U2(t)R -
1

is uniformly bounded with respect to  t > 0 for some p e N .  It is clear that F (0 ) is
bounded. Meanwhile its derivative equals

F;,(t)=U2(1)*D2[Gp(Dk+OkS0(1,0)Gp]U2(t)R-',
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where D2 is the Heisenberg derivative associated with H 2 (t). In the next calculation,
the expression B r(t) will generically denote a bounded operator of which the norm
is  0 ( t ')  and p ' will be some positive number smaller than it. By noticing that
G p x(k)n(k) = G p  because suppk x  1 / 0 , we get

D 2 (G p (D k + ,S  k ))G  p )

= i[V,(t,k, Dk), G ] ( D , ,  + ( (t, k))G p + h.c.

+ G p (— a k;1.(k) + i[V,(t,k, Dk), Dk+ ,S 0 (t , k)] + 0 (t, k))G p

= ,(t)+ I 2 (t).

Pseudo - differential calculus combined with estimate (4.2) leads to

I ,(t) =B 1 + (t)G 1(Dk +  k S 0(t, k))G „- 1+ B 1 +  „, (t), for 1 (4.5)

and / i (t) = B (t), for p =O. (4.6)

For the second term 1 2 (1), we first recall that the principal symbol of V,(t,k, D,,) is
real so that

i[V,(1,k, Dk), Dk+ kSo(t, k)] = — 3,,Re k, DO+ 3,ReV 1(t, k, Dk )01.,S 0 (t,k)

+ B , ( t ) .

By differentiating the Hamilton-Jacobi equation (4.1) with respect to k e V0 , we obtain:

OAS0 (t, k)= a ki(k) + 3,,Re k, — a ,,S 0 (t, 0)— a „Re v i(i. k, — a ks 0 (t, k))8ZS 0 (1, k).

The two previous identities imply

12 (0 =  —  Gp [Ok Re V,(1, k, Dk)— a,,ReV,(t,k, — kS 0 (t, k))1G p

+ G p [O „ReV(t, k, D,,) — a „Re V At, k, — kS 0 (t, k))] • S 0 (1, k)G p +  B  

By Proposition B.3, we have

(0 „Re V At, k, Dk) — ,,Re , k, — k S o (t, k)))

B + „,(1)(D,c +  k S o (t,k, D,,)) + B 

(3 ,,Re V 1(t , k, D,,) — a „Re V,(t, k, — k S 0 (t, k))) =

B2+ 0 , (1)(Dk+ a k S 0 (t, k, Dk))+ B2+,40,

while (4.2) says that the norm of a ,? s o (t , k) is 0(1). Hence the term 
' 2 ( t )

th e  same
decomposition as 11(t) in (4.5) (4.6). By going back to the definition of F(t), we obtain

F(t)z  B (t)F p _ + B ,(t) for p  1

and FO(t)= B „,(t).
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By integrating and by induction, this yields

11F,(011<Cpt-
i n f ( 0 , 1  — (p +  0 4 1 .

We conclude by taking p >[y - 1 ].

Proposition 4.2. The limits

f-20 o5 c os-lime m e
- i S o ( t , k ) i  

(H  k )1  (H  )
t-.

 s - l i m e
i S o ( t , k ) e - i t H I

n o
(H k + )

exist. If W LF
0 denotes the limit (4.7) then (4.8) equals ( W ,L )*. Moreover, we have:

W.,tg(H 0 ,k)(1,q )* =g (H ,k + ),, g  e 4 ( 0 0 ).

