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Meyer’s inequality of the type L(logL)”
on abstract Wiener spaces
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1. Introduction

Let (W,H,u) be an abstract Wiener space, that is,

(i) W is a real separable Banach space,

(i) H is a real separable Hilbert space which is continuously and densely
imbedded in W,

(iii) u is a Borel probability measure on W such that

[, exp(V=T00)auto) = exo (5115

for any f e W*. Here we identify H* with H by the Riesz theorem so that
W*— H*=H. As usual, we denote by D H-derivative and by L be the
Ornstein-Uhlenbeck operator, cf. [13].

As for the continuity of operators D and L with respect to L”-norms on the
Wiener space, the following inequality due to Meyer [8] is well-known: for 1 <
p < o,

1Dgll, < (= L)'?4ll, < |1DGll, + I 4ll,- (1.1)

Here A(¢) < B(¢) means that there exists a constant & > 0 independent of ¢ such
that A(¢) < kB(¢) holds for every ¢. (l1.1) implies in particular that the operator
D(I—L)_l/2 is continuous from L”(u) to LP(u: H) (LP-space with values in
H*=H) if 1 < p<oo. However this continuity fails when p =1 and the main
purpose of this article is to study the continuity of the operator D(I — L)_l/ 2 with
respect to the L(logL)*-topology.

Meyer’s proof of (1.1) relies on the Littlewood-Paley inequality. Recently, a
simplified proof was given by Pisier [9], or Feyel [3]. by using the L”-continuity of
the Hilbert transform on the circle. L'-continuity of the Hilbert transform no
longer holds. However, it is continuous as an operator from L log L to L' (cf.
[6]). Taking this fact into account, a natural question arises: Can we show that
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the operator D(I — L)_l/ 2 is continuous from L log L to L', more generally, form
L(log L)**' (1) to L(log L)*(u; H*) for « > 0? We could not answer this ques-
tion; however, we could obtain the following partial answer which is our main
result in this article: D(I — L)™"/? is continuous from L(log L)**(u) to
L(log L)*(u; H*) for any a > 0.

Our method in this article is as follows. We first show the Doob inequality
for a right-continuous submartingale X = (X;),5, in the frame of L(logL)*-spaces
as Theorem 3.1. This inequality implies that if X, e L(logL)*"" then X::=
sup,solX;| € L(log L)*. In Section 4, we study the Burkholder inequality for
vector valued martingales. In Section 5, we apply the inequality of Doob and
Burkholder thus obtained to prove the continuity of the Hilbert transform on the
circle T from L(logL)*™'(T) to L(logL)*(T) (Theorem 5.1). In Section 8,
we show that the projection J; of L?(u) onto the first order Wiener chaos is
continuous from L(log L)'/?(y) to L'(u) (Theorem 8.1). This result is obtained
by applying the hypercontractivity of Ornstein-Uhlenbeck semigroup and an ex-
trapolation theorem (Lemma 8.2). By the continuity of the Hilbert transform on
the circle and the projection operator J, thus established, we prove in Section 9 our
main result that the operator D(I — L)']/2 is continuous from L(log L)“+3/2(,u) to
L(logL)*(u; H*) for any a>0. This theorem holds not only for real-valued
functions but also for vector-valued functions. By this fact and also the fact that
o > 0 can be arbitrary, we can obtain an estimate of E[||D"f]|.es] as Corollary
9.3.

This article also includes a probabilistic proof of Stein’s theorem and its
generalization (Theorem 6.4) which asserts the equivalence of the following two
statements for a nonnegative L'-functions on the circle T:

(i) fis in L(logL)*™'(T).

(ii) Its Hilbert transform Hf is in L(log L)*(T).

Here we used the ‘reversed’ Doob inequality (Theorem 3.6) which claims that for
a nonnegative continuous martingale X = (X,), X e L(logL)* and Xoe
L(log L)**" (particularly X, is a constant), imply X € L(logL)**'. Also we
need a generalization of a characterization of .#'-martingales (Theorem 6.1) which
is a natural generalization of Janson’s result in [5].

2. Orlicz space L(logL)”

In this section we introduce definitions and some basic properties of the Orlicz
spaces following Adams [I]. For « > 0 we define functions on [0, o) as

¢,(x) = log*(1 + x),

mm=ﬁmmw,

mm:£WWw,
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and for a =0, we define ¢,(x) =1 and Ayp(x) =x. however, we do not define
Bo(x). From the above definition it is easy to see that A4,(x) is convex. Moreover
it is easy to see that A,(x) satisfies 4,-condition, that is, there exist a constant C,
(which may depend on «) satisfying

Ay (2x) < Crdy(x)

for any x > 0. Combining the two properties above, we obtain
G
Aa(x + y) < T(Aa(x) + Aa(y))

for any x,y > 0. From the 4,-condition we obtain that, for any r > 0, there
exists a constant C, which satisfies,

Ay (rx) < CA,(x) (2.1)

for any x > 0. ~
It is also verified that there is a constant ¢ = ¢, which satisfies

Cl—ax¢a(x) < Ay(x) < x4,(x). (22)

Now we define the Orlicz Spaces L(logL)* and their norms.

Definition 2.1. Let (2, P) be a probability space and K be a separable Hilbert
space. We define the Orlicz norms of a K-valued measurable function f by

171l Lgog 1y*(Pik) = inf{r > 0:E<Aa (W)) < 1} (2.3)

and the Orlicz spaces by
L(log L)*(K) = {f; f is measurable and 1Nl Lgog 1y*(p.y < ©}- (2.4)
When K = R we simple write space as L(logL)®.

