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Module derivations and the adjoint action of a finite
loop space

By

Katsuhiko KURIBAYASHI

O. Introduction

Let G be a  finite loop space, in other words, a  loop space with the homotopy
type of a finite CW com plex . Following Milnor's description of universal bundles
over spaces [13], we regard the finite loop space a s  a  topological group up to
hom otopy. Let LG be the loop group, which is the space of free loops on G, and
Q G  the  subgroup o f  L G  consisting o f based loops. W e can identify the  loop
group L G  with th e  product Q G  x  G  a s  a  sp ace . T he m ap 0  : Q G  x  G —> LG
defined by 0(1, g)(t) = 1(t) • g  is  a  homeomorphism which guarantees the  identi-
fication. W e  d e f in e  the adjoint action  A d :  G  x QG —> 12G  o f  G  o n  Q G  by
A d(g,l) =  If we give the space QG  x G  the group structure so that (1, g )  •
(1 ',g ')  =  ( lA d (g ,P ) ,g g ') ,  then the  homeomorphism 0  is regarded a s  a n  isomor-
phism Q G  x  G  L G .  Therefore one may expect that it is useful for studies on
both geometry and  topology fo r loop groups to consider the adjoint action of
G  o n  Q G .  In  f a c t ,  by calculating th e  ad jo in t ac tion  A d* : H*(S2G:ZI p)
H*(G;ZI p) C) H*(QG:Z/ p ) ,  we can determine th e  Hopf algebra structure of
H * (L G :Z I  p ) . Moreover this result enables u s  to calculate th e  E2-term of the
Rothenberg-Steenrod spectral sequence converging to the p  cohomology of the
classifying space BLG o f the  loop group L G .  Consequently, our knowledge on
the structure of H *(BL G ;ZI p) will contribute to studies on characteristic classes of
loop group bundles.

The author would like to express his gratitude to Norio Iwase for valuable
discussions.

1. Aims and results

Let G  be a compact simply connected L ie  g roup . In  [7], Kono and Kozima
g ive  a  good characterization o f  t h e  triviality o f  th e  a d jo in t  a c t io n  Ad*
H *(S2G ;ZI p) — > H *(G ;ZI p) 0 H *(Q ;ZI p). Before stating th e  m a in  theorem
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in  [7], we explain briefly a fibration whose total space is the classifying space of
a  loop g ro u p . L e t  G  be a  finite loop space. Since Q G  is  a  closed normal
subgroup o f  th e  loop group LG , w e have a  principal G-bundle G  B Q G
B L G . Hence BLG has the homotopy type of BQG x G  E G . Since the classifying
space BQG is homotopy equivalent to G by a G-adjoint action preserving map, it
follows that BLG has the homotopy type of G x G  E G . Here the G-adjoint action
ad : G x G G  is defined by (g,h) g h g .  Thus we have a  fibra tion  G
BLG —> BG.

Theorem 1.1 ([7]). L et G  be a com pact, simply connected L ie group and p  a
p rim e . Then the follow ing three conditions are equivalent.

(i) H * (G ;Z ) has no p-torsion.
(ii) A d* -= pr : H* (0G; Z I p) H* (G;Z I p) C) H* (QC; Z I p ),  w here pr2 is

the projection to  the second factor.
(iii) There is an  isomorphism of  H*(BG; Z/ p) -algebras Ø : H*(BLG; Z/ p)

H* (BG; Z / p )  H* (G; Z/ p) which satisfies inc; o =  1*, where inc2 : G  BG C) G
is  the inclusion onto the second factor.

The proof of Theorem 1.1 is based on  studies on the classification of simple Lie
groups and their cohomologies.

In [3], Iwase has generalized Theorem 1.1 to the case where G is a  finite loop
space and p  is odd.

Theorem 1.2 ([31,  Theorem 2.2, Theorem 2 .3 ) .  L et G  be a simply connected
f inite loop space. For all odd prime p, the condition (i), (ii) and (iii) in Theorem 1.1
are  also equivalent to any  of  the following f our conditions:

(iv) T he induced homomorphism j* : H*(BLG;ZI p) H* (G; ZI p) i s  sur-
jective;

(NI) T he Hopf algebra H *(G ;ZI p ) is primitively generated;
(vi) T he Hopf algebra H *(G ;ZI p ) is  cocomutative;
(vii) There is an  isomorphism of H*(BG;ZI p)-modules : H*(BLG;Z/ p)

H* (BG; Z I p) H * (G ;Z  1  p ) which satisfies inc.; oØ  j* .

Recently, Iwase and Kono have considered a generalization of Theorem 1.1 for the
case where G  is a  simply connected finite loop space and p = 2.

Theorem 1.3 ([4]). L e t G  be a  sim ply  connected f inite loop space. A t the
prim e 2 , the conditions (i), (ii) and (iii) in  Theorem 1.1 are  equivalent.

Let m be the product of G and T : G x  G  G  x  G the switching mapping. In
the proofs of Theorems 1.2 and 1.3, an explicit homotopy H : I x  G x  G  B L G
which connects the  map j  o m  a n d  jo m o  T  plays an im portant role. In  par-
ticular, the  hom otopy  is  n eeded  to  sh o w  th e  ex is ten ce  o f  1-implication in
H*(BLG; Z /2), which is a  key to prove Theorem 1.3. Therefore we can describe
that the generalization of Theorem 1.1 to the case in which G is a finite loop space
is completely made with a homotopy theoretic approach. On the other hand, we
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can also prove algebraically Theorem 1.2 by making use of the Eilenberg-Moore
spec tra l sequence o f  t h e  c o b a r  t y p e  c o n v e rg in g  to  H*(EG x G G;Z 1 p) =
H * (B L G ;Z I p ) . (See Remark 1.4 below.)

One of our aims in  this manuscript is to give another proof of Theorem 1.3
without using the  explicit homotopy I I : I x G x G — B L G .  O ne may describe
that the approach is of homological algebra. Our great tools in the proof are the
Rothenberg-Steenrod spectral sequence {R s  E *(B L G ), d r }  converging to H*(BLG:
Z/p) whose E2-term is isomorphic as an algebra to Cotory*(LG ; Z/ p )(Z IP ,Z 1  p )  and
the module derivation g BG : H*(B G: Z/2) H*(LB G; Z/2) defined by L., o e r ,
where eu : S 1 x  LBG —> BG is the evaluation map and Ss , is  the integration along
S I . In general, a module derivation is defined as a linear map with the degree —1
from an algebra A over a field to  an A-module which satisfies the Leibniz rule on
A .  For the  explicit definition see Section 3.

Theorem 1.2 asserts that the conditions (i)—(vii) form  one equivalence class
when the prime p  is  o d d .  The second aim is to consider how many equivalence
classes are formed form the conditions (i)—(vii) in the case p  = 2. To this end, in
Remark 1.4 below, we clarify whether some results which a re  applied to prove
Theorem 1.2 hold for p  = 2. A t  t h e  same time, we prove Theorem 1.2 without
using the homotopy H : I x  G x  G  B L G .

