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On maximality of two-sheeted unlimited covering surfaces
of the unit disc
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I. Introduction

Let R be a Riemann surface. If there exists a conformal mapping z of R onto
a  subregion of a Riemann surface k, then we call k, or more precisely the pair
( , /), an extension of R .  We often identify /(R) with R  and consider R  as a
subregion of P . According to this definition R itself is an extension of R .  It is
called a proper extension if i?\i(R) Ø .  A Riemann surface is called maximal if
it has no proper extensions. An extension R-  o f R is called a maximal extension if
k is  a maximal Riemann surface. In connection with the classification theory
of Riemann surfaces we know that if R  has a  small ideal boundary then R  is
maximal. For example if R with no planar ends belongs to the class OHD. OKD,
or Oy , then R  is maximal; see [SO, X.5C].

By a  neighborhood of the ideal boundary of R  we mean the exterior of a
compact set of R .  We call a  connected component V of a neighborhood of the
ideal boundary an end if it is not relatively compact.

Sakai [Sa3] has obtained a  new characterization of non-maximal Riemann
surfaces.

Theorem A ([Sa3] Theorem 4 .1 ) .  L et R be a Riemann surface. T h e n  R is not
m ax im al if  and only  if  one of  the f011owing conditions holds f o r R.

(a) R  has a planar end.
(b) R  has a border.
(c) R  has a  disc with crowded ideal boundary.

See the next section for the definition of a disc with crowded ideal boundary.
It is natural to ask whether there exists a maximal Riemann surface which

does not belong to the class Ox -type above referred or not. Sakai has proved in
Proposition 6 .1  of [Sa31 that if a Riemann surface R  has no planar ends and
belongs to the class Y I

K E ,  then R  i s  m axim al. The class ..9°I
K D  is  defined  in

[S a l ] .  H e also showed in  Example 2  of [Sa3] that there exists a  two-sheeted
unlimited covering surface o f the un it disc which belongs to the class Y K

1
D .
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Obviously it does not belong to the class Ox -type. Then our final goal is to know
where the  class o f a ll maximal Riemann surfaces has place in the classification
theory of R iem ann surfaces. In  [J] we have obtained sufficient conditions for a
Riemann surface to be maximal.

Theorem B ([J] Theorems 2 and 3). L et R  be a R iem ann surface of  infinite
genus having no planar ends.

(1) I f  R  satisfies the condition ['ho(R) 1-117(R) {0 },  then R  is maximal.
(2) Suppose that there exists a harmonic function u  on  a neighborhood V of

the ideal boundary of  R such that u is non-constant in each component o f  V and has
Th e -  and F111„-behaviors simultaneously. T h e n  R  is  maximal.

See the next section for the definitions of F h o (R ) and I' he - and Th.-behaviors.
In this paper we are mainly concerned with a  two-sheeted unlimited covering

surface R  of the unit disc U with the projection mapping 7T. The pair (R. 7 ) is
also called a covering surface . A s is known from Sakai's characterization of non-
maximal Riemann surfaces, we need some informations about the neighborhood of
th e  ideal boundary. I n  order to obtain them  w e consider t h e  Kuramochi
compactification R* of R .  We call R*\R the Kuramochi ideal boundary of R and
denote it by A R . W e shall show  in Proposition 2  th at the projection  iv  i s
continuously extended to R U AR and in Theorem 4 determine the set 10  = rc - 1  (e i ( ) )
o f th e  Kuramochi boundary points over e' () e U .  W e  o b ta in  a  sufficient con-
dition for R  to be maximal in terms o f P .

Theorem 1 .  If  I
°
 consists of  one minimal point for every ei 0  e OU, then R is a

maximal R iemann surface.

Later we shall give a  theorem, that is Theorem 5, which includes Theorem
1. We also prove in  Theorem 6 that the converse of Theorem 1 is not true.

2. Preliminaries

We summarize here the definitions concerning Riemann surfaces and covering
surfaces.

A  continuous mapping of the open interval (0, 1) into a Riemann surface R
is  a n  o p e n  a r c . W e say that a n  o p e n  a rc  starts from th e  ideal boundary if

no< r< 1 f ((0 , t]) is a n  em pty s e t  a n d  term inates at t h e  ideal boundary if

n o < r < if G T , I» =  Ø.
We say that a plane point set E which is compact and totally disconnected

belongs to the class ND or is an ND-set if C \ E belongs to the class O A D  (cf. [SO, P.
255]). L et D  be a  simply connected subregion o f  R .  Suppose that its relative
boundary OD consists of a countable number of analytic simple open arcs {y1 } such
that each yj  starts from the ideal boundary and terminates at the ideal boundary.
y n yk =  0  i f  j  k ,  a n d  fyi l  does not accumulate i n  R .  Then a Riemann
mapping 0 of D onto the unit disc U is continuously extended over OD and 0(8D)
is a  relatively open subset of O U . We denote by I  the complement of 0(0D) with
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respect to U .  W e call D  a  disc with crowded ideal boundary if  I is totally
disconnected and is  no t an  ND-set.

Let R  and S  be Riemann surfaces. W e say that R  is an unlimited covering
surface of S  if there is an analytic mapping m of R  onto S  such that for any curve
y = y (t) , t  E [0, 11 o n  S  and any  point Po c  i t  I (y (0)) there  is  a  curve )) = )3(0,
t c [0, 11 on R  such that jj(0) = Po and n (y ( t) )  = y ( t) . We call the mapping m the
projection m app ing . The pair (R , n) is also called a covering surface. We know
that if R  is an unlimited covering surface of S , then for every point g E  S , ir (g )
contains the same number of points provided a  branch point of order n —  1 is
counted n  points; see [Sp, Theorem 4.21. The number n  is called the number of
sheets. W e say that a  covering surface of S  is ramified if it has branch points.

W e recall some definitions of first order differentials on R .  A  differential
= a(x , y) dx  + b(x , y )dy  is called real if all local coefficients a(x , y ) and b(x. y)

are real-valued functions and called of C  class of a(x , y ) and b(x , y ) are  so . We
say that co is  square integrable if local coefficients are measurable and

jR JR + b 2 )dxdy o co*

is finite, where co* =  — b(x, y)dx  + a(x , y )dy  is the conjugate differential of w .  The
positive square root of this integral is denoted b y (-011R, and we call it the norm of11 
co. Let F ( R )  be the space of all real square integrable differentials on R .  We
know  that r ( R )  is a Hilbert space with the inner product

( W I  W 2 ) =  ( W I  W 2 ) R  =  f  W I A  W 2* *
R

Set

1",°,(R ) = { df  f  c  C T  (R )}  a n d  Feo(R) =  F ( R ) ,

where C0° (R )  is a  class of infinitely differentiable functions with compact support
on R .  W e denote by Fh (R ) the subspace of F ( R )  which consists of harmonic
differentials.

We introduce important subspaces of F h ( R ) .  Let Fhe (R )  (resp. r h s e ( R ) )  be
the subspace of Fh(R ) whose elements co are exact (resp. semiexact) on R , that is,

= 0  for every (resp. every dividing) 1-cycle y on R.

We often use notation F. F,,,  The,• • • instead of F(R ), F  h (R ) ,  h e ( R ), • • • . Given a
closed subspace ry  of F,,, the orthogonal complement of ry  in F,, is denoted by
F .  F* = {co*; co c F ,,}  .  Since (col , w2) = c o ; )  holds, we have (F ) -1- =Y
(F i ) . Then we shall write it simply r y

-L . We need the subspaces of harmonic
measures Tim ,  and F  ho; see [AS, V.15C, 10B and 14C] for defin ition . B y [AS,
V.15D] and [AS, V.I0C] w e have T r .  a n d  Fho = r .  By definition it
follows that F h F h s, D Fh e and The D  F h ,„. We have Fl,„. F , , 0  D  Fh„, because
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they are orthogonal complements o f / 7 T , e ,  a n d  177„,  respectively. See also
[AS, V.15E1. We summarize the inclusion relations here:

F hse D  T h e

Thu

If the differential dh of a  function h  of the class C 1 is  square integrable, then
we call the  integral SR (h,,,2 + hy

2 )dxdy = Ildhl1 R
2 the  D irich le t integral of h  and  say

that h  has finite D irichlet integral. L e t  H D (R )  b e  th e  class o f  real-valued
harmonic functions on R  with finite Dirichlet integral and K D (R ) be the subclass
o f H D (R ) whose elements u  have the property

du*  = 0  for every dividing 1-cycle y  on R.

L et A D (R ) be the class o f analytic functions on  R  with finite Dirichlet integral.
We denote by 9RA D(R) the  class of real-valued harmonic functions u  such that
there is a  single-valued conjugate harmonic function u* of u and u + iu* belongs
to  A D ( R ) .  B y the Cauchy-Riemann equation we have du* = —uy dx + u,dy —
(u*),dx  + (ul y dy  = d(u*). It is  eas ily  seen  th at u E Ç.RA D(R) i f  a n d  on ly  if
u c HD(R) and

du* = 0  for every 1-cycle y on R.

The relations

{du; u E HD(R)}  = Th e (R)

{du; u E KD(R)}  = Th e (R) n r,:s e (R)

{du; u E 91AD(R)} = T11(R) n T ( R )

h o ld .  We say that a Riemann surface R  belongs to the class ODD, OKD o r OAD if
and  only if  H D (R ), K D (R ) o r  9IA D(R ) consists o f only constant functions, re-
spectively.

Let co be a real differential defined in a neighborhood of the ideal boundary of
R  and T x be any closed subspace of Th e . Then c o  is said to have Tx -behavior if
the following representation holds in some neighborhood of the ideal boundary of
R:

{ (0 = (DI + 4/6 ,

a) * = w2 + 41i,

where co l e  T x , co2 e  rx - L, and .10 and are Cm-functions on  R  such that dfo and
411 belong to T eo . W e  sa y  th a t a  function u  has F x -behavior if  d u  does.
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3 .  Results

Let S  be a Riemann surface and R  be a  two-sheeted unlimited covering
surface of S .  We obtain a  sufficient condition for R  to be maximal as follows.

Theorem 2. L e t S  be  a R iem ann surface and R  be a  two-sheeted unlimited
covering surface of  S  w ith the projection m apping  n . If  R  has no planar ends and
n -1 (Q ) consists of  one point for quasi every Q c d s , th en  R  is  maximal.

The next theorem is a  generalization of Theorem 2.

Theorem 3. L e t S  be  a R iem ann surface and  R  be a  two-sheeted unlimited
covering surface of  S  with the projection mapping 7r. If  R  is of positive genus and
rc-1 (Q ) consists o f  one point f or quasi every  Q E A s, then there are a m ax im al
extension (12,1) o f  R  and an ex tension o f  S  such that 1-:? is  a  two-sheeted
unlim ited covering surface o f  S  w ith  the projection m apping fr which satisf ies

rt = fro 1 on  R.

We know that the Kuramochi boundary of the unit disc U is homeomorphic
to U  flzI = 1 1 and every Kuramochi boundary point is  m in im al. We shall
show the following theorem.

