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Meyer's inequality of the type L (log L )

on abstract Wiener spaces

By

Y U Z U rU  INAHAMA

1. Introduction

Let ( W, H, i )  b e  a n  abstract Wiener space, that is,
(i) W is  a  real separable Banach space,
(ii) H  is a  real separable Hilbert space which is continuously and densely

imbedded in W,
(iii) ,u is  a Borel probability measure o n  W  such that

exp 1 (je , w))d ,u(w) = exp (_ _21 11f11211. )

fo r any f  E  W . H ere  w e id en tify  H *  with H  b y the R iesz theorem so that
W* —* H * = H .  A s  usual, w e denote by D  H-derivative a n d  b y  L  b e  the
Ornstein-Uhlenbeck operator, cf. [13].

As for the continuity of operators D  and L  with respect to LP-norms on the
Wiener space, the following inequality due to Meyer [8] is well-known: for 1 <
p  o o  ,

IID011p -  L ) 2 + 1101Ip. (1.1)

Here A (0) <  B(0) means that there exists a constant k > 0  independent o f  such
that A(0) < kB(0) holds for every 0. ( 1 .1 )  implies in particular that the operator
D(I — L) - 1 1 2  is continuous from L P(p) to  LP( : H )  (LP-space with values in
H * = H ) if 1 < p < co. However this continuity fails when p  = 1 and the main
purpose of this article is to study the continuity of the operator D(I — L) - 1 1 2  with
respect to the L(log L ) -topology.

Meyer's proof of (1.1) relies on the Littlewood-Paley inequality. Recently, a
simplified proof was given by Pisier [9], or Feyel [3], by using the LP-continuity of
the Hilbert transform o n  th e  circle. L I -continuity of the H ilbert transform no
longer holds. However, it is continuous as an  operator from L  log L  to L '  (cf.
[6]). Taking this fact into account, a  natural question arises: Can we show that
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the operator D (I - L ) - 1 1 2  is continuous from L  log L  to  L ' ,  more generally, form
L(log L) + 1 u ) to  L(log L)"(p; H*) for a 0 ?  W e could not answer this ques-
tion; however, we could obtain the following partial answer which is our main
re su lt  i n  th is  a rtic le : D (I - L ) - I 1 2  is  c o n t in u o u s  f r o m  L(log L) 3/2 ( p )  to
L(log L)"(,u; H*) for any a > O.

O ur method in  this article is as follows. W e first show the Doob inequality
for a right-continuous submartingale X = (X 1) 1, 0  in  the  frame of L(log L)-spaces
a s  Theorem 3.1. T his inequality implies that i f  X °,  e L(log L) '  then  X : =
sup ( >01X E L(log L). In  S ec tion  4 ,  w e s tu d y  th e  Burkholder inequality for
vector valued m artingales. In Section 5, we apply the  inequality o f Doob and
Burkholder thus obtained to prove the continuity of the Hilbert transform on the
circ le  T  from  L(log L) ' ( T )  t o  L(log L ) " (T )  (Theorem  5.1). In  S ec tion  8,
w e show th a t the projection f i o f  L 2 (p )  onto  the  first order W iener chaos is
continuous from L(log L) 2 (p ) to L ' (p ) (Theorem 8.1). This result is obtained
by applying the  hypercontractivity of Ornstein-Uhlenbeck semigroup and  an  ex-
trapolation theorem (Lemma 8.2). By the continuity of the Hilbert transform on
the circle and the projection operator J 1 thus established, we prove in Section 9 our
main result that the operator D (I - L ) - 1 1 2  is continuous from L(log L) 3 /2 (p) to
L(log L)"(p; H*) fo r  a n y  a O. T his theorem  holds not only  fo r  real-valued
functions but also for vector-valued functions. By this fact and also the fact that
a > 0 can be arbitrary, we can obtain an  estimate of END" fl1 H ..„1 as Corollary
9.3.

This article also includes a  probabilistic proof of S te in 's theorem a n d  its
generalization (Theorem 6.4) which asserts the equivalence o f the  following two
statements fo r  a  nonnegative L '-functions on  the  circle T:

(i) f  is  in  L ( lo g L ) '(T ) .
(ii) Its  Hilbert transform H f  i s  in  L(log L ) (T ) .

Here we used the 'reversed' Doob inequality (Theorem 3.6) which claims that for
a  nonnegative continuous m artingale  X = (X 1), X  co* e L(log L)  a n d  X0 e
L(log L ) "  (particularly Xo i s  a constant), im p ly  X  E L(log L) + 1 . Also we
need a generalization of a characterization of ,./N I -martingales (Theorem 6.1) which
is  a  natural generalization o f Janson's result in  [5].

2. O r lic z  space L (log L)"

In this section we introduce definitions and some basic properties of the Orlicz
spaces following Adams [11. For a  > 0 we define functions o n  [0, co) as

0„(x) = 1°01  +  x ),
A

A (x) = 0„(y)dy,

Bu(x) = (Y)dY,
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and for a =  0 , we define 00 (x) =  1 and A o(x ) =  x . however, we do not define
B o(x). From  the above definition it is easy to see that  A (x ) is convex. Moreover
it is easy to see that A(x) satisfies 42-condition, that is, there exist a constant C2

(which may depend on a) satisfying

261,(2x) C2A,(x)

for any x>  O . C om bining  the two properties above, we obtain

C2
A ct (X y) (A,(x)+ AŒ(Y))

for a n y  x , y >  O . F ro m  the 42-condition we obtain that, for any  r >  0, there
exists a constant C. which satisfies,

A,(rx) Cr A,(x) (2.1)

for any x> O.
It is also verified that there is a constant c = c„ which satisfies

1
— x 0 ,(x ) A c,( )x 0 „ ( x ) .

Now we define the Orlicz Spaces L(log L) œ and  their norms.

Definition 2.1. Let (Q, P) be a probability space and K be a separable Hilbert
space. W e define the Orlicz norms of a K-valued measurable function f  by

IlfIlL(log ( P , K ) inf{r > 0;E(A,(11.fill <
r

(2.3)

and the Orlicz spaces by

L(log L )(K ) =  f f ;  f  is measurable and II f IIHL(log L)'(P,K) < (:)(:)} • (2.4)

When K = R w e simple write space as L(log L) œ.

W e  se e  b y  (2 .2 )  th a t L (lo g  L) œ(K )  i s  e q u a l  t o  th e  space  o f measur-
able functions satisfying E[11fIlKlog"( 1 + II f  II lc)] < co . Note t h a t  fo r / = 0,
L(log L) ° (K) =  L 1 (K ) .  It is known that L(log L) œ(K ) becomes a  Banach space
with this norm.

