Level structure over $\widehat{E(n)}$ and stable splitting by Steinberg idempotent

By

Takeshi Torn

0. Introduction

Let $\overline{E(n)}$ be the I_n -adic complete Johnson-Wilson spectrum. Its coefficient ring is given by

$$\widehat{E(n)}_* = \mathcal{O}[[u_1, \cdots, u_{n-1}]][u, u^{-1}]$$

where \mathcal{O} is the Witt ring of the finite field \mathbf{F}_{p^n} . The generators u_i have degree 0 and u has degree 2. In [6] we construct a spectrum $F_n(p)$ whose $\widehat{E(n)}$ -cohomology is rationally isomorphic to the extension of $\widehat{E(n)}_*$ obtained by adjoining all roots of the *p*-series [p](x) for the associated formal group law. The Galois group of this extension is isomorphic to the general linear group $GL_n(\mathbf{F}_p)$ and acts on the spectrum $F_n(p)$. In this note we consider the stable splitting of $F_n(p)$ localized at pby the Steinberg idempotent in the group ring $\mathbf{Z}_{(p)}[GL_n(\mathbf{F}_p)]$.

Let $Sp^n S^0$ be the *n*-fold symmetric product of the sphere spectrum localized at *p*. We denote by D(n) the cofiber of the diagonal map $Sp^{p^{n-1}}S^0 \to Sp^{p^n}S^0$. Let e_n be the Steinberg idempotent. Our main theorem is the following.

Theorem 0.1 (Theorem 2.6). There is a homotopy equivalence

 $e_n F_n(p) \simeq \Sigma^{-n} D(n).$

From the construction of $F_n(p)$, we see that $F_n(p)$ contains the S-dual of the Tits building in bottom cells. Therefore the first nontrivial mod p cohomology group of $F_n(p)$ is the Steinberg representation. The image of the action of the Steenrod operations on the bottom cells is contained in the stable wedge summands of $F_n(p)$ corresponding to the Steinberg representation.

The Galois group $GL_n(\mathbf{F}_p)$ acts also on the diagram \mathbf{D}_1 of [6]. We show that the splitted diagram by Steinberg idempotent degenerates and reduces to a part of the Kuhn's exact sequence which was used to solve the Whitehead conjecture [2] [3] [5]. Our main theorem follows from this fact. From the theorem, we see that the mod p cohomology of $e_n F_n(p)$ has the basis corresponding to the admissible Steenrod operations of length $\leq n$.

Supported by JSPS Research Fellowships for Young Scientists.

Received March 15, 1999

Takeshi Torii

The paper is organized as follows. In §1 we calculate the multiplicity of the Steinberg representation in the induced representation from a parabolic subgroup. In §2 we study the relation between the Steinberg representation in the diagram \bar{D}_1 of [6] and the Kuhn's exact sequence, and prove the main theorem.

I would like to thank Professor Goro Nishida for suggestion of this work and many helpful conversations.

1. Induced representaion and Steinberg idempotent

Let P_k be a maximal parabolic subgroup of $GL_n(\mathbf{F}_p)$ which is the stabilizer subgroup of the k-dimensional subspace spanned by the first k-basis vectors:

$$P_{k} = \left\{ \begin{pmatrix} A & B \\ O & C \end{pmatrix} \in GL_{n}(\mathbf{F}_{p}) \middle| A \in GL_{k}(\mathbf{F}_{p}), \ C \in GL_{n-k}(\mathbf{F}_{p}) \right\}.$$

Then P_k is isomorphic to the semi-direct product

$$P_k \cong (GL_k(\mathbf{F}_p) \times GL_{n-k}(\mathbf{F}_p)) \ltimes Q$$

where Q is the subgroup of P_k such that A and C are identity matrixes. Let V be a right $GL_k(\mathbf{F}_p)$ module over \mathbf{F}_p . We regard V as a representation of P_k by using the homomorphism

$$P_k \to GL_k(\mathbf{F}_p) \times GL_{n-k}(\mathbf{F}_p) \to GL_k(\mathbf{F}_p)$$

We denote by V^{GL_n} the induced representation of V from P_k to $GL_n(\mathbf{F}_p)$. In this section we study the multiplicity of the Steinberg representation in V^{GL_n} .

