Meyer's inequality of the type $L(\log L)^{\alpha}$ on abstract Wiener spaces

By

Yuzuru Inahama

1. Introduction

Let (W, H, μ) be an abstract Wiener space, that is,
(i) W is a real separable Banach space,
(ii) H is a real separable Hilbert space which is continuously and densely imbedded in W,
(iii) μ is a Borel probability measure on W such that

$$
\int_{W} \exp \left(\sqrt{-1}\left(f, w^{\prime}\right)\right) d \mu(w)=\exp \left(-\frac{1}{2}\|f\|_{H^{*}}^{2}\right)
$$

for any $f \in W^{*}$. Here we identify H^{*} with H by the Riesz theorem so that $W^{*} \hookrightarrow H^{*}=H$. As usual, we denote by $D H$-derivative and by L be the Ornstein-Uhlenbeck operator, cf. [13].

As for the continuity of operators D and L with respect to L^{p}-norms on the Wiener space, the following inequality due to Meyer [8] is well-known: for $1<$ $p<\infty$,

$$
\begin{equation*}
\|D \phi\|_{p} \leqslant\left\|(I-L)^{1 / 2} \phi\right\|_{p} \lesssim\|D \phi\|_{p}+\|\phi\|_{p} \tag{1.1}
\end{equation*}
$$

Here $A(\phi) \lesssim B(\phi)$ means that there exists a constant $k>0$ independent of ϕ such that $A(\phi) \leq k B(\phi)$ holds for every ϕ. (1.1) implies in particular that the operator $D(I-L)^{-1 / 2}$ is continuous from $L^{p}(\mu)$ to $L^{p}(\mu: H)$ (L^{p}-space with values in $\left.H^{*}=H\right)$ if $1<p<\infty$. However this continuity fails when $p=1$ and the main purpose of this article is to study the continuity of the operator $D(I-L)^{-1 / 2}$ with respect to the $L(\log L)^{x}$-topology.

Meyer's proof of (1.1) relies on the Littlewood-Paley inequality. Recently, a simplified proof was given by Pisier [9], or Feyel [3], by using the L^{p}-continuity of the Hilbert transform on the circle. L^{1}-continuity of the Hilbert transform no longer holds. However, it is continuous as an operator from $L \log L$ to L^{1} (cf. [6]). Taking this fact into account, a natural question arises: Can we show that
the operator $D(I-L)^{-1 / 2}$ is continuous from $L \log L$ to L^{1}, more generally, form $L(\log L)^{\alpha+1}(\mu)$ to $L(\log L)^{\alpha}\left(\mu ; H^{*}\right)$ for $\alpha \geq 0$? We could not answer this question; however, we could obtain the following partial answer which is our main result in this article: $D(I-L)^{-1 / 2}$ is continuous from $L(\log L)^{\alpha+3 / 2}(\mu)$ to $L(\log L)^{\alpha}\left(\mu ; H^{*}\right)$ for any $\alpha \geq 0$.

Our method in this article is as follows. We first show the Doob inequality for a right-continuous submartingale $X=\left(X_{t}\right)_{t \geq 0}$ in the frame of $L(\log L)^{\alpha}$-spaces as Theorem 3.1. This inequality implies that if $X_{\infty} \in L(\log L)^{\alpha+1}$ then $X_{\infty}^{*} ;=$ $\sup _{t \geq 0}\left|X_{t}\right| \in L(\log L)^{x}$. In Section 4, we study the Burkholder inequality for vector valued martingales. In Section 5, we apply the inequality of Doob and Burkholder thus obtained to prove the continuity of the Hilbert transform on the circle T from $L(\log L)^{\alpha+1}(T)$ to $L(\log L)^{\alpha}(T)$ (Theorem 5.1). In Section 8, we show that the projection J_{1} of $L^{2}(\mu)$ onto the first order Wiener chaos is continuous from $L(\log L)^{1 / 2}(\mu)$ to $L^{1}(\mu)$ (Theorem 8.1). This result is obtained by applying the hypercontractivity of Ornstein-Uhlenbeck semigroup and an extrapolation theorem (Lemma 8.2). By the continuity of the Hilbert transform on the circle and the projection operator J_{1} thus established, we prove in Section 9 our main result that the operator $D(I-L)^{-1 / 2}$ is continuous from $L(\log L)^{x+3 / 2}(\mu)$ to $L(\log L)^{\alpha}\left(\mu ; H^{*}\right)$ for any $\alpha \geq 0$. This theorem holds not only for real-valued functions but also for vector-valued functions. By this fact and also the fact that $\alpha \geq 0$ can be arbitrary, we can obtain an estimate of $E\left[\left\|D^{n} f\right\|_{H^{*} \otimes_{n}}\right]$ as Corollary 9.3.

This article also includes a probabilistic proof of Stein's theorem and its generalization (Theorem 6.4) which asserts the equivalence of the following two statements for a nonnegative L^{1}-functions on the circle T :
(i) f is in $L(\log L)^{\alpha+1}(T)$.
(ii) Its Hilbert transform $H f$ is in $L(\log L)^{\alpha}(T)$.

Here we used the 'reversed' Doob inequality (Theorem 3.6) which claims that for a nonnegative continuous martingale $X=\left(X_{t}\right), \quad X_{\infty}^{*} \in L(\log L)^{\alpha}$ and $X_{0} \in$ $L(\log \mathrm{~L})^{\alpha+1}$ (particularly X_{0} is a constant), imply $X_{\infty} \in L(\log L)^{\alpha+1}$. Also we need a generalization of a characterization of \mathscr{M}^{1}-martingales (Theorem 6.1) which is a natural generalization of Janson's result in [5].

2. Orlicz space $L(\log L)^{\alpha}$

In this section we introduce definitions and some basic properties of the Orlicz spaces following Adams [1]. For $\alpha>0$ we define functions on $[0, \infty)$ as

$$
\begin{aligned}
\phi_{\alpha}(x) & =\log ^{\alpha}(1+x) \\
A_{\alpha}(x) & =\int_{0}^{x} \phi_{\alpha}(y) d y \\
B_{\alpha}(x) & =\int_{0}^{x} \phi_{\alpha}^{-1}(y) d y
\end{aligned}
$$

and for $\alpha=0$, we define $\phi_{0}(x)=1$ and $A_{0}(x)=x$. however, we do not define $B_{0}(x)$. From the above definition it is easy to see that $A_{\alpha}(x)$ is convex. Moreover it is easy to see that $A_{\alpha}(x)$ satisfies Δ_{2}-condition, that is, there exist a constant C_{2} (which may depend on α) satisfying

$$
A_{\alpha}(2 x) \leq C_{2} A_{\alpha}(x)
$$

for any $x>0$. Combining the two properties above, we obtain

$$
A_{\alpha}(x+y) \leq \frac{C_{2}}{2}\left(A_{\alpha}(x)+A_{\alpha}(y)\right)
$$

for any $x, y>0$. From the Δ_{2}-condition we obtain that, for any $r>0$, there exists a constant C_{r} which satisfies,

$$
\begin{equation*}
A_{\alpha}(r x) \leq C_{r} A_{\alpha}(x) \tag{2.1}
\end{equation*}
$$

for any $x>0$.
It is also verified that there is a constant $c=c_{\alpha}$ which satisfies

$$
\begin{equation*}
\frac{1}{c_{\alpha}} x \phi_{\alpha}(x) \leq A_{\alpha}(x) \leq x \phi_{\alpha}(x) . \tag{2.2}
\end{equation*}
$$

Now we define the Orlicz Spaces $L(\log L)^{\alpha}$ and their norms.
Definition 2.1. Let (Ω, P) be a probability space and K be a separable Hilbert space. We define the Orlicz norms of a K-valued measurable function f by

$$
\begin{equation*}
\|f\|_{L(\log L)^{x}(P ; K)}=\inf \left\{r>0 ; E\left(A_{\alpha}\left(\frac{\|f\|_{K}}{r}\right)\right) \leq 1\right\} \tag{2.3}
\end{equation*}
$$

and the Orlicz spaces by

$$
\begin{equation*}
L(\log L)^{\alpha}(K)=\left\{f ; f \text { is measurable and }\|f\|_{L(\log L)^{\alpha}(P ; K)}<\infty\right\} . \tag{2.4}
\end{equation*}
$$

When $K=R$ we simple write space as $L(\log L)^{\alpha}$.
We see by (2.2) that $L(\log L)^{x}(K)$ is equal to the space of measurable functions satisfying $E\left[\|f\|_{K} \log ^{\alpha}\left(1+\|f\|_{K}\right)\right]<\infty$. Note that for $\alpha=0$, $L(\log L)^{0}(K)=L^{1}(K)$. It is known that $L(\log L)^{\alpha}(K)$ becomes a Banach space with this norm.

The following two relations between the norm and the integral of the type $E\left[A_{\alpha}\left(\|f\|_{K}\right)\right]$ are basic;

$$
\begin{equation*}
\|f\|_{L(\log L)^{x}(K)} \leq 1+E\left[A_{\alpha}\left(\|f\|_{K}\right)\right] \tag{2.5}
\end{equation*}
$$

and if $\|f\|_{L(\log L)^{x}(K)}$ is finite, then

$$
\begin{equation*}
E\left[A_{\alpha}\left(\|f\|_{K}\right)\right] \leq C_{\|f\|_{L(\log L)^{\alpha}(K)}} \tag{2.6}
\end{equation*}
$$

where $C_{\|f\|_{L(\log L)^{x}(K)}}$ is the constant in (2.1).

From (2.5) and (2.6), we can see that a linear oprator T is continuous from $L(\log L)^{\alpha}\left(K_{1}\right)$ to $L(\log L)^{\beta}\left(K_{2}\right)$ if there exists some constant C such that

$$
\begin{equation*}
E\left[A_{\beta}\left(\|T f\|_{K_{2}}\right)\right] \leq C\left(1+E\left[A_{\alpha}\left(\|f\|_{K_{1}}\right)\right]\right) \tag{2.7}
\end{equation*}
$$

for any f in a dense subspace of $L(\log L)^{\alpha}(K)$.
Next we show several properties of $L(\log L)^{\alpha}$.
Proposition 2.2. For $t, s>0$, it holds that

$$
t s \leq A_{\alpha}(t)+B_{\alpha}(s)
$$

in particular,

$$
t \phi_{\alpha}(t)=A_{\alpha}(t)+B_{\alpha}\left(\phi_{\alpha}(t)\right) .
$$

And if we set

$$
\|f\|_{B_{x}}=\inf \left\{r>0 ; E\left[B_{\alpha}\left(\frac{|f|}{r}\right)\right] \leq 1\right\}
$$

then the following Hölder type inequality holds:

$$
E[f g] \leq 2\|f\|_{L(\log L)^{x}}\|g\|_{B_{\alpha}}
$$

Proof. See Section 8 of Adams [1] for a proof. The first inequality is known as Young's inequality.

Let f_{n} and f be functions in $L(\log L)^{\alpha}$. It is known that $\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{L(\log L)^{\alpha}}=0$ if and only if $\lim _{n \rightarrow \infty} A_{\alpha}\left(\left|f_{n}-f\right|\right)=0$. (For a proof, see Section 8 of Adams [1]). However, it does not seem to be obvious that the convergence in norm implies $\lim _{n \rightarrow \infty} E\left[A_{\alpha}\left(\left|f_{n}\right|\right)\right]=E\left[A_{\alpha}(|f|)\right]$. So we will give a proof.

