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Rationality of almost simple algebraic groups
By

Nguyéi Quo¢ THANG*

Abstract

We prove the stable rationality of almost simple adjoint algebraic groups, the connected
components of the Dynkin diagram of anisotropic kernel of which contain at most two
vertices. The (stable) rationality of many isotropic almost simple groups with small
anisotropic kernel and some related results over arbitrary fields are discussed.

Introduction

Let G be a connected linear algebraic group defined over a field k. The
classical results of Chevalley (Séminaire Chevalley 1956-1958) showed that if & is
an algebraically closed field then G is rational over k as k-variety, i.e., the field
k(G) of rational functions defined over k of G is a pure transcendental extension of
k. However this is no longer true if k is not algebraically closed and one of basic
geometric problems of algebraic groups over non-algebraically closed fields is the
problem of rationality. A milder notion of stable rationality (and unirationality)
is in sequence: An irreducible k-variety X is k-stably rational (resp. k-unirational)
if there is an affine k-space 4 such that X x A4 is k-birationally equivalent to an
affine k-space (resp. such that there is a surjective k-morphism 4 — X). In
general, it is difficult to verify if a given k-group (or k-variety) is rational (or
irrational). We refer the readers to [Ch], [CT], [MT], [M1,2], [P], [V], [VK] and
references thereof for various problems and progress related with the rationality
problem.

Up to now there is no general critetion to decide which almost simple groups
are stably rational over the field of definition by looking at their Tits indices,
except for the trivial cases of split and quasi-split groups. Quite recently, with the
papers [M1,2] it became known that

Theorem 1 ([M1, 2]). 1) For any division algebra D of degree divisible by 4
over a field k, the related almost simple simply connected k-groups G with G(k) =
SL,(D), where SL,(D) is the group of all elements of reduced norm one in the
matrix algebra M, (D), are not stably rational over k.

2) There are almost simple adjoint groups of type *Ds = *A3 which are not
stably rational over the field of definition.

* Supported by a Fellowship at McMaster University and a Lady Davis Fellowship at Technion
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In terms of Tits indices, from Theorem 1 it follows that for any field k such
that there exists a division k-algebra D of index d divisible by 4, any almost simple
simply connected group G defined over a field k of type A with Tits index

nr
l._”._d—l._dQ_._.“_._rdQ Ce—.--—_o®

where d is divisible by 4, is not stably rational over k. In particular, it is true
when d = 4, i.e., the maximal length of a segment consisting only of black vertices
is equal to 3.

In this paper we are mainly interested in adjoint groups (which can be
considered as a continuation of our previous papers [T1] and [T2]). The purpose
of this note is to show that Theorem 1 can be used to get such a general
criterion. Our method shows that many almost simple groups with relatively big
k-rank and the degree of the related division algebra is <3 are k-stably rational.
Hence in certain sense, our results are optimal. More precisely the main result of
the paper is the following. We keep the notation of a classical type X,Sfir) over a
field k, as adopted by Tits, where d denotes the degree of the division algebra
(associated with the group), n denotes the rank and r denotes the k-rank.

Theorem 2. Let G be an almost simple adjoint algebraic group of type X,S,d,)
over a field k. Let m(G) be the maximal number of vertices of connected com-
ponents of the Dynkin diagram of anisotropic kernel of G. If n —rd < 2 and G is of
classical type, or if m(G) <2 and G is of exceptional type then G is rational over k.

We will show in the course of the proof that for individual classes of groups, the
results can be better. We remark that the number 2 in the theorem is best
possible, i.e., one cannot replace 2 by any greater number. In fact, the above
result of Merkurjev says that for arbitrary fields k, if there exists division algebra D
of degree 3, then for any natural number n, there exist non stably rational groups
G with m(G) =4n— 1. However, it is not known if for any natural number
m # 4n — 1 there are a field & and a non (stably-) rational group G over k with
m(G) = m.

The following two key results are used here. First, it is a result of Chevalley
(originally proved in [C] for fields of characterstic 0, and extended to arbitrary
characteristic by Grothendieck in [SGA III, Exp. XIII, Corollaire 3.3 and Exp.
XIV, Théoréme 6.1]).

