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The initial value problem for the elliptic-hyperbolic
Davey-Stewartson equation

By

Hiroyuki CHIHARA

Abstract

We present the local and the global existence theorems for the elliptic-hyperbolic Davey-
Stewartson equation which does not allows the classical energy estimates. To overcome this
difficulty, we make use of the smoothing property of linear Schrodinger type equations which
was obtained by S. Doi. Then under the smallness condition to L?-norm of the initial data,
we get the local solution. Moreover we show the global existence of small amplitude
solutions by the a priori estimates for which the null gauge condition of Y. Tsutsumi plays
an important role.

1. Introduction

We study the initial value problem for the elliptic-hyperbolic Davey-Stew-
artson equation of the form

du — (02 + 0})u = f(u) in(0,00) x R?, (1.1)
u(0,x,y) = up(x. y) in R?, (1.2)

where u(t,x,y) is C-valued, i =V -1, ,=0/0t, dx = 0/0x, 0, =0/dy, and the
nonlinear term f(u) is defined by

+ 00

2
£ =" aifw). f.(u)(x.y)=j ox(lu(x, )% dy'u(x. y).
j=0

y

—+oc

Jolw) = . () (x.y) = j 8,(Ju(x'. )[2) dx'u(x. y).

X
ap,a,ar,€ C are constants.
We use the following notations. (&,{) € R? means the dual variable of
(x,y) € R? under the Fourier transform. 0 =0/0¢ and 0 = 0/9(. J. and J, are
defined by

Jo = eix2/4(1+:)2i(l + r)ax(e—i_\-z/4(l+r)u) = (x4 (14 1)d)u,

Jyu = V0251 4 )a, (e A0y = (y + (1 4 1)8,)u.
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(Dey=(1-02)"2(Dy=(1- )" (D Dyy=(1- 032 - ) (xdy=V1 + 2,
Y =V1+y3 x5y =V 1I+x2+ )2

Wwmp — Wm,p(RZ)

= {u e &'(R?)

/p
il = (” , |<Dx;Dy>'"u|”dxdy) < +oo},
.

LP=wo% H"™=Ww™2 for meR and 1 < p < 0.
wme = wm*(R2) = {ue L' (RY)|||ull ym. = ees.sup|{Dy;Dy>"u| < +o0},
L® = W%* for meR.
™ = HP(RY) = {ue /(R | Gx: 35" <Dyi Dyl 2 < +30}

for mneR. | -||, means H™-norm. Especially || and (-,-) mean L*-norm
and L2-inner product respectively. & = #(R?) and &' = %’(R?) denote the
Schwartz class and its topological dual respectively. Let 2 be an open subset of
some Euclidean space. 2(Q) and 2'(Q2) are the dual pair of the class of test
functions of C(Q) and the class of distributions on Q. #°(Q) is the Banach
space of all bounded linear continuous functions on Q. #*(Q) is the Fréchet
space of all C* functions on Q whose derivatives of any order are all bounded.
Let E and F be Fréchet spaces. Z(E,F) denotes the set of all bounded linear
operators of F to F. #(E)=Y%(E,E). Let (X,Y) is a dual pair of locally
convex spaces X and Y. {y,x> means the operation of yeY on xeJX.
C([0,T];E) and C,([0,T]; E) are the sets of all strongly and weakly continuous
E-valued functions on [0, T respectively. [s] means the largest integer less than
or equal to seR. N={1,2,3,...} and Z, =NU{0}. We denote the positive
constants by the same letter C.
Originally the Davey-Stewartson systems are written as

duu — (002 + 02)u = iylul*u + ib(dcp)u, (1.3)

(02 + cd2)p = ox(|ul?), (1.4)

where 4,y = +1, beR and ¢eR\{0}. In [6] J.-M. Ghidaglia and J.-C. Saut
classified (1.3)—(1.4) as elliptic-elliptic, hyperbolic-elliptic, elliptic-hyperbolic and
hyperbolic-hyperbolic according to the respective sign of (d,¢) = (+.+). (=, +).
(+,-) and (—,-), and studied the initial value problem for them.

For the cases of the elliptic-elliptic and the hyperbolic-elliptic (i.e. ¢ > 0),
(1.3)-(1.4) becomes

du — i(00% + 02)u = iylul*u + ib(Re(|ul*))u, (1.5)

where R, is a singular integral operator whose symbol is &2 / (&2 + ¢?).  Since R,
is a bounded linear operator of L”(R%R) to L?(R*R) for any 1 < p < +o0, (1.5)
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is similar to
du — i(00% + 62 yu=iy'|ul*u, 7y €R\{0}.

Then J.-M. Ghidaglia and J.-C. Saut ([6]) obtained the complete results on the
local existence, the global existence and the blow-up of the initial value problem
for (1.5) under the condition ¢ = +1.

On the other hand, in the cases of the elliptic-hyperbolic and the hyperbolic-
hyperbolic (i.e. ¢ < 0), one assume the radiation condition

o(t,x,y) -0 asx+y,x—y— +© (1.6)

in order that the subsystem (1.4) is solvable. Here we put ¢ = —1 for simplicity.
With the transformation x:= (x+ »)/2, y:= (x— y)/2, the system (1.3)-(1.4)-
(1.6) becomes

du— i(03 + Du=f(u) if =1, (1.7)
or

O+ 2i0.0u = f(u) ifd=—1,

where

7 = (= 3) o0 + 130 + 15 o)

Thus we consider the nonlinear term f(u) as in (1.1). Because f(u) contains 0,u,
Oxi1, O,u and d,u, the classical energy estimates are not available for the cases of
the elliptic-hyperbolic and the hyperbolic-hyperbolic. F. Linares and G. Ponce
([11]) proved the local existence of small solutions to the initial value problems for
the cases of the elliptic-hyperbolic and the hyperbolic-hyperbolic by the sharp
smoothing estimates on e(%*+%) and =213 which are basically due to C. E.
Kenig, G. Ponce and L. Vega ([9]). Recently, using so-called abstract Cauchy-
Kowalewski theorem, N. Hayashi and J.-C. Saut ([7]) have shown the local and
the global existence of analytic solutions to the initial value problems for the cases
of the elliptic-hyperbolic and the hyperbolic-hyperbolic.