P r o o f  By introducing some locally finite partition of unity on (I 0 \(ruo -
p p (H)))

x 170 , E i € N e  = 1 ,  with gi eceL„, p 0 / 0 \( ru o -
p p (H)))x  17 0 ), we have

s-lim E 101 0 0 ( H 0  , =  1  0 0 ( H 0  , 10 1o )
N—.co

and s-lim  E e ( H ,k + ),1 0 0 (H ,k  ) ,=1 , 0 (H,k + ),. (4.9)
N—.co

Hence, it suffices to prove the existence of the limits

si oct.og  2(11 0  , k)
t-+Ø.

and s-limeiS°(''k)e-itHe(H,k+),= s-lime
i S o ( t , k ) g 2 v 1 0 , 0 e - i t H .

t--. + co t— + co

By the same method as in  the  proof of Theorem 2.17, the  problem is reduced to
the existence of the limits

s-limU 2 (t)*g(Ho ,k)e
- i S o ( t , k )

and s-lime15°'k)g(H0,k)U2(1).
t—o+ co

619

(4.7)

(4.8)

(4.10)

(4.11)

We calculate
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—
d  

(e'.s°(" )g(H 0  , k)U 2 (t)u)
di

= e ts°(" )[ia,S „At, k)g(H ,k)—  ig(H ,k)((x 71)(k)7 (k)+ V,(t,k, D,,))]U 2 (t)u

= ie's°( '̀k) [ReV ,(t,k, —  k S 0 (1, k)) — ReV,(t,k, 1))]g 2(H 0 , k)U2 (t)u + 0(1 -  # ') . (4.12)

W e refer again to Proposition B.3 and write

(Re 1/1(t, k, — akso (t,k))— Re k, Dk )) = R,(1)(Dk + akso (i,k))+ R 2 (t)

with R 1 (0= 0(t -  l e ) and R 2 (i)= O r 2
 ) .  By density we can take u e D(R) and

Lemma 4.1 gives

e isoo Joel" 0  , k)U2 (t)u
cl
at

<ct - 1 - millull+11(Dk+akso(t,k))g(1 1 0,011 2(1)ull]

Thus w e get the existence of the lim it (4.11). W e d o  th e  same for (4.10). The
identification of (4.11) as the adjoint of (4.10) and the last statement rely on the
same arguments as the one used for Proposition 3.5. Their proof is even simpler
by referring to Theorem 2.11.

In order to construct a global modified dynamic, we take a locally finite covering
of Ere

g
 = V A  where the sets SI;  a re  "smooth enough" open subsets of E r e g

 which
satisfy the same properties as Do introduced in  the  beginning of this Section and
Qi n Of  = 0  for j j ' .  The expression "smooth enough" means that the boundary
Oni  of Q . is the finite union of submanifolds of R  x  M  with codimension 2. Such
a  covering can be done with a triangulation of each stratum of E r e g

 (w hich is a
semi-analytic set of R x M  locally diffeomorphic to M  by projection). With every

we associate the solution S i (t,k ), t> T ,  of the Hamilton-Jacobi equation (4.1)
where a  suitable cut-off xi  replaces x.

Definition 4 .3 .  The modifier S(t,110 ,k ) is the self-adjoint operator defined by

S(I, H ,k):= E k )1 (H  ,k ) . (4.13)

Remark 4.4. W e recall that the estimate (4.2) can be made uniform with respect to
j  fo r a  = 0 . This combined with E i l o p i o , k) = 1 ensures that the domain of S(t, Ho , k)
contains D(//0) (and equals D(H 0 ) if Ti  = T  for all j).

The Theorem 2.19 is now easily derived from its local form given in Proposition
4.2.
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Proof  o f  Theorem 2.19. W e  have

e

-  i S ( t , H  0 , k )  

E e - is i ( t .k ) 1  (H  k).ni  o ,

621

The limit which defines the wave operator Or exists because E i l , i (H , ,k )= 1. For
the converse limit, we first note that for all ] ,  w e have 1,0 , (H 0  , k )= O. B y applying
Proposition 4.2 with finitely many n o which cover On i , we deduce from this that
1 (H,k + ), = 0 .  This implies

lEr..(H,k+),

and the existence of the second lim it in  Theorem 2.19 becomes a  consequence its
local form (4.8).

A .  Some topics in scattering theory

In this appendix, we shall prove the minimal velocity estimates required in our
analysis. Then, we will detail the construction of the Hamilton-Jacobi equation (4.1).

A .I .  Minimal velocity estimates.