The following two relations between the norm  and the integral of the type
E[A.(II f  II lc)]

IlfIlL(log L)'(K) 1 ± ELAŒ(IlflIK)] (2.5)

and if 11 f IIilL(logLnK) is finite, then

E[A.(II.f IIK)] CII.f110 „,L) . ( K)
( 2 . 6 )

where 
q n L ( l o g W ( K )  

is  the constant in (2.1).

c,
(2.2)

are basic;
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From (2.5) and (2.6), we can see that a  linear oprator T is continuous from
L (lo g L )(K i)  to  L(logL) fi (K2) if  there exists some constant C such that

E[Afi(11 < C(1 + E[A„(11f11K,)]) (2.7)

for any f  in  a  dense subspace of L (logL )(K ).
Next we show several properties of L(log L ).

Proposition 2.2. For t, s > 0 , it holds that

ts AOE(t) + B a (s),

in particular,

tq(t) = A Œ (t) + .13,( (t)).

A nd if  we set

11f11B,= inf {r  >  0  ; E  3  fl) ]  <  1 }
r

then the follow ing Holder ty pe inequality holds..

Er.fgi 2 11.1.1100 g LyliglIB,•

P ro o f  See Section 8 of Adams [1] for a p ro o f . The first inequality is known
as Young's inequality.

L e t  f n  a n d  f  b e  f u n c t io n s  in L ( lo g  L ) " .  It i s  k n o w n  t h a t
fIlL(log Lr` — 0 if and only if lim,1 A OE(If t , — fi) = 0. ( F o r  a  proof,

see Section 8 of Adams [1 1). H ow ever, it does not seem  to be obvious that the
convergence in norm  im plies lim „„ E[A,(141)] =  E [A ,(1 fI)]. So we will give a
proof.

Proposition 2.3. L e t  fn  an d  f  be functions in  L(log L )  and assum e that
flIglogLr 0. Then lim „, AALD  = A I(Ifj) in  L l .

P ro o f  I t  is easy to see that

lIfIlB, 1 +E[B.(If1)1.
Applying the  above inequality and Proposition 2.2, w e have

(If  ,i1 —  IfD
AŒ(Ifnl) — AŒ(If I) 

If„1—IfI
< E[If, — flO(if„1+ If I)]

+1f1)1113

• 11.f,,—.fIlLoog LrEfl +Bc,(0„(1/,,I+ If I))]

• 11.f„—fllo og LrE0 + 11'1)0;1(00,( .1,J + 1.1.1))]

E [



Since Ilfnllo ogLy
the proof.
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• Ilf,, — fIlLoog LrEE1 + (Ifnl+If1)0Œ(Ifnl+If1)1

• flloo g wEil + cŒfic,(1.f„1+ if D]

• Ilf;, — flloo g
L).E[i + cc,c2{Axf,,D+ A.((f I))].

is bounded, AŒ(Ifni) is also bounded by (2.6). This completes

3. The Doob inequality

Let (52, F, P)  be a probability space with a filtration (.F , ) .  In this section we
assume that a ll the processes are defined on  (Q ,,T e ,P) and ( )-adapted. We
show the Doob inequality in the following form:

Theorem 3 . 1 .  Let (X ,) 0 < ,< a non-negative right continuous submartingale
and X,* = X . T hen  there  is a constant K Œ dependeng on a but not on X  such
that

K1(1 + E[A OE+ 1(X 0 )]).

Remark 3 .2 .  This theorem holds withuot assuming that X o, = lim ,X , .
But for the rest of this paper we will always assume that X = X , for the
process X.

Before giving a  proof we need the following properties of A OE(x):

Proposition 3 .3 .  For t, s >  0, it holds that

(1 + x) lo g " (1  + x ) =  A , ± 1(x) +(Œ+ 1) A Œ (x), (3.1)

13 1 (log c 1 (1 +x)) < (a + 1) Al,(x). (3.2)

P ro o f  (3.1) is  a  d irect consequence o f an  integration by p a r ts . (3.2) is
obtained by using (2.2) and (3.1) as

Bc,± 1 (log " (1  +  x )) =  x lo g " (1 + x )—  A 1 (x )

= A Œ + 1(x) + (a + 1) A c,(x) — log 1 (1 + x) — A„F i (x)

(a+1),4,(x).

This competes the proof.

To prove the theorem, it is enough to show the following discrete case.

Lemma 3.4. L e t X 1, X 2, ... , X N b e  a  non-negative subm artigale and X* =
supk , N  X k •  T hen there is a  constant K OE independent of  N  and (X k ) such that

E[A ,(X *)] < K,(1 +E[A cx+i(X x)i)•
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P ro o f  In the proof, we use the following n o ta tio n : We write f  <  g if there
exist a constant c > 0 such that f  <  cg (the constant c may depend only on a).

By a  well-known inequality for submartingales we have

1 rP[X* x + 1] < ELXN1fx*.x+ili•x +1

O n the  other hand,

(x*--n+

E[A,((X* — 1) + )] =  E [f log"(1 + x)dxl

= P[X* > x + 1] logŒ(1 + x)dx

<  r   1  
E[XN/fx.>x+i)] 10gœ(1 +x )d x

jo x + 1

f ( x * - 1 4  logŒ(1 + x)
 d xE [X N  0 1 + x

1
= E[XN +   logŒ+1 (1 +  (X * — 14)1.

c l

Choose c >  0  so  tha t e <  1
I . T h e n  the  right hand side (R.H.S.) equals to

cE [e(cx
X

+
N

 1) log 1(1 + (X *  — 1)+ )]

< eE[A, d_1 (  X  N )1 +  E E [B a +1 (loe +1 (1 + (X *  — 1) )]e(cx + 1)

< eE[AOE+I(e ( c t
X

±
N

 1 ) )]+ e(oc +1)E[AOE((X * — 1 )+)].

Here we used the Young inequality and the previous lem m a. From  this and the
A2 -condition of A Œ , w e  have finally

E[A,((X* — 1) + ) ]  <  1 E ( 0 6 +  0 E[A„ ± i ( E ( I
X

±
N

 0 ) ]

E[AOE+1(XN)]•

N oting that X *  —  (X *  —  1)±  1 ,  we can complete the  proof as

E[A OE((X*))] < E [A OE(( X* — + (X * — (X * —1) + ))]

E[AOE+1(XN)] + 1.