Theorem 4. Let (R , it) be a  two-sheeted unlimited covering surface of the unit
disc U. T h e n  f or e i° E O U  the f iber 1 0 = 7r- 1  (e i° )  is  one of  the following sets.

(a) I
°
 consists o f  tw o minimal points.

(b) I
°
 is hom eom orphic to I = [0, 1], and two minimal points correspond to 0

and 1.
(c) I

°
 consists of  one minimal point.

W e say that R  has (W)-property if he(R) n T e (R )  F ( R )  holds. W e
shall show the next theorem . W e note that the assertion of Theorem I is
(a) ( h )  i n  this theorem.

Theorem 5. For a two-sheeted unlimited covering surface R of  the unit disc U
which has infinitely  many branch points w e have the relation

(a) <=> (b) <#. (c) <=> (d) <=> (e) <#. (f) (g) (h) (i) and (i) (h)

am ong the following conditions (a) - (i):
(a) I

°
 consists of  one m inim al point for every e`0 c au.

(b) I
°
 consists of  one m inim al point for quasi every e` ° e 13U.

(c) The(R )n 11(R ) = {0}.
(d) H D (R )= H D (U ) . T hat is , f o r every  u e H D (R ) there  is u  e HD(U)

such that u = u 0 n.
(e) H D (R )= R A D (R ) holds on R.
(f) R  has ( W )-property.
(g) T ho (R) n r o (R) o {0}.
(h) R  is a  m ax im al Riemann surface.
(i) 9R A D(R ) = HD(U).
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R em ark. It is not known whether or n o t (g) ( f )  or (h) (g).

Finally we shall show tha t the converse of Theorem 1 is  no t true.

Theorem 6. There exists a two-sheeted unlimited covering surface (R , n) o f  U
such that R  is m ax im al and 1 0 is hom eom orphic to [0,1] f o r every e l°

 E  U.

Theorems 2 and 3 are proved in Section 6 and Theorem 4 is proved in Section
7. The proof of Theorem 5 is  in Section 8 and the proof of Theorem 6 is  in
Section 9.

4. Kuramochi boundary

W e shall recall the definition of the Kuramochi (ideal) boundary of R  and
some properties of it; see [CC] and [0].

W e fix  a  closed param etric disc K0 o n  R  and  a  po in t Po  E  R \K o . Let
{R , }„ , i b e  an  exhaustion of R , th a t is , R „ is  a  regular subregion o f R  with
R , R n +1 , R \R n  contains no compact component and R  = U R n . W e assume
that R1 D  K o . Then there is no such that Rno contains p o . For any n > no there
exists a  function N„(p, p o )  on R „\K 0 which satisfies

i) N n (p,p 0 )  has a  singularity —loglz1 a t  po , where z  is  a local parameter
about po ,

ii) N n (p, p o )  is harmonic in  (R, \K0) \ {Po},
iii) Nn(P, Po) = 0 if p E  OK°,

and
iv) the (inner) normal derivative (ON„(•, p0 ))10v  vanishes on aRn.
The sequence {N n (p,p 0 ) } , no converges uniformly on every compact subset

of ((R \K o)\{ p o l)U O K °. Denote the limit function by  N 0 (p) = N(p, p o ). We
know that IldNp o — dN„(-, po )}1R,AK0 tends to  zero as n --> co (cf. [0 , Theorem 4]).
Since N n ( p ,  p o ) = N„(p o , p )  holds, we have N(p, p o ) = N(p o ,p).

W e say that a  sequence {p„,},„ > 1  converges to  the ideal boundary of R  if
{p „ , } does not accum ulate in  R .  A  sequence {p ,„ } converging to the ideal
boundary of R  is called a  fundamental sequence if { N }  converges uniformly on
every compact subset o f R \K o . Among the family o f fundamental sequences
we define an  equivalence relation : two fundamental sequences {p ,„ } and {p„}
are equivalent if th e  lim it functions coincide. W e call an  equivalence class a
Kuramochi boundary p o in t. To every Kuramochi boundary point po w hich is
a n  equivalence class o f  {p ,„ } there  corresponds a unique function N 0 (p) =
lim Np  ( p ) .  W e call the set of all Kuramochi boundary points the Kuramochi

ideal boundary or simply Kuramochi boundary of R  and denote it by A R . Set
R* = RU A R . This 12* is called the Kuramochi compactification of R .  We define
a distance d(p , p ') on R*\K 0 b y

N(P, p) N(P, p')
1 + N(P, p) 1  + N ( P ,  pi)

d (p , p ')  = sup
PE Ki



Two-sheeted unlimited covering surfaces 161

where Ki is a  closed parametric disc in R\Ko . We call it the Kuramochi distance
o n  R*\Ko.

We know that this compactification does not depend o n  th e  choice o f Ko.
That is, let K be another closed parametric disc in  R and z1R b e  the Kuramochi
boundary constructed o n  R\K(;. Then there is a  homeomorphism q) of R U AR
onto R U JR  such that O R  i s  a n  identity mapping (cf. [0 , Theorem 12]).

For any compact set K OE R\Ko and any compact set K ' R *\ K o  disjointed
from K ,N (p ,p 0 )  is continuous o n  K  x  K ' b y Harnack's inequality (cf. [0 ,  p.
278]). Obviously N 0 (p) = N(p, po ), as a  function of p, is positive on R\Ko and
equal to zero on OK°. If po is a point in AR, then Npo (p) is harmonic in R\Ko . If
Po i s  a  p o in t  in  R\Ko, then N 0 (p ) is harmonic i n  (R\Ko)\{p o } a n d  has a
singularity —loglz1 a t po . Moreover in  this case if we define values of Npo a t
p e JR  by Np (p0 ), then Npo h a s  a  continuous extension over AR•

We can define the value of Npo a t  p e A R  for po E A R  so that Npo is lower
semicontinuous in  R*\Ko .

Now we obtain a  function N o (p) = N(p, p o )  o n  (R*\Ko) x (R*\K0) and we
call it the  Kuramochi kernel function. It is known that th e  Kuramochi kernel
function has the  following properties:

i) N(p,p 0 )  is lower semi-continuous o n  (R*\K0 ) x (R*\K0 ).
ii) If  po E R\Ko, then Npo is continuous o n  (R*\K0 )\{p 0 }.
iii) If po E A R, then Npo is continuous o n  R\Ko and lower semi-continuous

o n  R*\Ko .
iv) N(p,p o ) = N(p o ,p).
See [CC, Satz 17.1 and p.178] for the Kuramochi kernel functions. In [CC]

the Kuramochi kernel function is denoted by 4.
Denote the set of all minimal boundary points by 4 . Set 4 = AR \4 .  We

know that 4 is  a  Go se t and  4 °
R i s  a n  Fa s e t ;  see [CC, p.I34].

We take N (p ,p ') a s  a  kernel o f p o ten tia l. F o r any positive measure p  in
R*\K0 we can define the  potential N t(p ) =  f N(p, p')d,u(p') if  it is not equal to

oo. A positive measure p on  R*\Ko is said to be canonical if p(A R
°
) = O. W e

know that any potential Np(p) has a  canonical representation, that is, there exists
uniquely a  canonical measure p  such that Np = Nii; see Satz 16.2 in [CC] or
Corollary of Theorem 24 and  Theorem 27 in  [0].

We call a  subregion G of R admissible if its relative boundary OG consists of a
finite number of analytic Jordan curves and its closure G =  GU OG is disjoint from
K o . For example if Q  K 0 is  a  regular subregion of R then each component of
R\S-2 is adm issible. For f  c  ( R )  and an admissible subregion G let us denote
by g iG'  the family of all Dirichlet finite functions of C ' class on  G with boundary
values f  on G .  T hen there ex ists un iquely f °G

 E gb' which minimizes the
Dirichlet integral in  gb.

The following facts for  an adm issible subregion G o f  R  are  useful (see [0,
Theorem 5]):

i) I f  po e G , then N p o( N p„) G i n  G.
6Gii) If  po G  U OG, then Np„ = (N p„) in  G.
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Denote by X ( R )  the class of continuous functions f  in  R  for which there
exists a  regular subregion Q  K0 such that f  ( p )  =  f  ( p )  in each component V
o f R \Q . I f  a  regular subregion Q ' contains S-2 , then f  =  f a "  h o ld s  in  each
component V' of R \S2' and f  is harmonic in some neighborhood of R\S2' . Thus
considering Q' instead of Q we may assume from the beginning that f  is harmonic
in some neighborhood of R\S - 2 . We know that every f  E (R ) has a continuous
extension on A R .  See [CC, p.167 and p.1701.

We shall use boundary behaviors of the Green function and the Kuramochi
kernel function. Denote the Green function o n  R \K 0 with a  p o le  a t  p o  b y
gpo (p) = g(p, p 0 ). We know that N p o an d  gp ,  have finite Dirichlet integral over
some neighborhood of the ideal boundary. W e show the next lemma.

Lemma 1. Suppose that p o E  R \K o . Then differentials dNp*o and dgpo adm it
the following representations in some neighborhood of the ideal boundary:

dNp*o =  W h O  d f o  a n d  dgpo =

where WhO E Th0 (R ) ,  f0 , f1  E  C °G (R ), and dfo,dfi E  F eo (R).

P r o o f  S e t Vo = {p; Npo (p) > M } . T h en  1/0 i s  a  closed parametric disc
centered at p o f o r  sufficiently large M >  0. L et Q  b e  a  relatively compact
subregion of R  such that Q V 1, UK0 and  8 S2 consists o f  a  finite number of
analytic curves. We show that dNp*0 1" 2 can be extended to a  closed differential
a  o f Cc° class on R  by using the same arguments as in [Y, Lemma 11. Let
{Nn (p, po l l  be the sequence which is defined on the top of this section. Since
{N n (p, p 0 )}  converges uniformly to N p ,  on some neighborhoods of alC0 a n d  Vo,
we have

dNp* = lim dN n(., p o )*  =  O.
tKolJa Vo ° 101CoU t9V0

Take a  quadrilateral subregion W of Q\(V oU Ko) such that one pair of opposite
sides consists of subarcs of OK0 a n d  V 0, and that the other pair of opposite sides
consists of arcs in Q\( V o U  K 0). Let W be the interior of W U Vo U Ko. Then W
is  a  simply connected region and

dN* = d N *P0 po d N *  =  0 .
a 0-/ î  w  L ow ' vo p o

We can choose u of C  class in a neighborhood o f  W so that du = di\11,0 and
extend u over W  so that u c  C " ( W ). Then define a  closed differential a of C '
class as follows:

In this proof we often use well-known orthogonal decompositions T ,(R ) = T  h (R) +
r , 0 (R ) and F(R ) = F e (R ) + F:o (R ), where F e (R ) is the class of square integrable

{ dNp*,, on R\ r/i/
o-  =

du on W.
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closed differentials; see [AS, V .10A ]. Then we have a = w + dfo' , where co and d fo
belong to F h(R ) and F eo (R ) , respectively. It is easily seen that f o is  of C" (R).
W e show that this co of a  is  coho which we want. It suffices to show that co
belongs to rh o (R ) =  h*  ( R ) .  For any du E The