These abstract propagation estimates are due to Sigal-Soffer. We will follow
th e  presentation given in  [8 ]  a n d  [1 1 ] , a n d  give a  sharper version which is
needed here.

Proposition A .1 .  L et H and A  be two self-adjoint operators on a Hilbert space
t .  L et V(t) be a bounded time-dependent self-adjoint perturbation so that the unitary

propagator U(t)=U(t,0), associated w ith th e  Ham iltonian H(t)=H+V (t), is well-
defined. W e  suppose that:

-0  The function s + 0- 1e i sA belongs to W "IR ,Y (1 9)),
f o r some E >0.

ii) IlaclAV(t)11 c 0 (t - E ), Iladm+o- iV(011 e (
1

1 - E ) a s  t co

If  A denotes some interval so that

1 A (H)[H, iA ]l A (H )  c o EA (H),

then we have for any  ge(C"'„„, p (R),suppg c (— oo,c 0 ) and any f  € „,p(A)

r+co

J g(—
A

)f(H)U(t)u
2 d t

<0102 , Yu e,Yf (A.1)

   

and s-1 (im  g  —

A  

f(H)U(t)= O.
t-.+.. I

(A.2)

The Heisenberg derivative [H(t), will be denoted by D .  We will use the next
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versions of Putnam-Kato inequality and Cook m e th o d . The proof can be found
in [8].

Lemma A.2. L et (I) be a  uniformly bounded Y(Y1-va1ued ce-function  o n  R .

a) If  there exist measurable Y(.4 )-valued functions B(t) and B i (t), i=1.••n, so that

D 1(1)=B*(t)B(t)— E B i(t) B11)
i=1

with f o r all ie{1,•••,n}

1113MU(t)ull 2dt ClIu112 , Vue Ye°,

then there is a constant C, > 0  so that

c c lIB(t)U(t)ull 2 dt 
1

b) L et us assum e that the function szl) satisfies

KIP 2 ,D ( t ) tk 1)1 B21(t)tP 2111IB IMO 1(011
i= 1

with j 11B2i(t)U(t)ti j 2dt C11114112, Vue

and f±cc 031i(otoull2dt c,1114112, V ues,

where 3  is a dense subset of  Y f .  Then, the limit

s- urn U(t)*(1)(t)U(t)

exists.

Proof  of  Proposition A .1 . L e t g e r ' . p (( —oo,c,)) with c, <c o . W e  set

+
F(t)= g2(s1)ds1

and we consider the observable

0 (t)= f(H )F (—
A

) f (H ).
1

Vue
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We next calculate DO(t). W e have

DI:D(t)=f(H)([H, iF
) )

2

g
[V(1), H )F  ( ) f (H )]

t 1 \ t
./(H)+

if (

= f(H )([H ,iF ( -4 - ) ]
+[v(i), iF ( /1)1 A g 2 ( 21))f ( H )

t t 2

A
+[V(t), if (H)]F( 7 )f(H) + h.c.

In  order to estimate the last term, we use Helffer-SjOstrand functional calculus (2.7)
and we reduce the problem to the estimate of commutators of V(t) with the resolvent
(H+i) -

1. O ur assumptions o n  V(t), im ply that the norm  o f this commutator is
0 0 ' - 9. By using suppg c (- co,c,), we get

D(121(t) f(H)[H,iF(-
A

)]f(H)+ f(H)[V(1), iF(-
A

)1f(H)- c, -
1

g 
2 ( 1

1+ 19(t — 1 — E ).

(For the commutators with F  -

A  

, it is convenient to introduce the Fourier transform
t

of F:

[C, iF (-1] = I P ( Œ ) [ C ,  
A
t

t 27r

A  
1
A A

=  
1 f e t t Ado-

2n t  R 0

1 A A
= a v o l i e b1- Lu dOdudcf

2nt R 2 [0  ,1 ]

_
2

f l l
nt

[g(o-)k(ol]e"+ " 1 ° ) 7 [C , dOdo-do-'
A A

R 2 .1 0 ,1 ]

By taking C= V (t), we get

[V(t),iF( -

A

)1= 0(t -  ' ) .