Theorem  3 .1  im p lie s  th a t, fo r  a  right-continuous m artingale (X,), X  e
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L(logL) œ ± 1  im plies X ,; E L(log L) . For a non-negative continuous martingale,
the converse also holds.

Before giving a proof, we will show a lemma (in Section 6.2 of Durrett [21).

Lem m a 3.5. Let (X ,) 0 < ,< a  non-negative, continuous martingale such that
X 0 = c > O. T h e n  f o r an y  2> c

2P(X ,;`, > 2) > E[X „L x , , A ) ]•

P ro o f  Set T  = inf {s; X  >  A} A t. T h e n  T  i s  a  bounded stopping time.
Since X , has continuous paths and X° = c < 2, w e have XT = 2  on IT  <  t}  =
{X ,* >  2}. So w e have

AP(X t* > 2) = E[X 7-; X t* >2 ]

= E[X ,; X,* > A]

= E[X t ;T < t]

= E[X,; TA <

w here TA = ings; X  >  21 . R em em ber tha t a  non-negative, continuous super-
martingale has a limit X .  T a k in g  the limit of the above inequality as t —> oo, we
have by Fatou's lemma

2P(X 01) > 2) E[X xl(TA<00)]

> E[XG.91(x„>).)]-

This completes the proof.

T heorem  3 .6 . L e t (X ,) b e  a  non-negative continuous m artingale. If X ; E
L (logL )" and Xo  E L(log L) œ + 1  (  particularly  if  X o i s  a constant), then _,1(  E
L(log L) + 1 .

P ro o f  We first consider the case X0 is  constant, i.e., X0  =  c > O.

E [A (X )] = E [f 2)(121

=  loe(1 + 2)d), + E [f +2)d2]

cc
> A Œ ( c )  +  f  ,E [X 0A x ,,),)] logŒ(1 + 2)4, A

log OE(1 +.1.)
"M c) + E [X  f  1 ( ,„,,I)

1 +
d

= A Œ(c) + +   E[Xo o l l o g ' I (1 +  X,„,) y log"+ 1 (1 +c) —  log' ± 1 (1 + c)}
c l
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1
A,(c)d- E [X ,{ lo g 1 (1  + X ce ) — log " 1 (1 + c)}]a + 1

1 
1

E[A„+1 (X  )] + A
1

,(c) log'i (1 + c).oc + a +  

Next let us consider the case X0 is  random. Note that we may assume that the
probability space is a standard measurable space. Then for the regular condi-
tional probability P w (-) given ,Fœo, we can apply the above estimate to obtain

X0Ew[A,(K
1 

1
)] >  E "[A ,(X )]+  A O E (X 0 ) 1 logŒ+ 1 (1 + -X0)•+ a +  

Integrating both sides we finally have

E[A,
1)] >

1E[A(Xo0)] + E [A u (X o )  
a  ±  1  

log" 1 (1 + Xo ) ].a +  
,

N o te  th a t  AŒ(X0)
X0

log'' (1 ± X0 ) is in teg rab le  p ro v id ed  th a t Xo ca + 1L(log L ) " 1 .

4 .  The Burkholder inequality

In  this section we will prove the Burkholder inequality for vector valued
martingales in a similar way as Lenglart, Lepingle and Pratteli [7] and Revuz and
Yor [10].

Definition 4.1. Let 17 be a positive real function defined on (0, a] such that
lhirlx—o 11(x) = 0 an d  le t )6 > 1. A n  ordered p a ir  (X , Y ) of positive random
variables is said to satisfy the "good 2 inequality" I (q ,f i) if

P[X > fl2; Y < c52] q (6 )P [X

for every 2> 0 and c5 e (0, a]. W e w ill w rite  (X , Y) c 1, fl).

In  the following, F  w ill b e  a  moderate function, that is , a n  increasing,
continuous function vanishing at 0 and satisfying the 42-condition.

Lemma 4.2. T here is a constant c  depending only  on  th F  su ch  th at if
(X , Y ) e 1(17, fi), then

E[F(X)] c E [F (Y ) ] .

P ro o f  See Lemma 4.9 in  chapter IV of Revuz and Yor [10].

Lemma 4.3. L e t A (t )  an d  B (t) be continuous adapted increasing process
satisfying A(0) -= B(0) = 0. If

E[(A(T)— A(S))P] CE[B(T)PI ( s < T ) ]

f or some positive real numbers p, C and every stopping times S, T such that S < T,
t h e n  ( A ( ) ,  B ( ) )  e l(q ,fi) Ib r  every fl > 1 and 1,1(6) = C(fl —1)-POP.
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P ro o f  See exercise 4.25 in chapter IV of Revuz and Yor DO].

Let /I ( t)  b e  an  R d -valued martingale, th a t  is , t1 (t) = (MI (t), M 2(t),
M d ( t ) )  a n d  e a c h  M ,  is a  continuous martingale. 11111(t)11Rd = 11/17/(011 =

M1 (t )2 + • • • + Md(t) 2 . Set < >(t) = >(t)+‘ • • +<M >(t) so that 11M(t) —
<i >(t) is  a martingale.

Theorem 4 . 4 .  L et la(t) be a continuous R d -valued martingale starting at 0 and
F b e  a  m oderate function. Set 11* (t) = sup 5..,,1111-1 (s)11'. T hen there are  con-
stants cf - and C F  (independent of  the dim ension d) such that

E[F(111-4 11* (t))] cF E[F(<114)(t) 112)],

E[F(<1171>(l) 112 )] CFE[F(11 1 4 11* (0)]•

P ro o f  Note th a t the following argument does not depend on the dimen-
sion . W ithou t loss of generality w e m ay assume th a t  M , are equi-integrable
martingales. Take two stopping times T , S  such that S  < T  and fix them . W e
set

MO= { f i ( ( S +  t) A  T) — ( S ) 1 1(s<T) •

Then

<Ar. >( Do) = <N,>(oo )
i= I

{ >( T) — <mi >(s)1I(s<T)
i=1

<Mi>(T ) 1(s<T)
i= 1

= <A4)(T)/( s < T ) . (4.1)

One the other hand, by  the triangular inequality, we obtain

11A1 * (T) — 11117/11* (5 ) O r  ( 0 ) 21liall*(T)/(s<T). (4.2)

First w e show b y  (4.1) and (4.2) th a t  «la>(/) , II/-411* (02)  satisfies the a s -
sumption o f Lemma 4.3:

E[04 >(T) — <111>(S)] = E[{<111>(T) — <-214>(S)Ms<T)]

= E[<g>( 0 )]

E[01 ; >(oo)]
i=1
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E[N, ( ) 2 ]
1=

E[ * 2]

4 E[1111411* (T) 2 /(s<ni•

Next we show again by (4.1) and (4.2) that (11117/11*(t),<Ia>(0112) also satisfies
the assumption of Lemma 4.3:

E[{1110- 11*(T)-Hiall*(s)}2]=E[or'Inco)2]

d

E [N  (0 0 ) 2 ]
i=1

E[<N,>(c)o)]

E[ { <M>, ( T) —  01
/
1

, >(S) 11-(s<r)]

< 4E[0171->( T )I(s<T)]•

This completes the proof.