The purpose of this paper is to show the global existence of small amplitude
solutions to (1.1)—(1.2). The main results are the following.

Theorem 1.1 (Local existence). Let m be a sufficiently large integer. We put
a =max(|ai|,|az]). Then for any
1
2\/ae’

there exists a time T = T(||uol,,,) > O such that the initial value problem (1.1)-(1.2)
possesses a unique solution

ug € H"(me N = m) satisfying uoll = lluoll = <

(1.8)

ue Cy([0.T): H™YN C([0, T): H").
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Theorem 1.2 (Global existence). Let my be a sufficiently large integer greater
then or equal to m,. Then there exists a constant 0 > 0 such that for any

5 N 5
upe (VH"77 (meN =my+ 3) satisfying Z o]l gymy-is < 0,
j=0 j=0

the initial value problem (1.1)-(1.2) possesses a unique solution
ue ﬂ(C ([0, 00); H™ )N C([0, 00); H™~'7)).

Remark 1.1. Since our analysis is based on the symbolic calculus of pseudo-
differential operators, it is troublesome to determine the minimum of m; and m;.

Remark 1.2. 1In [14], using the inverse scattering technique, A. S. Fokas and
L. Y. Sung proved the global existence for (1.3)—(1.4)—(1.6) with large initial data
under the conditions 6 = +1, ¢ =—1 and 2y + b =0.

Now we explain the idea of the proofs. Theorem 1.1 follows from the energy
inequality. Theorem 1.2 is proved by the a priori estimates which consist of the
energy and the decay estimates.

For the energy estimates, we make use of S. Doi’s method ([5]) for linear
Schrédinger type equations

N
O — idu + ij(t, x)0u+c(t,x)u= f(1,x) (0,T) x RY,
j=1

where 8, = 3/dx; (j=1,...,N), V= (d1,...,0y), 4=V V=0 +---+ 0} and
bi(t, x), c(t x) e C*([0, TY; %w(RN )). Roughly speaking, under the appropriate
condition on Imb;(z,x), there exists a automorphic u +— Ku in L*(R™) such that
[K,—id]K~! is elliptic which is stronger than Zj , Imb;(t, x)0;. Because one

can choose [K,—id]K~" as sufficiently strong, ([K, —id]K~' + SV Imby(t, x)9; '/
gives the smoothing estimates of order 1/2. We use this property to get the
energy estimates for (1.1)—(1.2). We remark that S. Doi’s method is also available
to solve the (local) semilinear Schrédinger equations (see [1], [2], [3] and [4]).

We explain the outline of the decay estimates. We note that f(u) satisfies the
gauge invariance, that is for any ¢ € R and for any v e F(R?), f(eu) = e f(u).
Then, J, and J, act well on f(u) and we can make use of the Libnitz formula with
respect to J, and J,, that is, for instance,

o @ T,
o)=Y m(—l) S uud P
oy +op+oy=a

Moreover, using the Gagliardo-Nirenberg inequalities with J, and J,, we get the
decay estimates. For example, it follows that the inequality
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Lo )| = [le 4000 2y

< e DA 2 |

C < ul® Y [jazalem it +an/atrn,
a+f=2

-2 2
O+ 07l S W2 ul.
a+f=2

fi(u) and f,(u) behave as if they were cubic terms in one space dimension because
of their nonlocality. Then the expected decay rate of f)(u) and f,(u) is at most
o((1+ r)_l) by the elementary nonlinear estimate. This is not enough to prove
the existence of the global small amplitude solution. Then we need an extra time-
decay. Fortunately we can use the null gauge condition of Y. Tsutsumi ([13])

u(ul?) = 5-

m (Jxlll? — uJ_m) (1 9)

and we can get the extra time-decay. (see also [8]).

Fortunately, for the elliptic-hyperbolic case, we can find the operator K such
that the commutator of the principal part and it does not bring about the loss of
time-decay. Then, we can extend the local existence theorem to the global one
provided that the initial data is sufficiently small. On the other hand, for the
hyperbolic-hyperbolic case, the commutator causes the loss of time-decay. Our
method is not available to study the global existence for the hyperbolic-hyperbolic
equation.

The organizations of this paper is as follows. §2 is devoted to obtain the
smoothing effect of M@+ §3 contains preliminary results. In §4 and §5 we
prove Theorems 1.1 and 1.2 respectively.

2. Linear estimates

In this section, following S. Doi [5], we obtain the smoothing effect of
"%+ We use the symbolic calculus of pseudo-differential operators on R (see
H. Kumano-go [10]). Let T be a positive time and let ¢ belong to the interval
[0,T]. We define the pseudo-differential operators K(r) = k(t,x,D,) and H(t) =
h(t»va)') by

k(t,x,&) = exp(— Jo o(1,s) dsé(é)"), k'(t,x,&) = k(t,x,f)_l,

¥

b1, 3,¢) = exp(— L W(t.s) dsc<c>-'), B(1.3.0) = hit.p,0).