F or C = (H  +  1, our assumptions say that

R 9 s B(s)= e"[(H + isA e  CYO

is Holder continuous with order e> 0 . Hence we have the identity

1
(A.3)
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A A .  A  (0'0 +0 — M O ) .  4
e  

+ a')(1 — B (0 ) e i(ff + er')07 t B   e "  t

=e t B ( 0 ) e 4  + 0 ( (

a°
 +  (1 -0)1 - E)

and we deduce from (A.3)

(H + i) - 1 [H , iF ( -
A

)](H  +  1 = -
1

g
(

-
A

) (H + i) - 1 [H ,i2 ](H + i) -  1 g ( -
A

)+ 0 ( t - 1 - ').
t t

(A.4)

Further, one easily checks, w ith Helffer-Sjiistrand form ula and the equality (A.3),
the estimate

[g ( j ) ,h (H )]=  0 (1 - 1 ), V h  E Wfo„,p(R). (A.5)

By left- and  right- multiplying (A.4) with h (H )= f(H )(H + i) the  previous estimate
(A.5) leads to

f (H ) [H , iF ( 1- - ) ] f (H )= -
1 f v o g ( A ) [

H iA ]  g ( -
A

) f (H )+
t t

We use again (A.5) with h =f, , f 1  E (eL„,p(A) and f  f = f :

f  ( H ) [ H ,  i F ( A ) ] f ( H )  l f  g fl
(H  ) (  ) f , (H )[H ,  f  , (H )  g ( 14- ) f (H )++ 0 (1 ' E )

I t t

1 A

t
f(H )g  2 ( —

t
)f (H)+ 0(1 - 1

 - 8 ) .

We have proved

A
D ( t )  ( c  -  c i ) -

1

t f ( 1 1 ) g  ,  ( -
t
) f  (H) + 0(1 -  - E).

T his and  Lemma A.2 a ) yield (A.1). The existence and the value of the strong
lim it (A.2) come from the  previous result: We calculate the Heisenberg derivative
of f (H )g 2 (1 )f (H ). W ith the  inequality (Al) a n d  Lemma A.2 b), w e obtain the
existence of the strong limit

s-limU(t)*f(H)g 2
 ( —

A

)f(H )U (t).
t- + 00

Finally, this one has to be zero because the integral (A.1) is convergent.
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Indeed, th e  estimates (Al) a n d  (A.2) a re  not very satisfactory because the
conjugate operator is not explicit, by its construction given in  [1 2 ]. However, it
can be estimated by more familiar observables. This point of view is the  reason
for the next statements.

Lemma A.3. L et A  and B be two self-adjoint operators on a Hilbert space .Yf
so that

g(B )c g(A ),

A < c B  and l<B,

[A, B]B -  e Y(.0).

Then there exist small enough constants c, >0  and  co >0 so that

IT0 0
2 dt
j < quI12

, Vu e (A.6)

(A.7)

(A.8)

r , ( B  _ ) A, (
r

Proposition A.1 and the above Lemma A.3, lead to

Proposition A.4. If  H , A  and  B are  three self-adjoint operators on A ' which
satisfy  the assumptions o f  Proposition A.1 and Lem m a A.3, then w e hav e for any
f  e ( g p (A) and for £0 > 0 small enough,

F(—
B  

,e() )f(H)U(t)u

(and s-urni  F —
B

< eo f(H )U (t)=  O.
t-4-co t

Proof  of  Lemma A .3 . Let us first verify

[4-13), Al =
for GE WL„,p(R). We use again Helffer-Sjeostrand formula (2.7) which gives

[ G  (B
t

) , A l  

2 1
  f az

L
6...(,)[(z

d z A d fni t

1 _ z  (  By 1 [B _ ' _= 2 n i  f c ez G ( ) z - - —, A B  B  z By- -  d z  Adzt t

where is an  almost analytic extension of G which satisfies

IOLOi d(z)1 C I m  z18 <z> V N e N, e N 2 .
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We have 11(z = 0(11-111 zl 1) while

B  -  -Bt ) -
=  o ( i

i<mz >z ).
T he estimate (A.8) now  com es a t o n c e . L e t R(1) and R 1(t) respectively denote

F ( -
B  

< co)  a n d  F ( -
B  

< 2c0). W e  have  R(t)R,(t)-- R(t). L e t  A 1(0= R i (t)A  1(0*.