5. Continuity of the Hilbert transform

In this section we will prove the continuity of the Hilbert transform. In the
sequel, we use the following notations:

(i) D = { z  e C; lz} < 1} is  the unit disk.
(ii) T  = { z  c C;Iz i = 1} is  the circle: We identify T  w ith a  closed interval

[—g, g].
(iii) d 0  is  the normalized Lesbegue measure on T.
The Hilbert transform H  is  a composition H  = R QP : L 2 (T) T 2 (T )  of

three mappings P , Q  and R  described below.
(1) P : L 2 (T ) —> H2 (D )  is the P o i s s o n  integral, i . e . ,  for f ( 8 )  =

E nx ocineino E L 2 ( T ),  P f (r, 0) = 0 0  inrineino Another expression of Pf  is;

P f (r, 0) = * f )(0),

1 — r2

where P,.(0) = 1 —  2r cos 0 + r2 
is the Poisson k e rn e l. Note that Pf  is harmonic in

D.
(2) Q : H 2 (D) —> H 2 (D )  i s  th e  m ap tak ing  conjugate  harm onic  function

v a n ish in g  a t th e  o r ig in  z  =  O. I f  u E H 2 (D )  is  w r it te n  in  th e  fo rm  u(r, 0) =
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E n.  _ 0 0  i i n r inl e ino, then Qu(r,O) —iE n
oc_ _  sgn(n)fin rneino, where

+ 1  (n > 0),

sgn(n) = — 1 (n < 0),

0 (n = 0).

(3 )
 

R : H 2 (D ) —> L2 ( T ) is the map taking boundary va lue . All the function
spaces we considered above are real valued.

Let K be a  separable Hilbert space. We generalize Hilbert transform H  to
the spaces of K-valued functions as an operator acting only on function part, that
is, if a K-valued function I  is written in the following form

ni

= E f i (0)ei ,
i=1

where e, e K  and f,(0 ) are real valued functions on T , then H f is defined by

n i

H f (H f i )(0)e i .

In this section we will prove the following result.

Theorem  5.1. T here is a constant C  satisf y ing

H7(0)11K)do < c c, ( 1 + AOE+1(11.7(6)11K)do)
_n

f o r an y  7 E L(log L)Œ+ I  ( T :  K ) .  From  this ive see  th at H : L(log L) + 1 (T:K) —>
L (logL )"(T ;K ) is continuous.

P ro o f  It is sufficient to show the theorem for f  =  E ;_n  f,(0)e„ where
C " (T ) and ei a re  orthonormal and m  =  1 , 2 , .... W e may assume further that
f i r ld0 = 0  in K  since H  vanishes on constant functions.

L et /3, = B ti iB t
2 b e  a  complex Brownian motion sta rtin g  a t O . For

r (0  <  r <  1 ) w e  s e t  a  stopping time r r = inf { t; B 7 =  r }. B y  the rotational
invariance of a Brownian motion, we have for 0 < r <1

EA„(11QP:f(rei°)Ii)de = E[A7V(11QP f (BOO]

E[Aa(11QPÏ( 1 3 t r )11* ( 0 0 ))] , (5.1)

where Brr(t) = B(1- r  A  t). Using the Burkholder inequality,

R.H.S. of (5.1) E[it,(<QP .7(Br')> I i2 (0))]. (5.2)
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Since Pf(13,") + iQPI(BT') is  a  conformal martingale, we have

E[Aa(<QP.f(B r ')> 1 / 2 ( ))] E[Au(<6(B r r )> 1/2 (°0 )))]

E[A. (116 (B ' )11*(00))1
1+ E[AŒ+1(1111(B(rr))1Di

= 1 + Aa+1 (re'°)Ipd0.
- 7 i

Here we used the Burkholder inequality and the Doob inequality.
Because f,'s are taken from C ° (T ) we do not need to worry about troubles

which may occur in limiting procedure. So we can finish the proof by applying
the dominated convergence theorem to the both sides as r 1.

There is another expression of H  a s  a  singular integral: H  is  the formal
0convolution with cot —
2
. (Because of the singularity of cot-

2  
at 0 = 0 we used the

word "formal").

Proposition 5.2.

0
H f (fi) = p.v. cot —,. f (fi — 0)d0,

T
(5.3)

where p.v. denotes the principal value.

P ro o f  It is well-known. So we omit the proof.

6. A  generalization of Stein's theorem

In this section we first generalize Janson's characterization of 4 ' 1 martingales
and then prove a generalized Stein's theorem. Here we only consider the case of a
probability space (Q, g7 ,P ) with a filtration (.97

i )  which is generated by a  d-di-
mensional Brownian motion. We introduce the following notation.

..W(log 4')" = {X = (X,); X is a (A)-continuous martingale

such that Xo =  const. and E[A Œ (  su p  1X(1)1 < (x)},o<f<cc.

X (log X )" =  {X = (X,); X is a  (A)-continuous matingale

}such that Xo = const. a n d  sup  E[Aa(1Xf DI <  o o  .
o<t<00

Next we define the martingale transform. Since our filtration is generated by a
d-dimensional Brownian motion, every adapted local martingale X, is written in
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the form

= X0 + I H  d B ,

for some locally square-integrable predictable R d -valued process H .  W e can
define the transform of X  by any  d  x d  m atrix Q as

( Q * X ), = QH, • dB s .

By definition it is obvious that Y"(log JO'  , / d ( lo g The next theorem
characterizes .W(log,/d)".

Theorem 6.1. The follow ing tw o conditions are equivalent.
(i) X e jN(log df)"
(ii) T here ex ist matrices , Q,n (m  >  1 ) which do  no t hav e  a common

eigenvector in  R d  a n d  which satisfy  Q'  X  e Y7- (log ,Y() œ f o r  any  i = 0, 1,... , m,
where Q0 * X = X.