#(1,5),¥(1.5) € C'([0, T): L'(R)) N C([0, T); B*(R)),
#(t,s).y(t,s) 20 for (1,5)€[0.T] x R.
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For the convenience, we put

Bx(r) = sup > (|000zk(r.x.&)| + |0Kozk' (1, &)I),
(x,&)eR? a3 p </

Bu(t)= sup > (10F0gh(t. ».0)| +10L0FH (1, 3.0))),
() eR o<

+o0 +00
B = sesas B0=| wisa
Bl(1) = sup J 0,0(t,5)ds|, BL(r) = sup r a1, ) ds
¢ xeR[JO ' ' v yeR ’ '
BY(1 —supz 10%6(1, x)| + |0,0%¢(1, x)|),
xeR (1</

By (1 —SUPZ 0w (e, )| + 1865w (1, y))
Ry<i
where /e N is some large integer (see Remark 1.1). We note that Bk () and
By (1) are greater than one. The property of the transformation K(¢) and H(t) are
the following.

Lemma 2.1. K(t) and H(t) are automorphic on L*(R*). More precisely, for
any ue L*(R?) and any t€[0,T], we have

llull < CBx(0)*(1 + B3(0)(1 + BF (1)) (1K (Dull + [Jull_y ), (2.1)
(K @ull + [lull ;) < CBx (1)]lull, (22)
llull < CB(1)* (1 + By(0))(1 + By (0)) (1H (1)u] + llull ), (2.3)
(NH ()ull + lull 1) < CBu(0)]u]l- (24)

Proof. The inequalities (2.2) and (2.4) follow from the LZ-boundedness
theorem of pseudo-differential operators directly. On the other hand, we prove
(2.1) by using the identity

K'(NK(1) = 1+ Ro(1).

a(Ro(1)))(x,&) = €™ Ry (1) (™)
i

=5 (L #(1.5) dS)é<é>"'

x [l “M eELE + Ony K (1,x, & + On)

JO J.
x §(t, x + 2)k(t, x + z,&) dz dn dO.

Similarly we can show (2.3).
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Now we obtain the smoothing estimates.

Lemma 22. We put f°=0du— (i+¢)(0>+ 0)2,)u, (e€[0,1]). Then there
exists a constant Cy > 0 which is independent of €€ [0.1], such that

LUK < ~ 49l X)<D K (@ul?), <D K (0u(0)
= 2e([a K (Du(D)1* + 18, K (1)u(1)]|?)
+ Ci(By(1) + BE (1)) Bee () (1K (u(0)]| + [[u(D)]] )
+2 Re(K (1) (1), K(1)u(1)), (2.5)
%IIH(t)u(t)IIZ < = AW (L, Y)<Dy > P H(0)u(0), (D, P H (1u(1))
= 26(|0H (Du(0)]|* + [10,H (Du(0)]|*)
+ Ci(By (1) + B (1) Bl () (1 H (Du(0)]] + [lu(1)] ;)
+2 Re(H (1) (1), H(1)u(1)), (2.6)
for ue C([0,T); H*)N C'([0.T); L?) and t € [0, T], where
Buie(1) = Bx (1) (1 + B (1))*(1 + By(1)),
B, (1) = Bu(1)’(1+ By (1)*(1 + B)(1)).
Proof. Here we show (2.5). Simple calculation yields
K(0)f* = 3i(K(t)u) — (i + £)(8] + 82) (K (1)u)
+2(1 = ie)< D> 2h(1, )< 2K ()u) + Ri(1)u. (2.7)
The third and the forth terms of the right hand side of (2.7) is the commutator
[K(1),d, — (i +¢€)(82 + 8})].  The former is the principal part of it which gives the
smoothig estimate. The later is the lower order term and a L?-bounded operator.
More precisely we have
R{(1) = Ra(1) — (i + &) Rs (1),
AR (0)(x.8) = ~0k(1.x.8) = | (1. )b 2™ (1. .).
Ry(1) = [K(1),83] = 2iKD. Y 2 g(t. x)<DH'?
= Ra(1) + Rs(t) + Re(D)K (1),

a(Ra(1))(x,&) = (=21, x)<EY™" — §(1,x)7EXEY T + 0.1, x)ECEY Nk (1, %, &),
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1

o(Rs()(x.8) = = 52 |

0

| e+ omee+ oy
RxR

x ¢(t,x + 2)k(t,x + z,&) dzdn do,

|

a(Re(1))(x,&) = _%<é>l/2j

0

[ eme+once+ony
RxR

X Ox§(t,x + z) dz dn do.

We observe the relationship between the operator norm of R{(¢r) and the coef-
ficients of it in detail. Then, the L2-boundedness theorem of pseudo-differential
operators implies that there exists a constant C| > 0 which is independent of ¢ e
[0,1], such that

IRF (D)l pz2) < Ci(By(0) + B (1))(1 + By (1)) Bx (1) (2.8)

for 1€[0,T] and ¢€0,1]. We take the LZ-inner product of (2.7) and K(f)u.
Using (2.1), (2.7) and (2.8), we obtain (2.5).

3. Preliminaries

This section is devoted to the estimates on the nonlinear term f(u). Es-
pecially the Gagliardo-Nirenberg inequalities (see e.g., L. Nirenberg [12])

1/2 1/2
ol 2 ry < Cllasellystpy I0ll 25, for ve H'(R?), (3.1)
1/2 1/2
lull gy < € N0200ull 5 lull oty for we HA(R?), (32)
L2(R?) L3(R7)

oa+f=2
play important roles to get the decay estimates of solutions.
Let / be the same integer as in §2. We put

400 + o0

u(x, ) dy. wy):Mj u(x, )| dx,

—0

#) = |

with some constant M > 0. Similarly we define K = k(x,Dy), K' = k’(x, D),
H :h(vaJ') and H' :hl(va}’) by

k(x,&) = exp(— jo ¢(x')dx'é<¢>-‘), K0, &) = k(x, &),

h(y.0) = exp(— j:w(y’>dy'c<c>-'), H(3,0) = h(y.0).