Theorem 3 ([C]). Let G be a connected (linear) algebraic group defined over a
field k. Then the function field k(G) of a connected reductive k-group G is of the
form L(T) where L is the function field of the k-variety Torg of maximal tori of G
(which is rational over k) and T is a Cartan subgroup of G defined over L.

The second one is the following theorem of Voskresenskii (see e.g. [V]), which
dated back to 1965.

Theorem 4. Any torus of dimension < 2 is rational over the field of definition.
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From these two results one deduces that, if G is connected reductive of
rank < 2 then it is rational over the field of definition.

It is well-known that the almost direct product of (stably) rational groups is
far from being rational or stably rational. But it turns out that if k is one of
“nice” fields such as local ( p-adic or real) fields, or if the Tits index of G is “‘nice”
(in the sense to be made clear below). then many isotropic almost simple k-group
are k-(stably) rational. The method of the proof of these facts is based on a
detailed analysis of the Tits index and explicit computations in the groups under
consideration.

The first version of the paper (written in March 1995; see also preprint [T4],
September 1995) contained two directions of study (and corresponding results
obtained, the proofs of which were merely sketched):

1) Many almost simple groups are rational or stably rational over p-adic
fields. It reflects the fact that except for groups of type A (naturally, due to
Merkurjev’s result) and certain simply connected forms of type D, any almost
simple group over p-adic field are rational or stably rational.

2) Almost simple k-groups with Tits indices of their anisotropic kernels
having connected components with at most two vertices (sometimes three) (called
black segments in [T4]) (the condition again clearly necessary due to Merkurjev’s
result) are rational or stably rational.

Some people already worked in these two directions and for the first direction
my result was completed in a (one year later) 1996 paper [CP], where it was shown
that actually any almost simple group of type # A is rational over the p-adic
field. The method of proof is similar to the one we used and most of technical
points are overlapped.

Also, there appeared later in 1996 a preprint [ChM], where they applied the
existence of the norm principle for the group of R-equivalence classes (which was
also studied earlier in our preprints [T5-6], where we called corestriction principle
instead of norm principle due to its connection with Galois cohomology) to prove
the rationality of special unitary groups of type 2A“) with d < 3. which is stronger
the corresponding result we had in [T4]. In [T7] we investigated some relation
between weak approximation and Brauer and R-equivalence relations in algebraic
groups over number fields and indicated another approach to give examples of
non-stably rational connected semisimple groups over p-adic fields.

Notation and convention. 1f k is a field, k denotes an algebraic closure of k.
An almost simple group always means an absolutely almost simple group. For an
almost simple group G defined over a field k which has characteristic either 0 or
relatively big!, e.g. relatively prime with the order of the center Cent(G) of G let
S be a maximal k-split torus of G, T a maximal k-torus of G containing S. We
denote by Ad(G) = G/Cent(G) the adjoint group of G. If dim T = n, we denote

! The assumption of characteristic of k is put to simplify the arguments related with inseparability and
is not essential.
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by
4= {al,...,a,,}

a basis of simple roots for the root system @ of G with respect to 7. We may
consider the relative root system ;@ of G relatively to S and let x4 a basis of ;@
compatible with 4. If «,f are two roots, then we denote by <a,S) = 2(a,p)/
(B,B). For 1 <i<n we denote by S; the standard k-split torus corresponding
to the root ;. We denote by x,(f) the multiplicative one-parameter unipotent
subgroup (resp. /,(f) the multiplicative one-parameter diagonal subgroup) of G
corresponding to a root a € 4 where we keep the same notation used in [St]. For
o =ao; we denote x;(f) = xy,(t), hi(t) =hy(t), 1 <i<n. In particular, if G is
simply connected then T is the direct product of the images of h;:=h,, 1 <
i <n. We use intensively the notion and results of Tits’ classification theory of
almost simple algebraic groups as presented in [Til] and refer also to [B] and [BT]
for other notions in algebraic groups. We often identify a simple root with the
vertex representing it in the Tits index. In the Dynkin diagrams, the updown
arrows, if any, indicate the vertices belonging to the same orbit under *-action of
Gal(ks/k) on the 4 (just like in Satake diagrams, see [Sa)).

