J. Math. Kyoto Univ. (JMKYAZ)
39-2 (1999) 287-297

On existence of local solutions for differential equations on
Wiener space

By

Jai Heui KiM and Yong Sik YuN

Abstract

We consider a differential equation on the Wiener space. We obtain some inequalities for
capacity under the transformations of the Wiener space induced by the solutions of
differential equation and show the existence of local solutions by using the inequalities for
capacity.

1. Introduction

Let (X, H,u) be an abstract Wiener space and 4 a vector field on X which is
a mapping from X into H smooth in the sense of Malliavin (cf. [5]). We consider
the following differential equation on X:

d
(1.1) 5 (Uix)) = A(Ui(x)),
Up(x) = x.

In [8], the second author constructed, under the condition of Theorem 2.1, a
solution U,(x) which satisfies (1.1) quasi everywhere (q.e.), i.e., for all x except in a
set of (r, p)-capacity 0, for all » > 0 and p > 1. Here the capacities are associated
with the Ornstein-Uhlenbeck operator on the Wiener space (cf. [5], [6]). By the
way of its construction, we see that this U,(x) is a quasi continuous modification of
a solution, in the sense of almost everywhere, of Cruzeiro [l].

In the previous paper [9], Yun obtained further refinements of this solution.
He chose a quasi continuous modification A(x) of A(x) defined everywhere on X
and constructed U(x),re R,xe X, such that [r— U/(x)]e WZ(X:C([-T.T] -
X)) (cf. [6]), X 2x+— [t+— U(x)] e C([-T,T) — X) is quasi continuous for every
T >0 and satisfies

t
(1.1’ U(x) = x—}-J A(Us(x))ds  for quasi every (q.e.) xe X,
0
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for all teR. Furthermore, he chose U,(x) so that the mapping x — U,(x)
preserves the class of slim sets for every ¢ and the flow property

(12) Uy o Ui(x) = U/+S(x)a

holds q.e. for every ¢ and s.

Cruzeiro proved the almost everywhere existence of local solutions of (1.1)
under some integrability condition ([3], Theorem 3.2). In the present paper, we
extend the almost everywhere existence to the quasi everywhere existence. In
other words, under the conditions described in Theorem 2.6, we show that for all
¢>0 and M > 0, there exist Z, »s = X and U,(x) = V,(x) + x satisfying (1.1) for
all xe Z, » and [t <M such that C, ,(Z;)) <e for all r>0 and ¢ > p> 1,
where C, , is (r, p)-capacity on X.

2. Inequality for capacities and existence of local solutions
Let (X, H,u) be an abstract Wiener space introduced by Gross. Let E be a
real separable Hilbert space. We set
WP (X:E) = (1 - L)"(L"(X .45 E))

for the Ornstein-Uhlenbeck operator L (cf. [8]). Then WP(X;E) becomes a
Banach space and we can define the Sobolev space WP(X;E) with the differ-
entiability index r and the integrability index p with a norm

WSl = lull,,  for f=(1—L)"u uelL’ (X, uE).

We denote the space (), W7 (X;E) by WE(X;E) for pe([l,00) and WZ (X E) =
ﬂpWo’g(X; E). We can define the gradient operator V: W’ (X;E)—
WP(X;E® H) and its dual, the divergence operator, 0: W/ (X;E® H) —
WPF(E) as usual (cf. [1]).

Next let us recall the notion of (r, p)-capacity. The (r, p)-capacity C,, is
defined as follows: for an open set O < X,

C.,(0) =inf{|f|}, :f e WI(X;R), f>1 ae. on O}
and for an arbitrary set B < X,
C,p(B) =inf{C,,(G) : G is open and G > B}.

We say that a property holds quasi-everywhere (q.e. in abbreviation) if it
holds except on a set of capacity 0 for all r,p. We note that

1
2.1 Crp{llull > 1) < 7 llullfy-

Here u is taken to be quasi-continuous. For the quasi-sure extension, we
need to consider the differential equation to be satisfied by LV,(x) where V,(x) =
U,(x) — x and L is the Ornstein-Uhlenbeck operator. But since
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(dLV,/dt)(x) = L(A(Vi(x) + x)),
LVy(x) = 0.

and

L(A( +x)—z X) +x)) — Za (Vi(x) +x)) - x

=LAV, (x) +x) +VA(V,(x) + x) - LV,(x)

+Zvjk Vi(x) +x) -0,V (x)- 0, VK (x)
+2)VAV(x) +x) - V] (),

we should consider the following system of differential equations to be satisfied by
[Vi(x),VVi(x), LV (x)]:

d
(22) SV) = AV() + %),
(2.3) %VV,(X) =VA(V(x) + x) - VV,(x) + VA(V,(x) + x).
(2.4) %LV,(x) = LA(V,(x) + x) + VA(V,(x) + x) - LV,(x)

+ Y VRAWV(X) +x) - AV (x) - iV (x)
+2) " aviA(Vi(x) + x) - 8,V (%),

Vo(x) =V Vo(x) = LVy(x) =0.