We see by (2.2) that L(logL)*(K) is equal to the space of measur-
able functions satisfying E[||f]/glog*(1 + || fllx)] < co. Note that for o =0,
L(log L)*(K) = L'(K). 1t is known that L(logL)*(K) becomes a Banach space
with this norm.

The following two relations between the norm and the integral of the type
E[A4.(l/Ilx)] are basic:

I/ Log y*xy < 1+ E[A2(ILf NI ¢)] (2.5)

and if || f{l gogz)*x) 18 finite, then

E[Aat(“flll()] < C||f||L(|ogL)"‘(K) (26)

where C”f”m@”,m is the constant in (2.1).
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From (2.5) and (2.6), we can see that a linear oprator T is continuous from
L(logL)*(K;) to L(log L)*(K;) if there exists some constant C such that

E[4p(ITSNIk,)) < C(1 + E[4u([1f 1Ix,)]) (2.7)

for any f in a dense subspace of L(logL)*(K).
Next we show several properties of L(log L)*.

Proposition 2.2. For t, s > 0, it holds that
ts < Ay(t) + By(s),
in particular,

t¢a(r) = Aq(t) + Ba(¢oz(t))'

1115, = int{r > 0c |, (L) <1},

then the following Hdlder type inequality holds:

E[f9] < 2|/l Lgog )= N9l 5, -

Proof. See Section 8 of Adams [1] for a proof. The first inequality is known
as Young’s inequality.

And if we set

Let f, and f ©be functions in L(logL)*. It is known that
limy—oo[|fy = fllLgog )= = 0 if and only if lim,—. A4(|f, — f]) =0. (For a proof,
see Section 8 of Adams [1]). However, it does not seem to be obvious that the
convergence in norm implies lim,_,.. E[4,(|f,|)] = E[4«(|f])]. So we will give a
proof.

Proposition 2.3. Ler f, and f be functions in L(logL)* and assume that
limy oLy~ /1l gogrys = 0. Then limye A1) = Au(|f1) in L.

Proof. 1t is easy to see that
/115, <1+ E[Bx(If1)]-

Applying the above inequality and Proposition 2.2, we have

Ax(/]) = Aa(IfI)H
1Al =11

< E[lfy = [18.(1ul + /1]
< | = S rgog 0y 8Ll + 1/ Dl s,

< ”fn - f”L(IogL)’E[I + Bﬂt(¢a(|f;zl + |f|))]
< ”fn - f”L(IogL)’E[l + ¢cx(|f;1| + |f|)¢;l(¢cx(|fn' + Ifl))]

ﬂMMM%%Amm=EWUAﬂﬂ)
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< 1w = flLgogry<EN + (1l + 1/ Da(1£] + 1/D]
<o = gy EN + cxda(1f) + 11D)]

< o = flgogyENL + caCo{ Aa(£,]) + Ax(1/ 1)}

Since || f,ll Logr)> is bounded, A,(|f,[) is also bounded by (2.6). This completes
the proof.

3. The Doob inequality

Let (Q,%, P) be a probability space with a filtration (£;). In this section we
assume that all the processes are defined on (Q,%,P) and (%)-adapted. We
show the Doob inequality in the following form:

Theorem 3.1.  Let (X,)g<, <., be a non-negative right continuous submartingale

and X; = sup;., X;. Then there is a constant K, dependeng on o but not on X such
that

E[A,(X2)] < Ko(1 + E[Agr1(Xo0)])-

Remark 3.2. This theorem holds withuot assuming that X, = lim,_,, X,.
But for the rest of this paper we will always assume that X, = lim,_,, X; for the
process X.

Before giving a proof we need the following properties of A,(x):
Proposition 3.3. For t, s >0, it holds that
(1 + x)log™ (1 4+ x) = Ay (x) + (2 + 1) A(x). (3.1)
B (log™ ' (1 + x)) < (a0 + 1) Ay(x). (3.2)

Proof. (3.1) is a direct consequence of an integration by parts. (3.2) is
obtained by using (2.2) and (3.1) as

Boyi(log™ ! (1 4 x)) = xlog""' (1 +x) — Ay (x)
= Aeni (%) + (24 1) Au(x) = log™ (1 4+ %) — Ay (%)
< (a+ 1) Ay(x).
This competes the proof.

To prove the theorem, it is enough to show the following discrete case.

Lemma 34. Let X, X,,...,Xn be a non-negative submartigale and X* =
supy<y Xx. Then there is a constant K, independent of N and (Xy) such that

E[A,(X*)] < Ky(1 + E[Aus1 (XN)]).



92 Yuzuru Inahama

Proof. In the proof, we use the following notation: We write f < g if there
exist a constant ¢ > 0 such that f < c¢g (the constant ¢ may depend only on «).

By a well-known inequality for submartingales we have
. 1
P[X ZX+I]SX—_HE[XNI{X.ZX+|}].

On the other hand,

E[4,((X" = 1),)] = E

(Xr-1),
J log*(1 +x)dx}
0

[e¢}

PX" > x+ 1]log*(1 + x)dx

—

0

® ] a
< J() X_'HE[XNI{X‘ZAH-I}]IOg (] +x)dx

(X*=1), 1np
X J log*(1 + x) dx]

=F
0 1+X

1
o+ 1

=E|Xn

log™t' (14 (X* — 1)+)].

1
Choose ¢ > 0 so that ¢ < PR Then the right hand side (R.H.S.) equals to

XN o+ *
EL(aH)“’g (14 (x —1>+)]

<e¢E [AHI <£(0:Y——,|Yl)>] + eE[Byyr (log™™ (1 + (X ™ = 1),)]

<¢E [AH, (ﬁ)] +e(a+ 1)E[A,((X* = 1))

Here we used the Young inequality and the previous lemma. From this and the
Ay-condition of A,, we have finally

E[A((X" - 1),)] < T:;hE[AaH (%)]
S E[Aus1 (Xn)]-
Noting that X* — (X* — 1), <1, we can complete the proof as
E[A,((X7))] < E[4,((X" = 1), + (X" = (X" = 1),))]
< E[Auri(Xn)] + 1.