Proposition 2.3. Let f_{n} and f be functions in $L(\log L)^{\alpha}$ and assume that $\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{L(\log L)^{\alpha}}=0$. Then $\lim _{n \rightarrow \infty} A_{\alpha}\left(\left|f_{n}\right|\right)=A_{\alpha}(|f|)$ in L^{1}.

Proof. It is easy to see that

$$
\|f\|_{B_{x}} \leq 1+E\left[B_{\alpha}(|f|)\right] .
$$

Applying the above inequality and Proposition 2.2, we have

$$
\begin{aligned}
E\left[\left|A_{\alpha}\left(\left|f_{n}\right|\right)-A_{\alpha}(|f|)\right|\right] & =E\left[\left|\left(\left|f_{n}\right|-|f|\right) \frac{A_{\alpha}\left(\left|f_{n}\right|\right)-A_{\alpha}(|f|)}{\left|f_{n}\right|-|f|}\right|\right] \\
& \leq E\left[\left|f_{n}-f\right| \phi_{\alpha}\left(\left|f_{n}\right|+|f|\right)\right] \\
& \leq\left\|f_{n}-f\right\|_{L(\log L)^{\alpha}}\left\|\phi_{\alpha}\left(\left|f_{n}\right|+|f|\right)\right\|_{B_{\alpha}} \\
& \leq\left\|f_{n}-f\right\|_{L(\log L)^{\alpha}} E\left[1+B_{\alpha}\left(\phi_{\alpha}\left(\left|f_{n}\right|+|f|\right)\right)\right] \\
& \leq\left\|f_{n}-f\right\|_{L(\log L)^{\alpha}} E\left[1+\phi_{\alpha}\left(\left|f_{n}\right|+|f|\right) \phi_{\alpha}^{-1}\left(\phi_{\alpha}\left(\left|f_{n}\right|+|f|\right)\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& \leq\left\|f_{n}-f\right\|_{L(\log L)^{\alpha}} E\left[1+\left(\left|f_{n}\right|+|f|\right) \phi_{\alpha}\left(\left|f_{n}\right|+|f|\right)\right] \\
& \leq\left\|f_{n}-f\right\|_{L(\log L)^{\alpha}} E\left[1+c_{\alpha} A_{\alpha}\left(\left|f_{n}\right|+|f|\right)\right] \\
& \leq\left\|f_{n}-f\right\|_{L(\log L)^{\alpha}} E\left[1+c_{\alpha} C_{2}\left\{A_{\alpha}\left(\left|f_{n}\right|\right)+A_{\alpha}(|f|)\right\}\right]
\end{aligned}
$$

Since $\left\|f_{n}\right\|_{L(\log L)^{x}}$ is bounded, $A_{\alpha}\left(\left|f_{n}\right|\right)$ is also bounded by (2.6). This completes the proof.

3. The Doob inequality

Let (Ω, \mathscr{F}, P) be a probability space with a filtration $\left(\mathscr{F}_{t}\right)$. In this section we assume that all the processes are defined on (Ω, \mathscr{F}, P) and $\left(\mathscr{F}_{t}\right)$-adapted. We show the Doob inequality in the following form:

Theorem 3.1. Let $\left(X_{t}\right)_{0 \leq t \leq \infty}$ be a non-negative right continuous submartingale and $X_{t}^{*}=\sup _{s \leq t} X_{s}$. Then there is a constant K_{α} dependeng on α but not on X such that

$$
E\left[A_{\alpha}\left(X_{\infty}^{*}\right)\right] \leq K_{\alpha}\left(1+E\left[A_{\alpha+1}\left(X_{\infty}\right)\right]\right) .
$$

Remark 3.2. This theorem holds withuot assuming that $X_{\infty}=\lim _{t \rightarrow \infty} X_{t}$. But for the rest of this paper we will always assume that $X_{\infty}=\lim _{t \rightarrow \infty} X_{t}$ for the process X.

Before giving a proof we need the following properties of $A_{\alpha}(x)$:
Proposition 3.3. For $t, s>0$, it holds that

$$
\begin{align*}
(1+x) \log ^{\alpha+1}(1+x) & =A_{\alpha+1}(x)+(\alpha+1) A_{\alpha}(x) \tag{3.1}\\
B_{\alpha+1}\left(\log ^{\alpha+1}(1+x)\right) & \leq(\alpha+1) A_{\alpha}(x) . \tag{3.2}
\end{align*}
$$

Proof. (3.1) is a direct consequence of an integration by parts. (3.2) is obtained by using (2.2) and (3.1) as

$$
\begin{aligned}
B_{\alpha+1}\left(\log ^{\alpha+1}(1+x)\right) & =x \log ^{\alpha+1}(1+x)-A_{\alpha+1}(x) \\
& =A_{\alpha+1}(x)+(\alpha+1) A_{\alpha}(x)-\log ^{\alpha+1}(1+x)-A_{\alpha+1}(x) \\
& \leq(\alpha+1) A_{\alpha}(x) .
\end{aligned}
$$

This competes the proof.
To prove the theorem, it is enough to show the following discrete case.
Lemma 3.4. Let $X_{1}, X_{2}, \ldots, X_{N}$ be a non-negative submartigale and $X^{*}=$ $\sup _{k \leq N} X_{k}$. Then there is a constant K_{α} independent of N and $\left(X_{k}\right)$ such that

$$
E\left[A_{\alpha}\left(X^{*}\right)\right] \leq K_{\alpha}\left(1+E\left[A_{\alpha+1}\left(X_{N}\right)\right]\right)
$$

Proof. In the proof, we use the following notation: We write $f \lesssim g$ if there exist a constant $c>0$ such that $f \leq c g$ (the constant c may depend only on α).

By a well-known inequality for submartingales we have

$$
P\left[X^{*} \geq x+1\right] \leq \frac{1}{x+1} E\left[X_{N} I_{\left\{X^{*} \geq x+1\right\}}\right]
$$

On the other hand,

$$
\begin{aligned}
E\left[A_{\alpha}\left(\left(X^{*}-1\right)_{+}\right)\right] & =E\left[\int_{0}^{\left(X^{*}-1\right)_{+}} \log ^{\alpha}(1+x) d x\right] \\
& =\int_{0}^{\infty} P\left[X^{*} \geq x+1\right] \log ^{\alpha}(1+x) d x \\
& \leq \int_{0}^{\infty} \frac{1}{x+1} E\left[X_{N} I_{\left\{X^{*} \geq x+1\right\}}\right] \log ^{\alpha}(1+x) d x \\
& =E\left[X_{N} \int_{0}^{\left(X^{*}-1\right)_{+}} \frac{\log ^{\alpha}(1+x)}{1+x} d x\right] \\
& =E\left[X_{N} \frac{1}{\alpha+1} \log ^{\alpha+1}\left(1+\left(X^{*}-1\right)_{+}\right)\right] .
\end{aligned}
$$

Choose $\varepsilon>0$ so that $\varepsilon<\frac{1}{\alpha+1}$. Then the right hand side (R.H.S.) equals to

$$
\begin{aligned}
& \varepsilon E\left[\frac{X_{N}}{\varepsilon(\alpha+1)} \log ^{\alpha+1}\left(1+\left(X^{*}-1\right)_{+}\right)\right] \\
& \quad \leq \varepsilon E\left[A_{\alpha+1}\left(\frac{X_{N}}{\varepsilon(\alpha+1)}\right)\right]+\varepsilon E\left[B_{\alpha+1}\left(\log ^{\alpha+1}\left(1+\left(X^{*}-1\right)_{+}\right)\right]\right. \\
& \quad \leq \varepsilon E\left[A_{\alpha+1}\left(\frac{X_{N}}{\varepsilon(\alpha+1)}\right)\right]+\varepsilon(\alpha+1) E\left[A_{\alpha}\left(\left(X^{*}-1\right)_{+}\right)\right] .
\end{aligned}
$$

Here we used the Young inequality and the previous lemma. From this and the Δ_{2}-condition of A_{α}, we have finally

$$
\begin{aligned}
E\left[A_{\alpha}\left(\left(X^{*}-1\right)_{+}\right)\right] & \leq \frac{\varepsilon}{1-\varepsilon(\alpha+1)} E\left[A_{\alpha+1}\left(\frac{X_{N}}{\varepsilon(\alpha+1)}\right)\right] \\
& \lesssim E\left[A_{\alpha+1}\left(X_{N}\right)\right]
\end{aligned}
$$

Noting that $X^{*}-\left(X^{*}-1\right)_{+} \leq 1$, we can complete the proof as

$$
\begin{aligned}
E\left[A_{\alpha}\left(\left(X^{*}\right)\right)\right] & \leq E\left[A_{\alpha}\left(\left(X^{*}-1\right)_{+}+\left(X^{*}-\left(X^{*}-1\right)_{+}\right)\right)\right] \\
& \leq E\left[A_{\alpha+1}\left(X_{N}\right)\right]+1
\end{aligned}
$$

Theorem 3.1 implies that, for a right-continuous martingale $\left(X_{t}\right), X_{\infty} \in$
$L(\log L)^{\alpha+1}$ implies $X_{\infty}^{*} \in L(\log L)^{\alpha}$. For a non-negative continuous martingale, the converse also holds.

Before giving a proof, we will show a lemma (in Section 6.2 of Durrett [2]).
Lemma 3.5. Let $\left(X_{t}\right)_{0 \leq t \leq \infty}$ be a non-negative, continuous martingale such that $X_{0}=c>0$. Then for any $\lambda>c$

$$
\lambda P\left(X_{\infty}^{*}>\lambda\right) \geq E\left[X_{\infty} I_{\left(X_{\infty}>\lambda\right)}\right] .
$$

Proof. Set $T=\inf \left\{s ; X_{s}>\lambda\right\} \wedge t$. Then T is a bounded stopping time. Since X_{t} has continuous paths and $X_{0}=c<\lambda$, we have $X_{T}=\lambda$ on $\{T<t\}=$ $\left\{X_{t}^{*}>\lambda\right\}$. So we have

$$
\begin{aligned}
\lambda P\left(X_{t}^{*}>\lambda\right) & =E\left[X_{T} ; X_{t}^{*}>\lambda\right] \\
& =E\left[X_{t} ; X_{t}^{*}>\lambda\right] \\
& =E\left[X_{t} ; T<t\right] \\
& =E\left[X_{t} ; T_{\lambda}<t\right],
\end{aligned}
$$

where $T_{\lambda}=\inf \left\{s ; X_{s}>\lambda\right\}$. Remember that a non-negative, continuous supermartingale has a limit X_{∞}. Taking the limit of the above inequality as $t \rightarrow \infty$, we have by Fatou's lemma

$$
\begin{aligned}
\lambda P\left(X_{\infty}^{*}>\lambda\right) & \geq E\left[X_{\infty} I_{\left(T_{i}<\infty\right)}\right] \\
& \geq E\left[X_{\infty} I_{\left(X_{\infty}>\lambda\right)}\right]
\end{aligned}
$$

This completes the proof.
Theorem 3.6. Let $\left(X_{t}\right)$ be a non-negative continuous martingale. If $X_{\infty}^{*} \in$ $L(\log L)^{\alpha}$ and $X_{0} \in L(\log L)^{\alpha+1} \quad\left(\right.$ particularly if X_{0} is a constant), then $X_{\infty} \in$ $L(\log L)^{\alpha+1}$.