We put Ry = K'K — 1 and we define Bk, By, Bg’ and Bf/‘,O in the same way as in
§2. To resolve the loss of derivatives, we prepare

Lemma 3.1. Let m be an integer =1+ 1. Then we have
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(s )

<L<l+ sup Ik(x.é)p(xf)Iz)<¢(x)<Dx>‘/2Kua<D.\->‘/2Kw)

S M (x,&)eR?
+o
+ CB‘}(J sup [<D,>'u(x, y)|* dy|| Kw]||? (3.3)
—oo xeR

for ue H™ and we H', where
u=u, P=K,v=Kw or u'=u P=K,v=Kw,

and

(o[ v}

< ﬁ (1 + sup 7Ih(y,C)q(y»C)|2> (W(x)<Dy > Hw, (D, >"/> Hw)
(»¢)eR”

+ 00
+ CB;‘,J sup [<D, > u(x, y)|* dx||Hw]|? (3.4)
- yeR

for ue H™ and we H', where
u'=ua, Q=H' v=Hw or u =u Q=H,v=Hw,

Proof.  We have only to show (3.3). Here we regard u and u' as coefficients.
Simple calculation for the commutator gives

(][ )
¥l

+o©
+ ’ <J u'rg(x. DD vdy’ a{Dy) '/ZKw)
y

+o0
J rs(y, y'.x. D.\.)vdy’,Kw>
y

: (3.5)

rs(y. ¥, x, Dx) = [K,u(x, y)u'(x, y")]|0 P
+ [u(x, y)u'(x, y')K3 P (DY KD, Y12
+ <D Pu(x, p)u (. y')(KaPLD Y% = ro(x. D){Dy>'1?),

ro(x,&) = ik(x, &) p(x, &)ECE>™".
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The L?-boundedness theorem of pseudo-differential operators on R yields
I Memy < €83 (suplcYutx )1 ) (sup D u(x, 1) )
X€E X€

Then we have

+00
‘ (J rs(y,y', x, Dy)vdy', Kw)

y

< j J j Irs(y, ¥ D)o, y')| | Kow(cx. )| dxdydy’

1/2 1/2
< JJ(Jhg(y, ¥’ x, Dy)v(x. y’)|2dx> (J |Kw(x, y)|2dx> dydy'

< 8[| (supieoux ) (sup <D utx, 1))
x€eR xeR
1/2 1,2
X <J|v(x, y’)|2dx) <J|Kw(x, y)|2dx) dydy’
12 )2
= CBi{ J sup [{Dx>'u(x, )| (J |Kw(x, y)|? dX) dy} (3.6)
xeR

<CB (j sup <Dl y)lzdy> Kl (3.7)
X€E

On the other hand, we get

+o
‘(] u/rg(x,Dx)<Dx>‘/2va'y',a<Dx>'/21<w>
Y

S ”JI %, 1) Irs(x, DD Pox, y')) luCx, y)] KD P K(x, y)ldxdydy’
1/2
(Jlux )l dy) (Jlrg(x,bx)<ux>'/2v<x, y’>|2dy’>
1/2

1/2
x [|uxy|dy) (j|<z>x>‘/21<w<x,y>|2dy) dx

1/2

EI—

(
J‘/’ (Jlm(x DD Po(x, )| dy' >l/2
( (KD 2 Kw(x, y)I? dy)l/zdx

< ﬁllﬂx)‘/%(x, DD 20l [19(x)' <D 2 K|
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517 1900 2155, DYDY P + 9D 2 K|}

- ﬁ {Re(ro(x, D) "¢ (x)ro(x, D) <D0, <Dy ')

+ (¢(x)<{Dx> 12Kw (D) l/ZKw)}‘
We put
rio(x, &) = [k(x, &) p(x, &)PE2EY 2.

We note that ¢(x)rio(x,¢&) is the symbol of the principal part of
ro(x,Dy)*@(x)ro(x, Dy). Then we have

+00
‘ (j u'rg(x, Dy )<Dx Y Pvdy’, a<Dx>'/2Kw) ‘

y
537 {Re(d(x)r10(x, D )<{D> 20, (D >"?v)

+ ($(x)<(Dx>"*Kw, (D, >' P Kw)} + CBF By || Kw|.

We note the trivial inequality

#(x) sup |k(x, &) p(x,&)|* = $(x)rio(x, &).

(x.£)eR?

Using the sharp Garding inequality we get

+00
[ (j W'rs(x. Dy)(Dy> vy, a<Dx>‘/2Kw)

y

(x.£)eR?

S 211w{1+ sup |k<x,é)p(x.¢>|2}(¢<x><ox>‘/21<w, (D> Kw)
+ CBY By || Kw|?

(x&)eR?

2;,1{1+ sup Ik(x,é)p(x,g)|2}(¢(x)<DX>1/zKW’ DSV Kw)

+ cjsup|<ux>'u<x )2 dyBY | K. (3.8)

Substituting (3.7) and (3.8) into (3.5), we obtain (3.3).

To prove Theorem 1.1, we prepare the following two lemmata.
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Lemma 3.2. Let m be an integer greater than or equal to 2. Then there exists
a constant C > 0 depending only on m such that

o)l + Y- ool il + D 10500 )l < Cll syt il (3:9)

atp<m atf<m
a<m—1 ag<m—1
2
Z ||f] j;(v ”m 1 < C(“u“m + ”v“m) ”u - v”m (310)

for u,ve H™, and

+oo +c0
07 fi(u) — (J 0™y dy’) u— (J u@if’“ﬂdy’) u
y y
+oo +00
+ (|9y f2(u) — (JX ﬂ@;,”“udx')u - (J ué}"“ﬁdx’)u

< C||u||[2(m+l)/2]+l”u”m (3.11)

for ue H™!,

Lemma 3.3. Let m be an integer greater than or equal to |+ 1. Then we

have
+o00
‘ (K [{J (@0 u + o™ ) dy’ }u] ,Kﬁ;"u)
y

< 31 (34 M) DL K (D K )

+ CBllull?, I KOy ull (1KYl + lull,o ), (3.12)

+o0
}(HHJ (@0 u + udy i) dy’ }u],H@}"u)
y

< ﬁ@ + eIy (4 (x)<Dy, Y2HE u, (D, > Ho)'u)

+ CB3llullf, | Hoyull (1 H oy wll + el i) (3.13)
for any ue H™'.