Remark 1.4. The method of the proof of [7, Proposition 3.3 1 also works for
our case where G is a simply connected finite loop space and p  = 2. Hence we see
that (i) implies (ii) in  Theorem  1.3. M oreover, since the classifying space BLG
and  the  loop space L B G  a re  o f  th e  same homotopy type, it follow s from  the
argument in [7, §4 1 that (i) implies (iii) in T heorem  1 .3 . The result [5, Theorem
1.11 o f  Kane allows us to conclude that (v) and (vi) in Theorem 1.2 are equivalent
for any prime p .  Since G is totally non-homologous to zero in B L G with respect
t o  Z / p  if  a n d  only if the Leray-Serre spectral sequence for the fibration G
B L G  B G  collapses at the E2-term, it is clear that the conditions (iv) and (vii) in
Theorem 1.2 are equivalent for any prime p .  In [3, Section 61, Iwase proves that
(ii) im plies (v i). T he  m ethod o f  th e  proof also w orks fo r  a n y  prime p. Let
{Er , dr }  b e  the  Eilenberg-Moore spectral sequence converging to H*(B L G:Z1 p)
whose E2-term is isomorphic to Cotor tp ( G ,z i p ) (Z I p ,H *(G ;Z I p )) a s  a n  algebra.
Here the left comodule structure of H *(G ;Z I p) is given by the adjoint action ad of
G on itself. B y considering the cobar complex of H *(G ;Z I p), we see that ad* =

: E°,* = H*(G;ZI p) — > = H *(G ;Z I p ) 0  H* (G; Z / p ) ,  w h e re  H * (G :Z /p)
deno tes(= L. H '( G ;Z I  p ) .  M oreover, by using th e  fa c t th a t th e  edge homo-i
morphism

H (B L G; Z  I p) —> E cc": • • • 4 * H* (G; Z I p)

i s  the homomorphism j*  : H * ( B L G ;Z Ip )  1 1 '( G ;Z I  p ) ,  w e  c a n  se e  th a t (iv)
im plies (v) f o r  a n y  prim e p. (S ee  a lso  [4 , S ec tion  4 ].)  W e  stress th a t  the
homotopy H :Ix  G x  G  — > B L G  m entioned  above  is  no t need  i n  this proof
though the original proof [31 relies on the homotopy. The result [1, Theorem 1] of



70 Katsuhiko Kuribayashi

Browder states that the condition (vi) implies (i) unless p  = 2. T h u s  w e  c a n  have
Theorem 1.2.

For the case p  = 2, the condition (v) does not imply (i) in  genera l. A s such
an example, we can give the case where G is the exceptional Lie group G 2 .  Since
the conditions (iv)-(vii) hold in the case (G, p) = (G2,2), one may conjecture that,
fo r p  = 2, the conditions (i)-(vii) are separated into two equivalence classes s i
consisting of (i)-(iii) and ,R of (iv)-(vii). Of course the existence of the class si is
guaranteed by Theorem 1.3. However such an equivalence class ,4 does not exist.
By the following theorem, we see that the condition (iv)-(vii) are separated into
two equivalence classes. O n e  class consists of (iv) and (vii) and the other consists
of (v) and (vi).

T h eorem  1 .5 . T h e  induced hom om orphism  f  H*(B L  S pin(17); Z12) ->
H*(S pin(17);Z 12) is not surjective.

The third aim  o f  this m anuscript is to explain that the concept of module
derivations is not only useful for general theory of the adjoint action of finite loop
spaces bu t also fo r some explicit calculation of the  ad jo in t ac tions. T he calcu-
lation is based o n  th e  fac t tha t B L G has the hom otopy type of L B G and the
following theorem.

Theorem 1.6. L et x  be a simply connected space whose mod 2  cohomology is
isomorphic to the polynomial algebra Z/2[y 1 , y 2 ,...,y „]. T h e n

H*(LX ; Z/2) Z / 2 1 1 ;L, i•,v2, • •• ,Yn]

0  Z /2 [y i, y 2 , . . .

as an H*(X ;Z 12)-algebra, where deg y, = deg y , -  1 and g is the module derivation
def ined by  gy , = y,.

T o  p r o v e  T h e o r e m  1 .6 ,  w e  u se  th e  E ilen b e rg -M o o re  sp ec tra l sequence
{ Em Er"(X ),dr}  converging to H '(L X ; Z/2) whose E2-term is isomorphic to the
Hochschild homology HH(H*(X ; Z / 2 ) ) .  I n  th e  proof, the m odule  derivation
g  : H*(X ; Z/2) HH(H*(X ; Z /2 )) p lays an  im portan t ro le  in  order to solve
extension problems in  th e  spectral sequence.

Applying Theorem  1.6 to the case X  = B G2, we determine completely the
algebra structure of H*(LBG2: Z/2), which is isomorphic to H*(BLG2; Z /2 ) as an
algebra.

Theorem 1.7. H* (BLG2 ; Z/2) H* (LBG2 ; Z/2)

4
Z / 2 [ X 3 , . X 5 ]  Z / 2 [ y 4 ,  y 6 ,  y 7 ] /  (

x  

j_x
-5, 7V  +  V  -?

v  y„ w27 y4 ,3

T he struc tu re  o f  th e  E 2 -term  of the Rothenberg-Steenrod spectral sequence

{ Rs Er*, *(BLG),d,.}  and  a  relation between indecomposable elements of H*(LBG2;

y n i / ( A? +  g i stideg yi— y i ; i = 1, 2, n)



Z/2[x7,xii,x1310 Z/2[y 8 , v v 112' ;14 ,1 5 ,
.„2
"13_ L - ' 11 Y15 + Y12"7

, 2  I .

X 7 - I-  X13Y154
Y14x7

2

4 1  +  X7 Y15 + Y84(
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Z /2 ) enable us to deduce the non-triviality of some adjoint action of G 2  on S2G2.
In consequence, we can obtain a certain important calculation of adjoint action of
G 2 on S2G2 due to Kono and Kozima [7] and Hamanaka [11]. Our calculation of
the adjoint action is sim ple and algebraic. Therefore, from the consideration of
the Hopf algebra structure of the homology 11* (LG2; Z /2 ) due to Hamanaka [11],
we have

Theorem 1.8. L et X  be a loop space whose mod 2 cohomology is isomorphic to
that of  G2 as an algebra over the Steenrod algebra. T hen 11* (QX ; Z/2) '2== H .( f2G2;
Z /2 )  as  a  H opf  algebra over the S teenrod algebra. M oreov er the adjoint action
A d* : 11(X ; Z /2 )  0  11* (QX ; Z/2) —> 11(QX ; Z /2) coincides with that of  G 2 .  Thus
11(L X ; Z / 2 )  11(LG2; Z /2 )  as  a  H opf  algebra.

Let BDI(4) be the complex constructed by Dwyer and Wilkerson [2] and put
G = Q B D I(4 ). Since H *(B D I(4); Z /2) is a  polynom ial a lgebra , by  v irtue  of
Theorem 1.5, we can determine the algebra structure of II* (L B DI(4); Z/2).

Theorem 1.9. H* (BLG; Z / 2 )  H* (LBG; Z / 2 )  H* (LBDI (4); Z/2)

This result also allows u s  to deduce simply the  m ain  theorem [8, Theorem] in
which non-triviality o f  th e  ad jo in t a c tio n  A d* : H* (QG ; Z/2) —> H* (G; Z /2 ) 0
H*(52G; Z/2) is clarified.