(co, dv*) R ( o - ,dv*) R ( o - ,du*) R\s2 + (o - ,dv*),(2 = (d N p*,,, dv*) R \ o + vo-

052

holds. Since IldNpo — dNn(-, Po)1112\K0 tends to zero as n — > oo,

(dN p*0 dv *) R\g2 =  nlinl(dNn(• • Po) * >dv * ) Rn \f2

=  lim Jv d N n (•, p0 ) =  — v d N *  = — vu.Pon•—■ co as2 OS2

Hence (co, dv*) R =  O. W e deduce that co is an  element of rho.
For the Green function we set Uo =  f p ;g po (p) M l .  For sufficiently large

M >  0, U0 is a closed parametric disc centered at p o . Let gn (p, Po )  be the Green
function on Rn \K o w ith  a  po le  a t  po . W e know that a  sequence {g„(p, p o )}
converges to  g po ( p )  uniformly on every compact subset o f ((R\K 0 )\{p 0 }) U 13K 0

and Ildgpo — d g n (•, n 111o, iiR„\Ko 0  as n — > co. S in c e  gpo =  0  on analytic boundary
OK), gp ,  is extended to be harmonic in some neighborhood of O K ). Then there is
a  function f  on R  such that f  e  C " (R \ fp o l )  and f  =  g p o  in  R\Ko . Let p  be a
function o f C " (R )  such that p  = 1  in  R\ U0 an d  p  0  in  some neighborhood
of p o . Set f , =  p f .  Then f l b e lo n gs to  Cc° (R )  and is  equa l to  gpo in  th e
neighborhood of the ideal boundary. In order to prove dfi e F o (R )  it suffices to
show that (d fi,T ) R  =  0  holds for every r  e F h ( R ) .  Note that

(df i,T )R  = (dft,T)RyKouud+ (dfhT )uo + (dfl , T)K0

= lim  (dgn(., Po) , T) R„\(Kou LI  0)11- ,  00 f f  T * i a K o  f i t *,uo 

= — liM gp(• p o )r* + M r
au( )

*
C°a u °

= — g po t*  = — M  =  O.
auoa u °

We have a conclusion.

R em ark. Let Ko an d  f q  be mutually disjoint closed parametric discs of R.
We can construct the Kuramochi kernel functions and the Kuramochi compac-
tification with respect to R\(K o U K ) in the same way as above. All statements in
this section are true if we use K0 U Ko'  instead of K o . We shall show that Lemma
1 is true even if we choose K0 U K  instead of Ko.

Let N p o a n d  STp„ b e  the Kuramochi kernel functions o n  R\K0 a n d  R\
(K0 U  K ) , respectively. B y  L em m a  1 we have
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dNp*o = wi 0 +  d f ,  who E  r h o (R ) ,  f  e  C ' ( R ) ,  a n d  d f  E Teo(R)/

in the neighborhood of the ideal boundary. Since N t ,, — &p, is harmonic in  R\
(K 0 UK )  a n d  satisfies f d (N p o  1;4P0

)
* — 0 ,  w e can  ch o o se  a  closed

differential o - o f  C "  class on - R  such that a  d(N po — Npo ) *  holds in the
neighborhood of the ideal boundary by the same way as in the proof of Lemma
1. Hence it suffices to show that a E Fho(R ) + F eo ( R ) .  For any du E T u e  we have

dv*) R  =  0  b y the same argument as in the proof o f Lemma 1. Therefore
a c Tho (R) + T eo (R )  and A lp*0 =  dN p*o — a  admits a  representation Co- ho + d t  with
CON E r h o (R), f E COE) (R ) ,  an d  d f  E F eo (R ) in  th e  neighborhood o f th e  ideal
boundary.

W e shall remind the definition o f the Kuramochi capacity . See [CC, p.
1851. We denote by C (F ) the Kuramochi capacity of a subset F of R*\Ko . If F
is  a compact subset of R' \K o, then

C (F )=  sup{p(F); p  is a positive canonical measure and Np < 1 on F }.

If D  is  an open set in R*\Ko ,  then

C (D )=  sup{C(F); F  is a compact set with F  c  13} .

For a set A  OE R*\Ko the Kuramochi (outer) capacity is defined by

C(A) = inf{C(D);D is an open set including A}.

We say that a set E is (full) polar if the Kuramochi capacity of E is equal to
0. We know that compact subsets of 4 are polar; see p.185 of [C C ]. Since 4
is an Fa  set, from subadditivity of capacity it follows that 4 is p o la r . See also
[CC, pp. 186-189]. We say that a statement is true for quasi every Q E A  or quasi
everywhere on A  if the subset of A  for which the statement is false has vanishing
capacity.

We consider the Kuramochi boundary of a Riemann surface R' = R\Ko.

Proposition 1. T here is a  hom eom orph ism  i  o f  (R\Ko)U  AR U OK()  on to  R' U
LIR , such that t is the identity  m apping in R\Ko an d  f ir a subset A  of AR A  is polar
w ith respect to  R  if  and only  if  1(A) is polar w ith  respect to  R'.

P r o o f  (cf. [0 , Theorem 12]) It is easily seen that there is a homeomorphism
of (R\Ko)U 4 R U aK 0  onto R'U  AR' such that z is the identity mapping in R\Ko.

We prove the remaining assertion. We choose a  closed parametric disc k o

on R ' .  Let &- po b e  the Kuramochi kernel function o f (R'U zIR, ) \k o  for Po G
(R ' U  it , )\ko•

Let K 1 a n d  k 1  be closed parametric discs in  R  such that K1 fl K1 0 ,
K o , an d  iCi \ak i D  k o .  Fix regular subregion Q  o f  R  such that

(K 1 U k i ) OE Q. Since N(p, q ) is continuous and positive on (R*\Q) x  (OKI U 13k1),
we have

0 < in = min N(p, q) < max N(p, q) =  M  <  oo.
(R*V2)x(OKIU)ki) (R*V2)x (ex, uek,



Two-sheeted unlimited covering surfaces 165

For the same reason

0 <th  = m i n 1\1- (p, g) < max N(p, g) = <  co
( R*\Q)x(aKluaki) (R.v2)x(aicivak,)

h o ld s. Set a = m ax(f/lm , 1) and b = m ax(M /ih , 1 ). If po E R\S-2, then

po OG(aNpo =  ( a  _  1 ) N  
+

v  ( N p o  _ & p o OG

< (a - 1 )N po N po -  1
■
1
"

aNpo -  po

in  G , where G = RVKIU1-‘1 )  i s  an admissible subregion o f  R .  From the
inequality

inf(aNpo - °G =  min (aNpo -  p o ) >  am - 0,
G OKIU(11-C1

it follows that aNp„ > Np„ in G .  For the same reason bNp „ > Npo in  G holds for
Po c  R \ Q . Denote by C (A ) and C (A )  the Kuramochi capacities o f A  c R*\52
with respect to Npo and Npo , respectively. If F is a compact subset of R \f2 and a
positive measure p  on F  satisfies Np <  1  on F, then (11a)Np < 1 holds. Then
ae'(F) C ( F )  fo llow s. For the same reason b C ( F )  C(F) h o ld s . If D  is  an
open set in R*V2, then by Folgesatz 17.6 of [CC] C(D) = C(D  fl R ) and ã(D )

(D n R) hold and hence we have -1 C (D ) <  e (D) < b C (D ).  Therefore -1 C (A ) <
a a

(A) < bC(A) ho ld s for every subset A  o f R*\,52. In particular A  c R*V2 is
polar with respect to N  if and only if it is  polar with respect to N.

5. Kuramochi boundary of two-sheeted unlimited covering surfaces

In this section let S be a Riemann surface and R be a two-sheeted unlimited
covering surface of S with the projection mapping 7C. Let j  be a sheet interchange
o f R , that is, j  is  a  conformal automorphism o f R  which satisfies j  o f  =  the
identity and g =  710f . We fix a closed parametric disc Ko on S. When (R, n) is
ramified, we may choose K o such that it contains just one point of the projection
o f branch points. Then Ko =  g - I (Ko ) i s  a  simply connected subregion with
analytic boundary. If (R , n) does not have branch points, then Ko = rc -1 (K o )
consists o f  mutually disjoint two simply connected subregions with analytic
boundary. As is seen in Remark given after Lemma 1 of Section 4 , we can
construct the Kuramochi kernel functions N(p, p o ) and the Kuramochi com-
pactification R *  w ith respect to  R\K0 in the second case, too. D enote the
Kuramochi boundary of S  by GIs and the Kuramochi compactification of S  by
S * .  We shall use notation p, po as points of R* and g.qo as points of S * .  Let
N(q, q0 )  be the Kuramochi kernel functions for S\K0 .

We shall show the next proposition.
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Proposition 2 (cf. [JMS] Proposition 2.1). (1) Suppose that N ,N ,j and it be as
mentiond above. T h e n

(1-1) N(13, Po) = NU(P) , .l(Po))

and

(1-2) N(7E(P)] g(Po)) = N(P] Po) + N(P] i(Po)) = N(P , Po) + NU(P)] Po)

hold on  (R\Ko) x (R\Ko)•
(2) j  and it can be ex tended continuously  ov er A R . M oreov er j  o j  i s  the

identity  and TC =  it o holds for ex tended j  and Tc.
(3) (1-1) and (1-2) h o ld  on  (R*\Ko) x (R*\K0).

P r o o f  (1) L et {S„}„, 1 b e  an  exhaustion of S  w ith S i D  K o . Set R, =
it - ' ( S ) .  Since there is no such that R izo is  connected  for a ll n > no ,  we may
assume n o  =  1 . T h e n  { R „ }  is  a n  exhaustion o f  R .  I t  is  e a s ily  se e n  th a t
N n (p ,p 0 ) =  1\1,(j(p), A p o ) )  holds for N „ defined in Section 4 ,  and hence (1-1)
follows.

Let N n (q,q0) b e  the Kuramochi kernel function of S„\K o . We can easily
show that a function N„(g(p),q 0 )  is equal to N„(p, p o ) + N„(p,j(p 0 )), where qo =
Tr(po ). W e obtain (1-2) as n tends to infinity.

(2) For a point po  c A R and any fundamental sequence {p,„} defining p o we
have

liM  N (P , APM)) = N (J(P), P117) = N (j(13 ) , PO)
H I— ,  0 0 711— , 00

and

lim  N (g(p) 7 (P ,„ )) = lin  {N(P,13„,) +M A P ) , P„,)} = N(P , Po) +N A P ) . Po)177—,
 (X) /11—) X

in  R\Ko  by  (1). Then each { /(Pni)}  (resP - { 7E ( P n ] ) } )  is  a lso  a  fundamental se-
quence on R  (resp. S ) and defines a  Kuramochi boundary point in A R  (resp.
A s ) . W e note that this boundary point j(p o )  (resp. Tc(p0 ) )  is determined inde-
pendently of the choice of {p„,} defining po . With this definition we can extend
the mapping ]  and i t  over A R .  For extended ] and i t  it is easily seen that (1-1) and
(1-2) hold on (R\K0) x  (R *\K o). It follows that J o ]  is  the identity and g = g o  j
holds. It is easily checked that ]  and it are continuous on A R with respect to  the
Kuramochi distance on R\Ko and S\Ko .