Theorem 3.1 implies that, for a right-continuous martingale (X,), X €
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L(log L)**" implies X* e L(logL)*. For a non-negative continuous martingale,
the converse also holds.
Before giving a proof, we will show a lemma (in Section 6.2 of Durrett [2]).

Lemma 3.5. Let (X;)o, <o
Xo=c¢>0. Then for any 4> c

be a non-negative, continuous martingale such that

AP(Xg > 2) > E[Xol(x, >2)-

Proof. Set T =inf{s;X;> A} nt. Then T is a bounded stopping time.
Since X, has continuous paths and Xp=c < 4, we have Xr =4 on {T <1t} =
{X} > 4}. So we have

AP(X" > ) = E[Xri X" > ]]
= E[X;: X > ]
— E[X:T <
=E[X; T, <1,

where T; =inf{s; X; > A}. Remember that a non-negative, continuous super-
martingale has a limit X,. Taking the limit of the above inequality as t — oo, we
have by Fatou’s lemma

}.P(X; > j.) > E[XOOI(T,1<00)]
> E[le(xm>l)].
This completes the proof.

Theorem 3.6. Let (X;) be a non-negative continuous martingale. If X} €
L(logL)* and Xy € L(log L)™' (particularly if Xy is a constant), then X €
L(log L)**".

Proof. We first consider the case Xy is constant, i.e., Xop = ¢ > 0.

ElAa(X2)] = E“: Ioxssplog*(1 + ).)d/l]

c oo
- J log*(1 + A)dA + EU Iys »aylog*(1 + i)di]
0

c

*1
> Aa((') + [ ZE[XOOI(XI>;~)] lOga(l + A)d/u

Je

« log*(1+ 4
ZAQ((C)"FE[XOOJ' I(xx>i)M

e 5]

1
= A,(c) +mE[Xoo{log“+'(l + Xo) v log* ' (1 +¢) — log*™' (1 + ¢)}
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|
> A,(c) +a—_'_1E[Xoo{log°‘+'(1 + Xyp) — 10g°‘+l(l +0)}]

> LE[Ao&l(Xoo)] +Au(c) — aj_ 1

o+l
o+ 1 log™ (1 +¢).

Next let us consider the case Xj is random. Note that we may assume that the
probability space is a standard measurable space. Then for the regular condi-
tional probability P“(-) given %, we can apply the above estimate to obtain

1 Xo
E® S X “rY4, . _ a1 .
[A(XG)] > =g EAu(Xoo)] 4 Au(Xo) — =25 log™ (1 4 X0)

Integrating both sides we finally have

* 1 XO a+1
E[A(X2)] 2 5 ElA(Xo)] + E| a(Xo) = =P log™ (1 + X)|.

0

X
Note that A,(Xy) — ——log*"'(1 + X;) is integrable provided that Xpe
o+1 a+1
L(logL)*".

4. The Burkholder inequality

In this section we will prove the Burkholder inequality for vector valued
martingales in a similar way as Lenglart, Lepingle and Pratteli [7] and Revuz and
Yor [10].

Definition 4.1. Let » be a positive real function defined on (0,a] such that
limy_o#7(x) =0 and let f>1. An ordered pair (X,Y) of positive random
variables is said to satisfy the “good A inequality” I(#,p) if

PIX =AY <62 <y(0)P[X = ]
for every A >0 and d € (0,q]. We will write (X,Y) e I(n,p).

In the following, F will be a moderate function, that is, an increasing,
continuous function vanishing at 0 and satisfying the 4,-condition.

Lemma 4.2. There is a constant ¢ depending only on n, B, F such that, if
(X, Y) e I(n, ). then
E[F(X)] < cE[F(Y)].

Proof. See Lemma 4.9 in chapter IV of Revuz and Yor [10].

Lemma 4.3. Let A(t) and B(t) be continuous adapted increasing process
satisfying A(0) = B(0) =0. If

E[(A(T) — A(S))"] < CE[B(T)"Is<1)]

Jfor some positive real numbers p, C and every stopping times S, T such that S < T,
then (A(0), B(o0)) € I(n,B) for every B> 1 and n(d) = C(f— 1) P8,
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Proof. See exercise 4.25 in chapter IV of Revuz and Yor [10].

Let M(r) be an R%valued martingale, that is, M(t) = (M (1), Ma(2), ...,
M,(t)) and each M; is a continuous martingale. |[M(t)|[ge = ||M(1)]| =
VMUO® -+ My(0)2. Set (R (1) =M (1) ++ -+ (Myd(2) so that | M ()] -
{M>(t) is a martingale.

Theorem 4.4. Let M (1) be a continuous RY-valued martingale starting at 0 and
F be a moderate function. Set ||M|"(t) = sup,.,||M(s)||. Then there are con-
stants cg and Cr (independent of the dimension d) such that

E[F(|M|"(1)] < crE[F(<M (1)),
E[F({MY(1)'?)] < CREIF (| M|* (1))).