1. Some general well-known useful facts

1.1. Let G be a connected reductive k-group, S a maximal k-split torus of G.
The Bruhat decomposition for G (see [BT, Section 4]) implies that

G~Zs(S) x A

as varieties, where A is an affine space defined over k. Thus the study of ra-
tionality of G is reduced, in certain sense, to that of Zg(S). Namely G is stably
rational over k if and only if Zg(S) is and if Zg(S) is k-rational, then so is G.

However in certain cases the group Zg(S) is hard to handle with and we are
forced to find a substitute, which can be studied easier. In many cases it is
possible to do so. Namely let Sy be a nontrivial k-subtorus of S. Another
version of Bruhat decomposition says that

G ~ Zg(So) x A,

the direct product of Z5(Sy) with an affine space A over k.

Therefore we are reduced to studying the connected reductive k-groups
ZG(Sp). The problem here is to choose a “‘nice” torus Sy so that we can prove
the rationality or stable rationality of Zg(Sp), which is possible if the k-rank is
relatively big. We make use frequently the following simple but very useful
observation.

1.2. Proposition ([DT]). Let Sy be a standard k-split torus of G and
Z;(Syp) = SyToH (almost direct product), where Ty is a k-torus, H a semisimple k-
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subgroup of G.  Then the Tits index of H is obtained from that of G by removing all
vertices not belonging to the preimage 6 of 6U{0} under the restriction map
4 —  AU{0}. Moreover Ty is anisotropic and ST, = (ZT(H))O.

Remarks. 1. As it was mentioned in [DT], the idea of 1.2 is due to Tits
[Til, p. 39, lines —7 to —4, p. 45, remark d)] (see also [Se, p. 42]).

2. The equality in the last statement is not in [DT] but it is clear by
comparing the dimension of both side and by making use of the previous part
of the proposition. In particular it shows that if Zy(H) is connected then ST
contains the center of H.

Another interesting remark is the following observation due to Tits.

1.3. Proposition ([Ti2, Lemma, p. 89], [Se, Lemma 4.1.3]). Let G be an
adjoint semisimple isotropic k-groups, S a k-split torus of G. Let Z(S) = SToH,
where H is the semisimple part of Zg(S). Then the connected center STy of Zg(S)
is a direct product of quasi-split (i.e. induced) k-tori. In particular, it is also
cohomologically trivial.

Remark. This proposition can be considered as a generalization of the well-
known fact, that the maximal k-tori containing a maximal k-split torus in adjoint
quasi-split semisimple k-groups are induced k-tori. For a proof of this well-known
fact, see e.g. [BrT, Prop. 4.4.16], or [Ta].

The following result essentially is due to Ono—Rosenlicht (see [O]).

1.4. Proposition. If T is a central k-torus of a connected reductive k-group G,
such that for any extension k = k' the canonical projection G(k') — (G/T)(k') is
surjective (e.g. if T is quasi-split torus over k), then there is a rational k-cross
section G/T' — G. In particular the k-variety G is birationally equivalent to the
product T' x (G/T").

From above we see that it is essential to know the group Zs(S)/(STh),
Zg(S)/S (which we call the semisimple and reductive anisotropic quotient of G,
respectively) if we want to know the rationality property of G. In the next section
we examine various computations of this group. The following remark is useful in
the sequel.

1.5. Proposition. Let G be a connected reductive k-group. If n: G— G’ is
a central k-isogeny and S' = n(S) is the image in G' of a k-split torus S of G, then n
induces a central isogeny

Z6(S)/S = Z/(S")/S’

Moreover, if ' : G' — G" is another central k-isogeny, S" = n'(S') then we have
the following induced commutative diagram
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Zs(S) —— Zg(S)

.
P

Zg(S")
and also similar diagram for reductive quotients:

Zs(S)/S —— Zg(S")/S'

N[

ZG/’ (S//)/S//

Among others, the following general result was proved by Voskresenskii and
Klyachko.

1.6. Theorem ([VK]). Let G be an adjoint k-group of type A,,, where m is
even. Then G is rational over k.

2. Rationality of groups of type A

2.1. We keep the above notation and we assume that G is an almost simple
k-group. Let P;,1 <i<s, be k-groups with F; a central k-subgroup of P;.
Assume that all F; are k-isomorphic. By a suitable factoring out a central k-
subgroup of the direct production of P; we will obtain an almost direct product
P ... P with the property that the set-theoretic intersections P! NP} are all equal
and k-isomorphic to F;. We call such a group the product of P; with glued central
subgroups F;.

