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Symplectic volume of the moduli space of spatial polygons

By

Yasuhiko KAMIYAMA and Michishige TEZUKA

1. Introduction

Let M „ (n  3) be the moduli space of spatial polygons P , a2  , a„) whose
edges are vectors a c  o f  length lad =1 (1 < i < n ). Two polygons are identified if
they differ only by motions in R 3 . T h e  sum of the vectors is assumed to be zero.
Thus:

(1.1)M , , =  {P =(aj, • • a n) e(S 2 )'' : a 1 + • • • + a„ = 0)1,50(3).

It is known that M„ admits a symplectic structure such that the complex dimension
of M„ is n - 3[8], [11] (cf. Theorem 2.8). For odd n  or n= 4, M „ has no singular
p o in ts . F o r even n  with n > 6 , P —(a, , a 2 , • • • , a„) is  a  singular point if and only if
all the a, (1 < i< n) lie on a line in l e  through O .  Such singular points are cone-like
singularities and have neighborhoods C (S " ' x s iS" - 3 ), where C  denotes the cone
a n d  S 1 a c t s  o n  b o th  copies of S" - 3  b y  th e  complex multiplication(see for
example [8]).

For odd n, H (M„;R) was determined by Kirwan and Klyachko [9], [11]. Later
the cohomology ring H *(M „;R ) was determined by B rion and Kirwan [1], [10]
(cf. Theorem 2.2). In particular H*(M„;R) is generated by certain two dimensional
cohomology classes z , , z ,, e H 2 (M „ ;R ) . But the intersection numbers 1„,,Œ13 are
not yet known, where ate HP(M„;R) and #e Hq(Mn ; R ) with p + q = 2n — 6.

In contrast with this, for even n, H * (M ,,;R) is complicated and is not generated
by two demensional cohomology classes nor does not obey Poincaré duality [7]. The
cohomology ring H*(M„; R) is not yet known.

The purposes of this paper are as follows. First we determine the intersection
numbers f m n a13 for odd n, where a e HP(Ain ; R) and #6 Hq(M„;R) with p + q = 2n — 6.
Let con be  the symplectic form on M „ .  Then secondly we determine the symplectic
volume 1„,, nalln - 3  fo r  all n.

In  order to  state  our results, w e prepare som e n o ta tio n s . F o r  a  sequence
(d,, • • • , d,,) of nonnegative integers with E:i= ,d ,= n — 3, we define <t d , • • • rd„> by

(1.2) <Tdi • • • Td. > — z e i
i

 • • •  z e n  5
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where zi e H 2(M „; R) (1 <j < n) are the generators of H *(M„; R), which will be specified
in Theorem 2.2. In order to determine the intersection numbers for odd n, we need
to determine <rd , ••• t d „ ›  for all (d1 , •••,d„). T o do  this, we consider the following
types of (d1 , • • •, d„). We set n=2m+1.

(i) d i = •-• =d„_ 3 =  1 and d_  2 = d„_ i =d„=0.
(ii) d i  =2k, d2  = • • • =d,i- 2k — 2  =  1  and d„_ 2k —1 =

 • • • =  d n
=  0, where 1 < k < m -1

and n=2m+1.

If (d1 , •••,d,) is of the type (i), then we write <t r d b y  <P,,,o>. O n the other
hand, if (d1 , •••,dn) is of the type (ii), then we write <\ rd i • • • t d „ ›  by < P n ,2 k > •  Thus:

(1.3) <Pn,0> =  M „ z 1 • • • z n— 3

< Pn,2k>  =  fm „z?kz2  • • • Zn— 2k — 2 (1 < k < n i-1 ).

Then w e first prove th e  following theorem . F o r  a  sequence (c11 ,•••,d„) of
nonnegative in teg e rs  w ith  E7= i cli =n— 3, w e  s e t  d 1 =2oc i + c ,  (1 < i < n ) ,  where
ci =0 o r  1.