Proof. Note that the following argument does not depend on the dimen-
sion. Without loss of generality we may assume that M; are equi-integrable
martingales. Take two stopping times 7, S such that S < T and fix them. We
set

N(ty={M((S+1) A T)— M(S)}Hs<r).
Then

d
(N)(a0) =Y (Ni>(0)
i=1

= (MY(T)(s<r).- (4.1)
One the other hand, by the triangular inequality, we obtain
IM1*(T) = | M]]*(S) < [IN]|*(00) < 2| M|*(T)L(s<T). (4.2)

First we show by (4.1) and (4.2) that ((M(¢).||M|*(1)?) satisfies the as:
sumption of Lemma 4.3:

E[(MY(T) = (M ()] = E{<KMY(T) — <MY(S)His<r)]

= E[{N(o0)]

d
=Y E[(N;)(0)]
i=1
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E[Ni(0)’]

-

i=1

< E[|N||" (c0)?]
<AE[|M|*(T)*Iis<r))-

Next we show again by (4.1) and (4.2) that (||M||*(r), (M >(1)'/?) also satisfies
the assumption of Lemma 4.3:

E[{IM)"(T) — 17" (S)}*] = E[IN]|" (e0)?]
= iE[Ni*(OO)zl
i=1

d
< 4ZE[<N:'>(°0)]
i=1
d
=4 E[{{MY(T) — M (S) s

i=1
< AE[KMY(T)L(s<).

This completes the proof.

5. Continuity of the Hilbert transform

In this section we will prove the continuity of the Hilbert transform. In the
sequel, we use the following notations:

(i) D={zeC;|z| <1} is the unit disk.

(i) T ={zeC;lz| =1} is the circle: We identify T with a closed interval
[, 7.

(iii) d@ is the normalized Lesbegue measure on T.

The Hilbert transform H is a composition H = RQP: L*(T) — T*(T) of
three mappings P, Q and R described below.

(1) P:L*T)— H?*(D) is the Poisson integral, ie., for f(0)=
S Se™ e LA(T), Pf(r,0) =2 frle™.  Another expression of Pf is;

Pf(r,0) = (P x [)(0),

1 —r? . . . L
where P,(0) = =" s the Poisson kernel. Note that Pf is harmonic in
D 1 —2rcosf +r?

(2) Q:H?*D)— H?*D) is the map taking conjugate harmonic function
vanishing at the origin z=0. If ue H*(D) is written in the form u(r,0) =
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S e then Qu(r,0) = —i3 " sgn(n)i,r"le™, where
+1 (n>0),
sgn(n) =< —1 (n<0),
0 (n=0).

(3) R:H?*(D)— L*(T) is the map taking boundary value. All the function
spaces we considered above are real valued.

Let K be a separable Hilbert space. We generalize Hilbert transform H to
the spaces of K-valued functions as an operator acting only on function part, that
is, if a K-valued function f is written in the following form

where ¢; € K and f;(f) are real valued functions on 7, then H f is defined by

m

HT = (Hf) ().
i=1

In this section we will prove the following result.

Theorem 5.1. There is a constant C, satisfying

-

| amionom<c(i+] anmaioiodm)
for any feL(logL)**"(T:K). From this we see that H : L(log L)**'(T:K) —
L(log L)*(T:K) is continuous.

Proof. It is sufficient to show the theorem for f = 3", f:()e;, where f; e
C*®(T) and e; are orthonormal and m=1,2,.... We may assume further that
j_"n f df =0 in K since H vanishes on constant functions.

Let B, = B! +iB?> be a complex Brownian motion starting at 0. For
r(0<r<1) we set a stopping time 7, =inf{s;|B, =r}. By the rotational
invariance of a Brownian motion, we have for 0 <r < 1

| atioriveninae - eaqiorris, iy

< E[A,(|QPf(B™)||*(c0))], (5.1)

where B (t) = B(t, A t). Using the Burkholder inequality,

R.H.S. of (5.1) < E[4,(<QPf(B™)>'(6))]. (5.2)
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Since Pf(BF)+ iQPf(B[) is a conformal martingale, we have
E[4,(CQPf(B")>'/*(c0))] = E[Au(<Pf(B™)>'/*(e0)))]
S E[4,(|PF(B™)||(w0))]
S 1+ Eldoi (IPF(B()])]
=t [ Awa(IPF ") o

Here we used the Burkholder inequality and the Doob inequality.

Because f;'s are taken from C*(T) we do not need to worry about troubles
which may occur in limiting procedure. So we can finish the proof by applying
the dominated convergence theorem to the both sides as r T 1.

There is another expression of H as a singular integral: H is the formal

. . 0 . .
convolution with cot=. (Because of the singularity of cotg at 0 =0 we used the
word ‘“‘formal”).

Proposition 5.2.
Hf(B) =p.v. JT cotgf(/? — 0)do, (5.3)

where p.v. denotes the principal value.

Proof. It is well-known. So we omit the proof.

6. A generalization of Stein’s theorem

In this section we first generalize Janson’s characterization of .#' martingales
and then prove a generalized Stein’s theorem. Here we only consider the case of a
probability space (2, %, P) with a filtration (%) which is generated by a d-di-
mensional Brownian motion. We introduce the following notation.

M(log M)* = {X = (X,); X is a (%,)-continuous martingale

such that X, = const. and E[Aa< sup |X,|>] < oo},

0<t<oo

A (logA)* = {X = (X,); X is a (#,)-continuous matingale
such that Xy = const. and sup E[4.(|X|)] < oo}.
0<i<oo

Next we define the martingale transform. Since our filtration is generated by a
d-dimensional Brownian motion, every adapted local martingale X; is written in
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the form
t
X,:XO+J H; - dB,
0

for some locally square-integrable predictable R%valued process H. We can
define the transform of X by any d x d matrix Q as

(Q*X)z = JO QHs'st-

By definition it is obvious that # (log #")* > .#(log .#)*. The next theorem
characterizes . (log.#)".

Theorem 6.1. The following two conditions are equivalent.

() Xe(logH).

(i) There exist matrices Qi,...,Qum (m = 1) which do not have a common
eigenvector in R and which satisfy Q;* X € A (log A)* for any i=0,1,....,m,
where Qo x X = X.