2.2. Proposition. Let G be an almost simple k-group of type A, with k-rank
r> 0.

a) If G is an inner form, the anisotropic semisimple quotient ZG(S)/S is the
product of k-conjugate almost simple anisotropic k-groups of type 'Ay_y with glued
center.

b) If G is an outer form, Zg(S)/STy is the product of anisotropic groups of
type *A4_y with an anisotropic k-group of type *A,_aq with glued central subgroup
of order dividing d.

Proof. a) First we begin with simply connected isotropic groups of type 'A,.
From [Til] we know that such groups have the following Tits index

o — ... _ _ o1 __Qzl__. _______ {1 __Qrd__. _______ o

Let S; be the standard k-split torus corresponding to the isotropic vertex i, i =
d.2d,...,rd. Here dis the index of the division k-algebra D related with this type
and r denotes the k-rank of G, i.e., G(k) =SL,. (D). Then

$=TIs

T
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is a maximal k-split torus of G. "We have Zs(S) = SH, where H =[[H; is a
semisimple k-group which is a direct product of anisotropic k-groups 177, of type
'Ay_1 (see Proposition 1.2).

It is easy to see that all these groups H; are k-conjugate and k-isomorphic to
the simply connected almost simple k-group Gy of type 'Ay_; defined by Go(k) =
SLi(D). (To see this, we may assume that in certain basis, the maximal k-split
torus S(k) consists of all diagonal matrices from GL,(D) with coefficients from k*
and of determinant 1:

S(k)y ={diag(t;,....trx1): -ty =1, ;€k™ 1 <i<r+ 1},
thus
Z6(S)(k) = {diag(z1,...,z/+1) : zi € GL|(D), Nrd(z) - - z,41) = 1 <i<r+ 1}

It follows that all the groups H; above are k-conjugate (i.e. conjugate by elements
from G(k)).

Therefore if G’ is a quotient of G by a central k-subgroup then we can form
the corresponding centralizer of a maximal k-split torus S’ of G’, which is an
almost direct product of S’ and k-conjugate almost simple k-groups Hj’ of type
'Ay_1; and they are the homomorphic image of the simply connected almost
simple k-groups H; of type 'As_; such that H,(k) ~ SL(D).

Some tedious computations (just like ones we have in Section 1) show that S
contains the products z;z; of two generators z; and z; of centers of the groups H;
and Hj, respectively. From this and Proposition 1.5, the assertion a) follows.

b) Let / be the separable quadratic extension of k over which G becomes of
inner type. Assume first that G is simply connected. From [Til] we know that
the Tits index of G is as follows

.....__Q__.....__O__. ...... .__O__........

Denote by G(¥) the semisimple regular subgroup of G generated by the root
subgroups X;,a; € ¥, where ¥ is a subset of 4. By Proposition 1.2 in order to
compute the intersection STy N H we are reduced to computing the intersection of
the torus

SdSn—d-H SZdSn—2d+l cee SI'(/SlI—r(/+l
with the semisimple subgroup
G|...G/A,

where G/, 1 <i <r is the semisimple k-group G(¥;) with the root system gen-
erated by the basis

¥ = {a(i—l)d+]-,---«aid—l,an—(i—l)m e Mid42 )
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and A4 is the group G(d4+1,...,%—rq). Then as in the part a) the part b)
follows. The general case also follows from this as in @) by making use of
Proposition 1.5.

The case d < 3 is of special interest to us due to the following results which
follows from Proposition 2.2.

2.3. Proposition. Let k be a field with a division algebra D of degree d < 3,
Go an anisotropic semisimple k-group which is an almost direct product of k-groups
of type Ay_\ isogeneous over k to either SL| p or PGL, p such that any simply
connected factor contains the center of the other. Then G is rational over k. In
particular, if k has a unique up to isomorphism quaternion division algebra (e.g. k is
a local field), then any such almost direct product of anisotropic k-groups of type A,
is rational over k.