Theorem A .  We have the following relations in H*(M„;R).

(i) If  ai = 0 for then we have

<Tai ••• Id„> <Pn,0>•

(ii) If  04,00 for som e i, then we have

<Tr, '  • • • Td„) <Pn,2(ai + ••• + ci„)>•

Thus it suffices to determine l n 2 k ,
 (0.k <m — 1) in  order to determine then, 

intersection num bers. About this, we have the following theorem. Let ( )  be the
binomial coefficient.

Theorem B .  When n= 2m + 1, the number <P,,,2k) (0 i s  g i v e n  as
follows.

C"
< p n , 2 k >  = (  1 )

k 1 ) ( 2 m —  Im )

(
2
2 7 ;  1) •

Example 1.4. We have the following examples:

(i) Af, : <p5 ,0 > = 1 and <P5 ,2 > = —3.

(ii) M 7 : <p7 , 0) — 2, <P 7 ,2 > — —2 and <P7 ,4 > —10.

(iii) M 9 < P 9 ,0>  —  5 ,  <P9,2>
3 , <P9,4> — 5 a n d  < P 9 ,6 >  —  35.
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Next we give the symplectic volume of M„ for all n. As before, we denote the
symplectic form of M „ b y  w . T h e n ,  we set

(1.5) v,, =
.IM

Then we have the following:

Theorem C .  The symplectic volume v„ is  g iv en  as fo llow s.

Lu

v „= E —  iy(n 1)(n— 2 — 2j)n-  3 .

Example 1.6. We have the following examples: v3 =1, v 4 =2, v 5 =5, v 6 = 23 • 3,
11, v8 =2 8 • 5 and v9

= 3 2 .5 ,1 7 2 .

This paper is organized as follow s. In Section 2 we first recall the structure
of H *(M„;R) for odd n. Then we recall the results on the symplectic structure of
M .  In  S e c tio n  3 we prove Theorems A and B.

In Section 4 we prove Theorem C . T h e  method of the proof is as follows. By
considering the moment map of the T" -  3 -action on M ,  the subspace of M
of 'prodigal' polygons, it suffices to determine the  volum e of a  convex polytope
6,„_ 3 in R"  in order to determine v  Theorem 2.11). In Section 4 we detemine
this volume by calculus.

F o r odd n, we can give a direct proof of Theorem C using the intersection
num bers. The essential facts for the proof are the description of con in terms of z1 [5]
(cf. Theorem 2.12) a n d  Theorems A  a n d  B . In  S e c tio n  5 we give this proof.

2. Preliminaries

First we recall the structure of H*(M „;R) for odd n, which was determined by
Brion and Kirwan [1], [10]. F o r  ie {1, ...,n}, we define A„, i c (R 3 )" by

0
A„, i = P=(a 1 ,•••,a„)e(S 2 )":a 1 +•••+a„= 0 and a1 =  1 0 \ }{

■ 1 /

Let SO(2) act on 123 by  rotation about the z-axis. Then for odd n, the diagonal
SO(2)-action on (R 3 )" is free on A„,, and we have M„= A „,,IS0(2) (cf. (1.1)). Therefore,
A„,, — M „ i s  a  p rinc ipa l SO(2)-bundle. L e t  , —■ M ,, b e  a  complex line bundle
associated with A„,1 — M„:

x (V S ',

where we identify SO(2) with S ' and let S ' act on  A„,, x C by

(P,a)•g=(Pg,ccg), (P,a)eA „,,x C , geS t.
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Then we define zi eH 2(M ;R )  to be the Chern class of

(2.1) z1-=c1(), 1 <i<n.

Now we have the following theorem.

Theorem 2.2 ([1], [10]). When n=2m +1, the algebra H *(M „;R ) is generated
by z1 ,•••,z„ with the relations:

(i) .4= • • = 4 .

