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Level structure over E(n) and stable splitting
by Steinberg idempotent

By

Takeshi TORII

0. Introduction

Let E(n) be the In-adic complete Johnson-Wilson spectrum . Its coefficient ring
is given by

E(n),= Co[[u , • • • ,u,,_ i ]][u,u -  t ]

where 0  is  the Witt ring of the finite field Fp n . The generators u i have degree 0
and u has degree 2. In  [6 ] we construct a spectrum F(p )  whose EN-cohomology
is rationally isomorphic to the extension of E(n), obtained by adjoining all roots
of the p-series [p](x ) for the associated formal group law . The G alois group of
this extension is isom orphic to the general linear group  G L U( F )  and acts on the
spectrum F„(p). In this note we consider the stable splitting of F„(p) localized at p
by the Steinberg idempotent in the group ring Zoo [GL„(Fp)].

Let Sp"S° b e  the n-fold symmetric product of the sphere spectrum localized
at p .  We denote by D(n) the cofiber of the diagonal map SpP" -1 S ° S p P " S ° . Let
e„ be the Steinberg idempotent. Our main theorem is the following.

Theorem 0 .1  (Theorem 2.6). There is a homotopy equivalence

e„F„(p) E - "D(n).

From  the construction of F„(p), we see that F ( p )  contains the S-dual of the
Tits building in bottom  cells. Therefore the first nontrivial mod p  cohomology
group of F ( p )  is  the Steinberg representation. The image of the action of the
Steenrod operations on the bottom cells is contained in the stable wedge summands
of F(p ) corresponding to the Steinberg representation.

The Galois group G L (F) acts also on the diagram 15, of [6]. We show that the
splitted diagram by Steinberg idempotent degenerates and reduces to a part of the
Kuhn's exact sequence which was used to solve the Whitehead conjecture [2 ] [3 ]
[5]. Our main theorem follows from this fact. From  the theorem, we see that
the mod p  cohomology of e„F„(p) has the basis corresponding to the admissible
Steenrod operations of length <n.
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The paper is organized as follow s. In §1 we calculate the multiplicity of the
Steinberg representation in the induced representation from a parabolic subgroup. In
§2 w e study  the  re la tion  between the Steinberg representation in  the diagram
fi t o f  [6 ] and  the  Kuhn's exact sequence, and prove the main theorem.

I would like to thank Professor Goro Nishida for suggestion of this work and
many helpful conversations.

1. Induced representaion and Steinberg idempotent

L et P k  b e  a m axim al parabolic subgroup of G L ( F )  w hich is the  stabilizer
subgroup of the k-dimensional subspace spanned by the first k-basis vectors:

A  B
Pk = f( )E  GL„(Fp )

0  C
A e GL k (F,), CeGL„_ k (F p )} .

Then P , is isomorphic to the semi-direct product

Pk(G Lk(F p ) x GL„ _,(Fp )) Q

where Q  is  the subgroup of P k  such  tha t A  and  C  are identity m atrixes. L e t V
be  a  right GL k(Fp )  module over F p . W e  regard V  a s  a  representation of P k  b y
using the homomorphism

Pk GL k (Fp ) x GL„_ k (Fp ) —› GL k (Fp ).

We denote by V G "  the induced representation o f  V  from P„ to  GL„(Fp ). In  this
section we study the multiplicity of the Steinberg representation in  VG"•

L e t  E n b e  t h e  subgroup of G L ( F )  w hich consists of the perm utation
m atrixes. Then / Gra n  sgn(cr).o-  in the group ring Z ( p ) [GL„(F p ) ]  is denoted by i n  . Let
B„ be a Borel subgroup which consists of upper triangular matrixes. W e denote
Eb.B„h by Pn

 Then the Steinberg idempotent in Z ( p ) [GL„(Fp )]  is defined as

e„=i„.13,1[GL F p ): Un ]

where U„ is a unipotent subgroup which consists of the upper triangular matrixes
with all diagonal entries equal to I. F o r  a  GL„(Fp ) module M  over F,,, the dimension
of the vector space Me„ is equal to the multiplicity of the Steinberg representation in M.

Lemma 1 .1 .  (i) Fo r 1 <k  <n -1 , V G L nen =0.
(ii) F o r k =n -1 , dim V "ne n =d im V e _ ,.