Proof. We first consider the case X_{0} is constant, i.e., $X_{0}=c>0$.

$$
\begin{aligned}
E\left[A_{\alpha}\left(X_{\infty}^{*}\right)\right] & =E\left[\int_{0}^{\infty} I_{\left(X_{\dot{\infty}}^{*}>\lambda\right)} \log ^{\alpha}(1+\lambda) d \lambda\right] \\
& =\int_{0}^{c} \log ^{\alpha}(1+\lambda) d \lambda+E\left[\int_{c}^{\infty} I_{\left(X_{\dot{x}}>\lambda\right)} \log ^{\alpha}(1+\lambda) d \lambda\right] \\
& \geq A_{\alpha}(c)+\int_{c}^{\infty} \frac{1}{\lambda} E\left[X_{\infty} I_{\left(X_{x}>\lambda\right)} \log ^{\alpha}(1+\lambda) d \lambda\right] \\
& \geq A_{\alpha}(c)+E\left[X_{\infty} \int_{c}^{\infty} I_{\left(x_{\infty}>\lambda\right)} \frac{\log ^{\alpha}(1+\lambda)}{1+\lambda} d \lambda\right] \\
& =A_{\alpha}(c)+\frac{1}{\alpha+1} E\left[X_{\infty}\left\{\log ^{\alpha+1}\left(1+X_{\infty}\right) \vee \log ^{\alpha+1}(1+c)-\log ^{\alpha+1}(1+c)\right\}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \geq A_{\alpha}(c)+\frac{1}{\alpha+1} E\left[X_{\infty}\left\{\log ^{\alpha+1}\left(1+X_{\infty}\right)-\log ^{\alpha+1}(1+c)\right\}\right] \\
& \geq \frac{1}{\alpha+1} E\left[A_{\alpha+1}\left(X_{\infty}\right)\right]+A_{\alpha}(c)-\frac{c}{\alpha+1} \log ^{\alpha+1}(1+c) .
\end{aligned}
$$

Next let us consider the case X_{0} is random. Note that we may assume that the probability space is a standard measurable space. Then for the regular conditional probability $P^{\omega}(\cdot)$ given \mathscr{F}_{0}, we can apply the above estimate to obtain

$$
E^{\omega}\left[A_{\alpha}\left(X_{\infty}^{*}\right)\right] \geq \frac{1}{\alpha+1} E^{\omega}\left[A_{\alpha}\left(X_{\infty}\right)\right]+A_{\alpha}\left(X_{0}\right)-\frac{X_{0}}{\alpha+1} \log ^{\alpha+1}\left(1+X_{0}\right) .
$$

Integrating both sides we finally have

$$
E\left[A_{\alpha}\left(X_{\infty}^{*}\right)\right] \geq \frac{1}{\alpha+1} E\left[A_{\alpha}\left(X_{\infty}\right)\right]+E\left[A_{\alpha}\left(X_{0}\right)-\frac{X_{0}}{\alpha+1} \log ^{\alpha+1}\left(1+X_{0}\right)\right] .
$$

Note that $A_{\alpha}\left(X_{0}\right)-\frac{X_{0}}{\alpha+1} \log ^{\alpha+1}\left(1+X_{0}\right)$ is integrable provided that $X_{0} \in$
$L(\log L)^{\alpha+1}$.

4. The Burkholder inequality

In this section we will prove the Burkholder inequality for vector valued martingales in a similar way as Lenglart, Lepingle and Pratteli [7] and Revuz and Yor [10].

Definition 4.1. Let η be a positive real function defined on $(0, a]$ such that $\lim _{x \rightarrow 0} \eta(x)=0$ and let $\beta>1$. An ordered pair (X, Y) of positive random variables is said to satisfy the "good λ inequality" $I(\eta, \beta)$ if

$$
P[X \geq \beta \lambda ; Y<\delta \lambda] \leq \eta(\delta) P[X \geq \lambda]
$$

for every $\lambda>0$ and $\delta \in(0, a]$. We will write $(X, Y) \in I(\eta, \beta)$.
In the following, F will be a moderate function, that is, an increasing, continuous function vanishing at 0 and satisfying the Δ_{2}-condition.

Lemma 4.2. There is a constant c depending only on η, β, F such that, if $(X, Y) \in I(\eta, \beta)$, then

$$
E[F(X)] \leq c E[F(Y)] .
$$

Proof. See Lemma 4.9 in chapter IV of Revuz and Yor [10].
Lemma 4.3. Let $A(t)$ and $B(t)$ be continuous adapted increasing process satisfying $A(0)=B(0)=0$. If

$$
E\left[(A(T)-A(S))^{p}\right] \leq C E\left[B(T)^{p} I_{(S<T)}\right]
$$

for some positive real numbers p, C and every stopping times S, T such that $S \leq T$, then $(A(\infty), B(\infty)) \in I(\eta, \beta)$ for every $\beta>1$ and $\eta(\delta)=C(\beta-1)^{-p} \delta^{p}$.

Proof. See exercise 4.25 in chapter IV of Revuz and Yor [10].
Let $\vec{M}(t)$ be an \mathbf{R}^{d}-valued martingale, that is, $\vec{M}(t)=\left(M_{1}(t), M_{2}(t), \ldots\right.$, $\left.M_{d}(t)\right)$ and each M_{i} is a continuous martingale. $\|\vec{M}(t)\|_{\mathbf{R}^{d}}=\|\vec{M}(t)\|=$ $\sqrt{M_{1}(t)^{2}+\cdots+M_{d}(t)^{2}}$. Set $\langle\vec{M}\rangle(t)=\left\langle M_{1}\right\rangle(t)+\cdots+\left\langle M_{d}\right\rangle(t)$ so that $\|\vec{M}(t)\|^{2}-$
$\langle\vec{M}\rangle(t)$ is a martingale.

Theorem 4.4. Let $\vec{M}(t)$ be a continuous \mathbf{R}^{d}-valued martingale starting at 0 and F be a moderate function. Set $\|\vec{M}\|^{*}(t)=\sup _{s \leq t}\|\vec{M}(s)\|^{0}$. Then there are constants c_{F} and C_{F} (independent of the dimension d) such that

$$
\begin{aligned}
E\left[F\left(\|\vec{M}\|^{*}(t)\right)\right] & \leq c_{F} E\left[F\left(\langle\vec{M}\rangle(t)^{1 / 2}\right)\right], \\
E\left[F\left(\langle\vec{M}\rangle(t)^{1 / 2}\right)\right] & \leq C_{F} E\left[F\left(\|\vec{M}\|^{*}(t)\right)\right] .
\end{aligned}
$$

Proof. Note that the following argument does not depend on the dimension. Without loss of generality we may assume that M_{i} are equi-integrable martingales. Take two stopping times T, S such that $S \leq T$ and fix them. We set

$$
\vec{N}(t)=\{\vec{M}((S+t) \wedge T)-\vec{M}(S)\} I_{(S<T)}
$$

Then

$$
\begin{align*}
\langle\vec{N}\rangle(\infty) & =\sum_{i=1}^{d}\left\langle N_{i}\right\rangle(\infty) \\
& =\sum_{i=1}^{d}\left\{\left\langle M_{i}\right\rangle(T)-\left\langle M_{i}\right\rangle(S)\right\} I_{(S<T)} \\
& \leq \sum_{i=1}^{d}\left\langle M_{i}\right\rangle(T) I_{(S<T)} \\
& =\langle\vec{M}\rangle(T) I_{(S<T)} . \tag{4.1}
\end{align*}
$$

One the other hand, by the triangular inequality, we obtain

$$
\begin{equation*}
\|\vec{M}\|^{*}(T)-\|\vec{M}\|^{*}(S) \leq\|\vec{N}\|^{*}(\infty) \leq 2\|\vec{M}\|^{*}(T) I_{(S<T)} \tag{4.2}
\end{equation*}
$$

First we show by (4.1) and (4.2) that $\left(\langle\vec{M}\rangle(t),\|\vec{M}\|^{*}(t)^{2}\right)$ satisfies the assumption of Lemma 4.3:

$$
\begin{aligned}
E[\langle\vec{M}\rangle(T)-\langle\vec{M}\rangle(S)] & =E\left[\{\langle\vec{M}\rangle(T)-\langle\vec{M}\rangle(S)\} I_{(S<T)}\right] \\
& =E[\langle\vec{N}\rangle(\infty)] \\
& =\sum_{i=1}^{d} E\left[\left\langle N_{i}\right\rangle(\infty)\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i=1}^{d} E\left[N_{i}(\infty)^{2}\right] \\
& \leq E\left[\|\vec{N}\|^{*}(\infty)^{2}\right] \\
& \leq 4 E\left[\|\vec{M}\|^{*}(T)^{2} I_{(S<T)}\right]
\end{aligned}
$$

Next we show again by (4.1) and (4.2) that $\left(\|\vec{M}\|^{*}(t),\langle\vec{M}\rangle(t)^{1 / 2}\right)$ also satisfies the assumption of Lemma 4.3:

$$
\begin{aligned}
E\left[\left\{\|\vec{M}\|^{*}(T)-\|\vec{M}\|^{*}(S)\right\}^{2}\right] & =E\left[\|\vec{N}\|^{*}(\infty)^{2}\right] \\
& \leq \sum_{i=1}^{d} E\left[N_{i}^{*}(\infty)^{2}\right] \\
& \leq 4 \sum_{i=1}^{d} E\left[\left\langle N_{i}\right\rangle(\infty)\right] \\
& =4 \sum_{i=1}^{d} E\left[\left\{\langle M\rangle_{i}(T)-\left\langle M_{i}\right\rangle(S)\right\} I_{(S<T)}\right] \\
& \leq 4 E\left[\langle\vec{M}\rangle(T) I_{(S<T)}\right] .
\end{aligned}
$$

This completes the proof.

5. Continuity of the Hilbert transform

In this section we will prove the continuity of the Hilbert transform. In the sequel, we use the following notations:
(i) $D=\{z \in \mathbf{C} ;|z|<1\}$ is the unit disk.
(ii) $T=\{z \in \mathbf{C} ;|z|=1\}$ is the circle: We identify T with a closed interval $[-\pi, \pi]$.
(iii) $d \theta$ is the normalized Lesbegue measure on T.

The Hilbert transform H is a composition $H=R Q P: L^{2}(T) \rightarrow T^{2}(T)$ of three mappings P, Q and R described below.
(1) $P: L^{2}(T) \rightarrow H^{2}(D)$ is the Poisson integral, i.e., for $f(\theta)=$ $\sum_{n=-\infty}^{\infty} \hat{f}_{n} e^{i n \theta} \in L^{2}(T), \operatorname{Pf}(r, \theta)=\sum_{n=-\infty}^{\infty} \hat{f}_{n} r^{|n|} e^{i n \theta}$. Another expression of Pf is;

$$
P f(r, \theta)=\left(P_{r} * f\right)(\theta)
$$

where $P_{r}(\theta)=\frac{1-r^{2}}{1-2 r \cos \theta+r^{2}}$ is the Poisson kernel. Note that $P f$ is harmonic in D.
(2) $Q: H^{2}(D) \rightarrow H^{2}(D)$ is the map taking conjugate harmonic function vanishing at the origin $z=0$. If $u \in H^{2}(D)$ is written in the form $u(r, \theta)=$
$\sum_{n=-\infty}^{\infty} \hat{u}_{n} r^{|n|} e^{i n \theta}$, then $Q u(r, \theta)=-i \sum_{n=-\infty}^{\infty} \operatorname{sgn}(n) \hat{u}_{n} r^{|n|} e^{i n \theta}$, where

$$
\operatorname{sgn}(n)= \begin{cases}+1 & (n>0) \\ -1 & (n<0) \\ 0 & (n=0)\end{cases}
$$

(3) $R: H^{2}(D) \rightarrow L^{2}(T)$ is the map taking boundary value. All the function spaces we considered above are real valued.