Let Σ_n be the subgroup of $GL_n(\mathbf{F}_p)$ which consists of the permutation matrixes. Then $\Sigma_{\sigma \in \Sigma_n} \operatorname{sgn}(\sigma) \cdot \sigma$ in the group ring $\mathbb{Z}_{(p)}[GL_n(\mathbf{F}_p)]$ is denoted by $\widetilde{\Sigma}_n$. Let B_n be a Borel subgroup which consists of upper triangular matrixes. We denote $\Sigma_{b \in B_n} b$ by \overline{B}_n . Then the Steinberg idempotent in $\mathbb{Z}_{(p)}[GL_n(\mathbf{F}_p)]$ is defined as

$$e_n = \tilde{\Sigma}_n \bar{B}_n / [GL_n(\mathbf{F}_p): U_n]$$

where U_n is a unipotent subgroup which consists of the upper triangular matrixes with all diagonal entries equal to 1. For a $GL_n(\mathbf{F}_p)$ module M over \mathbf{F}_p , the dimension of the vector space Me_n is equal to the multiplicity of the Steinberg representation in M.

Lemma 1.1. (i) For
$$1 \le k < n-1$$
, $V^{GL_n}e_n = 0$.
(ii) For $k=n-1$, dim $V^{GL_n}e_n = \dim Ve_{n-1}$.

Proof. We note that the Steinberg representation is a modular representation of defect zero. Therefore it is sufficient to prove the corresponding statement of the ordinary representation. Let St_k be the Steinberg character of GL_k . Then the restriction of St_n to P_k is the induced character of $St_k \times St_{n-k}$ from $GL_k \times GL_{n-k}$ to P_k (cf. [1]). Let λ be a character of a finite group G and μ a character of a subgroup H. Then we denote by λ_H the restriction of λ to H and by μ^G the induced character from *H* to *G*. For two class functions λ_1 , λ_2 of *G*, there is the scalar product $(\lambda_1, \lambda_2)_G$. Let χ be a character of GL_k and $\bar{\chi}$ the pull-back to P_k . Then we have

$$(\bar{\chi}^{GL_n}, St_n)_{GL_n} = (\bar{\chi}, (St_n)_{P_k})_{P_k}$$

= $(\bar{\chi}, (St_k \times St_{n-k})^{P_k})_{P_k}$
= $(\chi, St_k)_{GL_k} \cdot (1_{GL_{n-k}}, St_{n-k})_{GL_{n-k}})_{GL_{n-k}}$

where $1_{GL_{n-k}}$ is the trivial character of GL_{n-k} . This completes the proof.

For k=n-1, there is a homomorphism $\bar{\varphi}: V \to V^{GL_n}$ defined by $\bar{\varphi}(v) = v \otimes 1_n$ where 1_n is the identity matrix. Let $i: Ve_{n-1} \subseteq V$ be the inclusion and $\pi: V^{GL_n} \to V^{GL_n}e_n$ the projection. We consider the composition $\varphi = \pi \circ \bar{\varphi} \circ i: Ve_{n-1} \to V^{GL_n}e_n$.

Lemma 1.2. The homomorphism φ is an isomorphism as vector spaces.

Proof. It is sufficient to prove that φ is injective by Lemmma 1.1. Let

$$\tau = (1, 2, \dots, n) = \begin{pmatrix} 0 & 1 \\ \vdots & \ddots \\ 0 & 1 \\ 1 & 0 & \dots & 0 \end{pmatrix}$$

be the cyclic permutation. For $1 \le i \le n$, we denote τ^i by τ_i . Since the intersection of the group generated by τ and P_{n-1} is $\{1_n\}$, we take $\tau_1, \dots, \tau_n, \tau_{n+1}, \dots, \tau_s$ as a complete set of representatives of the left coset decomposition $P_{n-1} \setminus GL_n(\mathbf{F}_p)$. Then any element of V^{GL_n} is uniquely written as $\sum_{i=1}^s v_i \otimes \tau_i$, $(v_i \in V)$. Let $\phi: V^{GL_n} \to V$ be a homomorphism defined by $\phi(\Sigma v_i \otimes \tau_i) = v_1$. Then we denote by ϕ the composition $\pi' \circ \phi \circ i'$ where $i': V^{GL_n} e_n \to V^{GL_n}$ is the inclusion and $\pi': V \to V e_{n-1}$ the projection. We show that $\phi \circ \varphi = id$ up to sign. For $v \in V$, we have $(v \otimes 1_n) \widetilde{\Sigma}_n$ $= \Sigma_{\sigma} \operatorname{sgn}(\sigma) \cdot v \otimes \sigma = \sum_{i=1}^n \operatorname{sgn}(\tau_i) \cdot v \widetilde{\Sigma}_{n-1} \otimes \tau_i$. Let

$$b = \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ 0 & b' \end{pmatrix} \in B_n, \ b' \in B_{n-1}$$