Pro o f . We note that the Steinberg representation is a  modular representation
of defect z e ro . Therefore it is sufficient to prove the  corresponding statement of
the ordinary representation. Let Si,, b e  the Steinberg character of GL,,. T h e n  the
restriction of Si,, to P,, is the induced character of St k x St„_„ from GL,, x GL,,_„ to
P k  (cf. [1]). L e t /1  be a character of a finite group G and y a character of a subgroup
H .  Then we denote by Af f  the restriction of A to H  and by the induced character
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fro m  H  t o  G .  F o r  tw o  c lass func tions A1 , A ,  o f  G , th e r e  is  th e  scalar
product ( I.) , 15 2,G• Let z  b e  a  character of GLk a n d  2 the pull-back to Pk . Then
we have

(eL „ ,
,-"LnIGL„ = (k , (Sin)p Opt,

= (2, (S tk  x St n k r 9 p k

= (X, S t  GL,, • (1
 GL„ - k  

5  S t n — - k

where 1G L n _k i s  the trivial character of GLn _k . This completes the proof.

For k = n -1 , there  is a  homomorphism 0: V—+ VG "  defined  by  0(v)=v01„
w h e re  1 „  is t h e  id e n tity  m a tr ix . L e t  i: Ven _, c  V  b e  the inclusion and

v G L „ en  the projection. W e consider the composition 0 =no(poi:Ve n _,
v G I , e n

Lemma 1.2. The homomorphism (I) is an isomorphism as vector spaces.

P ro o f  It is sufficient to prove that p is injective by  Lemmma 1.1. Let

0 1

T = (1, 2, • • n =
0 1
1 0 . . . 0 1

be the cyclic perm utation. For 1 <i<n, we denote Ti b y  r.. S in c e  the intersection
of the group generated by T  and Pn _ , is  {1, }, w e take T 1. . . . /  x n , t n + 1 , • • • , t ,  as a
complete set of representatives of the left coset decomposition P„_,\GL„(Fp ). Then
any element of V ". is uniquely w ritten as (vie V). Let (T: V " .  V
b e  a  homomorphism defined  by  (RE vi O-ci) = v , .  T h e n  w e  d e n o te  b y  0  the
composition n' o o i' where i '  v: ac„ e n  _4 V G "  is  the inclusion and n': V—■ Ve„_, the
projection. W e  show th a t  0 .9 = id  u p  to  sign. F o r  y e  V , w e have (v01,)i„
=E cisgn(o-)•vOo- = E7= i sgn(r i)•v i„_ ,O r i . Let

b =
( b 1 1  b12 ..•

O b'
eB„, b ' B _  .

Then Tibr e  P (1<i<n) if and only if i=1 and bi 2 = ••• =b i n  =O . In this case we
have

-r i ut, I =
( b ' 0
ko b11) •

Therefore

(v01„)en = ±ven_iOri+ E  v i o t i •
i , 1

This shows tha t 4). (p= id u p  to  sign.
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2. Stable splitting of F (p)

In this section we study the Steinberg representation in the diagram /5 1 of [6] and
the Kuhn's exact sequence by using the results of §1. Then we prove the main
theorem . In this section we discuss in the category of p-local spectra.

Let X be a naive GLk(Fp ) spectrum. We can regard X as a naive Pk spectrum
as usual. W e let (  ) ,  denote the suspension spectrum of the pointed space with
disjoint base point. Then GL„(F p ) ,  A pkX  is a naive GL„(F p ) spectrum. By Lemma
1.1, we obtain the following lemma.

Lemma 2.1. If  k  <n -1 , then the spectrum e„(GL„(Fp ) ,  A p ,X )  is contractible.

For k=n— 1, there is a projection (1): GL„(Fp ) ,  A p n  _ , X  P + A p ._  X  =  X.
Then we obtain the following lemma from Lemma 1.2.

Lem m a 2.2. The m ap (I) induces a homotopy equivalence

en (GL(Fp)+ A p „  X )  e„ _ i X.

Let V = F ; be  the n-dimensional vector space over Fp . W e take E V  as a
contractible free V space on which GL„(Fp )  acts. For a subspace W  o f V  the
quotient space EV I W is the classifying space B W . For the subset T of {0,1,...,n — 1},
we denote by W T  the set of all flags of type T  That is, W , is  the set of all
expanding sequences of subspaces of Fflp  whose i-th  subspace has dimension ti if
T = {t i <•••<t k }:

W
=

 {{ W1 c  W 2  •  •  •  Wk

For w = { c  • • • c  W , c  V}eWT ,  we let BW  be the classifying space BW i and BW T

the disjoint union j j .  „,E w 7 ./3w. In particular, B Wo  = B V. W e note that GL„(F p )
acts on BW T . Let W( k ) be the k-dimensional subspace spanned by the first k-basis
vectors, and T k = {k ,k + 1 ,••• ,n -1 }  for 0 < k  < n . We denote by w  distinguished
flag of type Tk as follows:

w (k) :___{ w(k) c  w(k+1) c c  w ( n -  1 )  c  v } .