Proof of Lemma 3.2. The Gagliardo-Nirenberg inequality (3.2) implies

“ﬁ)(u)”m < C“u”IZJ’C”u”m (314)

Let « and B be non-negative integers satisfying a+f<m and a <m—1. We
have
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028 f,(u) = g7 (u) + g5 (u)

g7 (u) = (e + %) p
1 _
wtarimni) popigi—p O'alasl BBBNE = B3)
a3 <A
x 83 00 ud 0o} ol u
al(oy + o ‘oo
gl == a(—,;%f—) (J az'uale?dy’)(?ﬁf-‘afu.
oo +oay=a+l 1:92:43: y
a3 <o
In the same way as (3.14), we get
2
g @)l < CllullZ, lul,. (3.15)
Using the Schwarz inequality with respect to y’, we have
al(og + o)
lgfwl< Y =
oy +op+ay=oa+1 0(1!0(2!0(3!
a3 <a

1/2
x {j(l |0;'u|2dy1> (J |6§2u|2dy2> <J |6;‘36)/,3u|2dy3> dx}

<C supj <Dy DD 2 gyl

m

xeR
< C”u”[z(m+l)/2]+l”u”m' (316)
Combining (3.15) and (3.16), we obtain
Z ”a C|Iu||[(m+l /2]+l”u”m‘ (317)
a+ﬂ<n]1
a<m—

In the same way, we have

Z ||(3 C”u”[(m+])/2]+l”u”m‘ (3.18)

a+f<m
p<m—1

Summing up (3.14), (3.17) and (3.18), we obtain (3.9). Similarly we can get (3.10)
and (3.11).

Proof of Lemma 3.3. Here we note the identities
"™y = 0, K'Kd"u — 0, Ryd"u, 3" 'ia = 0,KK0"u — xR0},

where Ry = K'K — 1 € £(H73,L?). Using (3.3), we obtain (3.12). Similarly we
get (3.13) by (3.4).

Now we obtain the estimates on the nonlinear term f(u) in order to prove
Theorem 1.2. Using the Gagliardo-Nirenberg inequality (3.2), we have
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lll e < CO+0™ D7 12T ull ] 2 (3.19)
a'+p'=2
for ue H*NH®%? (see [2], [8] or [13] for instance). Let us introduce
Xpn(t) = Y Nozobad T u(n)l, mneZ,

xYy
atf<m
o' +B'=n

for ue C[0, T); H™™" N H™"), where T is a positive time. Here we remark some
commutation relations concerning J, and J,, those are

(0 — (02 + 02),J] = [0, — i(82 + 02),J,] = 0,
[JXaJy] = [ax~=,y] = [ayv Jx] = 0, [ax»-]x] = [avay] =1
We show the following two lemmata which correspond to Lemmata 3.2 and 3.3
respectively.

Lemma 3.4. Let m be an integer greater then or equal to 6. Then we have

o Naalsr gl filu()ll
at+p4a’'+B' <m
o'+ <5
+ > esdlaral fiu@)l
atfa’'+8 <m
o' +4'<S

ota’ <m-1
o' <4

+ Y llazalaE I ()l

atp+a'+B' <m

a'+p'<5
BB <m—1
p'<a
) 4 25
- (Z x,,,_,_l,,(z)) D Xy (0), (3.20)
Jj=0 Jj=0
N0 fiu() =7 (@)l
0(1—?(<=5m

+ 3 108! fu(n) — A (o)

BB =m
p'<s

DO AR ACION

oa+f<m—6

+ > 1828 fu())l

2+ <m—6

4 25
+0)7" (Z Xm—f—hi(’)) > Xm0 (3.21)
=0 j=0
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where

-, +o0 , , ———
7 () = J @I it 4+ (—1)* w0 T2 ) dy'u,
y

~pp! +o0 ’ YR
7 () :J (Of“Jyﬂ uit + (—1)# uﬁf“.lf u) dx'u.

Lemma 3.5. Let m be an integer greater than or equal to max(/+ 1,6).
Then we have

ST IKOF (1), K ()3T u(®)]
g

_ aM |lu(n)]|?
2M (3+e )

X ($(t, x)<Dx 2K (1) (82T X u(t)), {Dx>' P K (1) (03T u(2)),)

2
+ CBx(1)* (1 +1)° (Zx )nk( (@3 u(n)||?

. 2
+ CBg(t )3320(’)(1 +1)” (ZXM—/ 1 )

J=
x K (02X u())| 1827 u()]]. (3.22)
S IHOA (w(0). H()alTE u(n))]
BB =m
p<s

1 2
< (3 4 Ml
2M( +e )

X (W(t, Y)Y P H ()87 u(1)), <D, > P H (D) (84T F u(1)),)

2
+ CBu(1)* (1 + 1) (ZX 11’)) I (00T u(0)|?

4 2
+ CBu(t)' B (1) (1 + 1)~ (Z x,,,_,_l,j(z))

j=0

x | H(0)(@0F w()| 10)7 ()| (3.23)

5
forte[0,T), wue () C(0,T);H" 7).
j=0
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Proof of Lemma 3.4. Elementary calculus gives

S N8xbar Il fy(u@)l]
at+p+a’+p <m
a'+B'<5

4 25
<Cl+10)7? (Z Xm-j-l,j(z)) D Xogi(1) (3.24)
j=0 J=0

(see e.g., [2] or [8]). Let a,B,0’ and B’ be non-negative integers satisfying
a+B+aoa +p <mo +p <50+’ <m—-1 and o <4. We decompose
670”J“'Jy/”f1 (u) into two parts.

x“yYx
o:la X Il fiw) = g () + 937 ().