For co small enough,

A 1(0 ._cR i (t)BR 1(1) -
1 

co t
2

which yields F (
A 1 ( 0

> co
) = O . It remains to check that

t

R (1)[F(-A >c 0 ) -  F ( A 1(1) > co ) ]  0(t -  1).

We write F(s > c = (s + _ i (s) where F _ 1 satisfies lac.: F - ((s)1 a,<s> - Œ  We take
some almost analytic extension P_ ,(z) of F_ satisfying

COE,N1Im ziN<z> — 2 --Œ-N NE N , ()cc N 2 ,

and we write

R o ) [ F (A F ( A  )] = 
R(t)

A JO  F  _ A
t ° t ° t t

R (r) (A   +i
1 ( 1 _  F_ i (A ,(t))1

t

By (A.8) with G(I:) = F co), we estimate the first term by

R o ) ( A  A  i ( t ) )

t1 1
- R(1)R 1(0 -

A  

- R(t)R JO -
A  

1? JO= R(t)[R -
A

1E0(t -1 ).

(A.9)

For the second term, we combine the above estimate with (A.8) and we get

R o )  1 (0+  F  ( A )  F  1  (A ,(t))1

(A  1(0+  i) R o ) rF F  1(A 1(0)1 +  o ( t  _ i). (A.10)
t L t t
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By recalling that is uniformly bounded by 1 co , we are led to consider

R(t)[F_, F ( A   (t))]
t ) t )

1

2ni
i (z)R(o Rz — _A ) (z A  1 ( 1 Adf

=
1 (A1(z)R(t)(z —A Y A 1 (t)X z A  (t)) - 1

dz A dz.
t2ni t t t

We commute R(t) and the resolvent (z

1 A A  - 1 A - 1
R (t)( 

A
z = ( z  — R(t)—(z—'±') [R(t),—A l z - - )

t t t

and we conclude with (A.8) and (A.9).

A.2 About the Hamilton - Jacobi equation.

In order to construct modified wave operators in the long-range case, we need
solutions of Hamilton-Jacobi equations with Hamiltonians having the form

h(t, x, )= E( ) + V(t, x,

where E belongs to Cc:) ,„p (R") and V e x T *R") satisfies

iao,caly,
4 v(t,.x, 01 c OE„<gl + III> 1'1

Theorem A.5. There ex ists T>0 large enough so that the equation

{

S (t,)=E ( )+V(t,a 4.5(1, ), )
S (T ,)=0

(A.11)

admits a unique solution under the condition q S ( t , ) e L (R " ) .  This solution is then
infinitely differentiable with respect to eR" and satisfies

3aS(t,0— tE()]= -4+'), for O. (A.12)

I n  o r d e r  to  p r o v e  th is  r e s u l t ,  w e  s h a l l  use the T heorem  A .3 .1  of
[8] which says that the solution is given by

S(t,)=Q(1,ri(t,)) (A.13)

with Q(t,r1)= h(u, x(u, (u,r1))+ <x(u, ri)>du, (A.14)
JT
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where (x(t,ti), (t,ti)) is the solution to  the Hamilton equations with the initial data
(x(T, n),(Tn)) = (0 , n). In order to define ti(t, a  w e  have to study the Hamilton
equation with prescribed initial position and final momentum.