P ro o f  First we prove that (i) implies (ii). The bracket of Q * X is computed
as follows

<Q* x>1= IQH,Fas
0

_11Q11,2,pf IH 2 ds
0

=
w here 11Q1lop i s  the opera to r norm  o f Q .  B y  the Burkholder inequality we
conclude that Q * X e ./d(log./N) .Y((log

Next we prove that (ii) implies (i). W e need the following lemma in Section
6.7 of Durrett [2].

Lemma 6.2. A ssume the condition (ii) of Theorem 6. 1. Then there is a po < 1
(that depends only  on the m atrices Qt 's) such that if  F, =  ( 1 +  E 'in_0(Q i*xV ) 1

"

then F f  is a local submartin g ale  Jr all p > p o .

Remark 6.3. In Durrett [2], it is assumed that Xo = 0. But the proof in [2]
is also valid in our case that X3 = const.

We also need the following inequalities. There is a constant K Œ such that for
any X ,  y > 0,

(x + KOE(xŒ + y"). (6.1)

Indeed, setting  KŒ 1  fo r 0  <  <  I  and  Kc, = 2" - i  f o r  a  >  1 ,  w e  see  by
differentiation that (6.1) holds. Let p < 1. There is a constant Mp  such that for
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any x  0 ,

0 < log(1 + xP) — p log(1 + x) M . (6.2)

Indeed, setting Nip = (1 — p) log2, we see by differenciation and by (6.1) that (6.2)
holds. It is also verified that

1) 61 Fr 1 + 1(Q; * (6.3)
=o

Choose such a  p c  (po , 1) as in Lemma 6.2. Then by (2.2) (6.2) and (6.3), we
have

1 t I Idp"c - 1IPE[ s u p  AOE(IX t1)] P œc p- Œl i P E [ supX llo g "(1 +  X/pc<
o co 0 < t< c o

< /PE [ sup 1X(1 1ogœ(1 + IXt1P )]Po< 0 < < o0

=  cp
-

Œ
l iPE [s up  { iXt 1P logPœ(1 + We)} I/P 1

o<r<x)

E [

E[ su p  {Apa(IX/I P )} 1/P 1o<t<09

sup {Ap a (g ) } 1/1 . (6.4)
o<r<.0

By Lemma 6.2, ApOE (F it ' )  is a local submartingale (in fact, it is a  submartingale).
For 1 /p >  1 , we can apply the Doob inequality for the right hand side of (6.4).

E [
 su p  {Ap ,(Fr)} I /P1
o<t<00

1/p
< sup E[{Ap c ,(F f)} 11P]

i / p  — 1  0 < t<co

1
< sup E[{Ff logPœ(1 + FtP)} 1lP]

▪ Po<t<co

1
=  sup  E[F,log œ(l +Ff )]

• Po<i<co

1
< ,  sup E[Fi fp log(1 + Ft) + Mpl a]1 —  Po<,<co

< sup E[Fjp" logœ(1 + F t ) +
1Po <r<c o
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K a p" K „M "
< sup E[F, log"(1 + Ft )] + P  sup E[F,1

Po<t<co P o<t<oo

K apac aK a M "
< sup E[A Œ(F,)] + P  sup E[F,]

P o<i<00 P o<t<00

Ka p œ Cot Cm+2 
< 1  —  p  m  +  2  

{A Œ(1)+ E  sup E[AŒ(1(Qi * X)1)]}

K „M "
+ P { 11 — p i=o

sup EH(Qi * (6.5)

Here we used (2.1) (2.2) (6.1) (6.2) and (6.3). By the assumption of the theorem
the right hand side of (6.5) is finite. This proves the theorem.

Theorem 6.4. Suppose f  is in L(log L) œ (T )  and f  0. Under this con. dition
the follow ing two conditions are equivalent.

(i) f  is  in  L(log 4 1 (T).
(ii) Its  Hilbert transform  H  f  is  in  L (logL )"(T ).

P ro o f  The implication (i) (ii) is immediate from the continuity of Hilbert
transform. We prove the implication (ii) (i). It is easy to see that, if we set
u(z) =  Pf  (r, 0) = (Pt. * f ) ( 0 ) ,  then u(z) 0  and u(0) = ST  f . W e also set
v(z) = Q Pf  (r, 0 ) = PH f  (r, 0 ). Let 13, = .13,1 + iB ,2 be a complex Brownian motion
starting at 0. Define a  stopping time r r b y  r  = { t ;  B ,  =  r }  and set B t

r • =
B t „ , .  Then by the Ito formula we have

t A T r

u(BT) = f  (0)d 0 + Vu(B) • c113,. (6.6)
0

and by Ito's formula and the Cauchy-Riemann equation we have

t A  T,

D(13
;t r ) = V v(B,) dB,

o

= fI A  Tr

(Q1V u)(13,) dB
o

,

= (Q1 * u(B"))„
where we set

Note that Q1 i s  a rotation and does not have an eigenvector.
Now we can apply Theorem 6.1:
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E[A ,(u(Ir)*)]

<1( 1 + k2{ sup E[A„(u(BN)] + sup E[A,(u(BT"))]

+ k3{ sup Ell u(BTr)I] + E[iu(BNI]

= k 1+ k 2 { E [ A u ( u ( B T , ) ) ] +  sup E[A„(u(B0)1

+ k3{E[lu(B,,)1]+ E[10(B„)11}

= k1 + k2{ f  A „(u(re 18 ))d0 Aœ(D(reiNdO}

X k3{ lu(re'°)IdO + iv(re`8 )1c10}

+ k 2 {  A ,( f  (0))dO + A , ( H f  (0))dO}

k3{ f  MVO ± J 1 1 f ( 0 )1C10 }

where k's are constants corresponding to those in the proof of Theorem 6.1, i.e.,

-  1  I p KuP c( C,+2k2 = p  'c pOE

k 3  = p 'c ' 1P 1 — p

k1 = k2A,(1) = k3.

The last inequality in  (6.7) is verified by Lemma 6.5 which will be given later.
From (6.7) combined with Theorem 3.6, we obtain

1
+ 1 JT

1 (Pf (r, 0))d0

1 =
1 

E[A ,±1(u(B„))]
a +  

E[A „(u(B,) * )] + G(11.f111)

+  k 2 {  A c,(f(0))d0 + L AOE(Ilf (0))dO}

1(3{1 (0)1(10 
+  T  

IH,f(o)ido} + G(11f111), (6.8)

(6.7)

— p m  +  2

IC,111;
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w h e r e  G(c) = —A Œ(c) +  c  l o g 1(1 + c). S in c e  f  e L ' ( T), limr1111Pr * f
= 0. H ence there ris+ i ;  sequence {r o }  s u c h  th a t  ro  1  a s  n —> c o  and

P„ * f (0) — > f (0) for a.a.0(d0) a s  n --> cij. B y  Fatou 's lem m a the proof is
completed.