Throughout this manuscript, let X  be a  simply connected space. Moreover a
graded commutative algebra A  over a field k is assumed to be 1-connected, that is,
A

°
 =  k and A ' = 0 if i < 0  o r i  =  1 .  We denote by A  the vector space

T he rest o f  this manuscript organized a s  fo llow s: In  Section 2 , we prove
T heorem  1 .4 . In Section 3, we define important module derivations. Section 4
devotes to prove that (iii) implies (i) and that (ii) implies (i) in the case where G is
a  finite loop space and p  = 2. Theorem 1.6, 1.7 and 1.8 are proved in Section 5.
Consequently, we can calculate the adjoint actions of G 2 and QBDI(4) mentioned
above in  a  simpler and m ore algebraic manner.

2. Proof of Theorem 1.5

We will prove Theorem 1.5 by reducing to the problem of whether the loop
space QB  S pin(17) is  to ta lly  n o n  hom ologous to z e ro  in  th e  f re e  loop space
LB S pin(17) with respect to  Z /2 .

Define th e  map yoL  b y  1,(t i y i •  •  0  tn Y ,) (s )  = tiY i(s )  0  •  •  •  0  t„y „(s)  and
g9g2 as the restric tion t o  B Q G  o f  oil ,. T h en  w e  can  o b ta in  th e  commutative
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diagram (2.1):

=

Notice that the right and left verticals are fibrations.
the map of fibrations

QG QG

EQG QEG

BQG QBG,
soy

we see that vg2 is  a  homotopy equivalence and hence so is (oL • Thus classifying
spaces of loop groups can be considered from the view point of loop spaces.

Our proof of Theorem 1.5 is based on the result [9, Proposition 1.7 (1)1 and
depends on the algebra structure of H*(B Spin(17); Z /2 )  which has been deter-
mined by Quillen. From the diagram (2.1), in order to prove Theorem 1.5, it
suffices to show th a t Q Spin(17) is not totally non-homologous to zero in
LB Spin(17) with respect to the field Z / 2 .  Let {44X), ar } and {Er (X ),d r }  denote
the Eilenberg-Moore spectral sequence of the path loop fibration QX —PX  —> X
and the Leray-Serre spectral sequence of the free loop fibration Q X  L X  —> X
respectively. We assume that

H*(X ;ZIp)'_‘-=' ,xidl(Pi,• • • ,Pni)

for * < N, where p i , , pn,  is  a  regular sequence and each p , is decomposable.
Then we have

Proposition 2.1 (19 1,  Proposition 1.7 (1)]. Suppose that there exist integers
i (1  < i < m ) a n d  j (1 j  n )  s u c h  th at  ap ,1 4  0  0  in Z/p[x ] .................. x„]/
(P i,... , p ,)  and = 0 for any r 2, s and t; s t  deg p, — 2. Then there ex ist
integers r, s and t such that d s

r ' t 0 0  and s t  <  deg p, —  2.

Remark 2.2. For any algebra A  and B, TorA"(Z I2 , Z/2) TorB"(Z /2 , Z/2)
for the total degrees less than N  — 2 if  A  B  for the degrees less than N.
Therefore we can apply the same argument as the proof 19 , Proposition 1.7 (1)]
though the condition such that N  c o  is assumed in the original proof.

G 4_ 4 _  R Q G  _ ,  Q B G

1 I

v,g2

If
EG x G  G  4_  B L G LBG

1 1

v)i.

1
BG ,  B G  _ _ _ ,  B G .

Since the map Vg2 induces
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By virtue of Quillen's result [17, Theorem 6.5] concerning the algebra structure
of H*(B Spin(17); Z /2 ) ,  w e have

H*(BSpin(17); Z/2) Z /2[W 4, W 6, W 7, W g, 11'10, W I  1, W I2, W I3, W I4 , w15, W 16 ]/(P )

for * 3 3 .  Here p = iv16w13w4 + W16 WI I W 6 W 16 W IO  W u ±  a  fo r some a E I, where
/  is the ideal generated by the elements , 415 o f  Z[w4 .11, 6 , iv- ,
ws, wtowii, • • • , W15, M d. S ince  8 a /8 w l 6  b e lo n g s  to  th e  ideal I ,  it follows that
13P/wi6 =14/13wia + wiiw6 + w10w7 + 0//8wt6 0 0  in H*(BSpin(17); Z / 2 ) .  By
using the  K oszul type resolution ([91, [151), we can get

E 2A ( S - 1 W 4 ,S - 1 W 6 ,S - 1 W 7 ,S - 1 W 8 ,S - 1 1 V io ,S — I W I  , w 16 ) r [ TP1

for total degrees < 31, where bideg s w1 =  ( - 1 ,  i )  and bideg rp  =  (-2 ,3 3 ).  This
fact enables us to conclude that dr"  =  0  for any r  if s + t < 3 1 .  From Proposition
2.1 , we have Theorem 1.5.

Remark 2.3. As for the case of the cohomology with the rational coefficient,
b y  th e  m a in  theorem  o f  S m ith  [16 ], w e  s e e  th a t  f  H *(B L Sp in (n ): ())
H*(Spin(n);Q ) is surjective for any n 3. Let k be a field whose characteristic is
a prime p .  From  the proof o f  [16, Theorem] due to  Smith, it follows that the
Eilenberg-Moore spectral sequence { E m Er*'*(X ),d r }  over k collapses at the E2-term
i f  H*(X; k )  i s  a  polynom ial algebra generated by elements with even degree.
Therefore we can also conclude that f  H* (BL Spin(n); Z I p) H* (Spin(n); Z I p)
is  surjective unless p = 2.

3. Module derivations

W e begin with the definition o f  an  algebraic module derivation.

Definition 3.1. L et A  be a graded commutative algebra over afield k and M  a
lef t A -m odule. A  m odule derivation o f  A  w ith values in  M  is  a  k-linear map

: A  —> M w ith degree —1 such that

g (a b ) =  ( _ i ) (deg a+i)deg n b g ( a ) i y l e g a a g ( b )

f o r any  a , b  A.

Let H H (A ) be the Hochschild homology of a  graded algebra A .  We regard
H H (A ) as the  homology of the  bar complex (A B(A 0 A ) 0  A, 0 ) constructed
from  th e  b a r  resolution o f  A  a s  a n  A  A -m odules. F o r  details o f the  bar
complex see [12].

T he following module derivation is used in  order to solve som e extension
problems of the  Eilenberg-Moore spectral sequence { E m Er*'*(LBG),d r }  (see §5).

Proposition 3.2. Define the map

: A  —> HH (A ) =  Tor/1 0 ,1 (A , A) = H (A  0  B (A  0  A) A ,  a)
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by x 1-> [x 0  1 - 1 0 x ]. T h e n  g  i s  a  m odule deriv ation of  A  w ith v alues in
HH(A ).

P ro o f  It suffices to show that [xy 1 - 1 ® xy] = (-1) ( a + l ) b •
y[x 1  - 1  0  x] +  (-1)ax[y  0  1  - 1  y ]  in H H ( A ) ,  where deg x = a  and
deg y = b. We choose an  element

u = [y®  1x®  1 -  1( - 1 ) ( 1 ) ( 6 + 1 )  [ 1 O x iY 0 1
-

1 0 A

from A C) B2 (A 0  A ) ® A  = A 0  A 0 2  A 0 2  C) A .  Then we have

d(u) = y [x 0 1 -  1  O x ]+ ( -1 ) b + l [ y x 0 1 -  y ®

(_ o(u+I)(b+1) fx [y  0  —1 ® H ou+1 [( _oab y x Q.)7 1 — 1 0 xy]l

= y[x  1  -  1  0  x ] -  ( - 1 ) (a+ 1 )(b+ 1 ) X[y CD 1 — 1 ®

1 )b - h1+-ab [x y 1 ] 1) Na- 1- 1) xy]

= y[x 1 - 1 (i) _  ( _ 0 (a+1)(b+1)x ry Q9 1 - 1 ® y]
( 1 )b(a+1) [x y  0  1 1 x y ]

This completes the proof.