Proof. First we prove that (i) implies (ii). The bracket of Q *x X is computed
as follows

(0 X, =j |QH, 2ds

0
2 ' 2
<101, | 1H.as

= 0ll2,<X >,

where [|Q]|,, is the operator norm of Q. By the Burkholder inequality we
conclude that Qx X € M (log #)* = A (log ).

Next we prove that (ii) implies (i). We need the following lemma in Section
6.7 of Durrett [2].

Lemma 6.2. Assume the condition (ii) of Theorem 6.1. Then there is a p, < |
(that depends only on the matrices Q;’s) such that if F; = (14 Y (0 * X)tz)l/z,
then F! is a local submartingale for all p > p,.

Remark 6.3. In Durrett [2], it is assumed that X, = 0. But the proof in [2]
is also valid in our case that X, = const.

We also need the following inequalities. There is a constant K, such that for
any x,y >0,

(x+ »)* < Ky(x*+ p%). (6.1)

Indeed, setting K, =1 for 0<a<1 and K,=2*"' for a>1, we see by
differentiation that (6.1) holds. Let p < 1. There is a constant M, such that for
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any x >0,
0 <log(l 4+ x*) — plog(1 + x) < M,,. (6.2)

Indeed, setting M, = (1 — p)log2, we see by differenciation and by (6.1) that (6.2)
holds. It is also verified that

m

X <F <14) [(QixX),| (6.3)
i=0

Choose such a pe(py, 1) as in Lemma 6.2. Then by (2.2) (6.2) and (6.3), we
have

0<t<oo

p“c;;/”E[ sup Aa(|X,|)] Sp“c;al/”E[ sup |X;|log*(1 +|X,|)]
0<t<o0

< | sup Xiltog"(1-+ %)

0<t<oo

— 7| sup (11" 1og” (1 + 1) |

<r<oo

SE[ sup {A,,aux,v’)}‘/"]

0<t1<o0

< E| sup (4n(F1))""|. (6.4)

0<t<o0

By Lemma 6.2, 4,,(F/) is a local submartingale (in fact, it is a submartingale).
For 1/p > 1, we can apply the Doob inequality for the right hand side of (6.4).

E| sup {Apa(F,”)}‘/”]

0<i<oo

= l/lp/l—) Losip E[{Ap(F!)}'7)

IA

sup E[{F/log"(1 + F/)}'/"]

—Po<i<owo

1
= sup E[F,log*(1 + F7)]
1 —po<icw

IA

sup E[F{plog(l+ F)) + M,}"|
1 —po<izoo

i sup E[F{p*log*(l + F;) + M,}]
—Po<i<o
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o

K, p® : K.M
P sup E[F,log"‘(1+F,)]+l L sup E[F]

l - po<izw —Po<i<wo

IA

@ K, M*
< Kap%ex sup E[A(,((F,)]+1 P sup E[F)

T 1-poocizw —Po<i<o

< Kap¥ex Conia {Aa(l) +i sup E[Aa(l(Qf*X)rm}

l—p m+2 > S
KM(! m

o [7 1+ Su E i*X . 65
l—p{ > s El(© >,|1} 65

Here we used (2.1) (2.2) (6.1) (6.2) and (6.3). By the assumption of the theorem
the right hand side of (6.5) is finite. This proves the theorem.

Theorem 6.4. Suppose f is in L(log L)*(T) and f > 0. Under this condition
the following two conditions are equivalent.

(i) fis in L(log L)*"™(T).

(i) 1Its Hilbert transform H f is in L(log L)*(T).

Proof. The implication (i) = (ii) is immediate from the continuity of Hilbert
transform. We prove the implication (ii) = (i). It is easy to see that, if we set
u(z) = Pf(r,0) = (P, x f)(0), then u(z) >0 and u(0) = [, f(0)df. We also set
v(z) = QPf(r,0) = PHf(r,0). Let B, = B! +iB? be a complex Brownian motion
starting at 0. Define a stopping time 7, by 7, = inf{s;|B,| = r} and set B/ =
B/n.,. Then by the Ito formula we have

u(BY) = JT £(6)d0 + J; Vu(B,) - dB,. (6.6)

and by Ito’s formula and the Cauchy-Riemann equation we have

AT,
v(B}") = L Vu(By) - dB;

- L’”’(QIVuxBa dB,

= (Ql * M(Bt')),,

0 -1
o-(1 )
Note that Q) is a rotation and does not have an eigenvector.
Now we can apply Theorem 6.1:

where we set
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ElAL(u(B%)")
< ko +ko{sup ELLu(B7)] + sup ELL0(57)]
ko {sup Eu(87)] + Elo(B7)] |
— -+ e ELAL(u(B,)] + 5up EL4, (8, )
o {E{u(B,)] + E[o(8,)] |
=k + kz{JT Ay (u(re®))do + JT Aa(v(rei"))d(?}
« ks {JT lu(re™®)|d0 + JT |v(ref")|d0}

<k + kz{JTAa(f(@))d‘9+ | Aa(wa))de}

T
+k3{JT |£(0)|d0 + JT |Hf(9)|d9}, (6.7)

where k;’s are constants corresponding to those in the proof of Theorem 6.1, i.e.,

_ Kyp®ca Cuia
ky = p-tol/p BoaP Ca Cmi2
250 S T g2

K. M*
_ =l “p
ks =ra 1,

ki = kyAy(1) = k3.