One is a local nonlinear term and another is non-local, those are

gy =~ Y >

a+oto3=a af +altaj=a'+1 fi+fy+f3=p f+p3+p=p'~1

y al oo +oy) P Bl
arloplos! ofladlad! 16,150 BB BB — B3)

(—1)%s

x 01 M I TP w0l g 2 0 uo® 98 g T
atoatas=a ot taj=a’ fi+f,+f=p~1

al ol + o) Jiil )

X olaal ool 18,18, (=D
arloplas! afladlad! 818,651 — Bs)
x 03l Ituor el P uop ol 18 Il u
>
atatey=a o fajtoai=a’ fi+f+p=f-1
ay =1
al ol + ) p! (—1)%
aploglog! afladlal!  B118,!651( B — Bs)
x o 00N I om ol T uaB oI I TP
sy
o tos=a of tay+aj=a’ fi+By+py=f~1
=1
al ol + o) Jii (—1)°‘2’

aploplas! afladlog!  By16,\851(B — B3)

x 02 P I w020l 1 ua B BB T
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BB, al oo + o)
gy " () = Z Z oo lad! o o T !
000010030 OC) 0y 05:

aptoota3=a o) o+ =o'+l

1

N2
(=D 2i(1 +¢

Here we modified g“ﬂ“ﬂ (u) by using the null gauge condition (1.9).

way as (3.24), we get
S g wl

atf+a’+B' <m
a'+B'<5
ata’ <m—1
a'<4

4 s
c(l+07? (Z Xonjo, ,-(z)) D Xoy(1)
j=0 Jj=0

Using the Gagliardo-Nirenberg inequality (3.1), we have

Jsug|u(t,x,y)|2dy<C( +070 > oz Pu(n)?.
XE€

a+f<1

Combining (3.26) and the same calculation as in (3.16), we get

rp!
o g wl
oat+pta’+" <m
a'+B' <5
ota’' <m—1
o' <4

4 2 s
- (ZO Xm—f—u(’)) D Koy (1)
=

Jj=0

Summing up (3.25) and (3.27), we obtain
Yoo eI I K@)

otf+a'+p'<m
a'+B'<5
ota' <m—1
a'<4

5

2
C(l +1 <Z Xm—j 1,j f)) Z/Ym—j,j(t .

Jj=0
Similarly we can get

DI i ACTON

atp+a’+B' <m
a'+4'<S
B+p <m—1
p'<4

4
C(] +l Z(Z/\/m—j lj(,)) Z/Y’"—Jl

Jj= j=0

+00 T T / ,
) (J 6;'J¢'u6;2.1:2udy'>6;’6fJ;3Jf u.
¥
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In the same

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)
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Combining (3.24), (3.28) and (3.29), we obtain (3.20). The proof of (3.21) is
almost same as that of (3.20). Here we remark that we do not use the null gauge
condition (1.9) to get (3.21).

Proof of Lemma 3.5. The proof of Lemma 3.5 is basically same as that of
Lemma 3.3. Of course, to get the time decay, we make use of the same technique
as in the proof of Lemma 3.4.

4. Proof of Theorem 1.1

We prove Theorem 1.1 by the parabolic regularization and the uniform
estimates which follow from Lemma 2.2. First we consider

du’ — (i +€)(d; + 0))u" = f(u) in (0,00) x R, (4.1)
u®(0,x, y) = uop(x,y) in sz (42)

where ¢ € (0,1]. We remark that the initial data wuy is independent of ¢ € (0, 1].
Since the elliptic term —a(éf + 6)2,) gains the regularity of order 1 and resolves the
loss of derivatives, we obtain the local existence theorem for (4.1)-(4.2).

Lemma 4.1. Let m be an integer greater than or equal to 2. For any uj e
H™, there exists a time T, = T(e,|uolly) >0 such that the initial value problem
(4.1)—(4.2) possesses a unique solution u® € C([0,T,); H™). Moreover the mapping
uy — u® is continuous between the above spaces.

Proof. Let {U*(t)},5, be a semigroup generated by the linear part of (4.1).
We consider the integral equation which is equivalent to (4.1)—(4.2)

t
ut(t) = Us(tuy + [ Ut — 1) f(u®(7)) dr. (4.3)
Jo
Using the smoothing property U®(f) and the nonlinear estimates (3.9) and (3.10),

we can prove Lemma 4.1. Here we omit the rigorous proof.

Secondly we prove the existence of a solution to (1.1)-(1.2) by the uniform
estimates on {u®}, . More precisely we show that there exists a time 7 >0
which is independent € (0, 1] such that {u’},  is bounded in L®(0.T;H"™).
Let m; =/ + 3 where / is the same integer as in §2, and let m be an integer greater
then or equal to m;. We put M =ae. We define

Ke(1) = k*(t.x.Dy), H®(t) = h'(1, y.Dy).