(ii) l l i d (zi +z i ) = 0 , f o r  all an d  Jc {1,•••,n }  su c h  th at ift J and
card(J)=m, where card denotes the cardinal.

We take integers s and t with 1<s, t<2m + 1 and s  t .  For such s and t, we
define a  divisor of M„ as follows.

(2.3) {P= (a, , • • a„)e M„: as = ad.

Let y:H 2 „_ 8 (M„;R)=> H 2(M „;R ) be the Poincaré duality homomorphism. Then
we have the following lemma, which will be used in Section 3  (cf. the proof of
Theorem 3.7).

Lemma 2.4. For sOt, we have

zs +2 zr .

P ro o f  We describe y- 1 (zs )E112 „_ 8 (M „;R ) in  terms o f submanifolds of real
codimension two. W e define a section a  of the line bundle M = A ,/S O (2 )
as follows. For t e {1, ...,n} with tOs, we set

a (P )= (P ,4  +  — 1 4 ) 6

4  \

where P=(a,,•••,an)e Mn =11 s 1S0(2) and at = 4 .

\ 4
Since y- 1 ( ; )= 0 . - 1 (0 ) 6  H2.-8(M.;R) , w e have

(2.5)
I \0 I 0 \

y - '(zO= { P e A :a ,= 0 I SO(2)+ Pc A :a ,={ 0 I SO(2)

1 -  I
={P=(a,,•••,a„) E M„ : as =ad+{P=(ai,•••,a,,)E as+a,=01.
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We set

{

Pe A : a , =
0  \
0 /S0(2).

—1

  

Then we choose an orientation of N ,,, in (2.5) as follows. W e define a  m ap cp,:
(S 2 )" -

1
 —>(S 2 )" by

yo,(a, ,• • •,a s , • • •,44„ • ••,a„) =(a, ,• • •,a s , • • — as , • • •, a„),

w here - m eans om itting the  t-th  coord ina te . Then we define a  subspace Xs o f
(S 2 )' by

O

(

X,= (al  ,• • •, a• • •, a„ • ••,a,,)E (S 2 )" —  
1

 :  as  = O
l j

N ote  that p ( X )  h a s  a  natural orientation, and th is  orientation defines that of
Thus as an orientation of Ns ,„  we take the one induced from cp,.

Similarly we have1 I  0  \  I I  0  \  1
Y- 1 (zt)= Pe Ana: as = 0 /S0(2 )+ PE A „,,:a s = 0 I SO(2).

\
1 \ —1/I

Then it is seen that the orientation of the second term of the right side is induced
from the map (1),• (I'  x (—I) x l" - ' - '), where I denotes the 3 x 3 unit matrix. Hence
we have

(2.6)
Y - 1 (zt)= {P= , • • an) E Mn as = at} + ( — 1) 3 {P = (al , • a n) M „ : a s + a,= 01.

Now from (2.5) and (2.6), we have

Y -  
1(zs) + Y -  

1 (zt) — {P=(a i  , ••., a„ )e M „ :a s = a,}
2

= D ,,,.

Thus Lemma 2.4 holds.

Next we recall the results on the symplectic structure of M „ for all n. Recall
that the tangent space T M „ a t P = (a,, • • •,a ,,)e M  consists of vectors u = (u, , u n )
with u i e R 3 ( 1 < i< n )  under the following conditions:

(i) ( u i , ad =0 (1 < i where (u i , a i)  denotes the inner product.
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(ii) + • • • + un = O.

(iii) Two systems of vectors u =(u, , ..., u)  a n d  v =(v, , •••, vn) define the same
tangent vector in T M „ if and only if there exists w e le  such that ui =v i +[w ,a,]
for 1 <i<n , where [w, a] denotes the vector product.