Let K be a separable Hilbert space. We generalize Hilbert transform H to the spaces of K-valued functions as an operator acting only on function part, that is, if a K-valued function \vec{f} is written in the following form

$$
\vec{f}=\sum_{i=1}^{m} f_{i}(\theta) e_{i}
$$

where $e_{i} \in K$ and $f_{i}(\theta)$ are real valued functions on T, then $H \vec{f}$ is defined by

$$
H \vec{f}=\sum_{i=1}^{m}\left(H f_{i}\right)(\theta) e_{i}
$$

In this section we will prove the following result.
Theorem 5.1. There is a constant C_{α} satisfying

$$
\int_{-\pi}^{\pi} A_{\alpha}\left(\|H \vec{f}(\theta)\|_{K}\right) d \theta \leq C_{\alpha}\left(1+\int_{-\pi}^{\pi} A_{\alpha+1}\left(\|\vec{f}(\theta)\|_{K}\right) d \theta\right)
$$

for any $\vec{f} \in L(\log L)^{\alpha+1}(T ; K)$. From this we see that $H: L(\log L)^{\alpha+1}(T: K) \rightarrow$ $L(\log L)^{\alpha}(T ; K)$ is continuous.

Proof. It is sufficient to show the theorem for $\vec{f}=\sum_{i=1}^{m} f_{i}(\theta) e_{i}$, where $f_{i} \in$ $C^{\infty}(T)$ and e_{i} are orthonormal and $m=1,2, \ldots$ We may assume further that $\int_{-\pi}^{\pi} \vec{f} d \theta=0$ in K since H vanishes on constant functions.

Let $B_{t}=B_{t}^{1}+i B_{t}^{2}$ be a complex Brownian motion starting at 0 . For $r(0<r<1)$ we set a stopping time $\tau_{r}=\inf \left\{t ;\left|B_{t}\right|=r\right\}$. By the rotational invariance of a Brownian motion, we have for $0<r<1$

$$
\begin{align*}
\int_{-\pi}^{\pi} A_{\alpha}\left(\left\|Q P \vec{f}\left(r e^{i \theta}\right)\right\|\right) d \theta & =E\left[A_{\alpha}\left(\left\|Q P \vec{f}\left(B_{\tau_{r}}\right)\right\|\right)\right] \\
& \leq E\left[A_{\alpha}\left(\left\|Q P \vec{f}\left(B^{\tau_{r}}\right)\right\|^{*}(\infty)\right)\right] \tag{5.1}
\end{align*}
$$

where $B^{\tau_{r}}(t)=B\left(\tau_{r} \wedge t\right)$. Using the Burkholder inequality,

$$
\begin{equation*}
\text { R.H.S. of }(5.1) \leqq E\left[A_{\alpha}\left(\left\langle Q P \vec{f}\left(B^{\tau_{r}}\right)\right\rangle^{1 / 2}(\theta)\right)\right] . \tag{5.2}
\end{equation*}
$$

Since $P \vec{f}\left(B_{t}^{\tau_{r}}\right)+i Q P \vec{f}\left(B_{t}^{\tau_{r}}\right)$ is a conformal martingale, we have

$$
\begin{aligned}
E\left[A_{\alpha}\left(\left\langle Q P \vec{f}\left(B^{\tau_{r}}\right)\right\rangle^{1 / 2}(\infty)\right)\right] & \left.=E\left[A_{\alpha}\left(\left\langle P \vec{f}\left(B^{\tau r}\right)\right\rangle^{1 / 2}(\infty)\right)\right)\right] \\
& \lesssim E\left[A_{\alpha}\left(\left\|P \vec{f}\left(B^{\tau r}\right)\right\|^{*}(\infty)\right)\right] \\
& \lesssim 1+E\left[A_{\alpha+1}\left(\left\|P \vec{f}\left(B\left(\tau_{r}\right)\right)\right\|\right)\right] \\
& =1+\int_{-\pi}^{\pi} A_{\alpha+1}\left(\left\|P \vec{f}\left(r e^{i \theta}\right)\right\|\right) d \theta
\end{aligned}
$$

Here we used the Burkholder inequality and the Doob inequality.
Because f_{i} 's are taken from $C^{\infty}(T)$ we do not need to worry about troubles which may occur in limiting procedure. So we can finish the proof by applying the dominated convergence theorem to the both sides as $r \uparrow 1$.

There is another expression of H as a singular integral: H is the formal convolution with $\cot \frac{\theta}{2}$. (Because of the singularity of $\cot \frac{\theta}{2}$ at $\theta=0$ we used the word "formal").

Proposition 5.2.

$$
\begin{equation*}
H f(\beta)=\text { p.v. } \int_{T} \cot \frac{\theta}{2} f(\beta-\theta) d \theta \tag{5.3}
\end{equation*}
$$

where p.v. denotes the principal value.
Proof. It is well-known. So we omit the proof.

6. A generalization of Stein's theorem

In this section we first generalize Janson's characterization of \mathscr{M}^{1} martingales and then prove a generalized Stein's theorem. Here we only consider the case of a probability space (Ω, \mathscr{F}, P) with a filtration $\left(\mathscr{F}_{t}\right)$ which is generated by a d-dimensional Brownian motion. We introduce the following notation.

$$
\begin{aligned}
\mathscr{M}(\log \mathscr{M})^{\alpha}=\{ & X=\left(X_{t}\right) ; X \text { is a }\left(\mathscr{F}_{t}\right) \text {-continuous martingale } \\
& \text { such that } \left.X_{0}=\text { const. and } E\left[A_{\alpha}\left(\sup _{0 \leq t \leq \infty}\left|X_{t}\right|\right)\right]<\infty\right\}, \\
\mathscr{K}(\log \mathscr{K})^{\alpha}=\{ & X=\left(X_{t}\right) ; X \text { is a }\left(\mathscr{F}_{t}\right) \text {-continuous matingale } \\
& \text { such that } \left.X_{0}=\text { const. and } \sup _{0 \leq t \leq \infty} E\left[A_{\alpha}\left(\left|X_{t}\right|\right)\right]<\infty\right\} .
\end{aligned}
$$

Next we define the martingale transform. Since our filtration is generated by a d-dimensional Brownian motion, every adapted local martingale X_{t} is written in
the form

$$
X_{t}=X_{0}+\int_{0}^{t} H_{s} \cdot d B_{s}
$$

for some locally square-integrable predictable \mathbf{R}^{d}-valued process H. We can define the transform of X by any $d \times d$ matrix Q as

$$
(Q * X)_{t}=\int_{0}^{t} Q H_{s} \cdot d B_{s}
$$

By definition it is obvious that $\mathscr{K}(\log \mathscr{K})^{\alpha} \supset \mathscr{M}(\log \mathscr{M})^{\alpha}$. The next theorem characterizes $\mathscr{M}(\log \mathscr{M})^{\alpha}$.

Theorem 6.1. The following two conditions are equivalent.
(i) $\quad X \in \mathscr{M}(\log \mathscr{M})^{\alpha}$.
(ii) There exist matrices $Q_{1}, \ldots, Q_{m}(m \geq 1)$ which do not have a common eigenvector in \mathbf{R}^{d} and which satisfy $Q_{i} * X \in \mathscr{K}(\log \mathscr{K})^{\alpha}$ for any $i=0,1, \ldots, m$, where $Q_{0} * X=X$.

Proof. First we prove that (i) implies (ii). The bracket of $Q * X$ is computed as follows

$$
\begin{aligned}
\langle Q * X\rangle_{t} & =\int_{0}^{t}\left|Q H_{s}\right|^{2} d s \\
& \leq\|Q\|_{o p}^{2} \int_{0}^{t}\left|H_{s}\right|^{2} d s \\
& =\|Q\|_{o p}^{2}\langle X\rangle_{t}
\end{aligned}
$$

where $\|Q\|_{o p}$ is the operator norm of Q. By the Burkholder inequality we conclude that $Q * X \in \mathscr{M}(\log \mathscr{M})^{\alpha} \subset \mathscr{K}(\log \mathscr{K})^{\alpha}$.

Next we prove that (ii) implies (i). We need the following lemma in Section 6.7 of Durrett [2].

Lemma 6.2. Assume the condition (ii) of Theorem 6.1. Then there is a $p_{0}<1$ (that depends only on the matrices $Q_{i}{ }^{\prime}$'s) such that if $F_{t}=\left(1+\sum_{i=0}^{m}\left(Q_{i} * X\right)_{t}^{2}\right)^{1 / 2}$, then F_{t}^{p} is a local submartingale for all $p>p_{0}$.

Remark 6.3. In Durrett [2], it is assumed that $X_{0}=0$. But the proof in [2] is also valid in our case that $X_{0}=$ const.

We also need the following inequalities. There is a constant K_{α} such that for any $x, y \geq 0$,

$$
\begin{equation*}
(x+y)^{\alpha} \leq K_{\alpha}\left(x^{\alpha}+y^{\alpha}\right) . \tag{6.1}
\end{equation*}
$$

Indeed, setting $K_{\alpha}=1$ for $0 \leq \alpha \leq 1$ and $K_{\alpha}=2^{\alpha-1}$ for $\alpha \geq 1$, we see by differentiation that (6.1) holds. Let $p<1$. There is a constant M_{p} such that for
any $x \geq 0$,

$$
\begin{equation*}
0 \leq \log \left(1+x^{p}\right)-p \log (1+x) \leq M_{p} . \tag{6.2}
\end{equation*}
$$

Indeed, setting $M_{p}=(1-p) \log 2$, we see by differenciation and by (6.1) that (6.2) holds. It is also verified that

$$
\begin{equation*}
\left|X_{t}\right| \leq F_{t} \leq 1+\sum_{i=0}^{m}\left|\left(Q_{i} * X\right)_{t}\right| \tag{6.3}
\end{equation*}
$$

Choose such a $p \in\left(p_{0}, 1\right)$ as in Lemma 6.2. Then by (2.2) (6.2) and (6.3), we have

$$
\begin{align*}
p^{\alpha} c_{p \alpha}^{-1 / p} E\left[\sup _{0 \leq t \leq \infty} A_{\alpha}\left(\left|X_{t}\right|\right)\right] & \leq p^{\alpha} c_{p \alpha}^{-1 / p} E\left[\sup _{0 \leq t \leq \infty}\left|X_{t}\right| \log ^{\alpha}\left(1+\left|X_{t}\right|\right)\right] \\
& \leq c_{p \alpha}^{-1 / p} E\left[\sup _{0 \leq t \leq \infty}\left|X_{t}\right| \log ^{\alpha}\left(1+\left|X_{t}\right|^{p}\right)\right] \\
& =c_{p \alpha}^{-1 / p} E\left[\sup _{0 \leq t \leq \infty}\left\{\left|X_{t}\right|^{p} \log ^{p \alpha}\left(1+\left|X_{t}\right|^{p}\right)\right\}^{1 / p}\right] \\
& \leq E\left[\sup _{0 \leq t \leq \infty}\left\{A_{p \alpha}\left(\left|X_{t}\right|^{p}\right)\right\}^{1 / p}\right] \\
& \leq E\left[\sup _{0 \leq t \leq \infty}\left\{A_{p \alpha}\left(F_{t}^{p}\right)\right\}^{1 / p}\right] . \tag{6.4}
\end{align*}
$$