To prove that (iii) implies (i), we use the module derivation defined below.

Proposition 3.3. L e t ev  : S I x  L X  -> X  b e  t h e  e v alu atio n  m ap  and
H* (S I x  LX ; ZI p) -> (LX  ; Z I p) th e  in te g ratio n  alo n g  S '. T h e n  the

composition

x  := 0 ev* : H* (X ; Z  p) -> H* - 1 (LX ;ZI p)
si

is  a m odule derivation of  H* (X ; Z / p) w hich is com patible w ith the  action of
Steenrod operations.

P ro o f  Let S2 X -> LX X  be the free loop fibration. We define a  map
i: L X  -> S I x  L X  by i(y )  = (1 ,y ) . Then ev o i = p. Therefore we can write that
ev* (u) = 1 ® p ( u )  +g ®  w, where g  is the generator of H*(S ] ; Z / 2 ) .  Since the
integration along S '  is defined by fs , ( g  w) w ,  it fo llow s that g x (uv) =

o
degu p .

(LX ; Z / 2 ) .  The action of the Steenrod operations on H*(S ] ; Z /2 ) is  trivial.
Hence g x  is compatible with the action.

Let {E m Er (LX ), dr } be the Eilenberg-Moore spectral sequence converging to
H*(L X ;Z I p) and {FPH*(LX ;ZI p)}  p < 0  the filtration of H*(L X ;Z / p) given by
the spectral sequence.

T h e  following proposition says t h a t  the cohom ology suspension

(u)gx (v ) + g x (u )k k (v ) . So g x  is  module derivation with values in
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a* : H *(G ;Z I p) —> H* -
1 (S 2X ;Z I p) factors th rough a  m o d u le  derivation . Let

{f .}  : { E m '*(L X ),d r }  —> { E m E;:'*(S2X ),dr }  be the morphism of spectral sequence
defined in  [9 , Lemma 1.3].

Proposition 3.4. (1) The im age of  H 5  (LX ; Z /p )  by  the m odule derivation g x
is contained in the f ilte r F - 1  H* (L X :ZI p).

(2) Def ine m aps 17Em and 17F  b y

H*(X ;Z I p) H H -1'*(H *(X ;Z I p)) E M  E27 1 ' * (L X ) Em Ell'*(L X )

Em E;1'*(S2X ) = H*(QX ;Z I p) (S2X; Z /p )

and

H *(X ;Z I p) 2 ±L-*' I m f g x  : H*(X ;ZI p) — > H* - 1 (L X ;Z I p)} H F - 1 (L X :Z I p)

F - I H*(S2X ;ZI p) H* - 1 (S 2X ;Z Ip)

respectively, where r : E m E 2
- 1 '* (L X ) —> EA 4 E-,01'* (L X ) is the natural projection. Then

1 1 E m  =  o- * and t =  a* .
(3) L e t  n  deno te  the projection F - 1 11*(LX ;ZI p) — > E m E - 1 '* ( L X ) .  Then

n o  g x  = ro  g .

P r o o f  From  [10, Lemma 4.3 1,  we have (1) and (3). The result [9, Lemma
1 .3 ]  a llow s u s  to  d e d u c e  th a t  f o9 r9 (x )  = r' f2 [x C) 1 — 1  Ø x ] = r'[x ], where
r' :Em E 2—

 I *  (f2X) E 1 '* ( S 2 X )  i s  th e  na tu ra l p ro jec tion . H ence, from  [15 .
Proposition 4.5], we can deduce that  ' l EM  = a * . S in c e  L o n =  j * ,  it follows that

F = l * g x =  f o, g g x  =  f cc rg  =  i l E m .  This completes the proof.

W e define a  m a p  év : S 1 x  BLG — > BG b y  év(s,t i y i C )  •  0  ln Y n )  = 11y1 (s)
CD • • • (D tn y„(s). Applying the same argument as the proof of Proposition 3.3. we
see that the  map 22BG :  H *(B G :Z 1p) —> ( B L G ; Z I  p )  defined by f s , 0 êi'* is
a module derivation with the values in H*(BLG: Z / 2 ) .  We mention here that the
m odule derivation -9,9G coincides w ith g B G  u p  t o  th e  induced isomorphism

: H*(L B G;Z I p)  H * ( B L G ; Z I  p ) .  T h e  follow ing theorem  states that the
module derivation -g B G  can be decomposed into a  morphism of spectral sequences
{gr }  {Rs Er" (B G), dr}  { R s  E r*'*(B LG),d r }.

Proposition 3.5. T h e re  e x i s t s  a  m o rp h is m  o f  s p e c t ra l  s e q u e n c e s
{ o r }  {Rs Er(BG),dr} {Rs L',.(BLG),d,.}  with bidegree (0, —1) such that each m ap
gr i s  a  module derivation and g  = gR G  :R s E * (B G ) (BLG).

P r o o f  W e denote the  singular chain complex with the coefficient Z / p  of
a  space X  b y  C* (X ) .  L e t  P. ±> C,(*)  — 0 a n d  Q. C5 (*) — 0  b e  the bar
resolutions of C5 (*) as C,(LG)-modules and as C5 (G)-modules respectively. Define
a map:  LG x • • x  LG — > LG x • • • x  LG  by  Glik,;(Y1 , - • • , Yk) = (Y1  ...... 1 •

k times k—  1 times
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x G — > G x • - • x G  b y the similar fashion.Y iY i+i • Y • Y k) and Gth,, : G x • • •
k times k-1 times

M o reo v e r  w e  d e f in e  a  m a p  ev k :S I x L G x • • • x L G — > G x • - - x G  by
evk(s, y i , ,  y k ) = (y i (s), . . . ,y k (s)) and, for any Z/2-module A , a map t  A : A  —>
C5 (S 1 )  0  A by t  A  (a) = t  Ø  a, where t is a representativentative element of the generator
o f  H * (S I ; Z/2). Since evk_ i o (1 x  LG

diagrams of chain complexes:
k , ,)  = 

G 
n

k

o euk, we have commutative

10 e
C*(ELG) c.(1..G) T ot(P)

I A

C (E L G ) C*(LG)

t

C5( * )

1 0 1 0 e
C ( S 1 )  0  C * (ELG) )  0 C*(ELG) 0 e.(k ,G)C5(*)0  c . (L G )T o t (P .)

i
0 (et' * ).

C* (EG) ® C ,  G ) Tot(Q.)