(3) O n account o f th e  symmetry o f th e  Kuramochi kernel function on
(R*\K0) x (R*\Ko) it suffices to show that (1-1) and (1-2) hold on AR X A R .  Fix
Po E A R . D enote by g N

R\
11 , the family of all Dirichlet finite functions of C I class

on R\R„ with boundary value Np ,, on O R ,.  Then there is a  unique function Fp'07

(resp. Fi Zp )
)  which minimizes the Dirichlet integral in g N

R Ç̀i' ( r e s p .  g R
INIÇ'',V). Since

Fp(P) =  N0(p) =  N i(p0)(.4 0 )) =  (F ;(no) ° l ) ( P )

holds on ER,„ we conclude that 0 ]  o n  A R .  W e know  tha t FAI) i s
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continuous on R*\R n and the value N 0 (p) for p E AR is defined by Iim,, F (P ) -
Therefore we obtain (1-1) o n  AR x AR as n co.

As for (1-2) by  a  similar argument as above we have

f,"(p 0 )( 7r(P)) =  Fp
i
o' (P) F;(1p0)(P)

on R\R„, w hve F,"( p o ) (7(p)) is the unique function which minimizes the Dirichlet
integral in s\s,,

Since each side o f this equation is continuous in  R * \ R , the  equality holds
also on  A R . Then (1-2) o n  AR x A R follows a s  n —+ co.

T he following lemma about the relation between polar se ts  in  R *\K o  a n d
polar sets in S *\K o  is  show n  in [JM S, Lemma 2.31.

Lemma 2. L et E be a subset of  S*\K o . T hen E is polar if  and only  if  rc l (E)
is a polar subset of  R *\K o .

We have the next proposition about the relation between the sets 4 and A 's
of m inim al poin ts. For the  proof see Theorem 1 of [JMS].

Proposition 3. L e t  S  b e  a  R iem ann surf 'ace and (R ,  i t )  b e  a  two-sheeted
unlimited covering surface of  S . T hen w e have m (A ) = 4. M oreover the fiber
7T- I (Q) contains at m ost tw o m inim al points for every  Q E

6. Proof of Theorems 2  and 3

W e denote by H D (R \ K o) th e  class o f  harmonic functions in  some neigh-
borhood of R\K o =  (R\Ko) UOK0 which have finite Dirichlet integral over R\Ko•
Let gp o (p) =  g(p, p o )  be  the G reen function o n  R \K o with a  po le  a t  p o . Set

H 0 ( p )  =  { N 0 ( p )  N j ( 0 ) ( P ) }  {gpo(P) — gj uo(P)}

for p o E R \K o . T h e n  w e  have  the  next lem m a, w hich w ill be used to prove
Theorem 2.

Lemma 3. I f  h c HD(R\K0), then

(dh,dHp o )R \ R o = 2n{h(p0 ) — h(j(p 0 ))1 — ja K o h(p){d1V 0 (p) — dATI*( p 0 ) (p)}.

P ro o f  Note that Hp o  E H D (R \ K 0 ). Set Uo(M) =  Ip:g p o ( p )  >  M l .  If M  is
sufficiently large, then Uo(M ) is a  closed disc. Then for every h c HD(R \K o) we
have

vicouuo(m)) °(dh, dg p o ) R

and

(dh, dN po) uvKouu0(m)) twouiitio(m) h(p)(iNP*0(p)
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by  the  same argum ent as in L e m m a  1 . N ote that

(dh, dN 1,0 dgpo)R \K 0
 —  lim  (dh,dN p o  —  dgpo )RVIC0uuo(m))m—co

— h(p)dNp*o(p) —
oxo0 0  .  ( 9 ( 4 )(M)

It is easily seen that

h(p)dN ; 0 (p).

lirn h(p)dN p*o (p )  = —27ch(p0 ).
M—cio auo(m)

Hence we obtain the  required conclusion.

F or differentials o n  R  the pull back induced by j  is denoted by 
j .

 E v e ry
w e T h (R )  has a  representation w = 2 - 1 (w ± j#  (o ))  + (0.) — j #  ( o ) ) .  Put coo =
2 - I (co + j * (w ) )  and col = 2 - 1 (w — j# (w ) ) .  Then we have w o =  j* (w o ) and co i =
—/ # ((01)• S e t  IT (R )  = {co E F h(R); = ( 0 ) 1  a n d  F i

l,(R ) = {co e  h ( R ) :  =
—j #  ( o ) } .  From  the equation

(0 ), )R = (0 )), .i #  (a))R

it follow s that 11),(R ) Hence we have the orthogonal decomposition

F h ( R ) =  11(R) + .1" 1 (R).

We say that a  function f  on R * is quasicontinuous if for any e > 0 there exists
an open set G. such  tha t the capacity o f G , is less than e  and f  is continuous as
a  function o n  R *\G c . W e know  that every f  E  C D (R ) h as a quasicontinuous
extension over A R  a n d  b y  th is  extension f  E  C D (R ) w ith  df  E T e o (R ) is equal
to som e constant quasi everywhere on  A R .  See [CC, Satz 17.9 and  Satz 17.10].
N ow  w e show the following proposition before proving Theorem 2.

Proposition 4. L e t S  b e  a  R iem ann surface and (R , n) b e  a  two-sheeted
unlimited covering surface of  S. Then 1h0(R ) f l T  ( R) {0 }  if  and only if  it (Q)
consists o f  only  one point for quasi every  Q E As.

P ro o f  When A s is polar or equivalently S  e OG (cf. [CC, p.189]), by Lemma
2  A R  is  polar and R  E  O G  O H D . Hence the conclusion is  true.

W e assume tha t S  O G .  W e shall show

CLAIM 1: Th e (R) f l  1-
1
1,(R ) = { 0}  if  and only  if  H p o  = 0  for ev ery  p o  E R \K o

and
CLAIM 2: Hp 0  =  0  f o r every p o  e  R \K o if  and only  if  n - I  ( Q ) consists of one

point for quasi ev ery  Q E As.

C L A IM  1. Let u  be a  function of H D (R ) such that du belongs to The (R ) n
1
1, ( R ) .  N ote tha t uo H D (R ) and

d (u  o  j)  = j  (du) = —du.
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Thus d (u + u o j) =  0  a n d  u + u o j  is constant c  i n  R .  H ence u—c12=
— (u-- c/2)  h o ld s . W e  sh a ll replace u—c12 b y  u. Then u  satisfies u =
—u o j. Let p  be a  function of C ( R )  such that

{

p = in a neighborhood of Ko

p = 1 in a neighborhood of the ideal boundary

< p < 1 otherwise.

Then pu e C ( R )  has finite Dirichlet integral. W e consider Ro = R\Ko as a
Riemann surface. B y Proposition 1  the Kuramochi compactification of R o is
homeomorphic to  Ro U 4 R U aKo• Let (pu ) R „ =  vh + vo be the Royden decom-
position of (pu)I Ro in  Ro, where VI? E  HD(R 0 )  and vo is a Dirichlet potential in Ro
(cf. [CC, Satz 7.6]). By Satz 7.5  of [CC] we know dvo E F eo (R o ) . Since vo =
(Pu) I R o —  V h  is harmonic in  a  neighborhood o f OK0 i n  R o, vo is continuously
extended to be constant 0 on OK° by Lemma 5 of [J] and Satz 17.10 of [CC]. Thus
vh is also continuously extended to be constant 0  on OKo. On the other hand
vh = u quasi everywhere on A R  by Satz 17.10 of [CC] and Proposition 1. From
the uniqueness o f the  Royden decomposition (pu) R

o
0  j  = V h  0 1  + 1 1 0  0  1  i s  the

Royden decomposition o f (pu) R, j  in  R o .  In the neighborhood of the ideal
boundary o f R, vh + vh o f  is  e q u a l to  (u u o j) —  (v o +  vo j) =  — v o — vo  o f .
Thus vh + o f  =  0  quasi everywhere on A R .  Therefore vh + vh o j  is a  harmonic
function and a Dirichlet potential in Ro and hence Vh V h  o  J =  0  in R o .  Then vh
belongs to HD(R\Ko) and satisfies vh = 0 on OK0, and vh(p) = — vh(j(p)). Hence

(dvh,dHpo ) R v c o  = 47tvh (p0 ).

If Hpo =  0  for every po E R\Ko, then V h  = 0 in Ro and ( p u ) I R O  is equal to vo in Ro.
Hence u = 0  quasi everywhere on A R  and we have u 0. Since u is arbitrary,
The (R )n r (R )  =  {0}.

Next assume The (R) n F I;(R ) =  { 0 } . We extend Hpo continuously over Ko by
putting Hpo =  0 .  Then Hpo is  a Dirichlet function on R, and a harmonic part u of
the Royden decomposition of Hpo belongs to H D (R ) and satisfies u = Hp ° quasi
everywhere on  A R  (cf. [C C , Satz 7.6]). It is easily  seen  that d u  belongs to
Fhe (R) n T I! (R ) .  Hence we have u 0. It follows that Hpo =  0  quasi everywhere
on A R .  Therefore Hpo is a Dirichlet potential in Ro by Satz 17.10 of [CC]. Hence
we conclude that Hp() 0 .

CLAIM 2. For the G reen function gpo w e  s e t  U0 = {gpo (p) M } . For
sufficiently large M  > 0 , U 0 i s  com pact. Since min(gpo , M ) has finite Dirichlet
integral, it is a Dirichlet potential by definition; see [CC, p.79]. Hence we have
g 0 (P ) = 0  for quasi every P  E A R  by Satz 17.10 of [CC].

Suppose that Hpo 0  fo r p o E R\Ko . Then N 0 (P ) = NA p o ) ( P )  holds for
quasi every PE A R .  We can choose a  countable set { p„} „ ,, which is dense in
R\Ko. Set =  {P  E  R ; Np ,, (P) = 1■1, (p „) (P ) }  an d  I  =  n ,0 ,0  , /„ .  Since tIR\/„ is
polar, ,6IR \/ =  U : 1(AR \in ) is also  polar by subadditivity of capacity; see [CC,
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p.1881. F o r  every  P E I, N ( P )  = N p ,,( j(P))  h o ld s  b y  3 )  in  P roposition 2.
Hence Np + NJ ( p) o n  R \K o o r  equivalently P  =  j ( P ) .  Consequently by 2) in
Proposition 2 we have N p(p) = 2- 1 N , (p) (7t(p)) on R\Ko.

L e t Q e A s .  W e show th a t i f  Tr- 1 ( Q )  contains a  m inim al poin t P  which
satisfies P = j(P) then 7r - I  (Q ) = { P } .  If there is another point P' e Tr- 1 ( Q ), then
Np , (p )+N i ( p, ) (p )  =N Q (Tc(p)) = 2N  p(p) h o ld s . S in c e  N p ( p )  is a  m in im al
function, there exists some t > 0 such that Np , (p )  = tN p (p ) . This means that P'
is also m in im al. B u t th is is a  contrad ic tion . Hence we have 7E- 1 (Q) = {P}.