Ke(1x.8) = exp<— [ o) dx'é<é>-'),

)
He(t, y.Dy) = exp(— [ dy'c<c>-'),
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00,%) = M [ Py, (1) = M [ (e, ) d,

Ny =D l0zabu ()l + IK a0 + | H* (13w (1))

a+f<m
a,f<m—1

Since the initial data wu is independent of &€ (0, 1], N5(0) is also independent of
e¢€(0,1] and then we denote them by the same notation N,. It follows from
simple calculation that there exists an increasing function A(-) on [0,+00) such
that

Be(1). Bu«(t), By (1), By (1), Bje(1), B (1), B(1), By (1)

A(Hue(t)”:m—l) < A( nn(’))
We put

ny

_ {o< < 1/2vae — |jul|

A N; (1) < 2Ny, ,0<t< Ty,
8C2(Nm])

where C; is a positive constant appearing in the estimate || f ()| < C2||u||§ . Lemma
4.1 shows T > 0. By the integral equation (4.3), we have

1t (1) < [luo] +j I (W ()l d

< Jluoll + czj (013 dr

< ”uOH + 8C2(Nm|) 1< T for 0 <r< TE*.

Here we note that the local well-posedness justifies the validity of the following
energy estimates. Let n be an integer which ranges in m; < n <m. Using (3.9),
we get

% D [ O A S e A CR O N PR O

atf<n a+f<n
a,f<n—1 o, f<n—1
2 £ (2
< Clluf (D)5 Ny (0)°. (4.4)

The linear estimate (2.5) gives
%”Kga;’us(f)ll2 < — A(g°(1, )DL PR (1), KDY P K (1) 00u’ (1))

+ Clluf(DlI3_ NE()* + 2Re(KE (1)L f (1)), K2 (1)0"ub(1)). (4.5)
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Here we decompose 0y f(u%(t)) in the last term of the right hand side of (4.5) as
0 f (u(1)) = g5(u*(2)) + g5 (u* (1)),

g5 (1)) = a0 fo(u*(1)) + @20, f1(u" (1))

+a {6’:/’1 (ué(1)) — (roo(a;“uf(t)ﬁe(t) + ut(1)o" ! at(r) dy’) ue(t)},

y

ge(u(1)) = a { (roo(a;’“u‘(r)ﬁ‘(t) + ub (00" @t (1)) dy’)ug(t)}.

y

Using the nonlinear estimates (3.11) and (3.12), we have
2Re(K(1)ay f (u'(1)), K*(1)05u(1))
< Cllu (1)l Ny (1)
+ %(3 + M) (¢°(1, %) (DY 2K (1) % (1), (D> 2K (1)07u (1) (4.6)

< Cllut ()2 NE()?

+ e + 1) (8°(1, x)<D > 2K (0)3"u’ (1), Dy > 2K (1) 0" u (1)) (4.7)
for t€[0,T;). Substituting (4.7) into (4.5), we get
d £ n, e 2
2 1K (D (]
< Cllut(0) 2 Ni()?
—3(1 = 1/e)(#°(1, x){D > 2K (1) 0 u? (1), { D> > K2 (£)0"u(1))
< Cllut ()]l Ni(2)*. (4.8)
Similarly, using (2.6), (3.11) and (3.13), we have
d
S 2 (O]* < Cllut ()l Ny (1) (49)

Summing up (4.4), (4.8) and (4.9), we obtain

DN < CIOI N for 1€ [0,T7)

The Gronwall inequality implies
1
Ni(1) <N,,exp(CJ ||u”(t)||,2,_ldt> for 1€ [0, T)). (4.10)
0

In particular, if n =m, and = T, then the energy estimate (4.10) becomes 2 <
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exp(4CT}(N,,)?). By the definition of T, we obtain

log?2 1/2 —
T! > T = min i 35 [2v/ae ”1;0” > 0.
4C(Nm| ) 8C2(Nm] )

This means that {u’},., is bounded in L*(0,7:H™). Using (4.10) succes-
sively, we show that {u’}, ) is bounded in L*(0,7;H™). Then the standard
compactness arguments imply that there exist a subsequence {u’}, ) and ue
L*®(0,T; H™) such that

w2y in L°(0.T;H™) ase o0,
u*—u in C([0, T|; H?°),0 >0 ase]0.

The second one of the above implies that u satisfies (1.2). Since u belongs to
L*(0,T; H™) and C([0, T); H"®), it is easy to see that u is also in Cw/([0, T]; H™).

oC
To see u is a solution to the equation (1.1), we have only to check

fw) = fi(u) in2'((0.T)xR?*) asel0, ;=012 (4.11)

It is easy to see the case of j = 0 in (4.11). Here we show the cases of j = 1. For
this purpose, we introduce some classes of finite Radon measures as follows.

Ay = Co((0, T) x R?) equipped with %° norm,
A" = {v(t,x,y) € B°((0, T) x R?)|IR > 0,3w(z,x) € Co((0, T) x (—R,+R)) s.t.
supp[v] = (0,T) x (—R,+R) x (—R,+), v(t,x,y) = w(t,x) for y > R}
equipped with #° norm,

M and .4 denote the topological dual of Ay and 28° respectively. Clearly ﬂg
and #° are separable and not complete. %’8 c #° implies .4 < .#. The
properties of .# are the following.

Lemma 4.2. We assume that u and v belong to M and that u=v in
2'((0,T)xR?). Then p=v in 4.

Proof. Lemma 4.2 is well known if we replace .# by L\ ((0,T) x R?). Since
9 is dense in B, u=v in @' implies u=v in .#. It is enough to consider the
case of u,v>=0 and to prove

u—v,o)=0 for any ve 4°,v > 0. (4.12)

Let {y,},>; be a sequence of functions belonging to Cy(R) and satisfying
12y,20 and
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Clearly, y,(y)o(t,x, y) is in #) and

0< y,(y)v(t,x,y) < V2 (y)v(t,x,y) <0 < }’n(J’)U(’,X»J’) < v(t,x, }’)

for any v e 930 satisfying v = 0. Here we note that we can see 4 and v as positive
finite measures on Borel sets of (0,7) x R®. Then u=v in .# means

| nww@myMuzj 7 (9)o(t,x, y) dv
(0,T)xR? (0,T)xR?

for all ne N. Using the Beppo-Levi theorem, we obtain (4.12).