   

1 0 e
C* (EG) ®c:,(G) C5(*)

 

5 1. C JEL G  x  LG *)

I A i
C(S1) 0  C * (E L G  x  * )

e— v*

5 2* G* (EG x G  *)

Here and (c2s.  are the maps induced from the projections cx] : ELG x * —>
ELG x  kG * and oc2 : EG x * — > EG xG *  respectively. We note that the compo-
sition of 1 x E  and a i *  induces an isomorphism on homologies, which is called the
Eilenberg-Moore map ([121, [15]). Consider the cohomologies of cochain com-
plexes obtained from the above chain complexes via the dual. Then we see

(3.1) BG — H(dual(0.4 0 (ev ,) * 0 t A ) )

up to the Eilenberg-Moore maps. Let F(B L G ) and F(B G ) be the filtered dif-
ferential graded modules which give the Rothenberg-Steenrod spectral sequence
IR S  (BLG), dr }  and { R s  E; , *(B G),dr }  respectively. It is clear, from the def-
initions of the map evk (k  1 ) ,  that the map d u al(a * 0  (ev ,) * o  t A )  is  a  mor-
phism  of filtered differential graded modules with degree —1 from F(B G ) to
F(B L G ). Thus d u al(a * 0  (ev * )* o t A )  derives a  morphism of spectral sequences
fgrl {Rs E,.*'*(BG),dr } —> {Rs E,.*•* (BLG), dr }  with bidegree (0, —1). The algebra
structure of the Er -term is induced from that of the E r -1 -te rm s. Therefore gr is  a
module derivation of E;'*(B G ) if g ,  is  th a t of Er*I*1 ( B G ) .  Applying the same
argu m en t as  th e  proof of Proposition 3 .3 ,  w e  s e e  th a t  th e  m a p  g , =
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Ss , 0 -e-V* (ev* )* : Q(H* (G; Z/2)) — > S2(H* (LG; Z 1 2 ))  is  a  m odu le  derivation of
Q(H*(G; Z/2)) = (B G ), where Q (C ) denotes the cobar construction for a
coalgebra C .  Hence each map gr is  a module derivation of Er*, * (B G ). The fact
(3.1) enables us to conclude that goe  = 2 BG.

In  the  following section, we will prove Theorem 1.3 by making use of the
module derivations g  B G  : H* (BG; Z/ p) H* - I (LBG; Z1 p) a n d  g2 : RsE;'*(BG)

RsE2
* ' * I  (BLG).

4 . Proof of Theorem 1.3

A s mentioned in  Remark 1.4, in  order to prove Theorem 1.3, it suffices to
show the following propositions in the case where G is a  simply connected finite
loop space and  p = 2.

Proposition 4.1. The condition (iii) implies (i).

Proposition 4.2. T he condition (ii) implies (i).

In  order to prove Proposition 4.1, we need a  normalized 2-simple system of
generators o f a  H opf algebra.

Lemma 4.3. L et H  be a  Hopf algebra over a f ield Z / 2 .  Suppose that H  is
primitively generated a n d  H  O i e 1 Z12[x,]1(xP) as an algebra. T hen there ex ists
a 2-simple system of  generators foc,, ,... l i e /  such that each a, is primitive and
rc(a,) = x i , where m: PH  —+ QH is  the natural projection.

P ro o f  Since n is surjective, for any i, we can choose a primitive element a,
so that na, = x i , that is, a, ----- x, + d, for some decomposable element d i . It is clear
that {c,, ,  a r } iE ,  i s  a  s e t  o f  generators. M oreover, the  se t is  a 2-simple
system of generators because the elements of the set are linearly independent and
primitive elements.

L e t  Q  b e  the m odule of indecom posable elements o f  H*(BG; Z / 2 ) .  We
denote by Is t h e  ideal o f  H*(BG; Z /2 )  generated by the s-fold product o f  Q.

Proof of  Proposition 4.1. The condition (iii) implies (vii) and hence (y), that
is, the Hopf algebra H*(G;Z1p) is primitively generated. Assume that H*(G; Z)
has 2-torsion . W e choose a 2-simple system o f  generators S {xi, x2,  Y n }
o f  H*(G; Z / 2 )  s o  a s  to  sa tis fy  th e  co n d itio n  in  L em m a 4 .3 : H*(G; Z/2)
A(xi, x2, •  , x ) .  W e  o r d e r  th e  elements so that deg x l <  •  <  d e g  x „ .  Note
t h a t  t h e  deg ree  o f  so m e  x i i s  e v e n  s i n c e  H * (G ;Z )  as  2 -to rs io n . L e t
{Rs (BG), d r}  b e  the Rothenberg-Steenrod spectral sequence converging to
H*(BG; Z 12). T hen  w e  have

Rs * (BG) CotorW. ( G ; z / 2 )  (Z/2, Z/2) = Z/2 [sr , sx2, , sxn]

as a bigraded algebra, where bideg sx i = (1, deg x i).
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First we consider the case where H*(BG; Z I2 ) is  no t a polynomial algebra.
L e t sx i b e  th e  lowest dimensional generator which has non triv ia l im age by
some differential dr . Suppose that deg x i  is  e v e n . T hen , from  th e  fact that
QevenH*( , - ,

; Z /2) =  0 due to Kane [6, Theorem, §40-11, it follows that there exists
a primitive element x i with odd degree in S  such that xi = (x 1)2 " for some u. By
making use of the Steenrod operations in the Rothenberg-Steenrod spectral se-
quence [14], we deduce that sx i is a permanent cycle, which is a  contradiction. So
deg x ,  is  o d d . Put N  = deg xi. Then we have H * (B L G ;Z / p ) Z/2[y ]  yk]l
(p i , ,p,) for *  N  + 2, w here deg p, = N  + 2  a n d  deg y, = deg x i + 1.
Moreover, we can write

(4.1) Pi = E  y" • • • y "  +  w  =

in H*(BG; Z /2), where 1 3 k i , + • • + k i, = s, y  is in { y i , y k  }  and W
belongs to Is + 1 for some integer s. Since N  is odd, it follows that there is an odd
integer 1(1. .  Without loss of generality we may assume that such an integer is k i ,.
The equality (4.1) can be written a s  follows:

0  =  /7 1 y t + + • • • + +  Z  + W,

where the elements Y1, ... Yt, and Z  have no term which contains the element y i i ,
k1 is odd and k i k ,  if i j .  Applying the module derivation g  B G  to  the above
equality, we have

(4.2) 0 = I gBGY i, + k2 Y2Y/f,2+  •  •  +  kmYmY '" BGIv

+ Y 1 gucY i + • • • + y "'gB G  Ym + g sG Z  + -9 B G  W.

Since H*(BG; Z/2) is isom orphic to Z/2[y ] , , y k ] for * N  -  1, by using the
u su a l a rg u m e n t  o n  th e  Eilenberg-Moore spectra l sequence, it fo llow s that
H*(QBG; Z/2) .'.L= 4(s- I  y i , ,s - 1  y k ) for * N  -  3. By virtue of Proposition 3.4,
we see that j* gsGY i, = where j  is  the inclusion S 2 B G  L B G . The dia-
gram (2.1) and  the  assumption (iii) yield a n  isomorphism H*(LBG:ZI2)
H*(BG; Z /2 ) 0  H*(S2BG; Z/2) which satisfies incl o = j* . Thus w e see that
W (geG Yi) = s - I yi + w  for some element w in the ideal generated by H * (BG; Z/2)
o f  t h e  a lgebra  H*(BG; Z /2 ) 0  H*(f2BG; Z / 2 ) .  L e t  E  b e  t h e  vector space
H*(BG; Z /2)//,, 0  .4(s -

1 y 1 , ... , s 'y ) .  T h e n  t h e  e q u a lity  (4 .2 )  in d u c e s  an
equality in  3E:

O = I s- 1  Yi, + k2 Y2 Y ` - i s - 1  Y i, + • • • + kmY mY " i s  I Yil

+ + • • • + 9 / Y ,„ + g' Z.