Proposition A.6. T here ex ists T > 0 large enough so that there is a unique
trajectory in  T*R" which solves

amo=a,h(t, y (1), n (t))

arrgt)=—axh(1,Y(1),11(1)) (A.15)

y(t 1)=x1, rl(t2)=

when T._t i t,<  +c o  and (x 1 , 2 )E T *R ". This solution denoted by

(Y(t ; t , 12 ,xi n (t ;t ,,t2 ,x 1 ,2 ))

is indeed infinitely differentiable with respect t o  
2
 ER" and satisfies

la 2 (y(t;t 1 ,12 ,x 1 , 2 )—"C1 —(t —  t1)aE(2))1 o ( t ,- 4 - E
) t - -t1I (A.16)

and laL(n(t ; t, , t 2  , x 1 , 2 )—aE( 2 ))1 o ( t ,- , , i+ E), f o r ci O. (A.17)

P ro o f  The local existence and uniqueness of a solution to  the initial value
problem for the considered Hamilton equations makes n o  p rob lem . F o r such a
solution, we get by differentiation

ay ( 1) = (Nt, Y(1), rt(t))
[at 11(1)= `F(1,J(t),q(t))

with (I)= q 4 V + a4x va4E +4, va4 V —  et E,Ox V—  at vax v

and `V = —ax v.
These functions actually satisfy

la7a1A (1)(1, x, COEfiy<ii +Itl> -1.1- WI

1.0̀;acaY4,p(t,x,)I___cŒpy<g1+1/1) - 1 - - P + E- IOEI- InI.

We set

Y (t)=y(t)— x,— (t — t,)a 4 E( 2 )

and 0(t)=1/(t)—a,E(2).

The system (A.15) is then equivalent to the fixed point problem

)7( A . 1 8 )
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where the mapping 9/ is given by

y ( Y) ( 0 _ ( - 1:,(s —  t 1)013(s, y(s), n(s))ds — (t — t 1) j 2(1:0(s , y(s), n(s))ds) .

) (s , y(s),n(s))ds

We introduce the functions 0,2 a n d  (,1  defined by

0 if s< t 0 if

„(s)= 1 if t <s< t2 and Ctly, i (s)= ( s -1 1) if t, <s< t.

0 if t2 < s (t - 11) if t <s

The mapping g  then writes

g  Y)(t) St+1 xt + (s — t1)a4W2) + Y(s), E( 2 ) + Co(s))ds

—  - 0,„(s)tv(s,x, + (s — t 1)a 4E( 2) + 
Y (s), a 4E( 2) + o(s))ds ) •

We shall solve the fixed point problem in the vector space 4 ; x  Z i
°,  where

If(i)1 •z;,:= f e e ( [ t,,+ co), R " ), sup . < C 0 } ,
te[T,co[ It

i = 0,1,

is endowed with its natural n o rm . T h e  functions 0
2
(s) and V,11(s) satisfy

and 0 <   »  < 1 ,
It—td

so that Y  is an  endomorphism of Z ,  x Z .  M o re o v e r  the estimates on 41)  and
ensure that Y  is infinitely Fréchet-differentiable with a  derivative estimated by

ay,eY( Y, 0)11.V(Zix Iv f

By taking t , large enough, the mapping g  is a contraction on x Z,°, and the fixed
poin t problem (A.18) adm its a  unique so lu tio n . Indeed, Y  is parametrized by
(x , , 2) and the derivative of the solution Cf(x, , ( 5 ( x 1 , 2 )) of (A.18) with respect
t o  

2
ER "  equals

[— (1 - 3y,e9/) - l a g ] ( 15(xi ,

By referring again to the estimates for (I) and P  w e  deduce  tha t 04 ,  is of order
0(t1-" +t) and the estimates (A.16)(A.17) come at once for Pal < 1 . The estimates for
any a  follow by differentiating with respect t o  2 eR" the above relation.

Proof of Theorem A .5 . The function ;At, 0  involved in (A.13) is cpnstructed by
considering the  so lu tion  t o  (A.15) w ith  t  = T  la rg e  enough, t2 =  t, x , = 0  and

W e then take t i ( t , ) = 1 1 ( 1 ;  T, t , 0, where the estimate (A.17) ensures that

O  0 ,2  1
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ti(1, )  is  Lipschitz continuous with respect to e  R " .  The Theorem A.3.1 of [8]
sta tes that the  function S(t, given by (A.13) and (A.14) is  the unique solution
to (A.11) with q S (t, e  L L (R ") . Moreover this result provides the identity

4S(t, )= x(t , )) = y(t ; T, t, 0,

The estimate (A.12) is then easily derived by integration

atacEso,0— t E ()]= aav(r,a4s(t,),)]

from I to + co, by using the estimates o n  V and (A.16).