Set E  = {Q e A s :  TC— I ( Q )  contains at least two points}. If a minimal point P
belongs to Tr- 1 (E ), then P  j ( P ) .  By the above observation P is not an element
in  I. H e n c e  w e  have Tr- 1 (E) OE (A R \I)U .4 °

R . Therefore Tr- I  (E )  is polar and by
Lemma 2, E  is also polar.

Conversely suppose th a t Tr- 1 (Q )  consists of one  poin t for quasi every Q e
A s .  By Lemma 2, Np = N /( p) holds in  R \K o for quasi every P E  A R . It follows
that N po — Ni (p o ) =  0  quasi everywhere o n  A R  fo r every p o E R \K o . Hence we
have Hpo 0  f o r  every p o E  R \K o . This completes the  proof.

Proof of Theorems 2  and 3. If S e  OG, then R E O G  O H D . Since f '17(R) =
Fho ( R) ( R )  an d  T h e (R ) = {0}, h o ( R )  =  h ( R )  holds. Thus Tho (R) (-1
/ -

1*70 (R) 0 {0} holds. W hen S  O G , by Claim 2 in the proof of Proposition 4 we
have show n that i f  g  ( Q )  consists o f one  po in t fo r quasi every Q E A s  then
Npo — NJ( , ) is equal to gpo — dic oo ) fo r  every p o c  R \K o . In view of Lemma 1 and
Rem ark after Lem m a I w e have the following representation of d(N po — N4 0 ) )
and d(N po — NApo *  in  some neighborhood of the  ideal boundary:

d(Npo — N4 0 ) )* =  who +  dfo a n d  d ( N po — NJ , ) ) =  dfi,

where who E rho, J , f1 E C ,  and 41,4fi 6  T o . This shows that N po — NApo ) hase
The -  and [ ' h , , , - b e h a v i o r s .  I n  each case, by Theorem B, if  R  has no planar ends
then R  is  m ax im al. Thus Theorem 2 is proved.

Suppose tha t R  has planar e n d s .  By Theorem 3' of [J] there is a maximal
extension (R, i) of R  such that k \i(R ) is a  closed ND -set. The mapping i o j o i -1

is  a  conformal mapping o f  /(R ) on to  i ( R ) .  Since R \/(R )  is  a  closed ND -set,
t o j o t -1  is  e x te n d e d  to  b e  a  conformal automorphism o f  i2  by  L em m a 4  of
[R e ] . We denote the  extended one by  J . I t  is  o b v io u s  th a t Jo  : i is  a n  identity
mapping o f k  Hence we obtain a Riemann surface S  =  k j  and i? is  a  two-
sheeted unlimited covering surface of S  w ith  the  natural projection mapping 71
which satisfies it = n o j  (cf. [FK, III. 7.8]).

If q E S  is a projection of a branch point of (R, 7), then a branch point Tr- 1  (q)
satisfies j(Tr- 1 (q)) = m 1 (q). H ence  t(Tr-1  ( q ) )  satisfies j(t(Tc -1  (q))) = i(Tr- 1 (q)).
This means that t(Tc- I  (q)) is a branch point of (i?,i-c) and the point (it() / (:) 7r- 1 )M
is well-defined.

If q c S  is not a projection of a branch point of (R, 71), then 7— I (q) consists of
tw o points p o a n d  p i . S in c e  1( p 0 = p i ,  i(l(p 0 )) = l(p i )  holds. T hen  w e have
ii(l(p0 )) = ii(t(p i )). Hence the image (71 010 Tr- 1 ) M  is well-defined. Since it and
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fr a re  conformal mappings in  some neighborhood o f  a  non-branch point, =
i t o l o n - 1  i s  a  conformal mapping o f S  in to  S  and  satisfies l' o n = n o t .

7. Kuramochi boundary of two- sheeted unlimited covering surfaces of the unit disc

In this section we treat a  two-sheeted unlimited covering surface R  of the unit
disc U  with the projection m apping  n . S ince  U  is simply connected, if  a n  un-
limited covering surface of U is not ramified then it is conformally equivalent to
the unit disc. T h u s  w e  m a y  assume th a t R  is ramified and  has branch points.

First we shall show tha t (R, n) is uniquely determined by the set {z„} of the
projection of branch points.

Proposition 5. Let (R , n) a n d  (R ', n') be tw o-sheeted unlim ited cov ering
surfaces of the unit disc U = { 1.71 < 1} . Let j (resp.  j ' )  b e  the sheet interchange of
(R , n) (resp. (R ', n'))  and { z „}  (resp. { w „} ) be the projection of  branch points of
(R n) (resp. (R ',T c')).

Then the following conditions are equivalent:
(a) T h e re  is  a  M ö b iu s  tran s f o rm atio n  T (z )  su c h  th at T (U ) = U  and

Taz„} ) = {w„} .
(b) T here is a  conform al m ap 0 o f  R  onto R ' such that 0 o j = j' o 0.

P ro o f  (b) (a): I n  this proof w e shall use  nota tion  u, = { z i< 1} and
U„, = <  11. By assumption (n' o (z ) )  consists of one point for every
Z  E  U . S e t  w  =  T (z ) = (n' o 0)(n -

I (z )) in U .  I t  i s  e a s i ly  s e e n  t h a t  T (z )  is
a  b ijec tio n  o f  U , t o  U„, a n d  T({z„}) = {w„}. Since it ( r e sp . n ')  i s  a  locally
conformal mapping o f  R \{ n -

1 (z„)}  (resp. R '\{(n') - 1 (w„)}) onto U,A{z„} (resp.
U„,\{w,}), T (z ) is a  conformal mapping of UA{z„} to U,„\ {w„}. Because isolated
points {z,}  are removable fo r  a n  analytic function T (z ) i n  U ,\{ z „}  T (z )  is  a
conformal mapping o f  U , o n to  U„, with T({z„}) = {w„}.

(a) ( b ) :  S i n c e  (R ', T 1 o  n ')  i s  a ls o  a  two-sheeted unlimited covering
surface of the unit disc with projection {z„} of branch points and the sheet in-
terchange of (R ', T 1 o  n ') is equal to j ' ,  the identity map of R ' satisfies condition
(b). Then it is enough to prove in  the case when {z„} = {w„}.

By Weierstrass' Theorem there exists an analytic function .f (z ) in Uz. such that
f  (z ) has a single zero at every z , and .f (z ) 0 0  if  z z „ ;  see [Ru, p. 326, 15.11
Theorem]. W e know that a Riemann surface (121,n1) of an analytic configuration
of f ( z )  i s  a  two-sheeted unlimited covering su rfa c e  o f  th e  u n it disc with
projection {z„} of branch points; see for example [Sp, Chapter 31.

I f  a  o  n  d e f in e s  a single valued analytic function o n  (R, n), then we can
easily construct a  conformal mapping of  o f  R  onto R f  such that O f o j  =  o
where j f  i s  the  sheet interchange o f  (R1 ,7 0 .

Now it suffices to show that -a  o  n  i s  a single valued analytic function on
(R, n). F i x  a  reference point Po e  R  which is not a  branch p o in t  o f  n . We may
assume tha t 0  {z ,,}  and n(p o ) = O. W e can choose m utually disjoint closed discs
U„ in  U which is centered at z„ and does not contain O . Let 1, be a  finite union
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of segm ents in U\U v U„ which does not intersect itself a n d  starts from  0  and
terminates at a point of OU,,. Set c„ = U„ and y„ = W e  c a n  show that a
closed curve y E U\{Z„} which issues from 0 is homotopic to some y,œ,i

1 • • • y v.k ,  where
00, • • • , cck E Z \{0} , N  and vj  1 ,

/ ± 1. Set f? = R\ {branch p o in ts } . Let
o be an arbitrary closed curve in f? which starts from p o . It can be shown that if
n(o-)  is  hom otopic to • • • y , then  E  o c j  0  (mod 2 )  h o ld s . N ote that

27 1 d arg f (z ) =  2  1- 1 d  arg f (Z )
n(a) ,„

1=1 

1
Y
 d arg f (z)

d arg(z — zv i )
j =1

2noci  =
1=- 1 1=1

Then / f (z) = exp(2 - 1 (logl f (z)1 i  arg f (z ))) defines the  same function element
about z -= 0 if  it is continued analytically along n(o- ). Hence a  o n  defines a
single valued analytic function o n  (R, n).

Remark. The uniqueness of covering surfaces w ith the  same branch points

and a Riem ann surface R 2  o f  ,\/z(z — V2)(z + A .  Then R 1 and  R 2  are  two-
sheeted unlimited covering surfaces o f  C U { oo } w ith  th e  na tu ra l projection
mappings ni a n d  n2, respectively. Then the inverse image R ç  =  I (A) a n d  / ?  =

i in ( A )  o f  t h e  annulus A  = {I < 1z1 <2} a r e  two-sheeted unlimited covering
surfaces of A  w ith  projection of branch p o in ts  d—N/ e A .  B u t they  a re  not
conformally equivalent because R has four boundary components and /Z  has two
boundary com ponents. It is easily seen that if  n > 3  there are  many n-sheeted
unlimited covering surfaces of the unit disc with the same projection of branch
points {z,}.

Now we prove Theorem 4.

Proof of  Theorem 4. By Proposition 3  we know that .0  = (e ')  contains
one  o r two minimal points.

L e t  {z, } i,> 1  b e  th e  p r o je c t io n  o f  b ra n c h  p o in t s .  S e t  a. =  {Z E U:
— en < r} . Suppose that e' () is  no t an accumulation point of { z „ } . Then there

exists ro > 0 such that Qro n { z ,}  =  Ø. The inverse im age n - 1 (0 , 0 ) consists of just
two components and each of them determines a border of R .  Then / 0  consists of
tw o m inim al points. This is the case (a).

Assume that e'0  is  an accumulation point of { z „ } . There exists a subsequence

does not hold generally. We consider a Riemann surface RI of \/(z —  0 ) ( z  +  0 )
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f z , f  such that limk—,,,, z„k -= e'0. N o t e  that { z „ }  is  a  fundamental sequence on
U . By Proposition 2, /0 is closed. Since ei° is  a  limit point of {z„1, every O r

contains some  Z f l k . H e n c e  7r-1 (Q r )  is connected. Therefore / 0,  which is equal
to n :  ( Q 1 / , ) ,  is connected. Since N(p,rt -1 (z„)) =  N(n(p) , z„) and fz„ f
i s  a  fundamental sequence o n  U , {7-t-1 (z „ )}  is  a lso  a  fundamental sequence
converging to some ideal boundary point /1 2  e  I ° which satisfies N(p,P / 2 ) =-
2-1N(n(p), e l°). L e t  P° b e  a n  arbitrary p o in t  in  10 • B y  Proposition  3  we
have j(P °) e /° and 2 -1 {N(p, P° ) + N(p, j(11°))1 = 2-1 N(rt(p), ei°) = N(p, Pro ).
Hence P° = 1(P0)  i f  a n d  only i f  P° = Pr 12 . L e t Pr b e  a  m inim al poin t in
/ ° .  One of the two cases occurs: i) Pr coincides with API) ) or ii) P r  differs from
Pô =

In case i) assume that there exists another point P° in  /0• S in c e  Pr coincides
w ith  P°

5
 t h e  equation N (p,P ° ) + N (p,j(P ° )) =  2 N ( p ,P n  h o ld s . B u t  this1/2

contradicts the fact that N(p, Pr) is m in im al. Hence / °  consists of one minimal
point Pr(= Pro ). This is  the case (c).