Proof.  Since PGL, p has no center and is k-rational, we may assume that all
almost simple factors of G are isomorphic to SL; p and they have common center
(i.e. product of groups of type A,_; with glued center). Let the number of almost
simple components of G be r. Then from Proposition 2.2 we see that for the
group G| with G,(k) =SL,;;(D) and S a maximal k-split torus of G, we have

Z;,(S) = SGy,
and
Zs,(S)/S ~G.

Since the group SL; p is k-rational by assumption on d and by Theorem 4, the
group SL, p is also for any n (see [M1], [V]), and it follows that G is rational over
k.

2.4. Theorem. Let G be an almost simple k-group of type ‘Affz, where
d < 3. Then G is rational over k.

Proof. 1t follows from [Til] that G is an almost simple k-group with the
following Tits index

._.__Q__.__ ...... .__Q__.’

()

ie. of type 'Ay7 ..

or the following

: 1A(3)
i.e. of type A3r+2'r~.
As above let G be the universal covering of G, with maximal k-split torus

S.n: G — G be the corresponding projection, and S = 7n(S). Then
Zs(S) = S(Gy x -+ x Gryr),

where G; are anisotropic simply connected k-group of type 'A,_;, with Gi(k) ~
SL,(D), where D is a division algebra over k. We have just mentioned that G; is



Almost simple algebraic groups 193

k-rational (since d < 3) hence so is G. From the Bruhat decomposition it follows
that

Z:(S) x A*"
is rational, where m is the dimension of the unipotent radical of a minimal
parabolic k-subgroup of G. Hence from Proposition 1.4 it follows that
(Z5(8)/8) x A2+
is also rational over k. (Notice that dim(S) =r.) Here

Z5(9)/S=Gi... Gy

is the product of simply connected groups of type 'A,_; with glued centers (see the
beginning of Section 2). The isogeny n induces a central k-isogeny

Gl...G =2Z:8)/8Z5 Z6(S)/S =G ... Gyl

r

with G; = 7'(G;), 1 <i<r+ 1, which are also groups with glued centers. The
common center of G,’ has order 2 or 3 by assumption on d, therefore the (common)
center of G; has either the same order or just 1. In the first case n' is an
isomorphism, and in the second case, G)...G,y is an adjoint group hence is
rational over k. In any case,

ZG(S)/S x A2m+r
is rational over k, hence so is the group G.
Now we consider almost simple groups of type 2A,.

2.5. Proposition ((ChM]). Let G be an almost simple simply connected k-
group of type (A Then G is rational if d <3.

nre

2.6. Proposition. a) If G is adjoint and of type ZA,(,‘Q with n —rd <2 then G
is rational over k.

b) With notation as above, let d =1, and Zs(S) = SToH. Then ST, con-
tains the center of H. Thus any group k-isogeneous to G has isomorphic semisimple
anisotropic quotient to that of G.

Proof. a) Let S be a maximal k-split torus of G, Zg(S) = SToH. Then by
Proposition 1.3, STy contains the center of H, and there is a birational equivalence

G~ (Zg(S)/STo) X ST().
We have a direct product over &
ZG(S)/STo = An-ra X Ryjp(Aa-1) x -+ x Ry je(Aa-r),

where A4; are adjoint k’-groups of type A;, where k' is a separable quadratic
extension of k. Here Ay, is of inner type, hence rational over k', and the
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corresponding restriction of scalars is rational over k. Since n —rd <2, Ay_,q 1s
also rational. Therefore G is rational over k.

b) We assume first that G is simply connected. The general case follows
from this since if #: G — G’ is a central k-isogeny, then S’ := 7(S) is a maximal
k-split torus of G’ and n(Zg(S)) = Z¢(S’) (see [BT]) and we use Proposition
1.6. For simplicity we assume that » = 1 and we give a complete computation in
this case. From Proposition 1.2 it follows that we have only to check that

Cent(H) = 8|Sy, (1)
where H = G(ay,...,0,—1). From above we see that for an element te T,
= H /’l,‘(l‘,‘)
I<i<n

is in Z7(H) if and only if t commutes with all one-parameter unipotent subgroups
X; for 2<i<n-—1. Hence we have the following system of equations for ¢;:

5=t

132 = iy

2

L,y = -2y

One checks that
t= ti—l i-2 3 .
i=1h /t| s <i<n,
while the center of H is generated by

hZ(C) .. ~hn—l (Cn—z)‘

where { is a primitive (n — 1)-th root of unity. Hence (1) is verified.
Note that (with notation as above), the isogeny 7 induces an isogeny (denoted
by the same symbol)

T Zg(S)/STo — ZGf(S/T(;)/S/T(;

between the anisotropic semisimple quotients. Now by above ST, contains the
center of H, the corresponding anisotropic semisimple quotient is an adjoint group,
hence the above induced isogeny is in fact a k-isomorphism.

Now we assume that kK = R. Recently Chernousov [Ch] has proved that if G
is an anisotropic semisimple R-group with no factors of type Es, E7, Eg then G is
stably rational over R. The main idea there (as in [M2]) is to use the group of
similarity factors of the forms involved, which goes back to [T1-3], where we
considered the problem of weak approximation in a close relation with the
problem of rationality. In view of results above, we can state the result of
Chernousov as follows.
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Let G be a semisimple R-group with no anisotropic factors of type E; i=
6,7,8. Then G is stably rational over R.

3. Rationality of isotropic almost simple groups of type #A

First consider groups of classical type B— D. For groups G of type B, if G is
simply connected (i.e. G ~ Spin(f) for some nondegenerate quadratic form f of
odd dimension) then G is rational by [Pl, Prop. 3]. (One can use our method to
prove this fact easily.) If it is adjoint, then G ~ SO(f) and also is rational. Thus
the following is well-known, but we give a proof based on our previous con-
sideration.

3.1. Proposition. If G is isotropic almost simple k-group of type B, then G is
k-rational.

Proof. We give a proof for the case G is simply connected only, since the
special orthogonal groups are known to be rational via Cayley transformations in
any characteristic (see [Di] or [W]). The Tits index of G is as follows

@l__Oz _______ @r__.__. _______ .:>."

Denote by S a maximal k-split torus of G. We find S in its standard form, i.e.,
writing the system of equations defining ¢

2
Lot = Ity

< 1,2,_2 = In-3ly—1

2 2
rn—l - [,,_zf"

Lﬁ=&+

thus the center of Zg(S) is

Cent(Zg(S)) ={h(t1) ... h(t: Y hep1 (t) 2 () o 1 (1) (80) = ti € k, t,f =t}

whence S = Cent(Z;(S)) and it contains the center of H, where Z5(S) = SH, and
H ~ Spin(f) is a group of type B,—_,. So Zs(S)/S ~ SO(f) which is rational and
so is G.

3.2. Proposition. Let G be an isotropic almost simple k-group of type C,(,‘,i,),
n— rd <3. Then G is either rational or stably rational over k.
Proof.  We consider these case separately. The Tits index of G is as follows

ol ... 091 _ _ Od__._”.rd—l__Qrd__._._.__.<:.n

It is well-known that G is rational if G is simply connected (by using the Cayley
transformation, see [Di] or [W]). If G is adjoint, S is a maximal k-split torus of G
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and n —rd <2, then
ZG(S) = SH\H,

where H; is a product of k-groups of type 'A,_1, and H; is a group of type C,_,q
(see Prop. 1.2). We know that S contains the center of the product H,H, (see
Proposition 1.3), therefore

ZG(S)/S ~ Ad(H\)Ad(H),

the direct product of adjoint groups of type 'A and C. Since adjoint k-groups of
type 'A are well-known to be rational, and the adjoint k-groups of type C, is
rational if n < 2, and stably rational if n = 3 (see [M2, Prop. 4]). The proposition
is proved.