B .  Pseudo- differential calculus on the torus

T here  a r e  several w ays o f  considering pseudo-differential calculus on  the
to r u s .  T h e  o n e  w hich w e p o in t o u t consists in  g o in g  b ack  to  R" a n d  using
Weyl-H6rmander calculus. This method presents two advantages: 1) this procedure
associates a  complete symbol with any pseudo-differential operator; 2) the precise
estimates of Weyl-1-16rmander calculus provide estimates for parameter dependent
pseudo-differential operators (semi-classical calculus). The final remark reviews other
approaches and relationships between them. Let F denote the lattice zn in R" and
F*=(27rZ") its dual la ttice . The distributions on Tn =  /e /F  will be identified with
the ['-periodic elements u(k) of Y' (R"),

u(k +y)= u(k), Vy e F.

Then we have

1-1S(T"):= tu(k) e 11(R"), u(k + y) = u(k), Vy e F1,

and the scalar product o n  V(T", dk) is given by

(u,v),2( T „) = fi(k)v(k)dk,
JF

where F is any fixed fundamental cell of F.
The pseudo-differential operators are defined by

a(k, N u(k )= e-1"1"a(k ,ti)u(lichidk '
.JJ R2

with a e S  (<0"1, g u = dk 2  +  ch12 )  and

[r, , a(k,D,)] = 0, Vy e F.

N o te  th a t  th e  last cond ition  is equ iva len t to  a(k + y,n)= a(k ,), Vy e F. These
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operators send Y '(R ") in to  itse lf  a n d  preserve periodicity . Thus they can be
considered as continuous operators on

Definition B.1. i) The expression OpSm(r) denotes th e  space o f operators
a(k,Dk) where the symbol a  belongs to cV (T * T " )  and satisfies

laœxqa(X, Ca,fl<Om V (x, )e  T * Tn , V(Œ, /3)e N2".

ii) The expression OpS"( T") denotes the space of families (a(k,Dk ;h )), (0 ,1) where the
symbols a(h) satisfy the estimates

- -ia;qa(x, Ca,phifil m< V(x, e T *T", V(a, /3)e INP",

uniformly with respect to  h e (0, 1).

The symbols of these operators are defined o n  T*R" as F periodic elements of

S(<11>m, gu = dk
2

 +
c h e

> `

)
and the # operation defined by (a#b)(k,D,)= a(k, Dk)b(k,

<11
inherits all the  properties o f the  same operation defined fo r general symbols on
T*R" (see [14]).

We next check the L 2  continuity on T .

Lem m a B .2. I f  aeS(<nr,g 1) ,  then the  operator a(k,D k)  is continuous from
HS(TH) i n t o

 H s - m ( r )  f o r any  se R . M oreover its norm  is estim ated by  som e f ixed
semi-norm of  the symbol a.

P ro o f  It suffices to consider the case m = s = 0 . A  fixed fundamental cell of
F is still denoted by F and we choose x E cefo „,p (R") a cut-off function so that z 1 on F.

Then we have the norm equivalence

1 1114 111,2(7, ) 11 X14 11 L2(R.) C1 14 1,2(T)

and it remains to find an  estimate for 11 za(h, L2(w). W e take zo
 ( 6L'„,p(Rn) so

th a t EyErzo (k — y) = 1 and  i o e (C,„.,p (R") so  th a t ko 1  o n  supp ;co . By using the
periodicity of u, we get

[xa(k, D k)u ](k )=  E [x(k)a(k, D k)xo (k — y)u](k)
11,1,<_To

+ E e  -l(k le  Y ) n  AO* ) 0(k,  
11X NOW)UVOCIlldk%

IYI> yo f f R 2 r ,

(B.1)

For IA,  we refer to the continuity of a(k, Dk) on L 2 (R"). For lyl > yo integration by
parts applied to
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Ky(k,k)= 
R

'''mx(k)a(k,r1)X0(10dri
"  

'

shows that K y is bounded, with some fixed compact support and the estimate

where 1IN  is some seminorm o n  S(1,g,i)  depending o n  N .  Schur's Lemma then
provides the estimate for the second term of (B.1),

c,„11a1IN <Y>- "_ cNlla IIN
li l>io

by taking N  large enough.