More generally, in addition to (2.2) ~(2.4), we consider the following system
of differential equations to be satisfied by

[L"V'V,(x) :m=0.1,..., N, n=0.1...., 2N, 2m+n < 2N]:

d i ,
EL’"V” Vi=VA-L"V"V, + E™"(L'VIAL'V'V,: i=01...., m,

j=0,1,..., n, I=0,1,....m—1,
r=0,1,....n, 2i+j<2m+n,
20+r<2(m—1)+n),
L"V"Vy(x) =0, m=0.1.... k. n=20,1,.... 2k.
2m+n < 2k, k=23..... N,

where E"" is some polynomial which can be obtained successively (cf. [8]).
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Theorem 2.1 (Yun (8], Theorem 5.5). If A is a vector field on X satisfying the
Jfollowing conditions

(i) Ae WE(X:H) and Y2 >0, [, exp(A||4(x)|)du(x) < +o0,

(i) YA>0, Van=1,2,..., [, exp(A||[V"A(x)|)du(x) < 400,

(iii) VA > 0. [, exp(A0A4(x)|)du(x) < +o0,
then V,(x) exists for all te R, q.e.x and satisfy the following differential equation

{ (dV,]d1)(x) = A(V,(x) + x).
(2.5)
Vo(x) = 0.

Furthermore, it can be shown (cf. [9]) that we can modify the solution U,(x)
so that it is defined for every 1 € R and x € X, satisfies (1.1)" for q.e. x € X for all
t € R and also has the quasi sure flow property, i.e., satisfies (1.2) for q.e. x € X,
for all 7,se R (cf. [9]).

For the proof of Theorem 2.1, we first consider (1.1) in a finite dimensional
case. We show that for any k € N, (L*¥V,) exists for all € R, g-a.e.x and thereby
(V,) admits a quasi-continuous modification as a C([0, T] — X)-valued function for
any T > 0. In finite dimensional case, one point has a positive (r, p)-capacity for
sufficiently large r and p. Therefore we can show that a solution to (1.1) exists
for every initial value xe X. To deal with (LV,), for example, we have to
consider the above system of differential equations (2.2) ~(2.4). To proceed to the
infinite dimensional case, we adopt a finite dimensional approximation. To be
precise, we take a sequence {4} converging to A such that 4" depends only on
finite number of coordinates and takes values in a finite dimensional subspace of
H. Denoting a solution for A by (V). we show that (V")) converges quasi-
everywhere to the limit V,(x) and U,(x) = V,(x) + x satisfies (1.1).

For the existence of local solutions, consider another Sobolev space on
[-M,M] x X as follows:

For fixed M > 0 and a Hilbert space E, the Sobolev space W/ on [-M, M| x X is
defined by

WP(-M, M) x X:E):= (1 —4 - L) "*(LP([-M, M) x X,dt/2M ® du; E)),

9?

4= is Laplacian on [-M, M] and

where 4 =

LP([-M M| x X,dt/2M ® dy: E)

M

) dt
= {u M M x X — E;J j ||u(t,.\')||’Ed,um < +oo}.

-mJx
The Sobolev space W/([—M,M] x X;E) becomes a Banach space with a norm
”f“r,/) = “””LI’ for f = (l —4- L)_r/2”~

ue LP([-M,M] x X, dt/2M ® dy; E).
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The (r, p)-capacity C,, on [-M.M] x X is defined as follows. For [0, co]-valued
lower semicontinuous (l.s.c. in abbreviation) function A, define C, ,(h) by

Crp(h) :=inf{|lg|l} ;9 € W/ ([-M.M] x X:E), g=h.dt/2M ® p-a.e.}

and for an arbitrary [—o0. oo]-valued function f (not assumed to be dr/2M ® u-
measurable),

C,p(f) :==inf{C, ,(h):h is ls.c. and h(r.x) > |f(t.x)]. V(1.x) e [-M.M] x X}.

For a set G, we define C, ,(G) = C, ,(lg), where 1 denotes the indicator function
of G.

Since the above norm ||f||, , is equivalent to the norm

M i p 1/p
(J o> (2o dﬂﬂ)
-MIX o<itj<r ar

g 2M
by Meyer’s equivalence, we use only the latter in this paper.