The last inequality in (6.7) is verified by Lemma 6.5 which will be given later.
From (6.7) combined with Theorem 3.6, we obtain

1
o+ 1

jTAaH(Pf(r,o))do

1
= mE[Aa+1 (u(B’r))]

< E[A,(u(B.)")] + G(If1))

<k + kz{ | antronaos | Aa(wa»de}

via [ oo+ | aryao} + s, (68)
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where  G(c) = —Ay(c) + ——log* ' (1 +¢). Since feL'(T), limy|P,*f—
Sfll.r =0. Hence there 1s al sequence {r,} such that r, 71 as n»— oo and
P, x f(0) — f(0) for a.a.0(df) as n — oco. By Fatou’s lemma the proof is
completed.

Lemma 6.5. For any f in L(logL)*, [; Ay(P,* f(0))d0 is increasing and
converges to [ Au(f(0))d0 as r1 1.

Proof. Since P, f(0) is harmonic in the open disk, [, A.(P,* f(6))d06 is
increasing in r. We will prove the convergence. For a continuous function f on
T, it is well-known that lim,y([|P, * f — fl|c(ry = 0. By Proposition 2.3 we have
that the lemma holds for f e C(T) and

| autp, v ronao< | aronao.
T T
Replacing f in the above inequality by f/A, we have

1P * fll Lgogry* =< 1/ NLgog 1)

This shows that the convolution operator with P, is a contraction for any r. By
the usual argument for strong convergence of operators, we see that, for any f in
L(logL)*, im 1 ||Pr* /= fllLgogrys = 0. By Proposition 2.3 we have that the
lemma holds for any f e L(logL)®. This completes the proof.

7. Computation of D(I — L)_'/2

In this section we compute Dj(I — L)_l/ 24 (firstly for a real-valued function
#). Let (W,H,u) be an abstract Wiener space. Let D be the H-derivative L
be the Ornstein-Uhlenbeck operator and P, be the Ornstein-Uhlenbeck semi-
group. P, can be expressed as Pid(x) = [, d(e”'x+ (I — e 22\ u(dy). We
define the space S of rapidly decreasing cylinder functions on W by

S = {¢;¢(w) = F([l](w), ..., [h)(w)) for some n,hy,... h, e H, and F € S(R?)}

where S(RY) is the Schwartz space of rapidly decreasing C* functions.
We define a transform Ry on W x W by

Ry(x, y) = (xcos@ + ysinf, —xsin0 + ycos ).

In the following we always set cosf) = e™'.
First we compute the derivative of P;¢ for ¢ € S in the direction of he H.

DiP(x) = 5 Pl +sh)

s=0

- d%qu(e-'(x k) + (1= e 2 ) u(dy)

s=0
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= %J¢<e"x+ (1—e2)'2 (y +—(1 _s::;)l/z h))ll(dJ’)

5s=0
= G petr ey 2y)é”{—(1 _s::;,)l /Zh}y(dy) 3
a e (e i),

where &(h) = exp([h](») — L ||k|l3;) for he H.
Next we compute Dh(I—L)_'/2¢. For this we represent (I —L)™'/?¢ as
follows:

(I— L)y 2¢(x) =r(1/2)"" JOO ~'2e7' P (x)dt.
0

Because Dy, is closable, it is sufficient to compute the following limit.

0
lin& Dy, J 27 Pg(x)dt.
£

€

Now
Dy, ro 1267 Pp(x)dt (7.1)
_ Iy e — a2
P | U= PO
/2 2
— | (~log cose)““%jww ® 1)(Ro(x, »))[H](»)(dy)tan0do
Jp
n/2
= [ ogeose) eost | (6@ 1R ()0, (7.2)
Jp

where p = —logcose and (f ® g)(x, y) = f(x)g(»).
Setting the R.H.S. of (7.2) by I and making the transform y — —y, we have

n/2
1=—j (—logcos0>"/2cos0j (6 ® D)(R_o(x. y))[H](»)uldy)dO.
p w

On the other hand, making the transform 6 — —8, we see

-p
1= (togeoso) eost | (9® 1)(Roalx 3)HIuld)d
-2 w

By averaging these, the R.H.S. of (7.2) equals to
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-n/2 p

- n/2
%(J - ><—1°g0059>‘”2cosﬁj (#® 1)(R-o(x, ) 1] (y)u(dy)do
w

P

- [ o [([+ ) k@6 ® 1k ste o))

where K(0) is defined as follows

_%(—logcos 0)—1/20050 (0 <0< g)
K(9) = (—logcos ) "2cos 0 (_g 3030),

S N =

(otherwise).

Note that as 6 | 0, or equivalently ¢ | 0,
K(0)=— LR + a bounded function
A ’

—t
cot(—) _ e Q + a bounded function.

2 Vl—e' i

So we have

| 0 .
K@) =- mcoti + a bounded function.

Let p | 0. Then we have

im | 0) [(jﬂj")l«ew@ (R, J’))de]#(dJ’)

- p

- [ o[ [ xove @ 2)d0] (e

p
= [, e [ &6 @ 1R 0t )0t
Here the first equality (a change of lim, and [,) is guaranteed because we took ¢

from S.
For convienience we set

/4
UF(x,y) = p.v.J K(0)F(R_y(x, y))do
for F: W x W — R. Note that if (x,y) is substituted by Rg(x,y) it is the

convolution of K(8) and F(Ry(x,y)).
From the argument in this section, we conclude that

F(1/2)Dy(I = L)™"(x) = JW[h](y)U(qﬁ ® 1)(x, y)u(dy). (7.3)
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Note that D, (I — L)_'/ 2 can also be generalized to act on K-valued functions
as an operator acting only on function part. If a K-valued function ¢ is written in
the following form

) = 3" ¢i(x)e,
i=1

where ¢; € K, then

r(1/2)py(1 - L) Pg(x) = > jwlhw)v(qﬁi ® V)(x, y)u(dy)e. (74

8. Continuity of J;

In this section we will show the continuity of the projection J; of L?(u) onto
the first order Wiener chaos. Unfortunately J; is not continuous from L'(u) to
L'(n). For example consider one dimensional standard normal distribution and
functions exp(nx), (ne N). In fact ||e™],, = e™/? and

N :
[ xel1.xe—.\7/2dx||x”L1 = ne"’/2||x||1."