In  case  ii)  /0 contains just two m inim al points P  and P .  B y (1-2) in
Proposition 2 the equation

N(P , P ()) + N(P>.#13())) = N(P, 11) + N (P,

holds for any point P ° i n  I ° • Then N(p, P°)  has the  canonical representation
tN(p, pg) + sN(p, Pr) with some s, t e [0,1]. By Proposition 2

N (p,j(13°)) = sN(p, pg) + tN(p, Pr)
holds. It follows that t + s = 1 and N(p, P I) = tN(p, + (1 _ t)N(p, Pr). This
correspondence defines a  m apping 1i o f  / 0 t o  [0 ,1] by k (P °) =  t. B y  the
uniqueness o f  canonical representation injectivity o f  tfr fo llow s. Suppose that
N(p,P ° )  (resp. N(p,P ° ) )  has a  representation tN(p, + (1 _ t)N(p, Pr) (resp.

Pg) + (1 — Pr)). Then

d (P ) , /3° )

N(p, /3° ) N(p, P°)
1 + N(p, P°) 1 + N(p, P 8)

(t 0 { N ( P ,  P8 )  N (P , Pn}
f l  + tN(p, Pg) + (1 — ON(p, Pr)} {1 + iN(p, Pg) + (1— i)N(p, Pr)}

sup 1N(p, Pg) — N(p, Pr)1
p e lf ,

sup f 1 + N(p, pg) + N(p, Pn} 2 •
peK ,

sup 1N(P P8) N (P, Pi))1
peK ,

sup fl +  N (p ,P g) +  N (p ,P )} 2

pc/CI

=  sup
pe Ki

=  sup
pcK i

I tî I

Since
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is positive finite, the continuity of 1i follows. Since / 0 is connected, the mapping
is  surjective. Therefore the inverse m apping is a lso  continuous. H ence / 0 i s
homeomorphic to [0, 1]. This is the case (b).

We shall obtain a  sufficient condition that / 0 consists of one minimal point for
every e'°  c  O U . We denote the distance between z„ and {z } U OU by d,. Set
B(z,,, r) = flz — < r}. I t  is  e a s ily  s e e n  th a t  B(z,,, d„12) did2) if
y /.,t. The next result is essentially due to Exam ple 1.5 o f  [Sal].

Proposition 6. S uppose that there is a positive number k , 1/2 < k <1 , such
that for any positive integer vo  an  open  se t U B(z„,kd„) contains a smooth Jordan

1, › V o

curve y„o which separates z = 0 f ro m  U . T h e n  10 consists of  one minimal point for
every ei0 c OU.

To prove this proposition we use the following fact (cf. [AS, p.147]).

Lemma 4. If  u(z) is a harmonic function in U with finite Dirichlet integral and
vanishes at z = 0 , then lu(z)l

1 p) 1 1 ( 114 11 u holds in  lzl p, 0 < p <1.
j r (  —  

Proof  of  Proposition 6. L e t  u be an  arbitrary function in  H D (R ).  If z E U
a n d  z z „ ,  then rc- 1 (z ) consists of ju st tw o  points p i , p2 . S et u(z) = iu(p 1) —
u(p2 )1 if z z „  and u(z,,) =  0 .  Then u(z) is a  non-negative subharmonic function
in  U .  Since {z,,} has no accumulation point in U, for any e > 0 there is a positive
in tege r yo  such  tha t U U \ I l z i  < 1  —  El. D eno te  by  D ,, a Jordan

v
dom ain bounded by y„o . T hen  D ,, contains {1z1 < 1 — E} . B y  the maximum
principle for subharmonic functions u(z) max,, Ey ,,o u(z) holds in  D,„ and also in
{1z1 1 — el. A  function ço(p) = ./m(p) — z„IVFI„ becomes a  single-valued ana-
lytic function in  a  simply connected subregion 7r- 1  (B(z „, d,,)) o f  R  and  çp maps

(B(z „, d,,)) conformally o n to  a  u n i t  d isc  O H  <  1}  w ith  (7 r - 1 (z,,)) = 0. I t
is  easily  seen  tha t ço(Pi) = —T(p 2) fo r  p i , p, E 7r (z )  and q)(n - I  (B(z,,, kd„))) =
{ lw l <  fk l.  T he function i:/„(w) o q (w ) —  u(tr- 1 (z , )) satisfies the
condition of Lem m a 4. H ence

Itiv(iv)1
-  VT()

holds in w  <  J .  If  z E B(z,, kd,,), then

u(z) = lu(P1) — u(P2)1= 1 171,, (q)(P1)) —  Eiv(ço(P2))1

2N/Tc
= ii-iv(ç9(P0) — fiv( — Ço(p1))1

N 4 )
11dullg-i(B(z,d,.))

This implies that

2 f r c  
u(z)

\ / ( 1  — )
1(u\
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holds in {1z1 < 1 — e}. S in c e  E is arbitrary, we have u(z) O. T h e re fo re  u(p i ) =
u(p 2 )  holds if n(p i ) = n(p 2). By Claim 1 of the proof of Proposition 4, Hpo = 0
holds for every po E R \K o . Since the Green function g ( q )  o n  U\K 0 te n d s  to
zero as g O U ,  the G reen function gp o o n  R \K o is equal to  0  on 4 R •  H e n c e
N(P,p o ) = N (P, j(p 0 )) holds for every P e A R . B y  Proposition 2 P = j(P) holds.
By Theorem 4  I 0  consists of one m inim al point for every e i 0  E U.

8. Proof of Theorem 5

Proof  o f  T heorem  5. Clearly (a) implies (b). B y Proposition 4, (b) (c)
fo llow s. W e have show n in  [ J ,  Lemma 31  tha t ( f )  implies (g). Since R  has
infinitely many branch points, R  does not have a planar e n d .  By Theorem 2 in [J]
w e have (g) (h).

(c) <#. (d): I f  u c HD(R ), then du = 2- 1  (du + j* (du)) + 2 - 1  (du —  j* (du)) and
2- 1  (du + j* (du)) E T (R ) and 2- 1  (du — j* (du)) e (R ), as observed in Section 6.
Since j*  (du) = d(u o j)  E Fh e (R ), 2 - 1  (du — j* (du)) e T h e ( R )  n r I;( R ) .  Therefore
(c) implies d u =d ( u o j)  and hence u — u o j is a constant function. Because u and
u o j  ta k e  th e  sam e v a lu e  a t  e a c h  b ra n c h  p o in t, w e  h a v e  u = u 0 j .  Then
u(z) = 2 - 1  (u(p) + (u o j)(p)), p  E  m  (:), belongs to HD (U) and satisfies u = u o n.
Thus (c) (d) is shown.

Conversely if  fo r  every u e H D (R ) there is u c H D (U) such  that u = u o 7E,

then u = u o  j  holds. H ence  du — j* (du) =  0  and  F he (R ) (1  1
1,(R ) = {0}.

(d) (e): F o r  every u c H D (R ) th e re  is  u E H D (U ) su c h  th a t u u  o  7t.

Since HD(U) = 9iA D(U), there is a  single-valued conjugate harmonic function u*
of u. Then u* o IL  is  a  single-valued conjugate harmonic function o f  u. Hence
u c 9IA D(R) and  HD(R ) = 93A D(R ) holds.

(e) <=> (f): From  the relations

{du; u e K D(R )}  = T h e (R) n T

{du; u c 9IA D(R)}  = Th e (R) n 11(R ),

in Section 2 it follows that R  has (W)-property if and only if KD(R) = 9RA D(R)
h o ld s . I f  K  is  a  com pact subset o f  R , then n (K ) is  a  com pact subset o f  U,
and hence n(K ) is contained in  {121 < ro} f o r  some ro , 0 < ro <  1 .  Since R  has
infinitely many branch points, there is a  branch point of po o f  (R, 7 T ) such that
ro < In(p0 )1 <  1 .  Then m ' ({ ro <1 -z1 < 1})  is connected . T hus a  neighborhood
o f  th e  ideal boundary R \K  contains a  connected neighborhood o f  th e  ideal
boundary ir- 1 ({ro < 17.1 < 1 }). Hence R  h as o n ly  one  ideal boundary compo-
n e n t .  If  y  is  a  dividing curve o n  R , then some connected component o f R \y  is
a  neighborhood o f  th e  ideal boundary. H ence y  is homologous O. Therefore
F h„(R ) = T h (R ) holds. H ence K D(R ) = HD(R ) holds. Therefore we have (e) <=>
(f).

(h) (i): W e  sh a ll p ro v e  a  contraposition. Suppose th a t  th e r e  is  u
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9IA D (R )\H D (U ). If necessary by considering u - u o j  on R  we may assume that
u(p) = - u(j(p)) holds on R .  Set D = fp E R; u(p) > 0 1 .  Since u(p) =
D  does not contain any branch points and D (I j (D ) =  Ø .  L e t  Do be a connected
component of D .  Then Do is conformally equivalent to ir(Do) by  the mapping
n1D0  H e n c e  D o  is  p la n a r  and the relative boundary aDo consists of piecewise
analytic curves, which are part of level curves fp E u(p) = 0 1 . S in c e  du*  is
exact on Do, Do is simply connected. We can find a conformal mapping o of Do

t o  the upper half plane H .  Set 45 = a H\o(a Do ). W e  c a n  se e  th a t u o 0 - 1  e
H D (H ) and u o 0 - 1  = 0  on 0(0D0). For z E H _ , the low er half plane, define
u o 0 - 1 (z) = -u  o 0 - 1 (f). T h e n  the extended uocr l b e longs to  H D (C \ 4 ). We
can easily  show th a t  d(u o V I ) * i s  exact in  C \ /0. Then there exists a  non-
constant Dirichlet finite analytic function u o +  i ( u  V I )* on C \ 4 .  Hence
is not ND -set and R  has a disc with crowded ideal boundary. This implies that R
is  no t maximal by Theorem A  (c).

(e) (d): W e have shown (e) (i). Im m ediately (e) (d) follows.
(c) (a): L e t  gp o (p )  b e  the Green function on  R\Ko w ith  a po le  a t  Po

and g  ( z )  the Green function o n  U\K 0  w i t h  a  p o le  a t  z o . I t  i s  s e e n  t h a t_zo

lim  g  ( z ) = 0  and gp o (p) + gA p o ) (p )= g  r,_ ]
,(7r(p)). Hence gp o  is extended to be

z-au -zo -7,ko
continuous on (R\Ko) U A R  by putting gpo =  O .  In the proof of Proposition 4  if
w e use the condition gp „ =  0  on A R  instead of the condition gp , =  0  quasi ev-
erywhere on A R , then we conclude that (c) implies (a).