H e re  g ' is  the  derivation defined by y is 1 y1. This equality contradicts the
structure of the vector space E.

Let us consider the case where .11"(BG• Z/2) is isomorphic to the polynomial
algebra Z/2[y ] , , y,]. S in c e  1 1 (G :Z ) h a s  2-torsion, there exists an ele-
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ment with odd degree in the set { y i , y2 , , yn } of indecomposable elements of
H*(BG; Z / 2 ) .  L e t y , be such a n  element with the highest odd degree and put
21+ 1 = deg y,. Then we can write

(4.3) Sq21y1 = Yy i + y;y; + W,

where Y is indecomposable or zero, the elem ent y' is in the set iYi , Y2 .........
y i+ 1 , . . .  , y,,} a n d  W  belongs to the ideal 13 o f  H*(BG; Z / 2 ) .  Since Sa l Sq2 I yi =
s q 2I+1 y i 0  0 ,  it follows that Y is non zero in H*(BG; Z / 2 ) .  By applying the
module derivation 9BG to  the  equality (4.3), we have

(gBGY;) 2 — .9 BG(S9 21 Y;) =  Y  B G  Y + Y 9 BGYi

ligBGY; + 4 9 BGY; + BG W. (4.4)

Using the same argument as the case where H*(BG; Z/2) is not isomorphic to the
polynomial algebra, we have an isomorphism W: H*(LBG; Z /2 ) = >  H*(BG: Z/2)

H*(QBG; Z/2) =  Z /2[y 1 ,..., y„] ® LI(s y ) which satisfies
= + w for some element w in the ideal generated by H * (BG: Z/2)P ( 9 BGY„) 

of H*(BG; Z / 2 )  H* (f2BG; Z/2). Let ,17, '  be the vector space QH* (BG; Z/2)
/1(s- 1 y n ) .  W e  c a n  w r i t e  Y = E y ,  in QH* (BG; Z / 2 ) ,  where
deg y1 =  2 /. T here fo re  the  equality (4.4) enables u s  to deduce that

(s- 1
y ,)2 + -1y1s y + (Y;s - 1  +  Y /is- 1  Y;)

in which contradicts the structure of the vector space E'

I n  o rd e r  to  p ro v e  th a t ( ii)  im p lie s  ( i) , w e  f in d  so m e  relations between
generators i n  t h e  E 2 - te rm  o f th e  R o th en b e rg -S teen ro d  sp ec tra l sequence
{RsEr*'*(BG),dr} converging to H*(BG; Z /2 ) .  T o  th is  end, w e need a  good 2-
simple system of generators of H *(G ; Z /2). A ssum e that H*(G; Z) has 2-torsion.
Let S be a 2-simple system of generators which satisfies the condition in Lemma
4 .3 . T h e n  S  has a prim itive elem ent w ith even degree. L et X ev en  be such an
element with the lowest even degree. From the fact that Qev"H*(G; Z/2) = 0, we
see that there exists a primitive element x 1 w ith odd degree in  S such  tha t x  =
xeven• Since xeven =  =  ve g ., x i  =  s q  I s c./deg xi — I x i  , it follow s that Sq d eg" - l xi
is  n o n  z e ro . P u t x 2 S q d eg x i . I f - e n  O , then x3 0 0  because Sq2 =e2

(Sq l x2) 2 =  x o O. T hus w e  can  ge t a  finite sequence x i , x2, ,  xN  consisting of
primitive elem ents w ith odd degree such that x i + 1  =  5 q d eg' , - - 1  xi f o r  i < N — 1,
x ì

t 0  0  if  i < N — 1, x 1 0  0 and 4  =  O .  T he finiteness o f  th e  sequence is
deduced from that o f  G .  By extending the  se t {xi, — , xf .....  we can
construct another 2-simple system o f generators B o f H*(G; Z /2 )  which consists
of primitive elem ents. If there exists an element y  o f B such that Sq l y +

where x; is in  B\ fxk_ i 1, then we replace the element y  w ith the element
y + x N .  The set of H*(G; Z /2 )  which is obtained form B with this replacement
can also be a 2-simple system o f  generators. Thus w e have
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Lemma 4.4. Suppose that H*(G; Z )  has 2-torsion and H*(G; Z /2 )  is prim-
itiv ely  generated. L et x 1,... , x N  be  the sequence of primitive elements which is
m entioned above. Then there ex ists a 2-simple system of  generators B consisting of
prim itive elem ents such that B  D { x1, ,  x N ,  x , . ,  x 2

N }  an d , f o r any  elem ent
y  e  B , if  S q l y  can be w ritten a s  4 _ 1 + E _xi; with x; e  B \1 4 _ 11 , then y = xN.

Proof  of  Proposition 4.2. From the fact mentioned before Theorem 1.4, it
follows that H*(G; Z/ 2) is primitively generated under the condition (ii). Let us
consider the Rothenberg-Steenrod spectral sequence {R s E r*, *(BG),dr }  whose E2-
term is isomorphic as bigraded algebra to Cotor*H': (G, z/2)(Z/ 2 ,  Z / 2 ) .  W e regard
Cotor*'*

H * ( G ;  Z /2 )
(Z /2 , Z / 2) as the homology obtained from the cobar complex for

H*(G; Z / 2 )  zl(y i ; y e  B ), that is , Cotor*H'*, (G ; z / 2 ) (Z/ 2, Z/2) Z12[[y 1]; y i e  B ] as
a  bigraded algebra, where bideg [y ] = (1, deg y 1) and  B  is the 2-simple system of
generators described in Lemma 4.4. Since the element x „ ,,, has the lowest even
degree, it follows that the indecomposable element [y  J is  a permanent cycle if
deg y , <  deg xeven . In particular [x i ]  is  a permanent cycle. Using the Steenrod
operation on the Rothenberg-Steenrod spectral sequence, we see that [xN] and
[xk_ i ] survive to the E co -term because x N  s q deg -  s q deg

 , , _ 2 -  .  s q deg x i

a n d  x k  =  Sq l x N . since Sq`legxk- , [x2
N _ 1] = [sqdeg x 2N - i x N _ I ] = =  o  in

RsEo
l ' * (B G ), it follows that Sqd egx2N-i [x2

N _ 1 ) belongs to the filter R5F 2 H* (BG; Z/2)
which is given by the spectral sequence. Therefore we can write

s q deg x2
N _ r,2

L'̀ 'N - 11 — [  I 4]
in R sE 0

2 '* (BG), where [x ;  4] is decomposable in RsE0
* ' * (BG) : 4] = [x ;] • [4],

4 4  e  B ,  and w1 does not have a term consisting of decomposable elements, that
is, w  =  E [ a jk Iajfl fo r  some elements a l a;c i

t e  B  and [a. 'm  a l <] is  indecomposable
element in  R s E0* '* (B G ). Applying th e  squaring operation Sq l t o  th e  above
equality, we have

r,2 ,2 Ç,,deg v2A, , +1 [x 2N_ 1s q  I s q deg x2
N _, [x N _

I I

Sql + ([Sq l x ; 4 ] + [x ; S q l 4 ]) .