Ji (e _
” 1(6’ )“L' m.—w

Using an extrapolation theorem we will show, however, in the following theorem
that J; : L(log L)"/?(1) — L'(u) is continuous.

Theorem 8.1. Let J, be the projection of L*(u; K) onto the first Wiener chaos
and F € L*(K). Then there is a constant C satisfying

E[|1Fli] < €1+ 412(I Fllg))- (8.1)

Proof. We will prove that the semigroup P, is hypercontractive where

m
P,F = P/F(x)e,
i=1
for any F of the form F = 3", Fi(x)e; and F; e L*(u), ¢; € K.
Since the Ornstein-Uhlenbeck semigroup is written as P,@(x) = [, d(e™'x+
(1 —e )1/ 2y)u(dy), it is easily verified by interchanging the order of the norm and
the integral that

||I3IF(X)”K < P/||F| g (x)-

Since the hypercontractivity of P, in the scalar-valued case is well-known, the
above inequality shows the hypercontractivity of P,, that is,

1BFIl, < 1l

where p—1=e¢"2(q - 1).



Meyer’s inequality on abstract Wiener spaces 107

And the hypercontractivity of P, implies, for 1 < p < 2,

I Fll, < Fll,- (8.2)

1
ﬁ“ ll,
The proof for scalar-valued case of inequality (8.2) in Ikeda and Watanaba [4] is
also applicable to this vector-valued case.

We will finish the proof by te following lemma on the extrapolation, which is
a generalization of the result in the scalar-valued case by Yano [14]:

Lemma 8.2. Let T be a transformation which transforms every integrable K-
valued function to a measurable K-valued function, both being defined on a prob-
ability space (L2, P), such that

(e o) o0
f) =Y fx) implies | Tf | < D> 1Tk (8.3)
v=0 v=0
IT(=Nk = I1Tf k- (8.4)
and the inequality
{ENTAIRI < GAENS IR (8.5)
holds with the constant C, satisfying the inequality
<< (8.6)
(-1
for any p, 1 < p <2 for some k >0 and for a constant C. Then we have
E[Tf k] < aE[Ak(1 fllx)] + bk, (8.7)

where ay and by are constants depending only on k.

Proof. The following proof is a slight modification of that in Yano [14].
Fix a k> 0. It is sufficient to show (8.7) for f satisfying | f(x)|| > 1 for
almost all x, since any f can be expressed as

S(xX) = FO)(r0),0), 200 + SO (f(x), 00, <0}
= (F)((rx).0)20) +0) = (=L (1 (x),0) <0} + V)
=f1(x) = /().

where v e K is a unit vector in K. Note that || f7(x)|x > |(f*(x),v)x| = 1. By
the same reason we see that |[f7(x)|lx = 1. Set @, ={2" < | f(x)|lx <2""'}.
Then Q=3 7,Q,. And set f,(x)=f(x)Ig,(x) and g,(x) =27"f,(x). Then

S(x) =20 A0 = 27262"9u(x) and 1 < [lgu(x)]lx < 2. By (8.3), (8.5) and (8.6)
we have

ITflx = ZZ 1 Tgv(x) &
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Integrating both sides, we obtain

E(ITf|l¢] < Zz"E[uTgv k]
—ZZ{E[||Tgv<x| |R]} P

< G, > 2'{E[lgu(x)lIE]} "

v=0
) ﬁZZV{E[IIg.,(x)||K]}l/p.,.
v '—0

Here we used the fact that 1 < ||g,(x)[|x <2 and 1 < p, < 2.
We substitute p, =1+ 1/v. Then we have

ENNTf ] < S 2L Ellgu ()11}
v=0

<Z2 (4Ellgv(x)llx] +47")

00
<4) 2VE(llg(x)llk] + b
0

v=

[ee]

< D EllANklog" (1Al + 1

v=0
S ElA(£llg)] + 1

Here in the second inequality, we used Lemma 8.3 below.

Lemma 8.3. Let x>0 and v>1. Then

X0 < 4y 44,

4v+1x1/v.

Proof. Let F(x) =4x®+*D/ Then f(x) = F'(x) = The inverse

function g of f is calculated as

G(x) = JO 9(y)dy = {4(V+1)}:++11 ‘

Set
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Then by Young’s inequality, we have

xv/(v+l) — xv/(v+l) 1

< F(xv/(v+l)) + G(l)

Y (R
B 4v+ 1)) v+

<dx+47

and this completes the proof.

9. Continuity of D(I — L)™"/?

First let us compute H*-norm of D(I — L)""/?¢(x). Generally for G e L?(u),
the linear functional '

(1= [ mo9Gutan) ) e

corresponds to an element g € H through the canonical isomorphism H* =~ H,
where

= hi)( w)u(dw) |\h; e H
9= ([, pon Gmuan )i e
({h;} is an O.N.B. of H). Then we see that

og(w) = J1G(w) 9.1)

where 0 is the divergence operator. Hence we have

()]

and noting that 5( ) has the standard normal distribution, we obtain

ol
ol = [ 3E1 GO0l

This relation holds even when ||g||, =0
Next we consider the case of K-valued functions

(h — ZJ [A](w)Gi(w ,u(dw)e,) eH'"®K,

where ¢; are orthonormal in K. This element corresponds to an element g =
Y1 9i®e € H® K through the canonical isomorphism H* ~ H. Then we see
that (9.1) holds in the sense of K-valued functions. And by Proposition 9.1 below