Now we return to the proof of (4.11). Clearly
> — |u®> in 2'((0,T) x R?) ase |0

and |u| e.l. Since {|u|? }ee(o,1) 1s bounded i m M and 28° is a separable normed
vector space, there exist a subsequence {|u‘|* beeqo) and pe A such that

|u5|Lu in.# aselO0.
M <D yields u=|u|* in 9'. Then Lemma 4.2 implies
uf) 25 u® in. A aselo0. (4.13)

Let o(t,x, y) belong to 2((0,T) x R?). Using the Fubini theorem and the
integration by parts with respect to x, We have

i) = filu), ad = Fi(a) + F5 (),

. B T + 00 . N2
Fl ((X) = o R (3_\.|u (I,X,y )| dy
“Jy

x (ub(1,x, y) — u(t, x, y))a(t, x, y)dxdydt,

T
P = ][ w0 )P = lutox ) P vy )y

y' B
U@Lﬂ@Z&J‘M&ﬁWmﬁﬁew-
— 00

It is easy to see Ff(a) — 0 as ¢ 0. It follows that Fj(a) —» 0 as &£| 0 from
(4.13). Then we have finished proving the case of j =1 in (4.11). Similarly we
can show the case of j =2 in (4.11). This completes the proof of the existence of
a solution to (1.1)-(1.2).

The uniqueness of the solution can be proved by the same energy method as
above. More precisely, let u,ve L*(0,T; H") be solutions to (1.1)—(1.2). We
note the identity

Oxuil + ud it — 0xv0 — 00,0 = Ox(u — V)i + Oxv(U—=10) + udy(W—1) + (4 — v)0\D.
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Then, we define the symbol of the transformations d,(u — v) — K(t)0x(u — v) and
Oy(u —v) — H(t)dy(u — v) by using u and we evaluate ||u — v||,. These procedure
imply the uniqueness of the solution. This completes the proof of Theorem 1.1.

5. Proof of Theorem 1.2

Finally we prove Theorem 1.2 by the a priori estimates. We take m; € N as
my = max(/ +4,6) =m; + 1. In view of Theorem 1.1, we have only to obtain the
a priori estimate of |[u(r)],, _, (< 1/2\/ae). In the same way as §4, we define
K(1),H(t), Bk(t) and etc. We denote Y(f) by

4
Y()) = Xoporf () + (1 + 1) Xy 6,5(0)
j=0

4
+3° S jezelsralu)
Jj=0

x+f=my—j
a'+p'=)
ato f+B <ma—1

+ (407" ST K@ u + > NH(0EIE u()|
ata'=m; B4R =m;
Ot’SS Blss

We suppose

sup Y(f) < R forsome T > 0,
te[0,T)

where R > 0 is smaller that 1/2/ae. Using the equation (1.1), We have

JX 0,:0(t, x") dx’
0

X p+00
=M rlu(t,x', y)dydx’
JO .J —
X p+o
=M (0,uit + udyii)dydx’
JO J-0
rYX rt+oo -
=M . {i(o* + 8}2,)1112 — u(d* + 6'3)51 + (f ()u + f(u)u)}dydx’'
J—0
+oo
<2 sup| [ (@ = iy + 2017 ) o)
xeR|J -

2
<CU+07"D" X (07 (1 + u(n)]1)
=0

<Cl+07'v ()
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Here we used the same technique as in (3.20). This means that the transformation
u(t) — K(t)u(t) does not bring about the loss of time-decay because of the
structural nice property of ¢(z,x). This was first pointed out by S. Katayama and
Y. Tsutsumi ([8]). Similarly we have

Bk (1), Bu(1), By(1), By(1) < C,
Bj(1), By (1), By (1), By (1) < CR*(1 + 1)~

By the assumption, the nonlinear estimates (3.20), (3.21), (3.22) and (3.23) become

xAf ! -3/2
Yoo erelural @)l < CRA(1 407, (5.1)
atfto’ +f" <y
a' \p'<S
ata’,f+p' <my—1
o'\ B'<4

> Izl £ ()| + 1030872 f (D)} < CR3(1 +1)7'/2, (5.2)

a+f<my—6

Y WK f(u(r), K ()03 u(1)]

oo’ =m;
2'<5

SCR“+1(1+§)
2 e

D (B(6x)KDD PRI u(n), DRI u(r)),  (53)

a+oc =y
o' <5
Z II(H(t)ﬁ_ny”'f( (1), H(1) 0”1” u(O)|l (5.4)
B+B'=m;
B'<s
< CR* +l <1 +§)
2 e
X3 (Wl )XDY PH (08I u(r), <D, PH(1)08I P u(r)). (5.9
B+ =m;
B'<5

Using (2.5), (2.6), (5.3) and (5.5), we get

d . /
7 Do IK@OBIIwn*+ D IH©O w0 | < CR*.

ata’=n BB =m;
a'<5 p<S

Integrating with respect to 7, we have
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T+ ST K@ Zuml + > H@0LI u(@)l| | < CE+RP). (5.6)

oa4a'=my BB =my
a’'<s p'<5

On the other hand, by the energy estimate with (5.1) and (5.2), we get

020k a2 JE u(n)| < C(6 + R?), (5.7)
atfta’+B' <my
a',B'<S
ato!, B <my—1
“,\B,S‘i

A+ N7 (ol iu() + |38 u(nl) < CE+ RY).  (5.8)

xCyx xYydy
a+f<my—6
Summing up (5.6), (5.7) and (5.8), we obtain

sup Y (1) < C(0+ R?).
te(0,T)

Let R, be a positive small constant satisfying CR? < R;/4. We can take R as
R < R;. Then we have

sup Y (1) <
1e(0,T)

N X

provided that ¢ is sufficiently small. This completes the proof of Theorem 1.2.
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