From the definition that we took, we already know that the pseudo-differential
operators form an  algebra of continuous operators on 9 ' ( r ) .  The above Lemma
B.2 also ensures that pseudo-differential operators a re  continuous on
Moreover this yields that the operator A = a(k, D,,) defined on L 2 (7") with domain
fue L 2 (1"), A ueL2(T")}  is closed and that W NT") is a  core for A.

Proposition B.3. i) If  A , belongs to OpS"'"u(T"), i = 1,2, with m 1 +m 2 <1, then
we have

11 [ A  5 A 2]IlY(L2(7, 1)= 0(h' m i m 2 ).

ii) If  A  =(a(k,D,,;h)),,, ( 0 ,1 )  belongs to O pS"(T"), then the fam ily  of adjoint operators
A * belongs to O pS"(T ") and

A +A *
(Rea(k, D,,; h))hw ), 1) E OPSh 'm  1 (T").

2

 

iii) If  A  =(a(k,D,;h))„E ( ,,, ) belongs to OpS'"( 7") and if (hip(k;h)), E,0 ,h 0 ,  is a bounded
fam ily  in (eN T"), then we have

a(k, D,,;h))— a(k, y9(k ;h); h)= R i (h) (D, — cp(k ; h)) + R 2 (h) (B.2)

with 11R t(h)li y(1,2(T.))= 0(h ' )  and 11 R 20)11 Y(L2cr
„
))

= 0(h' - m).

iv) The operator V (D,) defined as the closure on L 2 (Rn) of an element of  OpSm(T"),
is the sanie as the operator defined by functional calculus.

P ro o f  If u  and  y  taken in  cep(T") are considered as F-periodic elements of
NR") and A =(a(k, D,,) as an element of OpSm(R"), the periodicity condition ensures

that
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1F d(k)dk [A-u](k)v(k)dk,

where A t  is  the formal adjoint of A  on L 2 (R"). Hence, the assertions i) and ii) are
byproducts of pseudo-differential calculus on R" combined with Lemma B.2.

The assertion iii) is also derived from a result on R" which may be found in [8]
(use a Taylor expansion).

Let us now consider iv). We first by Vp r,(D,) the closure of the pseudo-differential
operator and V(D„) the function of the vector of commuting self-adjoint operators
D , .  For u e W (T ")  considered as a F-periodic element of (eN R "), the Fourier
tranform equals

ii(n)(n)=(27E)" E  a y .6(  —T *),
y .Er*

where ti y * ,  y'ke F*, are the Fourier coefficients of u. Hence, we have

[ Vpd(Dk)l](kI= ei "  V441(1)dr/ =  E  e1"" /AY *112, = [ V(D011](k).
R" r e l .*

We conclude by recalling that WNT") is a core for Vp d (Dk )  and V(Dk ).
We close this appendix by recalling two other approaches to pseudo-differential

calculus on the torus.

R em ark  B .4. i) The standard pseudo-differential calculus on compact manifolds
applies to the torus. Indeed, it is rather easy to check that the pseudo-differentital
operators defined in this appendix are classical pseudo-differential operators and by
using charts that classical pseudo-differential operators are of th is  fo rm  up  to
negligible remainders.
ii) Another approach to pseudo-differential calculus on the torus, consists in replacing
Fourier transform by Fourier series and derivatives with respect to  I/  by discrete
derivatives with respect to  y*. Here again, by introducing the right interpolation,
one can show that this pseudo-differential calculus coincides with the two previous
ones modulo negligible remainders.
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