Proposition 2.2. If A satisfies the hypothesis of Theorem 2.1, then for every

&> 0, there exists F ¢ [—M. M| x X with C, ,(F¢) < ¢ for every r, p and V,(")(x) —
V,(x) uniformly on F. Here V"' are defined as above.

Proof.  Since

p

t
J A(n)( Vin) (X) + X) _ A(m)( V_\(~m)(x) + X)dS
0

t P
< (J |AM (VI (x) 4 x) — A (VI (x) + x)|ds)
0

!
ds
<P J |A(u)( V-‘(n)(x) + .\‘) _ A(m)(V_‘(m)(X) + x)lpTS“
0
we have

“ V(") - V(m)”LI'(dI/ZM ® dp)

M ' 1/p
<o ([ ][I 40 - am@ine +op S i)
—mJxJo ' t 2M

M ! ds di\'"

+«Q JJMWWWm+w—ﬂWWWﬂ+WL%w—)
-mJxJo ’ 4

— 0 as n,m — oo uniformly

(see also the proof of Theorem 5.5 (cf. [8])).



292 Jai Heui Kim and Yong Sik Yun
And by the facts

v

= AV () +x)  and

1]
v (x) = j (VAP (VI (x) + x) - VY (x) + VA" (VI (x) + x))ds,
0

(, )

= (E[AD (V" (x) + x) — A"V (x) 4 x)|7)) VP

we have

P Vz(") 3 V’(m)

ot ot

< (E[lA" (V" (x) + x) = APV (x) + x)|P)V?

+ (E[ A (V" (x) + x) — APV (x) + x)17)) VP
—0 as n,m — oo uniformly

and

| v —wyopra
X
t
<o [ | A0 +2) V) + VAN (V) 4+
JX JO

— VA (VI (x) + x) - VY (x) = VA" (1 (x) + x))” dTSd/l
— 0 as n,m — oo uniformly.
Thus we have
| v — V(m)”w," -0 as n,m — 0.
Similarly, we can prove that
|V — V(’”)||er —0 as H,Mm — o0 for all r, p.

Adopting a finite dimensional approximation used in the proof of Theorem 5.5 (cf.
[8]), we can prove the existence of F.

Lemma 2.3. Forany 1 < p<p,andr>0,if ge W (X:R), then the family
{go U,(")} Jorms a bounded set in WI([-M,M]x X; R). To be more precise,
there exists a constant Cy such that ||go U,(")||,‘p < Ci-\gll,.,, for all n and
ge WP(X:R). Here U (x)= V" (x)+x.
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Proof. We prove only the case r=1. The general case can be proved
similarly. Since g e W/ (X; R), g(V"(x) + x) e LP(dt/2M @ du). Note that

(MK
<([LJ,

If we put &"(x)=(d(U"),u/du)(x), then for all p>1, sup,,{||k§")|lp+
1LV} < oo, and sup,,llVV,(")Hp < oo (cf. [8]). Since

d(go V("))

AN
(m)
L \+nvwov;n0¢m2M)

pd i)l/p.;_(JM J IW(go V,(" P du dt )l/p.

-M

d(go V)
ot

HaVn

= 4DV ) + ), < 1K, - 14,
p

|WWme=|

t
J VAP (VI (x) + x) - VIV (x)ds + VA" (V) (x) + x)
0

3

p

we have

= [|(Vg) (V" (x) + x) - AP (¥ (x) + %),
p

< [(Va)(V " (x) + )l - 14DV (x) + )],

H@<“§>+m

< Valla, - 144, - 201k |4,

and
IV(g(V" (x) + ),

< H Va) (V" (x) + )V VI (x) + VAP (V) (x) + x)ds

14

<|IVglls, - 16,

!
J VAW (VM (x) 4 x) - VY (x)ds
0

2p
! 1/2p

2 dS
s||Vg||4p.||k£”’||4,,t-(Lllki"’llg,’,’-llVA gt - Ivvemze ) :

we can find a constant C; such that |lgo U I, < Ci-ligll, p,-

We define U: [-M,M] x X3 (t,.x)— U(x) e X.

Lemma 24. For any 1<p<p, and r>0, if ge W'(X;R), then
goUe Wr"([—M , M| x X;R); more precisely, there exists a constant C such that

Hgo U”r,p <C- ”g“r,p|'
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Proof. By Lemma 2.3, |go U(")Ilr'ngl'||g||,‘pI for some constant C).