By Lemma 6.2, $A_{p \alpha}\left(F_{t}^{p}\right)$ is a local submartingale (in fact, it is a submartingale). For $1 / p>1$, we can apply the Doob inequality for the right hand side of (6.4).

$$
\begin{aligned}
& E\left[\sup _{0 \leq i \leq \infty}\left\{A_{p \alpha}\left(F_{t}^{p}\right)\right\}^{1 / p}\right] \\
& \leq \frac{1 / p}{1 / p-1} \sup _{0 \leq t \leq \infty} E\left[\left\{A_{p \alpha}\left(F_{t}^{p}\right)\right\}^{1 / p}\right] \\
& \leq \frac{1}{1-p} \sup _{0 \leq t \leq \infty} E\left[\left\{F_{t}^{p} \log ^{p \alpha}\left(1+F_{t}^{p}\right)\right\}^{1 / p}\right] \\
&=\frac{1}{1-p} \sup _{0 \leq t \leq \infty} E\left[F_{t} \log ^{\alpha}\left(1+F_{t}^{p}\right)\right] \\
& \leq \frac{1}{1-p} \sup _{0 \leq t \leq \infty} E\left[F_{t}\left\{p \log \left(1+F_{t}\right)+M_{p}\right\}^{\alpha}\right] \\
& \leq \frac{K_{\alpha}}{1-p_{0}} \sup _{0 \leq t \leq \infty} E\left[F_{t}\left\{p^{\alpha} \log ^{\alpha}\left(1+F_{t}\right)+M_{p}^{\alpha}\right\}\right]
\end{aligned}
$$

$$
\begin{align*}
\leq & \frac{K_{\alpha} p^{\alpha}}{1-p_{0 \leq t \leq \infty}} \sup _{0} E\left[F_{t} \log ^{\alpha}\left(1+F_{t}\right)\right]+\frac{K_{\alpha} M_{p}^{\alpha}}{1-p} \sup _{0 \leq t \leq \infty} E\left[F_{t}\right] \\
\leq & \frac{K_{\alpha} p^{\alpha} c_{\alpha}}{1-p} \sup _{0 \leq t \leq \infty} E\left[A_{\alpha}\left(F_{t}\right)\right]+\frac{K_{\alpha} M_{p}^{\alpha}}{1-p} \sup _{0 \leq t \leq \infty} E\left[F_{t}\right] \\
\leq & \frac{K_{\alpha} p^{\alpha} c_{\alpha}}{1-p} \cdot \frac{C_{m+2}}{m+2}\left\{A_{\alpha}(1)+\sum_{i=0}^{m} \sup _{0 \leq t \leq \infty} E\left[A_{\alpha}\left(\left|\left(Q_{i} * X\right)_{t}\right|\right)\right]\right\} \\
& +\frac{K_{\alpha} M_{p}^{\alpha}}{1-p}\left\{1+\sum_{i=0}^{m} \sup _{0 \leq t \leq \infty} E\left[\left|\left(Q_{i} * X\right)_{t}\right|\right]\right\} . \tag{6.5}
\end{align*}
$$

Here we used (2.1) (2.2) (6.1) (6.2) and (6.3). By the assumption of the theorem the right hand side of (6.5) is finite. This proves the theorem.

Theorem 6.4. Suppose f is in $L(\log L)^{\alpha}(T)$ and $f \geq 0$. Under this condition the following two conditions are equivalent.
(i) f is in $L(\log L)^{\alpha+1}(T)$.
(ii) Its Hilbert transform $H f$ is in $L(\log L)^{\alpha}(T)$.

Proof. The implication (i) \Rightarrow (ii) is immediate from the continuity of Hilbert transform. We prove the implication (ii) \Rightarrow (i). It is easy to see that, if we set $u(z)=P f(r, \theta)=\left(P_{r} * f\right)(\theta)$, then $u(z) \geq 0$ and $u(0)=\int_{T} f(\theta) d \theta$. We also set $v(z)=\operatorname{PPf}(r, \theta)=\operatorname{PHf}(r, \theta)$. Let $B_{t}=B_{t}^{1}+i B_{t}^{2}$ be a complex Brownian motion starting at 0 . Define a stopping time τ_{r} by $\tau_{r}=\inf \left\{t ;\left|B_{t}\right|=r\right\}$ and set $B_{t}^{\tau_{r}}=$ $B_{t \wedge \tau_{r}}$. Then by the Ito formula we have

$$
\begin{equation*}
u\left(B_{t}^{\tau_{r}}\right)=\int_{T} f(\theta) d \theta+\int_{0}^{t \wedge \tau_{r}} \nabla u\left(B_{s}\right) \cdot d B_{s} . \tag{6.6}
\end{equation*}
$$

and by Ito's formula and the Cauchy-Riemann equation we have

$$
\begin{aligned}
v\left(B_{t}^{\tau_{r}}\right) & =\int_{0}^{t \wedge \tau_{r}} \nabla v\left(B_{s}\right) \cdot d B_{s} \\
& =\int_{0}^{t \wedge \tau_{r}}\left(Q_{1} \nabla u\right)\left(B_{s}\right) \cdot d B_{s} \\
& =\left(Q_{1} * u\left(B^{\tau_{r}}\right)\right)_{t},
\end{aligned}
$$

where we set

$$
Q_{1}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

Note that Q_{1} is a rotation and does not have an eigenvector.
Now we can apply Theorem 6.1:

$$
\begin{align*}
& E\left[A_{\alpha}\left(u\left(B^{\tau_{r}}\right)^{*}\right)\right] \\
& \leq k_{1}+k_{2}\left\{\sup _{t} E\left[A_{\alpha}\left(u\left(B_{t}^{\tau_{r}}\right)\right)\right]+\sup _{t} E\left[A_{\alpha}\left(v\left(B_{t}^{\tau_{r}}\right)\right)\right]\right\} \\
&+k_{3}\left\{\sup _{t} E\left[\left|u\left(B_{t}^{\tau_{r}}\right)\right|\right]+E\left[\left|v\left(B_{t}^{\tau_{r}}\right)\right|\right]\right\} \\
&= k_{1}+k_{2}\left\{E\left[A_{\alpha}\left(u\left(B_{\tau_{r}}\right)\right)\right]+\sup _{t} E\left[A_{\alpha}\left(v\left(B_{\tau_{r}}\right)\right)\right]\right. \\
&+k_{3}\left\{E\left[\left|u\left(B_{\tau_{r}}\right)\right|\right]+E\left[\left|v\left(B_{\tau_{r}}\right)\right|\right]\right\} \\
&= k_{1}+k_{2}\left\{\int_{T} A_{\alpha}\left(u\left(r e^{i \theta}\right)\right) d \theta+\int_{T} A_{\alpha}\left(v\left(r e^{i \theta}\right)\right) d \theta\right\} \\
& \times k_{3}\left\{\int_{T}\left|u\left(r e^{i \theta}\right)\right| d \theta+\int_{T}\left|v\left(r e^{i \theta}\right)\right| d \theta\right\} \\
& \leq k_{1}+k_{2}\left\{\int_{T} A_{\alpha}(f(\theta)) d \theta+\int_{T} A_{\alpha}(H f(\theta)) d \theta\right\} \\
&+k_{3}\left\{\int_{T}|f(\theta)| d \theta+\int_{T}|H f(\theta)| d \theta\right\} \tag{6.7}
\end{align*}
$$

where k_{i} 's are constants corresponding to those in the proof of Theorem 6.1, i.e.,

$$
\begin{aligned}
& k_{2}=p^{-\alpha} c_{p \alpha}^{1 / p} \frac{K_{\alpha} p^{\alpha} c_{\alpha}}{1-p} \cdot \frac{C_{m+2}}{m+2} \\
& k_{3}=p^{-\alpha} c_{p \alpha}^{1 / p} \frac{K_{\alpha} M_{p}^{\alpha}}{1-p} \\
& k_{1}=k_{2} A_{\alpha}(1)=k_{3} .
\end{aligned}
$$

The last inequality in (6.7) is verified by Lemma 6.5 which will be given later.
From (6.7) combined with Theorem 3.6, we obtain

$$
\begin{align*}
\frac{1}{\alpha+1} & \int_{T} A_{\alpha+1}(P f(r, \theta)) d \theta \\
= & \frac{1}{\alpha+1} E\left[A_{\alpha+1}\left(u\left(B_{\tau_{r}}\right)\right)\right] \\
\leq & E\left[A_{\alpha}\left(u\left(B_{\tau_{r}}\right)^{*}\right)\right]+G\left(\|f\|_{1}\right) \\
\leq & k_{1}+k_{2}\left\{\int_{T} A_{\alpha}(f(\theta)) d \theta+\int_{T} A_{\alpha}(H f(\theta)) d \theta\right\} \\
& +k_{3}\left\{\int_{T}|f(\theta)| d \theta+\int_{T}|H f(\theta)| d \theta\right\}+G\left(\|f\|_{1}\right) \tag{6.8}
\end{align*}
$$

where $\quad G(c)=-A_{\alpha}(c)+\frac{c}{\alpha+1} \log ^{\alpha+1}(1+c)$. Since $f \in L^{1}(T), \quad \lim _{r \uparrow 1} \| P_{r} * f-$ $f \|_{L^{1}}=0$. Hence there ${ }_{1 s}^{\alpha}+1$ a sequence $\left\{r_{n}\right\}$ such that $r_{n} \uparrow 1$ as $n \rightarrow \infty$ and $P_{r_{n}} * f(\theta) \rightarrow f(\theta)$ for a.a. $\theta(d \theta)$ as $n \rightarrow \infty$. By Fatou's lemma the proof is completed.

Lemma 6.5. For any f in $L(\log L)^{\alpha}, \int_{T} A_{\alpha}\left(P_{r} * f(\theta)\right) d \theta$ is increasing and converges to $\int_{T} A_{\alpha}(f(\theta)) d \theta$ as $r \uparrow 1$.

Proof. Since $P_{r} * f(\theta)$ is harmonic in the open disk, $\int_{T} A_{\alpha}\left(P_{r} * f(\theta)\right) d \theta$ is increasing in r. We will prove the convergence. For a continuous function f on T , it is well-known that $\lim _{r \uparrow 1}\left\|P_{r} * f-f\right\|_{\mathbf{C}(T)}=0$. By Proposition 2.3 we have that the .lemma holds for $f \in \mathbf{C}(T)$ and

$$
\int_{T} A_{\alpha}\left(P_{r} * f(\theta)\right) d \theta \leq \int_{T} A_{\alpha}(f(\theta)) d \theta
$$

Replacing f in the above inequality by f / λ, we have

$$
\left\|P_{r} * f\right\|_{L(\log L)^{x}} \leq\|f\|_{L(\log L)^{x}}
$$

This shows that the convolution operator with P_{r} is a contraction for any r. By the usual argument for strong convergence of operators, we see that, for any f in $L(\log L)^{\alpha}, \lim _{r \dagger 1}\left\|P_{r} * f-f\right\|_{L(\log L)^{\alpha}}=0$. By Proposition 2.3 we have that the lemma holds for any $f \in L(\log L)^{\alpha}$. This completes the proof.