Lemma 6.5. Fo r an y  f  in  L(log L )' ,  ST 4 cf Pr * f (0 ) )d 0  is increasing and
converges to S T  A cc (f  (0))d0 as r I  1.

P ro o f  Since P r * f ( 0 )  is harmonic in the open disk, .f7_, A„ (P r * f (0 ) )d 0  is
increasing in r. We will prove the convergence. For a continuous function f  on
T, it is w ell-know n that lim o Pr * f  — flIc(T) = 0. By Proposition 2.3 we have
tha t the Jemma holds for f  e  C (T ) and

JT 
Aa (P r * .f (0))d0 < Act(f (0))d0.

Replacing f  in the above inequality by f  A ,  we have

11 Pr * fIlLoog Ly

This shows that the convolution operator with P r is  a contraction for any r. By
the usual argument for strong convergence of operators, we see that, for any f  in
L(log L)a, linar1111Pr * f — fIlL(log L )  _  o . B y Proposition 2.3  w e have th a t  the

"

lemma holds for any f  E L(log L ) x .  This completes the proof.

7. Computation of D h(J — L ) 2

In this section we compute Do(' — L) - 1 1 2 0 (firstly for a real-valued function
04.  Let ( W, H, ,u) be  an abstract Wiener sp a c e . Let D  be  the H-derivative L
b e  the Ornstein-Uhlenbeck operator and P t b e  the Ornstein-Uhlenbeck semi-
g ro u p . P t c an  b e  ex p re ssed  a s  P,0(x) = 0(e'x  + (1 —  e -2 1 ) 112 y),u(dy). We
define the space S  of rapidly decreasing cylinder functions on W by

S = { 0;0(w ) =  FUhd(w), . . . ,[11,](w)) for some n, hi , ,h„ E H, and F E S(R d )}

where S(R d )  is  the Schwartz space of rapidly decreasing C '  functions.
We define a  transform R o on W  x W  by

Re(x, y) = (x cos 0 + y sin 0, —x sin 0 + y cos 0).

In the following we always set cos 0 =
First we compute the derivative of PO  for o E s in the direction of h e H.

d
DhP10(x) = —

d s
PrO(x + sh)

(e ' ( x  811) + ( 1 — e - 2 t ) 1 1 2  Ati(dY )ds

v=0

.v=0
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= —d  f 0 (e - 1  x + (1 -  e - 2 ')' 12 (y  + 
s e _ t

  17))p(dy)
ds (1 -  e- 2 0 1I2

= —d  f 0(e - I  x + (1 -  C 21 ) 112 y )6  se  '
-  e-2')1

/2 h  p(dy)
ds (1 '

e '
=  

( 1  _  e - 2 t )
to f 0(e

- I

 x + (1 e
-2( )1/2 

Ahi(Y )0(dY ),

where e(h )  = exp([h] (y ) - -Z1111112x) for h E  H
Next we compute Dh(/ -  L) - I 1 2 0. For this we represent (I - L ) -1 1 2  0  as

follows:

(/ - L) - I 1 2 0(x) = F(1/2)-I t - I /2  _-t
e  PrO(x)dt.

0

Because DI, is closable, it is sufficient to compute the following limit.

co

liM p h t-1 1 2 e- ' P t0(x)dt.
E -,c1

Now

t -1 1 2 e- '1',0(x)dt( 7 . 1 )

cc

— J C1/2
e-2t

— e_21
)

1 !2 y)[h ](y )(dy )d t
(1 — e-29112 w 0(e- 1  x + (1

n/2
= ( -1 0 g  COS 0 ) -1 /

2  
cos2  0

 f (0 1)(Ro(x, Y))[11](.011 (dy)tan0 d0

sinO  w

ir/2
(-log cos 0) - I /2cos 0 (0 ® 1)(Ro(x, Y))[h](Y)11 (dy)d0 , (7.2)

where p = -log  cos t  an d  ( f  g ) ( x ,  y ) = f (x )g(y ).
Setting the R.H.S. of (7.2) by I  and making the transform y  —> - y, we have

n/2

— (—log cos t9)- 1 /2cos 0 f  ( ®  (R_0(x, y))[h](y)p(dy)d0.
Jp w

On the other hand, making the transform 0 —> -0, we see

—P
I  = (—log cos 0) -1 1 2 cos (0 O 1)(R_o (x, y))[h](y)p(dy)(10.

- 7r/2

By averaging these, the R.H.S. of (7.2) equals to

s=0

s=0
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2
I ( I  P -  F 1 2 ) (-log cos 0) - 1 1 2 cos 0 (0 0 1)(R_e(x, y))[h](y),u(dy)d0

-n /2 p

=  w [h](y)[( K(19)(93 0 1)(R_0(X, y))d01,u(dy)

where K (0) is defined as follows

1- -
2  

(-log cos 0) -  °cos 0  (0 o <  ;),

K(0) = 1(-log cos 0) - 1 /2 cos 0 ( - 0  o),

0 (otherwise).

Note that as 0  0, or equivalently t 0,

K(0) =
e- t 1

2 0
=  + a bounded function,

   

0 1 + e- fcot-
2 -  e

= + a bounded function.- t
So we have

K ( 0 )  =  _cot -
0  

+ a bounded function.
2V2

Let p j .
 0 . Then we have

- P fr
lim [h](y )[(f  + )K (0)(0 0 1)(R _0(x , y ))d0],u(dy )
p l 0  w P

= [h](y) [ lim ( j  +  ) K ( 9 ) ( 0  0  1)(R-0(x, Y ))d6111(dY)p

=  w [h](y) [p.v. 7, K(0)(0 1)(R_0(x, y))d01,u(dy).

Here the first equality (a change of limp and fw ) is guaranteed because we took
from S.

For convienience we set

UF(x, y) = p.v. K(0)F(R_ 0 (x, y))d0

for F : Wx W R .  Note that i f  (x, y) is substituted by /2,6(x, y ) i t  is  the
convolution of K (0) and F(Re(x, y)).