Then $\tau_i b \tau_1^{-1} \in P$ $(1 \le i \le n)$ if and only if i=1 and $b_{12} = \cdots = b_{1n} = 0$. In this case we have

$$\tau_1 b \tau_1^{-1} = \begin{pmatrix} b' & 0 \\ 0 & b_{11} \end{pmatrix}.$$

Therefore

$$(v \otimes 1_n)e_n = \pm ve_{n-1} \otimes \tau_1 + \sum_{i \neq 1} v_i \otimes \tau_i.$$

This shows that $\phi \circ \varphi = id$ up to sign.

2. Stable splitting of $F_n(p)$

In this section we study the Steinberg representation in the diagram \bar{D}_1 of [6] and the Kuhn's exact sequence by using the results of §1. Then we prove the main theorem. In this section we discuss in the category of *p*-local spectra.

Let X be a naive $GL_k(\mathbf{F}_p)$ spectrum. We can regard X as a naive P_k spectrum as usual. We let ()₊ denote the suspension spectrum of the pointed space with disjoint base point. Then $GL_n(\mathbf{F}_p)_+ \wedge_{P_k} X$ is a naive $GL_n(\mathbf{F}_p)$ spectrum. By Lemma 1.1, we obtain the following lemma.

Lemma 2.1. If k < n-1, then the spectrum $e_n(GL_n(\mathbf{F}_p)_+ \wedge_{P_k} X)$ is contractible.

For k=n-1, there is a projection $\Phi: GL_n(\mathbf{F}_p)_+ \wedge_{P_{n-1}} X \to P_{n-1+} \wedge_{P_{n-1}} X = X$. Then we obtain the following lemma from Lemma 1.2.

Lemma 2.2. The map Φ induces a homotopy equivalence

$$e_n(GL_n(\mathbf{F}_p)_+ \wedge_{P_{n-1}} X) \simeq e_{n-1} X.$$

Let $V = \mathbf{F}_p^n$ be the *n*-dimensional vector space over \mathbf{F}_p . We take EV as a contractible free V space on which $GL_n(\mathbf{F}_p)$ acts. For a subspace W of V the quotient space EV/W is the classifying space BW. For the subset T of $\{0,1,\ldots,n-1\}$, we denote by W_T the set of all flags of type T. That is, W_T is the set of all expanding sequences of subspaces of \mathbf{F}_p^n whose *i*-th subspace has dimension t_i if $T = \{t_1 < \cdots < t_k\}$:

$$W_T = \{\{W_1 \subset W_2 \subset \cdots \subset W_k \subset V\} | \dim W_i = t_i\}.$$

For $w = \{W_1 \subset \cdots \subset W_k \subset V\} \in W_T$, we let Bw be the classifying space BW_1 and BW_T the disjoint union $\coprod_{w \in W_T} Bw$. In particular, $BW_{\emptyset} = BV$. We note that $GL_n(\mathbf{F}_p)$ acts on BW_T . Let $W^{(k)}$ be the k-dimensional subspace spanned by the first k-basis vectors, and $T_k = \{k, k+1, \dots, n-1\}$ for $0 \le k \le n$. We denote by $w^{(k)}$ the distinguished flag of type T_k as follows:

$$W^{(k)} = \{ W^{(k)} \subset W^{(k+1)} \subset \cdots \subset W^{(n-1)} \subset V \}.$$

Then there is a projection $\Phi_k: BW_{T_k} \to Bw^{(k)}$. By induction, we obtain the following theorem from Lemma 2.1 and 2.2.

Theorem 2.3. If $T = T_k$ for some $0 \le k \le n$, then $\Phi_k : BW_{T_k} \to Bw^{(k)}$ induces a homotopy equivalence $e_n BW_{T_k+} \simeq e_n Bw^{(k)}_+$. Otherwise $e_n BW_{T+}$ is contractible.