EGow)]) = Elldg(n)] = ||g||HE[
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g
5<” ”H@K) ] \/7”g”H®K (92)

Proposition 9.1. Let ge H® K satisfy ||gllyox = 1. Then

El|logll¢] = \/% (9.3)

Proof. Since the mapping d: H® K — L*(K) — L'(K) is continuous, it is
sufficient to prove (9.3) for elements of the form

we see that

E[|/1Gw)lIk] = ||9||H®KE

m

g=> 4 ®e,
i=1

where e; are orthonormal in K, g;e H and ||g||12,1,®,< =S llgill;; = 1. Suppose
such an element g be given. Then we may identify #<{ej,es,...,e,> = R" and

m

39 =) (3gi)(x)ei

i=1

induces a Gaussian measure on R” whose covariance matrix is V = ({gi, ;> u); j1-
Let #1,1,...,t, be the eigenvalues of V. Then there exists an orthogonal matrix

U which diagonalizes V:

Note that
m

> ti=1 and that ; > 0. (9.4)

i=1

We first consider non-degenerate cases, that is, all ¢;’s are positive. The left
hand side of (9.3) is equal to

(2n)~"/? —ﬁ JR'" |x| exp (— %xT Vx) dx

1
= (2n)™"? ﬁjnm |U x| exp(— ixTU‘l VUx) dx

/2
m l
= M/ZJ E tix ex (—— X 2)dx. 9.5
Rlﬂ ( N ) p 2 | | ( )

The last expression in (9.5) includes degenerate cases, too.
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It is sufficient to show that, for each m, the minimum under the condition

(9.4) of the right hand side of (9.5) is larger than or equal to \/2 We will prove
this claim by induction for m. &

For m =1, it is already proved.

For m =2, set, for 0 <r <1,

1 1
I(t) = EJRZ \Vixd+ (1= 1)x? exp(—§|x|2>dx,

and

_1 /12 2 L2
L(t) = ﬂJRZ\B, txi + (1 —16)x3 exp(—§|x| )a’x,

where B, is the ball of radius r centered at 0. It is easy to see that, for any ¢,
I(t) = I(t) as r— 0. By the diferentiation under the integral sign, we can
calculate the first and the second derivatives of I,(¢):

22
%(t) = %J Al exp(—%|x|2>dx, (9.6)
! TIRNE, | Jix? 4 (1 — 1)x2

and

) (x2 - x2)?
()= JRZ\B,(

[
__ - . 9.
dt2 87 txf' + (1 _ [)x§)3/2 exp( 2|X| )dx ( 7)

From (9.6) and (9.7) ily see that 7 (1) 20 and d21,(t)<0
rom . an . we€ can c€asily € a ar \2 = an dt2 < U.

From this 7,(¢) increases on [0.1/2], and decreases on [1/2,1]. And so does
. .. . 2
I(t) = lim,_o I,(t). Hence the minimum is 7(0) = I(1) = p
For m >3, by a similar proof we can see that the minimum can not be
attained in the interior (= the points of non-degenerate cases), but attained on the
boundary (= the points of degenerate cases). But in the degenerate cases, the

minimum problem is reduced to the one for a lower dimension.

By the above inequality (9.2) (taking G;(-) = U(¢; ® 1)(x,-)) and the results
(7.4) and (8.1) of previous sections,

IDUI = L)™"2$(x) | . @k < const. x EY[|J7U(¢ ® 1)(x, »)|lx]

< KEY[1+ 41 2(1U(¢ @ 1)(x. p)lIg)]-

where EY and J} are operations for the variable y, and k is a positive constant.
Then we will show the main result of this article.

Theorem 9.2. D(I — L)™'? s continuous from L(log L)“”/z(u; K) 1t
L(log L) (uw; H* ® K) for any o > 0.
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Proof. We have
E*[4,(||D(I — L) 4(x)|

weei)] < EX[AL(KEY[1 + A12(|U(4 ® 1)(x, »)l| )]
S 1+ EY[A(E’[A12(1U (¢ @ 1)(x, y)lIx)])]
< 1+ EYE Ay (A1p(|U(¢ @ D (x, ») D] (9-8)

Here we used 4, condition for the second inequality and the convexity for the
third. It is easy to show that

fim A=A12())

x=00 Agyy/2(x)

From this we see that A4,(4,/(x)) S 14 Agi1/2(x).
So from (9.8) we have

R.H.S. of (9.8) S 14 E¥E’ [y 15| U(¢ ® 1)(x, »)Ik)]

1+ 88| A (U6 ® DRs(x 48] 09

Here we used the fact that the product measure u x g is invariant under the
rotation Rg. By the continuity of the Hilbert transform and of a convolution
operator with a bounded function, we have

RS, of (99) < 1 + E*E” H Anraa(1l(6 ® D(Ry(, y)nK)dﬁ]

=1+ E*E’[Ay3p(l(4 ® 1)(x, ¥£)]

= 1+ E*[Aar32(ll(0) [l £)]-
This completes the proof.
By this theorem we can estimate L'-norm of D"f.
Corollary 9.3. Let f €S be a real valued function. Then
D" 1l o orromy < N = L) 1l rog 1y (9.10)
for n=1,2,....

Proof. For n=1 it is almost trivial. For n =2 we use a slightly modified
version of theorem 9.2, that is, the continuity of D(2] — L)_l/ 2. Then we have

1/2

“DZfHL‘(y;H*@H*) < ”(21 - L) / Df”[_(log]_)yz(,,;fp)
1/2

= ”D(I - L) / f”L(IogL)J/l(;t;H’)

ST = D) fll Lgog 1y (-

We complete the proof by induction.
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