We can regard the vector space R s E *  as the subspace of RNE2
2 '*. Therefore, in

RsE22 , * ,

[x2N 2-1 I xN -I] = ([Sq l a]k + [a;k1 Sq l alki)

+E( [Sq l x; 1 4] + [x ; S q l 4]) .

T he element [xN  x 2
N _ 1 ] is decomposable meanwhile th e  element [a]k  ]  is

indecomposable in R s E 1 * .  Hence the property of the elements of B  described in
Lemma 4.4 enables us to deduce that there exists the only element [x,'„ I x ]  which
coincides with the element [xN  x/2■1_1] in  RsE2

2 ' * . Thus we can find the relation

(4.5) Sctieg r 2N- ■ [x 2
N = +  [xi,/ x 2N-1] + [-v; I x;']
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RsF 2 11*- 1 (BLG; Z/2) RsE1* -  I (BLG)

diagram:

RsE2
2 ' * (BG)

Y 21
R SE22 ' s  1  (BLG).

in  
R s E o * •

 F ro m  Proposition 3.5, we have the commutative

R sF 2 II* (BG; Z/2) (BG) c -

g .

Since .- BG is compatible with the Steenrod operations, it follows that

g ( S qde g 2N I [X2 =  g  CC [X2I I])2

Hence we have, form (4.5), the relation in RsE2
2 ' * :

(4.6) 0 = g2 [xiv] + g,,,[a.;k ] + E g2[4] [x i ] + (g2 [x2
N  1 ]) 2 + W.

Here W has no term with [4 _ 1] as factor and the sets J '  and .1 are appropriate
subsets o f  J  a n d  I \{in }  respectively. N otice that elements xn , dik  a n d  x ; are
different each other. L e t  k  : X L G B L G  b e  th e  in c lu s io n  m a p . From the
naturality of the Rothenberg-Steenrod spectral sequence and the definitions of the
module derivations g2 a n d  9 G ,  we have a commutative diagram:

Rs * (B G )   H *  ( G ; Z/2)

g2

RsE2
I ' * ( BLG) k *

RsE2
1 ' * (E  L G ) = H  *  (L G ; Z/2)

 

RsE2
1 ' * (BS 2 G ) ---± *— + R sE 2

I '* (Lf2G) (QG; Z/2).

P u t  a = g2[xN] + i J ,  g2[a]'k ] + E l , g2 [4]. B y v irtue of P roposition  3.4(2), we
see j*  0 2JG = C1 * a n d  therefore k *  (g )  =  (x N  + E j , a:A + EK , X ;). Since a*
Q oadH *( G ;  p ) pevenH* (g 2 G ;  z  p ‘) is injective, it fo llo w s  th a t  j * ( )  0 0.
Assume that A d '  p r .  Then, as algebras,

RsE2"(B L G ) R sE 2 "(B g 2 G ) R sE2*'* (B G ) R sE 2*'* (1352G) C) Z/2[[y1]; y  E B].

We see that a is  non zero  in  RsE2* ' * (B L G )/(Z / 2 [[Y1]; y  E /3]) because j*(a) 0 0.
Thus th e  re la tio n  (4.6) contradicts th e  algebra s tru c tu re  o f  Rs 4* (B.S2G)
Z/2[[y 1]; y, E B]. This completes the  proof.

§ 5. Some calculation of adjoint action of finite loop spaces

In order to reconstruct the target of a spectral sequence from the EG G -term, we
need to solve extension problems which are  awkward in  general. O ur proof of
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Theorem 1.6 which is describe below shows that extension problems which exist in
the first line o f the  Eilenberg-Moore spectral sequence {E m Er*IL X ), dr }  can be
simply solved by using the  module derivation defined in Proposition 3.2.

Proof of Theorem 1.6. Let us consider the Eilenberg-Moore spectral sequence
{E m Er*, *(LX), dr } converging to H*(LX; Z/2) for the fibration L X  L  X  by
the  assumption, we have

EmE;' * (LX ) HH(H*(X; Z/2)) Z/2[y 1,..., y„] A(j; 1,

a s  a  bigraded algebra, where bideg y, = (0, deg y ,) a n d  bideg = (-1, deg y,).
N ote  th a t th e  element Y, corresponds t o  th e  elements [y, ® 1 - 1 y i]  in  the
Hochschild homology o f  H*(X; Z /2 ) obtained by the  ba r com p lex . Since the
indecomposable elements y i a n d  )3 are permanent cycles, it follows that ET*
E*c.;* E 0* '*  a s  bigraded a lgebras. H ere  E V  denotes th e  associated bigraded
vector space FPHP+q(LX: Z/2)/FP± I HP±q(LX; Z / 2 ) .  W e m ust solve extension
problems to determine the algebra structure of H*(LX; Z / 2 ) .  Let s : X  - > L X  be
the section of p  defined by s(a)(t) a  for a c X  and  t E  S I . W e  c a n  c h o o se  a
representative element y , o f  j ,  s o  th a t  s* (y i ) = O. S i n c e  fi = SqdegY' - lyi i n

a - H*(LX; Z/2), it follows that Sqd
Er - I Y, = w y , [yi

 0 1  I  0  y [ s g aiffy y i

O 1 - 1 0 Sy d
Er - 1  yi]  in  Eo" .  By virtue of Proposition 3.2, we deduce f i  =

g S q df f r i yi +  Q, where 9  is  a m odule derivation defined by y, y i a n d  Q is
a n  appropriate element in  F ° 11- (LX; Z / 2 ) .  Since s* (y ,) =  0 , w e see  tha t Q =
O. This completes the  proof.

Proof of Theorem 1.7. We recall the algebra structure of H*(BG2 ; Z/2) over
the Steenrod a lg eb ra : H*(BG 2 ; Z/2) Z / 2 [ y 4 , y 6 , y7 ] and  Sg2 y4 = y 6 , Sg l y6 -
Y7. B y  t h e  A dem  re la tion  SgrSg4 = Sg 7 Sg l + 5g 6 5g 2 , we see  5 g 4 5g4  y6 =
Sg 7 Sg l y6 + Sg 6 Sg2 y6 -= y  +  Sg 6 Sq3 Sg l y4 --= y  O. This fact yields Sg4  y6

and  hence Sg4 v v v6  -  4 . .  6 .  Thus we have Sg5 y6 =  s q l s q 4 y 6  _  y4 y7. From  the
A dem  re la tio n  Sg3 Sq4 =  5q 7 , i t  f o l l o w s  t h a t  Sq4 y7 =  y4 y7 . The relation
s q 2

5 q
4 _  s q 6 s q 5 ,o d  enables u s  to  c o n c lu d e  th a t Sq6 y7 = y 6 y7 • A pp ly ing

Theorem 1.6 to these results, we can get Theorem 1.7.

T he following proposition is useful fo r finding th e  first non-trivial adjoint
action A d* : H* (QG; Z/2) H* (G; Z/2) H* (S2G; Z/2).

Proposition 5.1. S uppose that
(1) H* (BLG; Z12) = Z12[x i , , xn] Z/2[yi, , ( p i , , p,„) f o r  * <

N , where each p i is decom posable, deg xi 2 , deg y i 2 ,  deg '', = N  and  p i ---
xi y1 + other ternis;

(2) p (x i )  is  indecomposable in  H* (G; Z/2);
(3) y1 i s  the im age by  p* of an element in  H*(BG; Z /2) which represents an

element in  R s  E *(B G );
(4) A d* ==_. pr . f o r * <  N  - 2.