For the case of type D, we need to distinguish two cases.

d
nr

3.3. Proposition. Let G be almost simple of type D; ., r >0 such that n—
rd < 2.

a) If G is adjoint, then G is rational over k.

by If n—rd=0 (resp. n —rd =2) and d <2 (resp. d = 1) then G is rational

over k.
Proof. a) Let S be a maximal k-split torus of G. Then
ZG(S)/S =Gy X+ X G, X Dy_py

is a direct product of adjoint k-groups G; of type 'A,_; (hence rational) and a
group of type D,_,s which is also rational by the assumption on n, r, d. Now
from results in Section 1 we conclude that G is rational over k.

b) If n—rd =0 then by [Til] G is of inner type and n=r (d = 1) (trivial
case) or n=2r(d =2). In the latter case let S be the k-split torus of G cor-
responding to the last circled vertex (root) in the Tits index of G:

[ )
.I__OZ___. ________ °* — ©n—2<
@ h
Then
Zs(S) =S4,
where A4 is an almost simple k-group of type 1A1(12—)l,r—l with Tits index
l.__2®__. _______ .__0?1—2__.11—I.

Then Zg(S)/S also has this type, hence from Section 2 we know that Zg(S)/S is
rational, hence so is G.

If n—rd =2 and d = 1, then the above A has rank two, so Zg(S)/S is again
rational.



Almost simple algebraic groups 197

Now we focus our attention to exceptional groups and we have the following
result. We excluded the group of type G, since isotropic group of this type is
split.

3.4. Proposition. Let G be an isotropic almost simple group of exceptional
type over a field k.

a) If G is of adjoint type Dy, Fy then G is k-rational.

b) Let G be one of the following types: ‘Eg; *Eg., r > 2 and G is adjoint if G
is of type 2E61f’zl or 2Eélf’z"; E7,, r=3, Eg,, r=3. Then G is either k-rational or
stably rational over k.

¢) If Gis of type E;?l, then any k-group which is k-isogeneous to G is also
birationally isomorphic to G over k as k-varieties.

Proof. a) The proof for groups of type adjoint type D4 and F4 was given in
[T1, Prop. 2.3 and 3.3]. (There we proved G has weak approximation, but the
result also holds for rationality.) It also follows from results of Section 1.

b) For the group of type 'E¢ we consider first the group ‘Egg) with Tits
index

Ol —el——et_ _o5__ (36

Let G (resp. G) be the simply connected covering (resp. adjoint group) of G and S
(resp. S) a maximal k-split torus of G (resp. G). It is well-known that (see e.g.
(Se])

Zs(S) = SD,

where D is the Spin group of a quadratic form f which is a norm form of a
division Cayley algebra, i.e., f'is a Pfister form. By Merkurjev’s result [M2, Prop.
7], the adjoint group of SO(f) is stably rational over k. By Proposition 1.3, §
contains the center of Zz(S). Hence G is stably rational over k. For the case of
simply connected G we need the following.

3.4.1. Lemma. With above notation S contains the center of D.

Proof of Lemma. The Dynkin diagram of D consists of part of that of G
with vertices {as,...,as}. S is given as the connected component of identity of
the group P defined by the following condition

P= {p = H hi(t) = pxa()p™' = x, (1) Yo = s, . . ., oc5}.

1<i<6

Since

hi(t) % (D hi(1:) ™" = xu (18247,
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so we have the following system of equations for #;:

Ig =1y
2

1, = hsts
12 = 416
2

tz = f4.

It follows that we have the following parametrization for P:

P= {p = h[(lgtz_z)hz(Iz)h}([3)h4(l§)h5(t3—llg)h(,(t;z[g) T, E ];},

which is clearly connected. Thus S = P. The center Cent(D) of D is generated
by

z1 = hay(—D)hs(=1), zz = ha(—1)h3(=1),
and we check immediately that
Cent(D) = S.
The lemma is proved.

Thus G, being k-birationally equivalent to S x Ad(D) which is k-birational to
G, is also stably rational over k.

Now we consider the case 'E¢%,. Let G be an almost simple k-group of this
type with Tits index

@2

ol el Ot _eS_ _ab
and let S be a k-split torus of G corresponding to the root a;. Then
Zg(S) = SD,
where D is of type lAg,l and Zs(S)/S is an almost simple k-group of the same

type, hence is rational by results of Section 2. Therefore G is also k-rational.
Let G be simply connected of type E6I,62, with the following Tits index

3 1

e — —o0
or-te{ ]
05——06,

From this we see that the anisotropic kernel of G is of type zAgl), which is also the
anisotropic kernel 4 of the simply connected semisimple group H of type 2As with
the root system spanned by A\{ay}. From Proposition 1.3 it follows that for a
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maximal k-split torus S of G, the center of the semisimple part 4 of Zg(S) is
contained in the connected center of Zg(S), which is an induced torus. Therefore
it is clear that the anisotropic semisimple quotient of G is an adjoint group of type
ZA(;). By a result of [ChM] (Prop. 2.5), adjoint groups of type ZA(;) are
rational. Hence G is also rational.