(i) (h): We shall present a counterexample. Set z„ = 1 -  n 1, 11 E N . L et
(R, i)  b e  a  two-sheeted unlimited covering surface of the unit disc which has a
branch point over each of fzn 1. For every bounded and Dirichlet finite analytic
function f  on R  we define f (z) = (f  (p) -  f  (j(p))) 2 where z  = g ( p ) .  Then f (z) is
also a bounded and Dirichlet finite analytic function on U and ./ vanishes at every
Zn . S i n c e  E ǹ° (1 — Izn 1) =  = œ ,,  w e  have f  O. T h e re fo re  f  (p) =
f ( j ( p ) )  holds on R .  Since the class of bounded and Dirichlet finite analytic
functions is dense in A D (R ) w ith respect t o  the Dirichlet norm, the equation
f ( p ) = f ( j ( p ) )  is valid for every f  E A D(R ); see [Sa2, Corollary 2.6]. Therefore
(i) '.RAD(R) = H D (U ) holds on R.

On the other hand R  is not maximal because R  has a border; see Theorem A
(b). This completes the proof.

9. Proof of Theorem 6

It is easily checked that Theorem 6 follows from the next two propositions.

Proposition 7. Let (R , m ) be a  two-sheeted unlimited covering surface of  the
unit disc with projection { z ,,} ,, 1 o f  branch  po in ts. Suppose that every el 0 e  au is
an accumulation point of  {z„}. Then there is a sequence {K„} ,, 1 , 0 <K „ <1, such
that if  z:, e B(z„,K„d„)\{z„} then the two-sheeted unlimited covering surface (R I , ml ),
th e  projection of  w hose branch p o in ts  is { z„} U { z} , sati.sf ies that Tc -

i
l ( e ')  i s

homeomorphic to the  closed interval [0,1] f o r every el0
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Proposition 8. Let (R , r )  b e  a maximal two-sheeted unlimited covering surface
of  the unit disc with projection {z„} v > i  o f  branch points. Then there is a sequence
{ ic,} „,i, 0 < K „ 1, such  that if  z i

1, 6  B(z,,,K r d„)\{ z„} , then th e  two-sheeted un-
limited covering surface (R 2 , n2 ), the projection of whose branch points is {z„}U
is also maximal.

First w e show Proposition 7.

Proof  of  Proposition 7. S e t tf i =  U\B(z i , d i /8). L et uv , v > 2, be  th e  so-
lution o f  th e  Neumann-Dirichlet problem o n  U1 \B (z „,K 4„) fo r  som e K-

4,  O  <
Kt, < 1/8, with boundary values u„ = 0 on lz — d 1 1 8 ,  u „  =  1 on lz — z 1, = Kvdv,
and au /3 n  = 0 on O U . We choose Ki, to satisfy the condition  u v (z)1 < 1/2 1 +1 in
Ul\B (z„,d,14) a n d  Ildu,11 u,\B(7.„K,d,) < 1/2 1 . Set uv =  1  on B(z„, ic„d„) and uv =
o n  B(zi,d1/8). T h en  uv b e c o m e s  a  continuous Dirichlet function i n  U  and
E u ( z )  converges uniformly o n  any  com pact se t o f U .  Set f ( z )  = E Ur (Z),
v>2
K i  =  1/8, and F = K „d„). It is easily seen that f  (z ) is continuous in U,
harmonic in  U\F , O <  f  (z ) < 1/4 in  U1\  U  B(z„, d„ 14), f (z) 1 on  F, and has

v>2
finite Dirichlet integral over U .  We show that f  (z ) minimizes Dirichlet integral in
the  class : 4  =  {11;h E CD(U), h  = f  on F }. B y Satz  15.1 of [C C ] there exists
uniquely a  function f F  e which minimizes Dirichlet integral in  -.4 .  We know
that u„ minimizes Dirichlet integral in  -. F": =  fh; h E CD(U), h = 0 on B(zi,Kidi).
h = l   o n  B(z„, K„dv)} where F„ = B(zi B(z,„ ic„d„). Since f  —  f F  =  0  on
Fv ,  we have (du„, df —  df F) u  = 0  by Satz  15.1 a )  o f  [CC]. It follow s that

(df , df — df F ) u  = (du„, df — clf F  ) u  =- 0

and df II 2u = (df , df F) u  . Hence 0 df F  II2u = Ildf F I l d f  I I 2 u and
From the uniqueness of f F  w e  have f  = f  F

. Choose z,,
in  B(z,,K,d,), y >  1 .  Let (R i,n i) be a  two-sheeted unlimited covering surface of
U  w ith projection {z, } U {z,} o f branch p o in ts . Since TET I (B(zi,Kidi ) )  contains
just two branch points, ag -,1(B(z 1 ,K ,d,)) consists of two analytic Jordan curves Co,
C 1 .  Choose v E C,3° (R I )  such that v = 0 o n  Co and  yo = 1 on C 1 . Then
belongs to .ilf(Ri); recall that X (R i)  is, as defined before Lemma 1, the class of
continuous functions f  in  R i f o r  which there exists a  regular subregion ,f2 D K0

such  tha t f ( p )  f ' v ( p )  in  each com ponent V  o f  Ri \ Q .  L e t j i b e  a  sheet
interchange o f  (RI, ni). F rom  the relation §9 co uc, (§9 0  Q u o  i t  f o l lo w s
t h a t  cauc, 0c o u c , 1 o n  R i .  A  line segment l„ with endpoints z,, and z.,”,
lies in  B(z v ,icy cl,) fo r v  >  2 . W e denote by Go  o n e  o f  th e  two components of
(Ri

1 ( B ( z i , K A ) ) ) \ U v > 2 . 7 r -1 1 ( i v )
 w h i c h  h a s  a  b o r d e r  Co . The projection

m apping  n i m a p s  G o  conformally o n to  ( U \ B ( z i , K i d i ) ) \  U,,, 2 4  a n d  vo =
v couc, 0 7r-

i ' is a  harmonic function with finite Dirichlet integral on it. P u t  vo =
o n  B(z i ,K id i ) .  Then vo  i s  a  continuous Dirichlet function o n  U\ U v > 2 /,, and
satisfies vo = w here F ' = F \U v > 2 1„ i s  a  closed s e t  in  U\ I Since

0 ,CoUCI
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< 1 < f  holds o n  F ',  it fo llow s that 04'.' < f F '
i n  U\ Hence

00 1 / 4  i n  Ul \U,, 2 B(z„, 4 / 4 ) .  F o r  a n y  e10 E OU the re  ex ists  a  sequence

{CO Ul \U,, 2 B(z,d„/4) converg ing  to  e'0. T h e  sequence {n -
1

1(Ck)} R1
contains a  subsequence {7r i

 I  (Ck ,)} which converges to som e point Po in n -
1

1(e ) .
Since 

v c o u c ,
 is  a continuous function on the Kuramochi compactification of R 1, we

have
vCoL IC I (p o ) vCoUCI ( c k i ) ) ço0(„—I _

1

1—+Qc 1—,cc
" 1  lS k i  ) 4  •

O n the  other hand  { f i  o I (CO }  converges to ji (Po) in  n-
i l( e )  and

—v CoUCI ( p 0 ) ) Elm ço (WC!
( I

1•  ° 1 (G ) )  =  1 - lim 40()(7t
-

1
1 

(G I ))
4
-

3

•/-00

Therefore m (e'° ) contains two different points Po and f l (Po). By Theorem  4 w e
have a conclusion.

In  order to prove Proposition 8 we prepare three lemmas.
Let y be a  closed Jordan curve on C and z i and  z2  be two distinct points on

y. Then y\ {z],z2} consists of two open Jordan arcs Yi and  y 2 • W e  sa y  th a t  y is
o f bounded turning if  there exists a constant C > 0 such that

min(diam y 1 , diam y,) -  z2 1

holds for any pair (z ] , z2) of y, where diam y is the diameter of yj . In  [L V , §8] the
follow ing has been show n: i f  y  is  o f  bounded turning and Ûf i y  is  a Riemann
mapping of the Jordan domain Dy bounded by y onto the unit disc U then there is
a quasiconformal m apping 0; o f  C  onto itself such that q̂S =  O y in D .

L em m a 5. L e t  R  an d  R ' b e  R iem ann surfaces. S u p p o se  th at th e re  is  a
quasiconformal mapping f  of  R onto R'. If  R has a planar end, a border, or a disc
with crowded ideal boundary, then R ' has a planar end, a border, o r a disc with
crowded ideal boundary, respectively.

P ro o f  It is  c lear tha t if  R  has a  planar end  or a  border then R ' does.
If R has a  disc D  with crowded ideal boundary, then D ' =  f (D ) is a  simply

connected subregion of R ' .  Let 0 and q)' be Riemann mappings of D and D ' onto
the unit disc U, = {1z1 < 1} and  U„, = <  11, respectively. Then F  =  o  f o
V I i s  a quasiconformal mapping of U , onto U„,. By [LV, §8] F can be extended
to  a quasiconformal mapping of C onto itself. B y  defin ition  I  = OU,\O(OD) does
not belong to the class N D .  Since whether a compact set in C belongs to the class
N D  o r not is invariant under quasiconformal mappings o f C , I ' =  F (I )  does not
belong to the class N D .  N ote that

F (I) =  F (au ,\ o(aD ))

= F(OU,)\F(q)(aD))= OU„,\O' (f(aD))

= ou„,\o' ( ( f(D )) =
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Since 0/(0D ') is  a  relatively open set in OU„, it consists of at most countably
infinite open intervals {J}, where J„ = {e`° ; a„ < 0 <  b„} for som e 0  <  a  <  bn <
27r. W e  m a y  assume 1), - a, <  n .  Let .4; be a  line segment with endpoints e'a-
and ei b ". Then .4; lies in U„, except two endpoints. Set y = I' U 

( U „ J r ) .
 I t  c a n

be shown that for any 0 < 0 < 27r there exists uniquely a point y(0) e y such that
arg y (0) = 0 . By this parametrization y becomes a Jordan curve . D enote  by  Uy

a  simply connected region bounded by y. W e shall show tha t Dy = 0 ' - i (Uy )  is
a  disc  w ith  crow ded ideal boundary  on R ' .  T h e  re la t iv e  boundary ODy =

(Unf:/) consists of analytic arcs. L e t  Oy be a Riemann mapping of U .  T h e n
(by o O' maps Dy conformally onto the unit disc U .  Let 4  =  OUVOy o (fi')(aDy ) =

a,.U\Oy(UnJn'). Since y is of bounded turning, there is a quasiconformal mapping
07 o f C  onto  itse lf such  that Sy = 07 in  D .  N o te  that

4 = oy (y )\0) ,(y =  (0.

Since an ND-set is preserved by quasiconformal mappings of C, 4  does not belong
to  the class N D .  Therefore Dy i s  a  disc with crowded ideal boundary.

L em m a 6 . L et A  be the annulus fe - P <I li  < p > 0. For any points ::ro,
zl E A , Izol = C PO , iz1I = eP/3, there is a  K-guasiconformal m apping of  A  onto A
with f (z o )  =  -1  and f (z 1) =  1  which is an  identity  m ap in  {e- P < IzI < e -5,916 } u
fe5P/6  <  z < where constant K  depends only  on p.