Then there is a projection (13ok : BW T k —  B O ) . By induction, we obtain the following
theorem from Lemma 2.1 and 2.2.

Theorem 2.3. I f  T= Tk f o r som e 0<k < n , then Ok :B147
1.k —+ Bw( k ) induces a

homotopy equivalence e„BWr k +  =e„Bw (.1,9. Otherwise e„BWT +  is contractible.

Let 6' = {6 = (6, , • • 6,)e Z" 10 2} and -6-' = fee 6 ' Ei = 0 or 1 ) .  We define the
order in g  as
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c = (c )  •••, c„) = , • • •, c',,)<=> ci < for a ll i.

Then we regard g  as a small category and I  a  subcategory. Let fr  be the functor
fro m  I to  the category of topological spaces such that MO= B WT where i -  1 e T
if and only if c,= 0, and /5'(c)-* fr(e) is a canonical covering fo r c  < c '. Then G L (F)
acts on DIE) for all c and the maps br(c).- b'(e) are  equivariant. Corresponding
t o  the equivariant transfer /5'(e).,. .rjr(c) +  fo r  c  < E ', w e  o b ta in  the homotopy
commutative diagram in the category of G L (F)  sp e c tra . By the result of [6], we
lift the homotopy commutative diagram to the strictly commutative diagram. Then
we extend the diagram  to the contravariant functor b from g  to  the category of
G L (F )  spectra so that

b ( C 1 5  •  •  • 5 1 , Ci+ 1 •  •  •
5  En) M C 1  ,  •  . • ,  Ci— 1 5 1 ,  C i + 1 , • • • 5  En)

—+ MC 1 , • • • , Ci — 1 
CI, C i + I • • . 5 CO

are fiber sequences. We take the restriction of this diagram to the category of naive
G L (F)  spectra as the diagram D I o f  [ 6 ] .  L e t  F„(p)= D 1 (2, • ••, 2). We note that
for a naive G spectrum X  there is a G map X - )i* i * X which induces a nonequivariant
equivalence, where i  is the inclusion from 12  to  a  complete G  universe . Then X
and i induce a n  equivalent G  representation in  any cohom ology theory. In
particular, the stable splitting of X  and i*i *X  by an idempotent in the group ring
of G are homotopy equivalent. We consider the stable splitting of the diagram D 1 by
the Steinberg idempotent.

We recall the Tits building for a group w ith BN -pair. The Tits building is a
simplicial complex whose vertexes are maximal parabolic subgroups. Its simplexes
are the sets of the maximal parabolic subgroups whose intersection is  a  parabolic
subgroup . I n  t h e  c a s e  GL„(F p ) th e  s im p lex es  a re  iden tified  w ith  t h e  flags
{0 < WI < ••• < Wk G V} in  V. Let K  be the Tits building for G L ( F )  and K ,  the
suspension s p e c tru m . W e  d e n o te  b y  k  t h e  c o f ib e r  o f  t h e  obvious m ap
K , - ) S

°
. From the construction, we see that D 1(0, 2, •••, 2) is the S-dual of L . We

no te  th a t  th e  m ap D 1(1,0, • .•,0) D 1 (0, • • •, 0) induces trivial homomorphism in
mod p  cohomology. From these we obtain the following.

Lemma 2.4. I f  i< -n , then III(F(p); Z Ip)= O. The GL„(F p ) module H 
-

"(F„(p);
Z /p) is the S teinberg representation.

From  the lemma, we see that 11 - "(e„F(p);ZIp)
-

Z 1 p .  We denote by v
generator for the map e„Fn(p) - ) HZ /p.

We recall the Kuhn's exact sequence [2] [3]. Let L(k)= E -
kSpPkS ° /SpPk

-
 I S °

and ak: L(k + 1) - ) L(k) be a  connecting m a p .  K uhn has shown that the sequence

ek 00

• • • EL(k + 1) - ) EL(k) --) • • • - ) E L (2) E L (1) -+  E L (0) E HZ ( )

is exact where ri is the inclusion of the bottom cell. L e t  D(k) be the cofiber of the
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diagonal map SpPk -  'S °  S p P kS °  and M(k)=E - I'D(k)ID(k -  1). There is a homotopy
equivalence M (k):-_' L(k)V L(k -  1 ) [4 ]. The modp Kuhn's exact sequence is

sk do
•• • M(k +1) -4 M(k) -> • • • -> M(1)-4 M(0) -> HZ lp

where ô k  is the connecting map. On the other hand, there is a homotopy equivalence
M ( k ) e k B(Z1p) k, [4]. Let tr :B (Z Ip ) + - > S°  b e  the transfer. The sequence

•• • M(k +1) -4 M(k)-> •• • -4 M(1) -> M(0) -> HZ lp

is equivalent to the m odp Kuhn's exact sequence, where dk  i s  the composition

tr A  1

M(k +1) -4 B(ZIp) k
+

+1  ->  B (Z 1p) k
+ -> M(k).