From the argument in this section. we conclude that

F(112)Dh (I  - 12 0(x) = w [h](y)U (0 0 1)(x, y)p(dy). (7.3)
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Note that Dh(/ — L) - 1 /2  can also be generalized to act on K-valued functions
as an operator acting only on function part. If a K-valued function 0 is written in
the following form

I77

where e E K, then

T(112)Dh(I — L) '12(x) = [11](Y)U (0, 0 1)(x, y)p(dy) e,. (7.4)

8. Continuity of J1

In this section we will show the continuity of the projection J1 of 1,2 (p) onto
the first order Wiener chaos. Unfortunately J1 is not continuous from O p )  to
O p ) .  For example consider one dimensional standard normal distribution and
functions exp(nx), (n E  N ) . In fact Men'il L , = en2I2 and

11.11(enx)11Li
1 r  xen x e- ' 212 dxlIxII L I = ne n 2 1 2 11xIILI-27r. -00

Using an extrapolation theorem we will show, however, in the following theorem
tha t J 1 : L(log L) ' 12 (p) —> L I (p ) is continuous.

Theorem 8.1. L et .11 be the projection of L 2 (p ;K ) onto the first Wiener chaos
and F E  L 2 (K ) .  Then there is a  constant C satisfying

EH FIIK1 < e'(1 + AI/2( II F II K )) • (8.1)

P r o o f  W e will prove that the semigroup fi t is hypercontractive where

in

fi tF = E P tF,(x)e,,

for any F of the form  F = E r, n  F,(x)e i and F1 E  L 2 (p), e i E K.
Since the Ornstein-Uhlenbeck semigroup is w ritten as P ( x )  =  Sw 0 (e 'x +

( 1 _ e _ 2 /, 1 /2) y )p (d y ), it is easily verified by interchanging the order of the norm and
the integral that

1113tF(x)IIK Pt IIFIIK (x ) .

Since the hypercontractivity of P, in the scalar-valued case is well-known, the
above inequality shows the hypercontractivity of fi t , th a t  is,

11F11,,,
where p —1 = e - 2 t(q —1).
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And the hypercontractivity of f i, implies, for 1 < p < 2,

v p
i linp. (8.2)

The proof for scalar-valued case of inequality (8.2) in Ikeda and Watanaba [4] is
also applicable to this vector-valued case.

We will finish the proof by te following lemma on the extrapolation, which is
a  generalization of the result in the scalar-valued case by Yano [14]:

Lemma 8.2. L et T be a  transformation which transforms every integrable K-
valued function to a  measurable K-valued function, both being def ined on  a prob-
ability  space (Q, P), such that

f (x) = .f„(x) 
im p l i e s  11 7 f11

HT( —f)11K =
and the inequality

fEHITfli ikil lcp f E E llf  IIPK 11 11P

holds w ith the constant C i , , satisf y ing the inequality

C  <  
P ( p  —  1 ) k

f o r any  p, 1 < p 2 ,  f or som e k > 0 and  f o r a constan t C . Then w e have

< ak  E [A k (1If I I K)] + bk ,E[ilif II Ki —

where ak and bk are constants depending only on k.

P ro o f  The following proof is a  slight modification of th a t in  Yano [14].
F ix  a  k > 0. It is sufficient to  show (8.7) for f  satisfying f ( x ) I I  >  1 for

almost all x, since any f  can be expressed as

f (x) = f (x) 11(.1-v ) K +  . f (x)I f(r (,),,)„<o}

= (f(X)11( f (x ), v)K > 01 + V) - f  (X)I1( f( x ), < 01 ±  V)

=  f + (x) — f -  (x),

where VEK is a unit vector in K .  Note th a t Ilf+ (x) 1(.f (x), v)KI_>_ 1. By
the sam e reason  w e see  tha t Ilf - (x)IIK >  I . S e t  f2„ = {2"

+ 
Hf(x)HK < 2v+1 }.

T h en  S2 = E(,),9 0 ,(2,. A n d  se t f,,(x) = f (x)I f 2,(x) an d  gy (x) = 2- " f),(x). Then
f (x) = Evcc_o fv(x) = Evcio gi, (x) and 1 11g,,(x)11.K < 2. B y  (8 3 ), (8 .5 ) and (8.6)
w e have

00

II Tf lIK = 2" Tgv(x)11K.

(8.3)

(8.4)

(8.5)

(8.6)

(8.7)

v=0
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Integrating both sides, we obtain

DO

v=0

v=0

4 C  
E2v{E[119,(x)11K]rPv.

- 1)k v=0

Here we used the  fact that 1 < Ilg„(x)11K  < 2  and 1 <  p v < 2.
We substitute p v = 1  + 1 / v .  Then we have

00

E[HTfilK] E2vvkfE[Igv(x)11K]r'(1±v)
v=0

DO

E2vvk(4E[mgv(x)11K] +4')
v=0

2Pv k E[llgv(x)11K]+bk
v=0

CO

E[IPIKlog k (11.f,IIK)]+ 1

v=0

, E[Ak(11.fv11K )] +1.

Here in the second inequality, we used Lemma 8.3 below.

Lemma 8.3. L et x  > 0  and  y >  1 .  Then

x"I ( v+ 1 ) < 4x +

P ro o f  Let F(x ) = 4x(v+ 1) /v. Then f (x )  = F'(x )  =
 4v

 ±  1  x 1 /V. T he inverse
function g  of f  is calculated as

g ( x ) -  { 4(vv+ 1)x }

Set

I lv xv -"
G (x ) = f x  g(y)dy = 14(y  + of v + i 'o
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Then by Young's inequality, we have

x v/(v+i) x v/iv+i) . 1

< F(x v v + 1 ) ) + G(1)

= 4 x +  v l v 1

14(v+ O f v+

< 4x +

and this completes the proof.

9. Continuity of D (I -  L) - '/2

First let us compute H*-norm of D (I - L ) - 1 1 2 0 ( x ) .  Generally for G E L 2 (p),
the linear functional

(h [h](w)G(w)p(dw)) e H*

corresponds to an  element g e H  through the canonical isomorphism H *  H,
where

g = E [hd(w)G(w),u(dw))11, E H
i=1 w

({ h,}  is an O.N.B. of H ) .  Then we see that

6g(w) = f iG(w) (9.1)

where 6  is the divergence operator. Hence we have

E[I,I1G(w)] = E[Og(w)l] =
(11:11„) (w)

 

and noting that 6 (  g  has the standard normal distribution, we obtain
liglIH

11g1IH = -
2
E11./1 G(I) )11•

This relation holds even when M I H = 0 -
Next we consider the case of K-valued functions

_÷ Em [h](w)G,(w),u(dw)e,) E  H *  K,
i=1 W

where e ,  are orthonormal in K .  This element corresponds to  an  element g =
E,"1 1 gi 0 e ,  E H O K  through the canonical isomorphism H *  H .  Then we see
that (9.1) holds in the sense of K-valued functions. And by Proposition 9.1 below
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we see that