Then A d* # p6' on H N- 2 (S2G; Z/2).
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P r o o f  Let {E;* (BLG), d r } and {E,*'* (BS2G), dr }  be the Rothenberg-Steenrod
spectral sequences converging to H* (BLG; Z  p ) and H* (BQG; Z  p ) respectively.
A ssum e t h a t  A d *  p r ;  o n  H N - 2 (QG; Z / 2 ) . T h e n , s in c e  H* (LG; Z/2)
H* (QG ; Z/2) 0 H* (G; Z / 2 ) a s  a  coalgebra f o r  * N  - 2 ,  it fo llo w s  th a t
E *  (B L G )  E2*'* (BOG)E2*'* (BG) a s  a  bigraded algebra for j  N  -  2 + ( i  -  1),
where

(BLG) (B Q G ) E 2
i2 j 2 (BG).

W e  show  th a t  th e  elem ent x 1  represents a n  e lem en t w h ich  is  non-zero in
Eo

l ' * (BLG)/Eo
l '* (BLG) fl E2

1 '* (B G ).  T o  s e e  th is ,  l e t  u s  consider t h e  spectral
sequence {E r * (BS2G), dr } . By [6, Corollary §43-11, the homology H * (S2G: Z/2)
is isomorphic to a  tensor product of an exterior algebra and a polynomial algebra.
Therefore we can write

E *  (B O G )  Cotor H ( Q C ; Z/2) (Z/2, Z/2)

A ( a i , . . . ,  as ) 0 ZI2[bi, . • • ,b1]

w ith  e le m e n ts  a, a n d  bi  i n  E2
1 '* (BQ G) . S in c e  t h e  s p e c t r a l  sequence

{E r"  (BQG), dr }  h as a  differential Hopf algebra structure, it fo llow s that inde-
composable elements in H* (BOG; Z/2) are represented by elements in Eo

l '(BS2G).
Thus, from the assumption (2), we 'see that x l represents an element in 4* (BLG )
and xi 0  in  Eo

l '*(BLG)/E0
1 '* (BLG) n E2L* (B G ).  The assumption (3) enables us

to conclude that Y i  represents an element in Eo
l IB L G ) fl E2

1 '* (B G ). Since 4, - is
regarded a s  a  subspace o f  E2

2 , * , w e can find the relation 0 = Pi = xi y  +  other
term s in E2

2 ' * (B L G ) .  This relation contradicts the algebra structure of E2
" (BLG).

W e have Proposition 5.1.

In order to explain some calculation of the adjoint action of G2 on QG, due
to  Kono and Kozima [7] and Hamanaka [11], we recall the following results on
algebra structure of the mod 2 cohomologies of the exceptional Lie group G2 and
its loop group f2G2.

H* (G2: Z / 2 ) Z / 2 [x31/(4) 0 A(x5),

H* (S2G2 ; Z/2) Z/2 [a2]i(4) 0 r[a8,w10].

By considering the Eilenberg-Moore spectral sequence {E m  Er*, * (S2 BG2), dr }  we see
that, for the element x 3 in  Theorem 1.7, j*(x 3 ) is the indecomposable element x 3 in
H 3 (S2BG2; Z/2) = H 3 (G2; Z/2). Moreover the element y4 in  Theorem 1.7 is the
image by p* of the element which represents the element [x3 ] in R s Eo

l '*(BG2 ). For
dimensional reasons, it follows that A d *  pr; for *  <  8 . We can write Ad* (a8 )
= 1 C) a8 + ex C) a 2 ,  where E = 0  o r  1. By virtue Proposition 5.1, w e have

Theorem 5.2 ([7 1, [1 1 D. Ad* (a8) = 1 0 a8 + X 0  az.
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The calculation of Ad* (a8) due to Kono and Kozima [7] depends on the fact
that the natural inclusion G2 E 6  is mod 2 totally non-homologous to ze ro . T he
approach of Hamanaka for the calculation relies on some properties of inclusion
SO(3) —* G2 and of the 3-connected covers SO(3) and G 2 .  Our assertion is that
Theorem 5.2 can be proved without using other groups than the L ie group G2.

Since the consideration on  the  homology rings 11(QG2; Z/2) and ILK(LG2: Z/2)
due to Hamanaka in  [11] is algebraic except proof of Theorem 5.2, we can have
Theorem 1.8.

Let BDI(4) be the  Dwyer-Wilkerson complex, whose mode 2 cohomology is
isomorphic a s  a n  algebra to Z/2[y 8 , y u , v v  1, 14,, 15,. From the  consideration con-
cerning the Steenrod operation on H*(BDI(4); Z/2) in  [8], we see that Sq 7 y8 =
Y15, Sq l1 Y12 — Y8Y15, S9 13 Yi4 — Y12Y15 and Sq 14 y 15 =  v  v14,, 1 5  in  H*(BDI(4); Z/2).
Applying Theorem 1.6, we have Theorem 1.9.

We recall the algebra structure of the mod 2 cohomologies of QBDI(4) = G
and QG:

H*(G; Z/2) 2_2 Z/ 2 [X7]/(4) A(x11) x13),

H* (QG ; Z/2) Z / 2  [a6]/(d6
1) 0  /law, a24, a26]

Our method of the proof of Theorem 5.2 also works for the case where G is the
space o f based loops o n  B D I(4). To be exact, we see from Theorem 1.9 that
there exists a relation with degree 22 in H* (BLG; Z / 2 ). Therefore, by Proposition
5.1, we can have

Theorem 5.3 ([8]). Ad* (y2(aio)) = 1 0 Y2(alo) + x3
7 0 a6.

A s considered in  th e  proof o f  Theorem 5.1, fo r  any finite loop space G , an
in f lu e n c e  o f  n o n - tr iv ia l a d jo in t a c tio n  Ad* : H* (QG ; Z1 p) —> H* (G; Z/2) 0
H* (QG; Z/2) appears in  th e  seco n d  line o f  th e  E2-term o f  th e  Rothenberg-
Steenrod spectral sequence I R s E*(B LG ), d r l .  Combining this fact with an explicit
calculation o f H* (BLG; Z/2), we may be able to determine the adjoint action,
which is no longer the first non-trivial one. In fact, for the case G = QBDI(4), we
have

Theorem 5.4. Ad* (a24) = 1 0 a24 + x C) a10 and Ad* (a26) = 1 0 a 2 6  +
a 26 .

P r o o f  Since Sq 4 y2 (aio) = a24 and Sq4 a6 =  am, it follows from Theorem 5.5
that the first equality holds. For dimensional reasons, we can write Ad* (a26) =
1 C) a26 + exi3x7 a6 + nx3 C) 4, where E  and  n are  0  o r  1. Let 0  be the  cop-
roduct of H*(G: Z / 2 ). Then, by [7, Proposition 2.4], (0 1) o Ad* = (1 A d * )o
Ad* . T h is  fact enables u s to deduce that e = O. By Theorem 1.9, we see that

2[x ] ] [4 ] = I =  0  in  R s E2 '
2 6

 (B L G ).  It turns ou t that n 0 O.

In general, we expect that the above method using module derivations paves
th e  w ay fo r  algebraic calculation of the  ad jo in t ac tion  Ad* : H (S2G:Z 1 p)
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H * (G ;Z I p ) 0  H * (Q G ;Z I p ) for an appropriate finite loop space G and any prime
P.
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