By Lemma 2.2, we see that e,,D 1 (1k ,
o n -

k )== M (k ) for 0 < l c , n .  Unless c  is
(1k, 0" - k ) for some 0 < k< n, then e n D i (c) is contractible by Lemma 2.1. Furthermore,
t h e  m a p  

e „ D i ( 1 k + 1 , 0 n - k - 1) _ , . e n D 1 ( l k 5 o n - k ) is equivalent to dk  . S o  w e  ob ta in  the
following proposition.

Proposition 2.5. The sequence

e„D i (1,•••,1)->e„D,(1,•••,1,0)-> ••• e„D i (0, • ••,0)

is equivalent to a part of  the Kuhn's exact sequence

M (n)->  M (n -1) • -4 M(0).

Let Un : D(n)--> HZIp be a  generator for H ° (D (n ) ;Z I p ) .  The modp Steenrod
algebra si p acts on H * (D (n ) ;Z Ip ) . For a finite sequence / = (c o ,
Ei =0, 1, we let Of  =fiE°Y "g ',9r2 .•• where )3 is the Bockstein operation and 9r is the
Steenrod reduced power. (For p -= 2, and fi'= Sq l and = Sq 21 .) We say that I  is
admissible if r 1 > pr + 1 + c i f o r  a l l  i. Then the admissible (9 / a r e  a  basis for
S i p .  The length /(/) is defined by /(/)=n if r1=0 for i > n and c, = 0 for i >  n .  Then
H  *(D (n);Z  p) has a  basis {0/(un )i I: admissible, / ( / ) . n} [4].

Theorem 2.6 (Theorem 0.1). There is a  h om o to p y  equivalence

E - "D(n).

In particular, H *(e„F (p);Z Ip) has a basis {01( v ) I I :  admissible, /(/)<n} .

P ro o f  Let
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E l E 0
\i

•• M(2) M(1) M (0 )  HZ I p

be the Kuhn's exact sequence where E k  M(k) —) Ek _ ,  are exact. W e obtain the
following sequence

HZIp —>EE0 —*E2E1--> •••.

Then D(k)--4 HZ I p — Ek +  1 E k  are cofiber sequences. W e let D(k)' = Ek eD,(2 k ,
Then there is a  sequence

•• • E -  2  D(2') E-1D(1)'

M(2) M (1 ) M (0 )

where E - k D(k)' M(k) —> E  +k 1 m k _ • , ,i )  are cofiber sequences. There are  maps
vk ; D(k)' —> HZ I p  which are generators for H *(D(k)' ;Z p). W e let Ek -"E ,: be  the
cofiber of vk

W e prove that D(14 .ct.• D(k) and the m ap vk : D(k)' H Z /  p  is equivalent to uk

by induction on k. The case k =1 is trivial. Then we assume tha t the case k —1
is t ru e . There is a  homotopy commutative diagram

E  M (k ) --■ * M(k)

-
E - k D(k — 1) E-kHZIp Ek 1

Vk

E 'D (k r  – + k HZ I p

where all vertical and horizontal sequences are cofiber sequences. By the above
diagram, we obtain a  homotopy commutative triangle

M(k)
z

Ek_ 1 -> sH- D(k —1)

Then the uniqueness of the map M(k) -•-■ Ek_ , which factors through M (k ) M (k  —1),
w e see that  E E k  a n d  t h e  m a p  HZIp —> Ek  + 1 E  is  e q u iv a le n t  to  th e  map
HZ /p —>Ek + t Ek . Hence D(k)' D (k) and vk : D(k)' H Z  / p  is equivalent to uk . This
completes the proof.
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R e m a r k .  The strictly commutative diagram 15 ' over é extends to the strictly
commutative diagram D' over g  such that

D'(E1 7  •  •  .
7 6 i 1  7 

137 E i + 1 / • • •7 
6 n) —)• D16 1, • • • 9 6 i— 1, 1 , 6 i+ 1 7  •  •  .

7 En)
— D '( c 1 , • • • , c , _ , ,  2, ei + 1 , • • • , En )

are cofiber sequences. Let C ( p ) = D ' ( 2 9 . - ,  2). Then the stable splitting of C H ( p )  by
the Steinberg idempotent is homotopy equivalent to L (n ) which is an indecomposable
wedge summand of B(Z Ip)",_  .
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