7. Computation of $D_{h}(I-L)^{-1 / 2}$

In this section we compute $D_{h}(I-L)^{-1 / 2} \phi$ (firstly for a real-valued function $\phi)$. Let (W, H, μ) be an abstract Wiener space. Let D be the H-derivative L be the Ornstein-Uhlenbeck operator and P_{t} be the Ornstein-Uhlenbeck semigroup. $\quad P_{t}$ can be expressed as $P_{t} \phi(x)=\int_{W} \phi\left(e^{-t} x+\left(1-e^{-2 t}\right)^{1 / 2} y\right) \mu(d y)$. We define the space S of rapidly decreasing cylinder functions on W by

$$
S=\left\{\phi ; \phi(w)=F\left(\left[h_{1}\right](w), \ldots,\left[h_{n}\right](w)\right) \text { for some } n, h_{1}, \ldots, h_{n} \in H, \text { and } F \in S\left(\mathbf{R}^{d}\right)\right\}
$$

where $S\left(\mathbf{R}^{d}\right)$ is the Schwartz space of rapidly decreasing C^{∞} functions.
We define a transform R_{θ} on $W \times W$ by

$$
R_{\theta}(x, y)=(x \cos \theta+y \sin \theta,-x \sin \theta+y \cos \theta) .
$$

In the following we always set $\cos \theta=e^{-t}$.
First we compute the derivative of $P_{t} \phi$ for $\phi \in S$ in the direction of $h \in H$.

$$
\begin{aligned}
D_{h} P_{t} \phi(x) & =\left.\frac{d}{d s} P_{t} \phi(x+s h)\right|_{s=0} \\
& =\left.\frac{d}{d s} \int \phi\left(e^{-t}(x+s h)+\left(1-e^{-2 t}\right)^{1 / 2} y\right) \mu(d y)\right|_{s=0}
\end{aligned}
$$

$$
\begin{aligned}
& =\left.\frac{d}{d s} \int \phi\left(e^{-t} x+\left(1-e^{-2 t}\right)^{1 / 2}\left(y+\frac{s e^{-t}}{\left(1-e^{-2 t}\right)^{1 / 2}} h\right)\right) \mu(d y)\right|_{s=0} \\
& =\left.\frac{d}{d s} \int \phi\left(e^{-t} x+\left(1-e^{-2 t}\right)^{1 / 2} y\right) \mathscr{E}\left\{\frac{s e^{-t}}{\left(1-e^{-2 t}\right)^{1 / 2}} h\right\} \mu(d y)\right|_{s=0} \\
& =\frac{e^{-t}}{\left(1-e^{-2 t}\right)^{1 / 2}} \int \phi\left(e^{-t} x+\left(1-e^{-2 t}\right)^{1 / 2} y\right)[h](y) \mu(d y),
\end{aligned}
$$

where $\mathscr{E}(h)=\exp \left([h](y)-\frac{1}{2}\|h\|_{H}^{2}\right)$ for $h \in H$.
Next we compute $D_{h}(I-L)^{-1 / 2} \phi$. For this we represent $(I-L)^{-1 / 2} \phi$ as follows:

$$
(I-L)^{-1 / 2} \phi(x)=\Gamma(1 / 2)^{-1} \int_{0}^{\infty} t^{-1 / 2} e^{-t} P_{t} \phi(x) d t
$$

Because D_{h} is closable, it is sufficient to compute the following limit.

$$
\lim _{\varepsilon \rightarrow 0} D_{h} \int_{\varepsilon}^{\infty} t^{-1 / 2} e^{-t} P_{t} \phi(x) d t .
$$

Now

$$
\begin{align*}
& D_{h} \int_{\varepsilon}^{\infty} t^{-1 / 2} e^{-t} P_{t} \phi(x) d t \tag{7.1}\\
& \quad=\int_{\varepsilon}^{\infty} t^{-1 / 2} \frac{e^{-2 t}}{\left(1-e^{-2 t}\right)^{1 / 2}} \int_{W} \phi\left(e^{-t} x+\left(1-e^{-2 t}\right)^{1 / 2} y\right)[h](y) \mu(d y) d t \\
& \quad=\int_{\rho}^{\pi / 2}(-\log \cos \theta)^{-1 / 2} \frac{\cos ^{2} \theta}{\sin \theta} \int_{W}(\phi \otimes 1)\left(R_{\theta}(x, y)\right)[h](y) \mu(d y) \tan \theta d \theta \\
& \quad=\int_{\rho}^{\pi / 2}(-\log \cos \theta)^{-1 / 2} \cos \theta \int_{W}(\phi \otimes 1)\left(R_{\theta}(x, y)\right)[h](y) \mu(d y) d \theta \tag{7.2}
\end{align*}
$$

where $\rho=-\log \cos \varepsilon$ and $(f \otimes g)(x, y)=f(x) g(y)$.
Setting the R.H.S. of (7.2) by I and making the transform $y \rightarrow-y$, we have

$$
I=-\int_{\rho}^{\pi / 2}(-\log \cos \theta)^{-1 / 2} \cos \theta \int_{W}(\phi \otimes 1)\left(R_{-\theta}(x, y)\right)[h](y) \mu(d y) d \theta
$$

On the other hand, making the transform $\theta \rightarrow-\theta$, we see

$$
I=\int_{-\pi / 2}^{-\rho}(-\log \cos \theta)^{-1 / 2} \cos \theta \int_{W}(\phi \otimes 1)\left(R_{-\theta}(x, y)\right)[h](y) \mu(d y) d \theta
$$

By averaging these, the R.H.S. of (7.2) equals to

$$
\begin{gathered}
\frac{1}{2}\left(\int_{-\pi / 2}^{-\rho}-\int_{\rho}^{\pi / 2}\right)(-\log \cos \theta)^{-1 / 2} \cos \theta \int_{W}(\phi \otimes 1)\left(R_{-\theta}(x, y)\right)[h](y) \mu(d y) d \theta \\
\quad=\int_{W}[h](y)\left[\left(\int_{-\pi}^{-\rho}+\int_{\rho}^{\pi}\right) K(\theta)(\phi \otimes 1)\left(R_{-\theta}(x, y)\right) d \theta\right] \mu(d y)
\end{gathered}
$$

where $K(\theta)$ is defined as follows

$$
K(\theta)= \begin{cases}-\frac{1}{2}(-\log \cos \theta)^{-1 / 2} \cos \theta & \left(0 \leq \theta \leq \frac{\pi}{2}\right) \\ \frac{1}{2}(-\log \cos \theta)^{-1 / 2} \cos \theta & \left(-\frac{\pi}{2} \leq \theta \leq 0\right) \\ 0 & \text { (otherwise) }\end{cases}
$$

Note that as $\theta \downarrow 0$, or equivalently $t \downarrow 0$,

$$
\begin{aligned}
& K(\theta)=-\frac{e^{-t}}{2 \sqrt{t}}=-\frac{1}{2 \sqrt{t}}+\mathrm{a} \text { bounded function } \\
& \cot \frac{\theta}{2}=\sqrt{\frac{1+e^{-t}}{1-e^{-t}}}=\frac{\sqrt{2}}{\sqrt{t}}+\mathrm{a} \text { bounded function. }
\end{aligned}
$$

So we have

$$
K(\theta)=-\frac{1}{2 \sqrt{2}} \cot \frac{\theta}{2}+\mathrm{a} \text { bounded function. }
$$

Let $\rho \downarrow 0$. Then we have

$$
\begin{aligned}
\lim _{\rho \downharpoonright 0} \int_{W} & {[h](y)\left[\left(\int_{-\pi}^{-\rho}+\int_{\rho}^{\pi}\right) K(\theta)(\phi \otimes 1)\left(R_{-\theta}(x, y)\right) d \theta\right] \mu(d y) } \\
& =\int_{W}[h](y)\left[\lim _{\rho \downharpoonright 0}\left(\int_{-\pi}^{-\rho}+\int_{\rho}^{\pi}\right) K(\theta)(\phi \otimes 1)\left(R_{-\theta}(x, y)\right) d \theta\right] \mu(d y) \\
& =\int_{W}[h](y)\left[\text { p.v. } \int_{-\pi}^{\pi} K(\theta)(\phi \otimes 1)\left(R_{-\theta}(x, y)\right) d \theta\right] \mu(d y)
\end{aligned}
$$

Here the first equality (a change of $\lim _{\rho}$ and \int_{W}) is guaranteed because we took ϕ from S.

For convienience we set

$$
U F(x, y)=\text { p.v. } \int_{-\pi}^{\pi} K(\theta) F\left(R_{-\theta}(x, y)\right) d \theta
$$

for $F: W \times W \rightarrow \mathbf{R}$. Note that if (x, y) is substituted by $R_{\beta}(x, y)$ it is the convolution of $K(\theta)$ and $F\left(R_{\theta}(x, y)\right)$.

From the argument in this section, we conclude that

$$
\begin{equation*}
\Gamma(1 / 2) D_{h}(I-L)^{-1 / 2} \phi(x)=\int_{W}[h](y) U(\phi \otimes 1)(x, y) \mu(d y) . \tag{7.3}
\end{equation*}
$$

Note that $D_{h}(I-L)^{-1 / 2}$ can also be generalized to act on K-valued functions as an operator acting only on function part. If a K-valued function ϕ is written in the following form

$$
\phi(x)=\sum_{i=1}^{m} \phi_{i}(x) e_{i},
$$

where $e_{i} \in K$, then

$$
\begin{equation*}
\Gamma(1 / 2) D_{h}(I-L)^{-1 / 2} \phi(x)=\sum_{i=1}^{m} \int_{W}[h](y) U\left(\phi_{i} \otimes 1\right)(x, y) \mu(d y) e_{i} . \tag{7.4}
\end{equation*}
$$

8. Continuity of \boldsymbol{J}_{1}

In this section we will show the continuity of the projection J_{1} of $L^{2}(\mu)$ onto the first order Wiener chaos. Unfortunately J_{1} is not continuous from $L^{1}(\mu)$ to $L^{1}(\mu)$. For example consider one dimensional standard normal distribution and functions $\exp (n x),(n \in \mathbf{N})$. In fact $\left\|e^{n x}\right\|_{L^{1}}=e^{n^{2} / 2}$ and

$$
\left\|J_{1}\left(e^{n x}\right)\right\|_{L^{1}}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} x e^{n x} e^{-x^{2} / 2} d x\|x\|_{L^{1}}=n e^{n^{2} / 2}\|x\|_{L^{1}}
$$

Using an extrapolation theorem we will show, however, in the following theorem that $J_{1}: L(\log L)^{1 / 2}(\mu) \rightarrow L^{1}(\mu)$ is continuous.