Let $\mathscr{E} = \{ \epsilon = (\epsilon_1, \dots, \epsilon_n) \in \mathbb{Z}^n | 0 \le \epsilon_i \le 2 \}$ and $\overline{\mathscr{E}} = \{ \epsilon \in \mathscr{E} | \epsilon_i = 0 \text{ or } 1 \}$. We define the order in \mathscr{E} as

592

Level structure over $\widehat{E(n)}$ 593

$$\epsilon = (\epsilon_1, \dots, \epsilon_n) \le \epsilon' = (\epsilon'_1, \dots, \epsilon'_n) \Leftrightarrow \epsilon_i \le \epsilon'_i \text{ for all } i.$$

Then we regard \mathscr{E} as a small category and $\overline{\mathscr{E}}$ a subcategory. Let \overline{D}' be the functor from $\overline{\mathscr{E}}$ to the category of topological spaces such that $\overline{D}'(\epsilon) = BW_T$ where $i-1 \in T$ if and only if $\epsilon_i = 0$, and $\overline{D}'(\epsilon) \to \overline{D}'(\epsilon')$ is a canonical covering for $\epsilon < \epsilon'$. Then $GL_n(\mathbf{F}_p)$ acts on $\overline{D}'(\epsilon)$ for all ϵ and the maps $\overline{D}'(\epsilon) \to \overline{D}'(\epsilon')$ are equivariant. Corresponding to the equivariant transfer $\overline{D}'(\epsilon')_+ \to \overline{D}'(\epsilon)_+$ for $\epsilon < \epsilon'$, we obtain the homotopy commutative diagram in the category of $GL_n(\mathbf{F}_p)$ spectra. By the result of [6], we lift the homotopy commutative diagram to the strictly commutative diagram. Then we extend the diagram to the contravariant functor \widetilde{D} from \mathscr{E} to the category of $GL_n(\mathbf{F}_p)$ spectra so that

$$\widetilde{D}(\epsilon_1, \dots, \epsilon_{i-1}, 2, \epsilon_{i+1}, \dots, \epsilon_n) \to \widetilde{D}(\epsilon_1, \dots, \epsilon_{i-1}, 1, \epsilon_{i+1}, \dots, \epsilon_n)$$
$$\to \widetilde{D}(\epsilon_1, \dots, \epsilon_{i-1}, 0, \epsilon_{i+1}, \dots, \epsilon_n)$$

are fiber sequences. We take the restriction of this diagram to the category of naive $GL_n(\mathbf{F}_p)$ spectra as the diagram D_1 of [6]. Let $F_n(p) = D_1(2, \dots, 2)$. We note that for a naive G spectrum X there is a G map $X \to i * i_* X$ which induces a nonequivariant equivalence, where *i* is the inclusion from \mathbf{R}^∞ to a complete G universe. Then X and $i * i_* X$ induce an equivalent G representation in any cohomology theory. In particular, the stable splitting of X and $i * i_* X$ by an idempotent in the group ring of G are homotopy equivalent. We consider the stable splitting of the diagram D_1 by the Steinberg idempotent.

We recall the Tits building for a group with *BN*-pair. The Tits building is a simplicial complex whose vertexes are maximal parabolic subgroups. Its simplexes are the sets of the maximal parabolic subgroups whose intersection is a parabolic subgroup. In the case $GL_n(\mathbf{F}_p)$ the simplexes are identified with the flags $\{0 < W_1 < \cdots < W_k < V\}$ in *V*. Let *K* be the Tits building for $GL_n(\mathbf{F}_p)$ and K_+ the suspension spectrum. We denote by \tilde{K} the cofiber of the obvious map $K_+ \rightarrow S^0$. From the construction, we see that $D_1(0, 2, \dots, 2)$ is the *S*-dual of \tilde{K} . We note that the map $D_1(1, 0, \dots, 0) \rightarrow D_1(0, \dots, 0)$ induces trivial homomorphism in mod *p* cohomology. From these we obtain the following.

Lemma 2.4. If i < -n, then $H^i(F_n(p); \mathbb{Z}/p) = 0$. The $GL_n(F_p)$ module $H^{-n}(F_n(p); \mathbb{Z}/p)$ is the Steinberg representation.

From the lemma, we see that $H^{-n}(e_n F_n(p); \mathbb{Z}/p) \cong \mathbb{Z}/p$. We denote by v_n the generator for the map $e_n F_n(p) \to H\mathbb{Z}/p$.