E[IIJIG(w)11K] =
(g lInoK

g  
)

( w )  

1
-

2
110110x- (9-2)

Proposition 9 . 1 .  Let g c H O K  satisfy IgM H®K = 1. Then

E[Pgilx] (9.3)

P r o o f  Since the mapping 6 :H O K - > L 2 (K )
L I

 (K )  is continuous, it is
sufficient to prove (9.3) for elements of the form

g = 0  eh

where ei a re  orthonormal in  K , g i c  H  and 2 2
110 H O K  =  E711 IlaillH = 1. Suppose

such an element g  be given. Then we may identify Y <ei,e2, ,e,„> R'  and

= (4 ) ( x ) e i

induces a Gaussian measure on IV" whose covariance matrix is V =  (<gi , di >H ) 1 .
Let t,, t2, . . ,  t„, be the eigenvalues of V .  Then there exists an orthogonal matrix
U  which diagonalizes V:

U -' vu =

tl

t2

     

Note that
in

=  1  and that t. 0 . (9.4)
i= 1

We first consider non-degenerate cases, that is, all ti 's  are positive. The left
hand side of (9.3) is equal to

1 f T
(27 )

 —"1/2 17ciet V JR- lx1 exP i
x  

Vx)dx

= (27 )'1/2 1
1

Ux1 exp( x T  U ' V Ux)dx
-Vdet V JR'

=  (2 7 ) — m / 2

m 1/2

Xi exp (- -1 Ix 2) dx.
2

(9.5)

The last expression in (9.5) includes degenerate cases, too.
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It is sufficient to show tha t, for each m , the minimum under the condition

(9.4) of the right hand side of (9.5) is larger than or equal to
this claim  by induction for m.

For m  =  1 , it is already proved.
For m  =  2 , set, for 0  <  t <1 ,

and

1(0 = -2 r [ 
R

2 \ t
J

2 1
+  ( 1 -  t)X i. exp  (-

2 )d x ,

. ,
1 r(t) =

1 

R 2  \e, 
\/tX? ±  (I - t).Xi exp (- -

2  
lx

2

1 )d x ,
L T C  

where Br i s  the ball of radius r centered at O . It is easy to  see that, for any  t,
1r (t) 1 ( t )  a s  r O. B y  the diferentiation under th e  integral sign, we can
calculate the first and the second derivatives o f I r (t):

dIr 1
( t )  =

2 2-  X2 exp (- -21 1x12 )dx , (9.6)
,\/ tx ? + (1 -  t)x iTit 47r JR2\B,

and

/2,d

d

2

( t )  = 817r
(Xf -  X3) 21

-  - Ix'
2

d x . (9.7)
t R 2 \ (ix? + (1 )

4 ) 3 / 2  
exp

2

d 2 / rFrom  (9.6) and (9 .7) w e can easily  see that —

d / r  (

-
1 

=  0  a n d  (t) < O.
d t  2 dt2 -

F rom  th is / r ( t )  increases on [0, 1/2 1, a n d  decreases o n  [1 /2 , 1 ] . A n d  so does

1(t) = lim ,0  / r (t). Hence the minimum is 1(0) =  1 (1) =

F or m  >  3 , b y  a  sim ilar proof w e can see that the m inim um  can not be
attained in the interior (= the points of non-degenerate cases), but attained on the
boundary (= the  poin ts of degenerate cases). B u t  i n  t h e  degenerate cases, the
minimum problem is reduced to the  one  fo r a  lower dimension.

By the above inequality (9.2) (taking G ,(.) = U (0 1 0 1)(x , •)) and the results
(7.4) and (8.1) of previous sections,

11D (/ - 4-i/20(411/.0K  <  const. x  E Y [lIfiv U(0 1)(x,

< kEY[l + U (0 0  1)(x, Y)11x)i ,

where EY  and J I
Y a r e  operations for the variable y, and k  is a positive constant.

Then we will show the m ain result o f  this article.

T heorem  9.2. D (I - L ) -
 I /2 i s  c o n t in u o u s  f ro m  L(log L) + 3 / 2 (//: K )  t o

L(log L)"(p; H *  K )  j r  a n y  a  O.

2
Th
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P r o o f  We have

Ex[A,,(11D(/ —  L) -
1/2 0 ( x ) t p o K ) ]  E x [A Œ(kEll + Ai 120U (0 0 1 )(x, Y )iiic)])]

1 + E x [AŒ(EY [A1/2(11U(0 0 1 )(x, A W N

< 1 ± Ex E Y [A,(A112(11U (0 0 1 )(x, Y )11K)])]• (9.8)

Here we used A2 condition for the second inequality and the convexity for the
third. I t is  easy  to  show that

ot. A  (A i /2 (X ) )  
11M = 1 .

x—, c o  A cx+1 /2 (X)

From this we see that Ac,(A172(x)) I + A c,+ ]12(x).
So from (9.8) we have

R.H .S. of (9.8) 1 + E x EY [Aa+1/2(11U(0 0 1 )(x, Y)I K)]
7,

= 1 ±ExEy Ac,±1,2(Hu(0 1)(Rfi(x,y)IIK)0]. (9.9)

Here we used the fact that the product measure p x p  is  invariant under the
rotation R .  B y  the continuity of the Hilbert transform and of a convolution
operator with a  bounded function, we have

R.H .S. of (9.9) 1 + E x EY A00_3,201(0 1)(Rficx, Allic)0 1

= 1 + ExEY [AŒ+3/2(11(0 ® 1)(x, y lIK )1

= 1 + Ex [A±3/2(110(x)11K)1.
This completes the proof.

By this theorem we can estimate L' -norm of D " f .

Corollary 9.3. Let f  c  S  be a real valued function. T h e n

1113n f 111,1 (11;H*0
" ) 11(1 L)

n / 2

f L ) 3 " / 2 L ( p )
(9.10)

fo r n =  1 ,2 , .. . .

P r o o f  For n = 1  it is almost trivial. F o r  n — 2  we use a slightly modified
version of theorem 9 .2 , that is, the continuity of D(2I — L) " 2 . T hen  w e have

— L)1/2Pf Loog43/2(p,H*)11D 2f ilLi(p ;H*gH.) ,- 11(2 /

= 12— L) 1  f  Lo o g  4 312 (p;x.)

< 11(I — L).f L0.04 3(p) •

We complete the proof by induction.
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