Theorem 8.1. Let J_{1} be the projection of $L^{2}(\mu ; K)$ onto the first Wiener chaos and $F \in L^{2}(K)$. Then there is a constant \hat{C} satisfying

$$
\begin{equation*}
E\left[\left\|J_{1} F\right\|_{K}\right] \leq \hat{C}\left(1+A_{1 / 2}\left(\|F\|_{K}\right)\right) \tag{8.1}
\end{equation*}
$$

Proof. We will prove that the semigroup \vec{P}_{t} is hypercontractive where

$$
\vec{P}_{t} F=\sum_{i=1}^{m} P_{t} F_{i}(x) e_{i},
$$

for any F of the form $F=\sum_{i=1}^{m} F_{i}(x) e_{i}$ and $F_{i} \in L^{2}(\mu), e_{i} \in K$.
Since the Ornstein-Uhlenbeck semigroup is written as $P_{t} \phi(x)=\int_{W} \phi\left(e^{-t} x+\right.$ $\left.\left(1-e^{-2 t}\right)^{1 / 2} y\right) \mu(d y)$, it is easily verified by interchanging the order of the norm and the integral that

$$
\left\|\vec{P}_{t} F(x)\right\|_{K} \leq P_{t}\|F\|_{K}(x)
$$

Since the hypercontractivity of P_{t} in the scalar-valued case is well-known, the above inequality shows the hypercontractivity of \vec{P}_{t}, that is,

$$
\left\|\vec{P}_{t} F\right\|_{q} \leq\|F\|_{p}
$$

where $p-1=e^{-2 t}(q-1)$.

And the hypercontractivity of \vec{P}_{t} implies, for $1<p \leq 2$,

$$
\begin{equation*}
\left\|J_{1} F\right\|_{p} \leq \frac{1}{\sqrt{p-1}}\|F\|_{p} \tag{8.2}
\end{equation*}
$$

The proof for scalar-valued case of inequality (8.2) in Ikeda and Watanaba [4] is also applicable to this vector-valued case.

We will finish the proof by te following lemma on the extrapolation, which is a generalization of the result in the scalar-valued case by Yano [14]:

Lemma 8.2. Let T be a transformation which transforms every integrable K valued function to a measurable K-valued function, both being defined on a probability space (Ω, P), such that

$$
\begin{gather*}
f(x)=\sum_{v=0}^{\infty} f_{v}(x) \text { implies }\|T f\|_{K} \leq \sum_{v=0}^{\infty}\left\|T f_{v}\right\|_{K}, \tag{8.3}\\
\|T(-f)\|_{K}=\|T f\|_{K}, \tag{8.4}
\end{gather*}
$$

and the inequality

$$
\begin{equation*}
\left\{E\left[\|T f\|_{K}^{p}\right]\right\}^{1 / p} \leq C_{p}\left\{E\left[\|f\|_{K}^{p}\right]\right\}^{1 / p} \tag{8.5}
\end{equation*}
$$

holds with the constant C_{p} satisfying the inequality

$$
\begin{equation*}
C_{p} \leq \frac{C}{(p-1)^{k}} \tag{8.6}
\end{equation*}
$$

for any $p, 1<p \leq 2$, for some $k>0$ and for a constant C. Then we have

$$
\begin{equation*}
E\left[\|T f\|_{K}\right] \leq a_{k} E\left[A_{k}\left(\|f\|_{K}\right)\right]+b_{k}, \tag{8.7}
\end{equation*}
$$

where a_{k} and b_{k} are constants depending only on k.
Proof. The following proof is a slight modification of that in Yano [14].
Fix a $k>0$. It is sufficient to show (8.7) for f satisfying $\|f(x)\| \geq 1$ for almost all x, since any f can be expressed as

$$
\begin{aligned}
f(x) & =f(x) I_{\left\{(f(x), v)_{K} \geq 0\right\}}+f(x) I_{\left\{(f(x), v)_{K}<0\right\}} \\
& =\left(f(x) I_{\left\{(f(x), v)_{K} \geq 0\right\}}+v\right)-\left(-f(x) I_{\left\{(f(x), v)_{K}<0\right\}}+v\right) \\
& =f^{+}(x)-f^{-}(x),
\end{aligned}
$$

where $v \in K$ is a unit vector in K. Note that $\left\|f^{+}(x)\right\|_{K} \geq\left|\left(f^{+}(x), v\right)_{K}\right| \geq 1$. By the same reason we see that $\left\|f^{-}(x)\right\|_{K} \geq 1$. Set $\Omega_{v}=\left\{2^{v} \leq\|f(x)\|_{K}<2^{v+1}\right\}$. Then $\Omega=\sum_{v=0}^{\infty} \Omega_{v}$. And set $f_{v}(x)=f(x) I_{\Omega_{v}}(x)$ and $g_{v}(x)=2^{-v} f_{v}(x)$. Then $f(x)=\sum_{v=0}^{\infty} f_{v}(x)=\sum_{v=0}^{\infty} 2^{v} g_{v}(x)$ and $1 \leq\left\|g_{v}(x)\right\|_{K}<2$. By (8.3), (8.5) and (8.6) we have

$$
\|T f\|_{K}=\sum_{v=0}^{\infty} 2^{v}\left\|T_{v}(x)\right\|_{K} .
$$

Integrating both sides, we obtain

$$
\begin{aligned}
E\left[\|T f\|_{K}\right] & \leq \sum_{v=0}^{\infty} 2^{v} E\left[\left\|T g_{v}(x)\right\|_{K}\right] \\
& =\sum_{v=0}^{\infty} 2^{v}\left\{E\left[\left\|T g_{v}(x)\right\|_{K}^{p_{K}}\right]\right\}^{1 / p_{v}} \\
& \leq C_{p_{v}} \sum_{v=0}^{\infty} 2^{v}\left\{E\left[\left\|g_{v}(x)\right\|_{K}^{p_{v}}\right]\right\}^{1 / p_{v}} \\
& \leq \frac{4 C}{\left(p_{v}-1\right)^{k}} \sum_{v=0}^{\infty} 2^{v}\left\{E\left[\left\|g_{v}(x)\right\|_{K}\right]\right\}^{1 / p_{v}} .
\end{aligned}
$$

Here we used the fact that $1 \leq\left\|g_{v}(x)\right\|_{K}<2$ and $1 \leq p_{v}<2$.
We substitute $p_{v}=1+1 / v$. Then we have

$$
\begin{aligned}
E\left[\|T f\|_{K}\right] & \lesssim \sum_{v=0}^{\infty} 2^{v} v^{k}\left\{E\left[\left\|g_{v}(x)\right\|_{K}\right]\right\}^{v /(1+v)} \\
& \leq \sum_{v=0}^{\infty} 2^{v} v^{k}\left(4 E\left[\left\|g_{v}(x)\right\|_{K}\right]+4^{-v}\right) \\
& \leq 4 \sum_{v=0}^{\infty} 2^{v} v^{k} E\left[\left\|g_{v}(x)\right\|_{K}\right]+b_{k} \\
& \lesssim \sum_{v=0}^{\infty} E\left[\left\|f_{v}\right\|_{K} \log ^{k}\left(\left\|f_{v}\right\|_{K}\right)\right]+1 \\
& \lesssim E\left[A_{k}\left(\left\|f_{v}\right\|_{K}\right)\right]+1 .
\end{aligned}
$$

Here in the second inequality, we used Lemma 8.3 below.
Lemma 8.3. Let $x \geq 0$ and $v \geq 1$. Then

$$
x^{v /(v+1)} \leq 4 x+4^{-v} .
$$

Proof. Let $F(x)=4 x^{(v+1) / v}$. Then $f(x)=F^{\prime}(x)=4 \frac{v+1}{v} x^{1 / v}$. The inverse function g of f is calculated as

$$
g(x)=\left\{\frac{v}{4(v+1)} x\right\}^{v}
$$

Set

$$
G(x)=\int_{0}^{x} g(y) d y=\left\{\frac{v}{4(v+1)}\right\}^{v} x^{v+1} .
$$

Then by Young's inequality, we have

$$
\begin{aligned}
x^{v /(v+1)} & =x^{v /(v+1)} \cdot 1 \\
& \leq F\left(x^{v /(v+1)}\right)+G(1) \\
& =4 x+\left\{\frac{v}{4(v+1)}\right\}^{v} \frac{1}{v+1} \\
& \leq 4 x+4^{-v}
\end{aligned}
$$

and this completes the proof.
9. Continuity of $D(I-L)^{-1 / 2}$

First let us compute H^{*}-norm of $D(I-L)^{-1 / 2} \phi(x)$. Generally for $G \in L^{2}(\mu)$, the linear functional

$$
\left(h \rightarrow \int_{W}[h](w) G(w) \mu(d w)\right) \in H^{*}
$$

corresponds to an element $g \in H$ through the canonical isomorphism $H^{*} \cong H$, where

$$
g=\sum_{i=1}^{\infty}\left(\int_{W}\left[h_{i}\right](w) G(w) \mu(d w)\right) h_{i} \in H
$$

$\left(\left\{h_{i}\right\}\right.$ is an O.N.B. of $\left.H\right)$. Then we see that

$$
\begin{equation*}
\delta g(w)=J_{1} G(w) \tag{9.1}
\end{equation*}
$$

where δ is the divergence operator. Hence we have

$$
E\left[\left|J_{1} G(w)\right|\right]=E[|\delta g(w)|]=\|g\|_{H} E\left[\left|\delta\left(\frac{g}{\|g\|_{H}}\right)(w)\right|\right]
$$

and noting that $\delta\left(\frac{g}{\|g\|_{H}}\right)$ has the standard normal distribution, we obtain

$$
\|g\|_{H}=\sqrt{\frac{\pi}{2}} E\left[\left|J_{1} G(w)\right|\right] .
$$

This relation holds even when $\|g\|_{H}=0$.
Next we consider the case of K-valued functions

$$
\left(h \rightarrow \sum_{i=1}^{m} \int_{W}[h](w) G_{i}(w) \mu(d w) e_{i}\right) \in H^{*} \otimes K
$$

where e_{i} are orthonormal in K. This element corresponds to an element $g=$ $\sum_{i=1}^{m} g_{i} \otimes e_{i} \in H \otimes K$ through the canonical isomorphism $H^{*} \cong H$. Then we see that (9.1) holds in the sense of K-valued functions. And by Proposition 9.1 below
we see that

$$
\begin{equation*}
E\left[\left\|J_{1} G(w)\right\|_{K}\right]=\|g\|_{H \otimes K} E\left[\left\|\delta\left(\frac{g}{\|g\|_{H \otimes K}}\right)(w)\right\|_{K}\right] \geq \sqrt{\frac{2}{\pi}}\|g\|_{H \otimes K} . \tag{9.2}
\end{equation*}
$$

Proposition 9.1. Let $g \in H \otimes K$ satisfy $\|g\|_{H \otimes K}=1$. Then

$$
\begin{equation*}
E\left[\|\delta g\|_{K}\right] \geq \sqrt{\frac{2}{\pi}} \tag{9.3}
\end{equation*}
$$

Proof. Since the mapping $\delta: H \otimes K \rightarrow L^{2}(K) \rightarrow L^{1}(K)$ is continuous, it is sufficient to prove (9.3) for elements of the form

$$
g=\sum_{i=1}^{m} g_{i} \otimes e_{i}
$$

where e_{i} are orthonormal in $K, g_{i} \in H$ and $\|g\|_{H \otimes K}^{2}=\sum_{i=1}^{m}\left\|g_{i}\right\|_{H}^{2}=1$. Suppose such an element g be given. Then we may identify $\mathscr{L}\left\langle e_{1}, e_{2}, \ldots, e_{m}\right\rangle \cong \mathbf{R}^{m}$ and

$$
\delta g=\sum_{i=1}^{m}\left(\delta g_{i}\right)(x) e_{i}
$$

induces a Gaussian measure on \mathbf{R}^{m} whose covariance matrix is $V=\left(\left\langle g_{i}, g_{j}\right\rangle_{H}\right)_{i, j=1}^{m}$. Let $t_{1}, t_{2}, \ldots, t_{m}$ be the eigenvalues of V. Then there exists an orthogonal matrix U which diagonalizes V :

$$
U^{-1} V U=\left(\begin{array}{cccc}
t_{1} & & & \\
& t_{2} & & \\
& & \ddots & \\
& & & t_{m}
\end{array}\right)
$$

Note that

$$
\begin{equation*}
\sum_{i=1}^{m} t_{i}=1 \quad \text { and that } t_{i} \geq 0 \tag{9.4}
\end{equation*}
$$

We first consider non-degenerate cases, that is, all t_{i} 's are positive. The left hand side of (9.3) is equal to

$$
\begin{align*}
& (2 \pi)^{-m / 2} \frac{1}{\sqrt{\operatorname{det} V}} \int_{\mathbf{R}^{m}}|x| \exp \left(-\frac{1}{2} x^{T} V x\right) d x \\
& \quad=(2 \pi)^{-m / 2} \frac{1}{\sqrt{\operatorname{det} V}} \int_{\mathbf{R}^{m}}|U x| \exp \left(-\frac{1}{2} x^{T} U^{-1} V U x\right) d x \\
& \quad=(2 \pi)^{-m / 2} \int_{\mathbf{R}^{m}}\left(\sum_{i=1}^{m} t_{i} x_{i}^{2}\right)^{1 / 2} \exp \left(-\frac{1}{2}|x|^{2}\right) d x \tag{9.5}
\end{align*}
$$

The last expression in (9.5) includes degenerate cases, too.