We recall the Kuhn's exact sequence [2] [3]. Let $L(k) = \sum^{-k} Sp^{p^k} S^0 / Sp^{p^{k-1}} S^0$ and $\partial_k : L(k+1) \to L(k)$ be a connecting map. Kuhn has shown that the sequence

$$\cdots \to \Sigma L(k+1) \xrightarrow{\partial_k} \Sigma L(k) \to \cdots \to \Sigma L(2) \xrightarrow{\partial_1} \Sigma L(1) \xrightarrow{\partial_0} \Sigma L(0) \xrightarrow{\eta} \Sigma H\mathbb{Z}_{(p)}$$

is exact where η is the inclusion of the bottom cell. Let D(k) be the cofiber of the

diagonal map $Sp^{p^{k-1}}S^0 \to Sp^{p^k}S^0$ and $M(k) = \Sigma^{-k}D(k)/D(k-1)$. There is a homotopy equivalence $M(k) \simeq L(k) \lor L(k-1)$ [4]. The mod p Kuhn's exact sequence is

$$\cdots \to M(k+1) \xrightarrow{\delta_k} M(k) \to \cdots \to M(1) \xrightarrow{\delta_0} M(0) \xrightarrow{\eta} H\mathbb{Z}/p$$

where δ_k is the connecting map. On the other hand, there is a homotopy equivalence $M(k) \simeq e_k B(\mathbb{Z}/p)_+^k [4]$. Let $tr: B(\mathbb{Z}/p)_+ \to S^0$ be the transfer. The sequence

$$\cdots \to M(k+1) \xrightarrow{d_k} M(k) \to \cdots \to M(1) \xrightarrow{d_0} M(0) \xrightarrow{\eta} H\mathbb{Z}/p$$

is equivalent to the mod p Kuhn's exact sequence, where d_k is the composition

$$M(k+1) \rightarrow B(\mathbb{Z}/p)^{k+1}_+ \xrightarrow{tr \wedge 1} B(\mathbb{Z}/p)^k_+ \rightarrow M(k).$$

By Lemma 2.2, we see that $e_n D_1(1^k, 0^{n-k}) \simeq M(k)$ for $0 \le k \le n$. Unless ϵ is $(1^k, 0^{n-k})$ for some $0 \le k \le n$, then $e_n D_1(\epsilon)$ is contractible by Lemma 2.1. Furthermore, the map $e_n D_1(1^{k+1}, 0^{n-k-1}) \rightarrow e_n D_1(1^k, 0^{n-k})$ is equivalent to d_k . So we obtain the following proposition.

Proposition 2.5. The sequence

$$e_n D_1(1, \dots, 1) \rightarrow e_n D_1(1, \dots, 1, 0) \rightarrow \dots \rightarrow e_n D_1(0, \dots, 0)$$

is equivalent to a part of the Kuhn's exact sequence

$$M(n) \rightarrow M(n-1) \rightarrow \cdots \rightarrow M(0).$$

Let $u_n: D(n) \to H\mathbb{Z}/p$ be a generator for $H^0(D(n); \mathbb{Z}/p)$. The mod p Steenrod algebra \mathscr{A}_p acts on $H^*(D(n); \mathbb{Z}/p)$. For a finite sequence $I = (\epsilon_0, r_1, \epsilon_1, r_2, \cdots), r_j \ge 0$, $\epsilon_j = 0, 1$, we let $\theta^I = \beta^{\epsilon_0} \mathscr{P}^{r_1} \beta^{\epsilon_1} \mathscr{P}^{r_2} \cdots$ where β is the Bockstein operation and \mathscr{P}^r is the Steenrod reduced power. (For p = 2, and $\beta = Sq^1$ and $\mathscr{P}^i = Sq^{2i}$.) We say that I is admissible if $r_i \ge pr_{i+1} + \epsilon_i$ for all i. Then the admissible θ^I are a basis for \mathscr{A}_p . The length l(I) is defined by l(I) = n if $r_i = 0$ for i > n and $\epsilon_i = 0$ for $i \ge n$. Then $H^*(D(n); \mathbb{Z}/p)$ has a basis $\{\theta^I(u_n) | I:$ admissible, $l(I) \le n\}$ [4].

Theorem 2.6 (Theorem 0.1). There is a homotopy equivalence

$$e_n F_n(p) \simeq \Sigma^{-n} D(n)$$

In particular, $H^*(e_nF(p); \mathbb{Z}/p)$ has a basis $\{\theta^I(v_n) | I: \text{ admissible, } l(I) \leq n\}$.