The case of type 2E¢% with Tits index

3 1

e — — e
@2——4©<
o5 — _of

is considered in a similar way as above: If S (resp. G = Ad(G)) have the meaning
as above, then S contains the center of Z;(S). Then

Z:(S)/S ~Ryj(4),

where 4 is an adjoint /-group of type A, over a quadratic extension / of k, hence G
is rational.

Now we assume that G is of the following types E7,, where r > 3. We claim
that they are all rational or stably rational.

Let G be a k-group of type E({‘,, S be the standard k-split torus of G
corresponding to the set of two k-roots {oj,a3} as in the Tits index below:

o2

.7__@6__.5__ @4__@3__@]
Then
ZG(S) = SAa
where A4 is an almost simple k-group of type 'Ag)z. Therefore Z;(S)/S has also
this type, and is rational by results of Section 2 (Theorem 2.4). Hence G is
rational.

Let G be of type E3%, S the standard k-torus of G corresponding to the k-root
a7 in the following Tits index

@7__@6__.5__.4__.3__@]

Then
Zs(S) = 84,
where A4 is a k-group of type ‘Eész. Any group of latter type is stably rational

over k, hence the same is true for G. The case of group of type Eg,, r>3 is
similar.
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¢) It rests to consider the case EJ%. Let S be a maximal k-split torus of G,
where we assume that G is simply connected. One checks that S contains the
center of the anisotropic kernel of type E¢ of G. Thus

Z4(5)/S = Z5(5)/5

and we are done.

4. Concluding remarks

4.1. We say that a segment in the Tits index of an almost simple k-group G
is black (resp. white) if it consists of only black (resp. white, i.e., distinguished)
vertices. The length of a segment is the number of vertices it contains. We say
that a segment is defined over k, if the almost simple subgroup of G with root
system spanned on this segment is defined over k. In other words, the black
segments are the connected components of the Dynkin diagram of anisotropic
kernel of G in the Tits index of G, which are k-defined. From results proved
above we derive the following main result of this paper.

4.2. Theorem. Let G be an almost simple adjoint k-group and m(G) be the
maximal length of the black segments of its Tits index defined over k. If G is of
classical type X,Sf’:.) with n —rd <2, or G is of exceptional type with m(G) < 3 then
G is either rational or stably rational over k.

Proof. 1t follows from results of Section 2 (Prop. 2.6), Section 3 (Prop. 3.1-
3.4) and the Tits classification of indices [Til].

Remark. The number 2 in the theorem is best possible. According to [M2]
there exist non stably rational adjoint groups G and fields k with m(G) = 3, k can
even be chosen a number field. Also if k is a field such that there exist division
algebras D of index 4n (e.g. a number field), then for the group G with G(k) =
SL,,(D), the subgroup of reduced norm | of M,,(D), then G is not stably rational
over k and m(G) =4n — 1.

5. Appendix

In this section we give some useful and frequently used formulas related with
Tits index of an almost simple k-group G. We keep the same notation adopted in
the Introduction.

We give here only formulas for centers F of simply connected groups G, via
generators.

A,

F = Q) (")),

where { = (n+ 1)-th primitive root of 1.
B,:

F = (h(—1)).
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C,:
F = (=Dhs(=1) - hyyryg—1 (= 1)
D,, n even:
F ={z1.22),
where
z1 = h(=Dhs(=1) - hy_s(=Dh,_ (= 1),
zo = h(=1)hs(=1) - hy_3(—=D)h,(—1).
D,, n odd:
F = (=Dhs(=1) .y (= Doy (=D ha(0),
where i = v/—1.
E¢:

F = (i (Ohs(C)hs(8)he(C7),

where { is a primitive cubic root of 1.
E71

F = {hy(—=Dhs(=Dh(—=1)).
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