It is sufficient to show that, for each m, the minimum under the condition (9.4) of the right hand side of (9.5) is larger than or equal to $\sqrt{\frac{2}{\pi}}$. We will prove this claim by induction for m.

For $m=1$, it is already proved.
For $m=2$, set, for $0 \leq t \leq 1$,

$$
I(t)=\frac{1}{2 \pi} \int_{\mathbf{R}^{2}} \sqrt{t x_{1}^{2}+(1-t) x_{2}^{2}} \exp \left(-\frac{1}{2}|x|^{2}\right) d x
$$

and

$$
I_{r}(t)=\frac{1}{2 \pi} \int_{\mathbf{R}^{2} \backslash B_{r}} \sqrt{t x_{1}^{2}+(1-t) x_{2}^{2}} \exp \left(-\frac{1}{2}|x|^{2}\right) d x
$$

where B_{r} is the ball of radius r centered at 0 . It is easy to see that, for any t, $I_{r}(t) \rightarrow I(t)$ as $r \rightarrow 0$. By the diferentiation under the integral sign, we can calculate the first and the second derivatives of $I_{r}(t)$:

$$
\begin{equation*}
\frac{d I_{r}}{d t}(t)=\frac{1}{4 \pi} \int_{\mathbf{R}^{2} \backslash B_{r}} \frac{x_{1}^{2}-x_{2}^{2}}{\sqrt{t x_{1}^{2}+(1-t) x_{2}^{2}}} \exp \left(-\frac{1}{2}|x|^{2}\right) d x \tag{9.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d^{2} I_{r}}{d t^{2}}(t)=-\frac{1}{8 \pi} \int_{\mathbf{R}^{2} \backslash B_{r}} \frac{\left(x_{1}^{2}-x_{2}^{2}\right)^{2}}{\left(t x_{1}^{2}+(1-t) x_{2}^{2}\right)^{3 / 2}} \exp \left(-\frac{1}{2}|x|^{2}\right) d x \tag{9.7}
\end{equation*}
$$

From (9.6) and (9.7) we can easily see that $\frac{d I_{r}}{d t}\left(\frac{1}{2}\right)=0$ and $\frac{d^{2} I_{r}}{d t^{2}}(t) \leq 0$. From this $I_{r}(t)$ increases on $[0,1 / 2]$, and decreases on $[1 / 2,1]$. And so does $I(t)=\lim _{r \rightarrow 0} I_{r}(t)$. Hence the minimum is $I(0)=I(1)=\sqrt{\frac{2}{\pi}}$.

For $m \geq 3$, by a similar proof we can see that the minimum can not be attained in the interior ($=$ the points of non-degenerate cases), but attained on the boundary ($=$ the points of degenerate cases). But in the degenerate cases, the minimum problem is reduced to the one for a lower dimension.

By the above inequality (9.2) (taking $G_{i}(\cdot)=U\left(\phi_{i} \otimes 1\right)(x, \cdot)$) and the results (7.4) and (8.1) of previous sections,

$$
\begin{aligned}
\left\|D(I-L)^{-1 / 2} \phi(x)\right\|_{H} \cdot \otimes K & \leq \text { const. } \times E^{y}\left[\left\|J_{1}^{y} U(\phi \otimes 1)(x, y)\right\|_{K}\right] \\
& \leq k E^{y}\left[1+A_{1 / 2}\left(\|U(\phi \otimes 1)(x, y)\|_{K}\right)\right]
\end{aligned}
$$

where E^{y} and J_{1}^{y} are operations for the variable y, and k is a positive constant.
Then we will show the main result of this article.
Theorem 9.2. $D(I-L)^{-1 / 2}$ is continuous from $L(\log L)^{\alpha+3 / 2}(\mu ; K)$ to $L(\log L)^{\alpha}\left(\mu ; H^{*} \otimes K\right)$ for any $\alpha \geq 0$.

Proof. We have

$$
\begin{align*}
E^{x}\left[A_{\alpha}\left(\left\|D(I-L)^{-1 / 2} \phi(x)\right\|_{H^{*} \otimes K}\right)\right] & \leq E^{x}\left[A_{\alpha}\left(k E^{y}\left[1+A_{1 / 2}\left(\|U(\phi \otimes 1)(x, y)\|_{K}\right)\right]\right)\right] \\
& \lesssim 1+E^{x}\left[A_{\alpha}\left(E^{y}\left[A_{1 / 2}\left(\|U(\phi \otimes 1)(x, y)\|_{K}\right)\right]\right)\right] \\
& \left.\leq 1+E^{x} E^{y}\left[A_{\alpha}\left(A_{1 / 2}\left(\|U(\phi \otimes 1)(x, y)\|_{K}\right)\right]\right)\right] . \tag{9.8}
\end{align*}
$$

Here we used Δ_{2} condition for the second inequality and the convexity for the third. It is easy to show that

$$
\lim _{x \rightarrow \infty} \frac{A_{\alpha}\left(A_{1 / 2}(x)\right)}{A_{\alpha+1 / 2}(x)}=1 .
$$

From this we see that $A_{\alpha}\left(A_{1 / 2}(x)\right) \leqq 1+A_{\alpha+1 / 2}(x)$.
So from (9.8) we have

$$
\begin{align*}
\text { R.H.S. of }(9.8) & \lesssim 1+E^{x} E^{y}\left[A_{\alpha+1 / 2}\left(\|U(\phi \otimes 1)(x, y)\|_{K}\right)\right] \\
& =1+E^{x} E^{y}\left[\int_{-\pi}^{\pi} A_{\alpha+1 / 2}\left(\| U(\phi \otimes 1)\left(R_{\beta}(x, y) \|_{K}\right) d \beta\right] .\right. \tag{9.9}
\end{align*}
$$

Here we used the fact that the product measure $\mu \times \mu$ is invariant under the rotation R_{β}. By the continuity of the Hilbert transform and of a convolution operator with a bounded function, we have

$$
\begin{aligned}
\text { R.H.S. of }(9.9) & \lesssim 1+E^{x} E^{y}\left[\int_{-\pi}^{\pi} A_{\alpha+3 / 2}\left(\|(\phi \otimes 1)\left(R_{\beta}(x, y) \|_{K}\right) d \beta\right]\right. \\
& =1+E^{x} E^{y}\left[A_{\alpha+3 / 2}\left(\|(\phi \otimes 1)\left(x, y \|_{K}\right)\right]\right. \\
& =1+E^{x}\left[A_{\alpha+3 / 2}\left(\|\phi(x)\|_{K}\right)\right] .
\end{aligned}
$$

This completes the proof.
By this theorem we can estimate L^{1}-norm of $D^{n} f$.
Corollary 9.3. Let $f \in S$ be a real valued function. Then

$$
\begin{equation*}
\left\|D^{n} f\right\|_{L^{1}\left(\mu ; H^{*} \otimes n\right)} \leqslant\left\|(I-L)^{n / 2} f\right\|_{L(\log L)^{3 n / 2} L(\mu)} \tag{9.10}
\end{equation*}
$$

for $n=1,2, \ldots$.
Proof. For $n=1$ it is almost trivial. For $n=2$ we use a slightly modified version of theorem 9.2, that is, the continuity of $D(2 I-L)^{-1 / 2}$. Then we have

$$
\begin{aligned}
\left\|D^{2} f\right\|_{L^{1}\left(\mu ; H^{*} \otimes H^{*}\right)} & \lesssim\left\|(2 I-L)^{1 / 2} D f\right\|_{L(\log L)^{3 / 2}\left(\mu ; H^{*}\right)} \\
& =\left\|D(I-L)^{1 / 2} f\right\|_{L(\log L)^{3 / 2}\left(\mu ; H^{*}\right)} \\
& \lesssim\|(I-L) f\|_{L(\log L)^{3}(\mu)^{*}} .
\end{aligned}
$$

We complete the proof by induction.

Acknowledgement. The author is grateful to Prof. I. Shigekawa and Prof. S. Watanabe for their valuable advice and encouragement.

Department of Mathematics Graduate School of Science Kyoto University

References

[1] R. A. Adams, Sobolev Spaces, Academic Press, 1975.
[2] R. Durrett, Brownian Motion and Martingales in Analysis, Wadsworth, 1984.
[3] D. Feyel, Transformations de Hilbert-Riesz, CRAS, Paris, 310 (Série I), (1990), 653-655.
[4] N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, 2nd Edition, North Holland, 1989.
[5] S. Janson, Characterization of H^{1} by singlar integral transformation on martingales and \mathbf{R}^{n}, Math. Scand., 41 (1977), 140-152.
[6] Y. Katznelson, An Introduction to Harmonic Analysis, Dover, 1976.
[7] E. Lenglart, D. Lepingle and M. Pratelli, Présentation unifieé de certaines inégalités de la théorie des martingales, Lecture notes in Math. 784, Springer, 1980, 26-48.
[8] P. A. Meyer, Note sur les processus d'Ornstein-Uhlenbeck, Séminaire de Probabilités XVI, Lecture notes in Math. 920, Springer, 1982, 95-133.
[9] G. Pisier, Riesz transform; A simple analytic proof of P. A. Meyer's inequality, Lecture Notes in Math. 1321, Springer, 1988, 485-501.
[10] D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, Springer Verlag, 1991.
[11] E. M. Stein, A note on $L \log L$, Studia Math., 31 (1969), 305-310.
[12] E. M. Stein, G. Weiss, Introduction to Fourier Analysis on Euclidean spaces, Princeton University Press, 1971.
[13] S. Watanabe, Lectures on Stochastic Differential Equations and Malliavin Calculus, Tata Institute of Fundamental Research, Bombay, 1984.
[14] S. Yano, Notes on Fourier Analysis (XXIX): An Extrapolation Theorem, J. Math. Soc. Japan, 3 (1951), 296-305.