Proof. Let

be the Kuhn's exact sequence where $E_k \to M(k) \to E_{k-1}$ are exact. We obtain the following sequence

$$H\mathbb{Z}/p \to \Sigma E_0 \to \Sigma^2 E_1 \to \cdots.$$

Then $D(k) \xrightarrow{u_k} H\mathbb{Z}/p \to \Sigma^{k+1}E_k$ are cofiber sequences. We let $D(k)' = \Sigma^k e_n D_1(2^k, 0^{n-k})$. Then there is a sequence

$$\cdots \Sigma^{-2} D(2') \qquad \Sigma^{-1} D(1)'$$

$$\searrow \qquad \swarrow \qquad \searrow \qquad M(2) \qquad M(1) \rightarrow M(0)$$

where $\Sigma^{-k}D(k)' \to M(k) \to \Sigma^{-k+1}D(k-1)'$ are cofiber sequences. There are maps $v_k: D(k)' \to H\mathbb{Z}/p$ which are generators for $H^*(D(k)'; \mathbb{Z}/p)$. We let $\Sigma^{k+1}E'_k$ be the cofiber of v_k .

We prove that $D(k)' \simeq D(k)$ and the map $v_k: D(k)' \to H\mathbb{Z}/p$ is equivalent to u_k by induction on k. The case k=1 is trivial. Then we assume that the case k-1 is true. There is a homotopy commutative diagram

$$\begin{split} \Sigma^{-1}M(k) &\to & * &\to M(k) \\ \downarrow & \downarrow & \downarrow \\ \Sigma^{-k}D(k-1) \xrightarrow{u_{k-1}} \Sigma^{-k}H\mathbf{Z}/p &\to E_{k-1} \\ \downarrow & \parallel & \downarrow \\ \Sigma^{-k}D(k)' \xrightarrow{v_k} \Sigma^{-k}H\mathbf{Z}/p &\to \Sigma E'_k \end{split}$$

where all vertical and horizontal sequences are cofiber sequences. By the above diagram, we obtain a homotopy commutative triangle

$$\begin{array}{cccc}
 & M(k) \\
 & \swarrow & \searrow \\
 & E_{k-1} & \rightarrow & \Sigma^{-k+1} D(k-1)
\end{array}$$

Then the uniqueness of the map $M(k) \to E_{k-1}$ which factors through $M(k) \to M(k-1)$, we see that $E'_k \simeq E_k$ and the map $H\mathbb{Z}/p \to \Sigma^{k+1}E'_k$ is equivalent to the map $H\mathbb{Z}/p \to \Sigma^{k+1}E_k$. Hence $D(k)' \simeq D(k)$ and $v_k: D(k)' \to H\mathbb{Z}/p$ is equivalent to u_k . This completes the proof. **Remark.** The strictly commutative diagram \overline{D}' over $\overline{\mathscr{E}}$ extends to the strictly commutative diagram D' over \mathscr{E} such that

$$D'(\epsilon_1, \dots, \epsilon_{i-1}, 0, \epsilon_{i+1}, \dots, \epsilon_n) \to D'(\epsilon_1, \dots, \epsilon_{i-1}, 1, \epsilon_{i+1}, \dots, \epsilon_n)$$
$$\to D'(\epsilon_1, \dots, \epsilon_{i-1}, 2, \epsilon_{i+1}, \dots, \epsilon_n)$$

are cofiber sequences. Let $C_n(p) = D'(2, \dots, 2)$. Then the stable splitting of $C_n(p)$ by the Steinberg idempotent is homotopy equivalent to L(n) which is an indecomposable wedge summand of $B(\mathbb{Z}/p)_+^n$.

DEPARTMENT OF MATHEMATICS KYOTO UNIVERSITY

References

- [1] R. W. Carter, Finite groups of Lie type. Conjugacy classes and complex characters, Pure and Applied Mathematics, A Wiley-Interscience Publication, John Wiley Sons, Inc., New York, 1985.
- [2] N. J. Kuhn, A Kahn-Priddy sequence and a conjecture of G. W. Whitehead, Math. Proc. Cambridge Philos. Soc., 92-3 (1982), 467-483.
- [3] N. J. Kuhn and S. B. Priddy, The transfer and Whitehead's conjecture, Math. Proc. Cambridge Philos. Soc., 98-3 (1985), 459-480.
- [4] S. A. Mitchell and S. B. Priddy, Stable splittings derived from the Steinberg module. Topology, 22-3, (1983), 285-298.
- [5] G. Nishida, On the spectra L(n) and a theorem of Kuhn. Homotopy theory and related topics (Kyoto, 1984), 273-286, Adv. Stud. Pure Math. 9, North-Holland, Amsterdam-New York, 1987.
- [6] T. Torii, Topological realization of level structures of the formal group laws over $\widehat{E(n)}$, preprint.