Thus the proof is complete if we prove that go U™ converges to go U in
Wr(-M.M]x X:R). Note that

llg o U —go U”w{'

(LI |

P I/p
FI () + x) - V(g(Vi(x) + x))n) d )

([,

I/p
pdﬂ£>
M 1/p
w ([, ], W +0) = viara) + nlausyy )
-MJx

’ Ag(r"(x) +x)  d(g(Vil(x) + x))
at ot

gV (x) +x)  Ag(Vy(x) +x))

ot ot

2M
2M

We can complete the proof since the last two integrals are calculated by

H Ag(r"(x) +x)  Ag(Vi(x) +x))
ot ot

,
< [(Vg) (V" (x) + x) - (Au (V" (x) + %) = AVi(x) + )],
+IAWV(x) + (V) (V" (x) + x) = (Vg)(Vi(x) + ),
<k gy - IVallap - 14n(V (x) + x) = A(Vi(x) + %),
1AWV + 2, - 1V (V" (6) +0) = (Vo) (Vilx) + 1),
and
7 (g(V" (x) + X)) = V(g(Vi(x) + )]l
< Ve (¥ (x) +x) - ¥V (x) = (Vo) (V" (x) + x) - V()]
+ (Vg (V" (x) + ) - VVi(x) = (Vo) (Vi(x) + x) - VVi(0)]],
< k" llap - 1Vg 1l - IV V() =V V(0]

IV VD), - (V) (VL (x) + X) = (V) (Vilx) + X)],-
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Theorem 2.5. For | < p < p, and r >0, there exists a constant C > 0 such
that

C, ,(U'(B)) < C-(Crp(B)"". VYBcX.
Proof. Let O be an open set in X. Then by Lemma 2.4,
C.,(U'(0))
inf{|| /|7, :f € W/([-M.M] x X;R). f>1 ae. on U'(0)}

inf{|| /1|7, :f € W)([-M . M]x X;R), foU'>1 ae. on 0}

Il

inf{llgo U[,:goUe W/([-M,M] x X;R). g>1 ae. on O}

< C-inf{||g||?, :ge W/ (X:R),g>1 ae. on O}

np
=C-(C,p(0)"".
For an arbitrary set B = X, we take an open set G > B. Then
Crp(U™'(B) < Crp(UTH(G)) < C-(C,p, (G))P7.
Taking the infimum for all open sets G > B, we have
Crp(UT(B) < C-(Cr,p, (B)".
Theorem 2.6. Suppose that a vector field A e Wi (X; H) satisfies

ZJ (V" AG), 0n gy + V" OAM, . o)A dpt < +00

n>0

Jor some g >2 and 2> 0. Then for all e >0 and M >0, we can find Z, py = X
with C, )(Z¢ ) <& for all r >0 and | < p < q such that there exists V,(x) for all
xeZ,y and |t| < M which satisfies (2.5).

Proof.  Let f4(x) = 32, 50(IV"A(x)lI{y-)or g 1y + IV"0A(X) |y 00)A".  Then
fqa€ Wi for all r (cf. [3]). Let y: R—>R be Y| <1 and C* with compact

support such that
o) I, if |1 <1,
1) =
0, if |7 > 2.

Define A;(x) = A(x) - ¢,(f4(x)) where ,(r) = y(t/I). Then A(x) satisfies the
hypothesis of Theorem 2.1. In fact, since

VAI(x) = VA(x) - ([ 4(2)) + A ] (f4(x)) - V(f4(x)),
V(f4(x) =D _2V"A,V"A) 1"+ 2064 -v"*o4 - 2",

n>0 n>0
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Z(V"A,V"A)l" < Z ”V"A”/{n . ”V”HA“),"

n>0 n>0
1/2 1/2
< ,1—1/2 . (Z(V"A)Zln> . (Z(VH-HA)ZA;HI)
n>0 n>0
=27 (f4(%)
and
SA; = S(A-W)) =AYy — CAVL) - i (f4(x)),
we have

VA< C-||A]l<C-1 and |04, <C-I.

We can have a similar proof to obtain estimate ||V"A/|| < C,-I for all
n. Thus the solution V¥ (x) = V,(x) of (2.5) with respect to the vector field A,
exists g.e. Xx.

By definition of A;, the solutions V¥, with respect to the vector field A4 exist
for all |t{j<M on Z ={xeX:Vie[-M M]|f,(Vi(x)+x)| <I}. Let @ =
{xeX:|f,(x)| <!} and I'; = {(t,x) € [-M,M] x X : |f,(Vi(x) + x)| > 1}. Then
U"(Qf) =TIand G, ,(Zf) < C; - C_',H,,,(F/) for some constant C, (cf. [5]). Thus
by Theorem 2.5 and (2.1),

Cr,p(Zf) <G Cr+l,p(r/)
< €1 (Cryr p, (21))"

< /1 (fal )"

for some constant C. Taking / sufficiently large, we can complete the proof.
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