P ro o f  M ap A  by  the conformal mapping w = log z  on to  G = fw = u + iv;
-p < u < p, --n v  <  n 1 .  Let wo =  - p/3 + ivo = log zo and w1 = P/ 3 +  iv, = log
z1. We construct a  quasiconformal mapping of G .  Let 0 0 ( 0  be a  C '  function
on R such that 00 (0 = 0 if 1, 0 < 00 (0 1 if t  <  1  and 0 0 (0 )  =  1 . Define

2p
if

0°0,1,0= (u ,v +(n  - Ivol)00( p
-3 ( ti+ )) )  sgn(v0)) mod 27-c if  < u < O

-2p
3

(u, y -  y1Ipo ( -3 (u  - 12) ) )  mod 27r
P 3

if 0 <  u  < -
3 '

2p

where sgn(vo) is the signature of vo. Then 00 is quasiconform al in  G , and it
satisfies 0 o( - P/ 3 , vo) = ( - p/3, —TO an d  0 o(P/ 3 , vi ) = (p11 +3, , u o ( p )0). B y  elementary

calculation m axim al d ila ta tion  o f  0 0  is l e s s  t h a n   w h e r e  p o =
vo(p ) 37r 1  - p ( p )

Vi
with vo(P) —

2 p  
maxteRitiiol(t)

+ vo(p) 2

Next we construct a  quasiconformal mapping (i5, of G w ith 0 1 (-p /3 , -7r) =
(0, -7r) and 01(p/3, =  ( 0 ,0 ) .  Let
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if 0  <x<
- 2

(x)
4 / 3 x 4

1
3

. 3
2 - 4 / 3  (3 - x) 4 1 3< x < 3

2 -

and

h(t) =

Then h(t)  is  a  C1 func tion  on R and satisfies

§8  <  1 .

Put 0 1 (u, v) = (u + (cos v)h(u), v). Then 0 1 i s  a  quasiconformal
onto  itself w ith  01(-p/3, - 7 C )  =  (0 ,  - 7 t )  and 01(p13,0) = (0, 0).

1 + pi)(P
( 8 / 9 ) 2  p 2

dilatation of 0 1 is less than , where Pi (I)) =
tit(P)V

1 + p 2

quasiconformal mapping f  (z ) = exp o 0 1 o 00 o log z  is what we want.

Lemma 7. L et r , be the fam ily  of  locally rectifiable curves y  in U\B (z i„ic,c1,)
which start from  som e points of OB(z,„K,,d,,) and tend tow ard OU and T v*  be  the
fam ily  o f  locally rectifiable curves y* in R \n - I  (B (z ,,K d,,)) which issue from some
points of  an-1(B(z,,,K,,d„)) and tend to  the ideal boundary  of  R . T hen .1.(1 -'1,) =
2).(T ) holds.

P ro o f  I f  p = p(z )Idz1 i s  admissible for 1- „, th e n  L
(y
,,) pldzi 1 because

7r(y*) e T y . Hence the pull-back TC#  (p) of p by 77 is admissible for T .  Note that
SR  (7 # (p)) 2 dxdy = 2 f fu  p 2 d x d y . Therefore we have 1(.1- „)

If p  is  admissible for r ,  then the pull-back j*  (p )  of p  b y  the sheet in-
terchange j  is admissible for T .  H e n c e  /5 2 - 1 (p +  ( p ) )  is also admissible for
T .  Since p satisfies /5 = j* (P), there exists a linear density p ' on U which satisfies

= ( 9 '). For any y E F , there is a lift y' of y, w hich  belongs to  T . T hen  p'
is  admissible for F,,. Note that

-p  d x d y  -
2  

J
R  

p dvdyft - 2

mapping of G
The maximal

<  1 . Then the

and
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JJR p2 d x d y  -  R fi2 dxdy

= -
1

2 
f  

R  (
p2 

+ i
 ( p ) 2 )dxdy -

4  R

—1 j j  ( p 2 + j * (p) 2 + 2pj *  (p))dxdy

1
-4  L ( p  -  ( p ) ) 2 dxdy > O.

Hence 2 f fu  p'2 dxdy fR p2dx dy . It follows that 11.(F„) This com-
pletes the  proof.

We call the extremal length a.(r„) the extremal distance between OB(z,„ x v d„)
and U .

P ro o f of  Proposition  8. We choose 0 < K„ <  1 /6  such that the extremal
distance between a B(z,,,icv d,.) a n d  U  is greater than 1. Take 4 E  B(z„,K„d„)\
{ z ,} .  Let (R2, 7E2) be the two-sheeted unlimited covering surface of the unit disc
with projection {z,} U {4, } o f  branch points.

Let E . be the ellipse with foci z , and such that the length of major axis is
5 1 z , -  4 1 . B y G. we denote the  Jordan  domain bounded by E „.  Then G„

z ' - z  ,1 ) z' + z,
B (z „,d,12). B y  th e  mapping z =  0,(C) = 2+ + th e  annulus

4 
{1 < <5 + N/24} i s  conformally mapped o n  G„\l„ w ith  0,,(-0= z , and
0, (1) = where / ,  i s  th e  line segment with endpoints z „ a n d  4 .  L et p =
log (5  +  121 ). By the  reflection principle ii;,,(C) o itiv )(C) is extended over
{e- P < 1} such that the extended t'fi„ maps A  = {e - P < < eP}  conformally
onto (G,) with if/ (-1 )  = (z„) and =

Suppose that R2 is not m axim al. Then R2 has a  disc D2 with crowded ideal
boundary. Since D2 is simply connected, ni l (G ,)nD 2  contains neither C nor
Cv+, where C ji = 1-fiv({ P = e-±P/3}) are analytic closed Jordan curves. Then there
exist Cv

± ,  1C,± 1 = e± P 1 3 ,  such that ki;,(C )  0  D 2 . By Lemma 6  there is a K-qua-
siconformal mapping f ,  of A  onto itself such that f y ((,±, )  =  + 1 , f ,  is an  identity
map in {e - P < 1z1 < e - ( 5 P) /6 }U {e (5P) /6 <  1z1 < e } ,  and that the constant K depends
only on  p. Define a  mapping F  on R 2 by

F ( p )  =  
{ 0, o f  ° (P )  if  P E (G, )

if p E R2 \ U v 7ti l ( G„).

Then F is a K-quasiconformal mapping of R2 onto itself such that all the branch
points {n 2

- 1 (z,)} U {ni l (z,',)} lie  in  R 2\F(D 2). By the  same argument as in the
proof of Lemma 5 there is a disc D with crowded ideal boundary in F(D 2 ). which
does not contain any branch points of (R2, n2). By a Riemann mapping 02 , D  is
conformally mapped onto U .  Then 02 can be continuously extended over 01-)
and  /2  = au\02 (aD) does not belong to  th e  c lass N D . B y som e Möbius
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transformation T the unit disc U is mapped onto the upper half plane H such that
/2* = T(/2) is contained in  the  closed interval [-1 , 1 ] of the  real axis. Then 12*
does not belong to the class N D . There exists uniquely the vertical slit mapping
P 1 (z) o f  C\/2*  such  that P 1 m inim izes 93a[S] in  -17 ,  where i s  the  family of
univalent functions S (z ) o n  C\f,* with the  following expansion around oo:

S ( z )  =  +  

a [ S ]

 + .

W e know  that P i(z ) satisfies 1) Pi (f) = P i (z), 2) each connected component of
E* = C\P I (C\I2* ) is  a  point on the real axis R  or a vertical slit symmetric with
respect to  R, 3) PI (H ) = H\E*, and 4) P I (R \ / ) c  R . S in c e  /2* does not belong
to  the class ND and E* is compact, there is a vertical slit Lo = {xo + iY:IYI y o }
with maximal length among vertical slits in E .  T h e  o p e n  ball Bo = { — zol <
Yob zo = xo iyo, is contained in  H .  L et 13, = flz — zol < 2  1 5 '0 .

We know that 7c2
- 1  (l,,)fl D consists of a  finite number of analytic arcs,

each of which has two end points on OD;.. Set ç-b-2 = P 1 o  T o 0 2 .  Then q-J2 (y(: ) )  is
a n  analytic a rc  in  H\E* with two end points in R \E*.

W e show that if n is greater than (47r)/log 2 then B„n (--p'2 (D n  u 7 '(4 ))  =
Ø. S ee  C h ap te r  1-D of [Ah] for the properties of extremal le n g th . Suppose that
there is an analytic arc y1

k
1  such that B„ n -ç.

2 (e )  Ø .  D e n o te  b y  A, the family
of circles C, centered at zo with radius r, 2- "y o <  r < y o , and by A,*, the family of
rectifiable curves in  R2 \7r2

- 1 (/,,) each o f which issues from some point on 7r2
- 1 (1,)

and tends to  the ideal boundary of R 2 .  By the property of extremal length and
Lemma 7  th e  extremal length A (A )  is  g rea te r than  th e  ha lf o f  th e  extremal
distance between 3 B(z,, K,,d,,) and OU, which is greater than o n e .  Hence we have
A (A ) >  1/2.

Every Cr e  A , contains a  subarc Cf which connects (:02 (y (; ) )  and a vertical
s lit  in  E * .  S ince  -02

- 1 (Cf.) c A ,  w e have /1.(A„) A(A,*) 1 / 2 . O n  th e  other
27r 1

hand  w e know  tha t .1.(A„) =   < - .  T his is  a  con trad ic tion . Hence B, nn log 2 2
47r

(D; n U n -1 (0 )  =  0 if n  > log 2' 
It is clear that /52 =  -02

- 1  (B,\E*) is a  simply

connected subregion o f  R 2  whose relative boundary consists o f  analytic arcs.
M oreover b 2  is c o n ta in e d  i n  R2\L1,7r-1 (/,,). It i s  e a s i ly  s e e n  t h a t  R 2 \

Un-1(1„) consists of two components RT ) a n d  R (
2

1) a n d  7r2 maps each one of R (
2
° )

a n d  R (1 ) conform ally o n to  U\U,,/„. Since b 2 is  c o n n e c te d , b 2 is contained2
i n  e ither R ( ) o r  T h e r e f o r eTherefore 7E2115, i s  a  conformal mapping o f  b 2 in to

Since 7r2 (b 2 ) is also simply connected in  U\{z,,}, 7r- 1  defines a  con-
formal mapping o f  7r2(b2) in to  R .  T hus w e know  that D = g -1 (7r2(i52)) is  a
simply connected subregion o f R with analytic relative boundary. M oreover by
the mapping :/3 = 0 o g, D is mapped onto B„\E* w ith  (OD) = OB,\E*. It
follow s that D  i s  a  d isc  w ith  crow ded ideal boundary. T h is contradicts the
maximality o f R .  Hence R , is m axim al. T his completes the  proof.



Two-sheeted unlimited covering surface s1 8 3

P rob lem . Is  the  asse rtion  o f P roposition  8  true w ithout the condition
Z1

1, c  B (z ,
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