We define a  differential 2-form co n o n  M „ by the following formula:

(2.7) con(u, v) = E det(u, , v, ai),
i=t

where P=(a i ,•••,a„)e M„ , u = (u, , • • un )  and  v = (v, , • • v „ )  are  elements o f TpMn .
Then we have the following:

Theorem 2.8 ([8 ], [11]). The differential 2-form o)„ defined by (2.7) gives a
symplectic structure on the moduli space M„.

We define a  map

ii„  :

as follows. Let P=(a i ,•••,a n )e  M „. Then we set

n — 2
(2.9) tin(P)=(lai +a21, a i +a 2 +a31, • E

1=1

Thus ,u„(P) is  the  lengths o f the  diagonals connecting the  vertices to the origin.
(Since 0,1=1E711 a i l =1, only these n - 3  lengths a re  n ew .)  A s in  [4 ], we call a
polygon P  'prodigal' if none of these n - 3  lengths vanish. L et Mn be the open
dense subspace of M n consisting of prodigal polygons. Then as  in  [8 ] and [1l],
Mn admits a  T ' 3 -action which is compatible with the symplectic structure on M n ,
where T" - 3  denotes the (n — 3)-dimensional torus. We recall that the action is given
as follows: The ith circle acts by rotating the part of the polygon, formed by the
first i+1  edges, around the ith diagonal. (When that diagonal is length zero, there
is no  well-defined axis around which to be rotated, and indeed the action cannot
be extended continuously over this subset. Thus to consider only prodigal polygons
is essential.) This action preserves the level sets of the functions in (2.9).

Theorem 2.10 ([8], [11]). The restriction u n IM :M „—  R n - 3  is  a moment map
for the T" - 3 -action on M .

Thus we can understand pn :M„—■ R "  3 in  (2.9) as the extension of the moment
m a p . We write the image of p„ by An _ 3 :

— 3 — fin (A ln ).

N o te  th a t  An _ 3 i s  a  convex polytope i n  R n  3 . W e  w rite  its  volum e by



Moduli space of spatial polygons 563

Vol(A_ 3 ). Since ilf„ is an open dense subspace of M„ , itt„(M ) is also an open dense
subspace o f  A„_ 3 . H e n c e  w e  have  Vol(A,,_ 3 ) = Vol(p„(M„)). N o te  a lso  tha t
dimc M„ = n — 3. H ence by D uisterm aat-H eckm an theorem  [2], [3, §2], w e have
the following theorem from Theorem 2.10:

Theorem 2.11. We have

v„=(n— 3)!Vol(An _ 3 ),

where v„ is defined in (1.5).

Finally for odd n, we have the following description of con :

Theorem 2.12 ([5]). The class [con ] e 1/ 2 (M,,;R) is given by

[a.)„] = E z i ,
1=1

where z i is defined in (2.1).

3. Proofs of Theorems A and B

I n  th is  section w e  se t  n = 2m + 1. Recall (1.2), w here w e se t  <Td i • • • TO
= Im n zd

i ! • • • zd„. for a sequence (d i , • • d„) of nonnegative integers with E7= df =n— 3.
Recall also (1.3), where we defined o

n
 ( 0  k g  01) by settin g  tr,2k> = <T d i  • • • ( 1 „ ›

for particular (d i , • • d„). As in Section 1 we set d,= 2a 1 + c i (1 i< n), where c i =0  or 1.

First we prove Theorem A . N ote  that the symmetric group S„ naturally acts
on M,, such  tha t g [11„]=[M „] for all g  S „, where [M,,] e 6 ( M  n ; R) denotes
the fundamental class. Hence if oci = 0 for 1 <i<n , then we can use the action to
prove (r d i • • • I d „ ›  =  <p„,,D).

Assume tha t cc, 0 0  for some i. Since d i  + • • • + d„=n— 3, we must have di  =0
for some j. Then by using Theorem 2.2(i), we have

(3.1) < I d ,  • • •  Id „ > = <TE1 • • • i t 2 ( a t i  +  • • •  + c t O r
ei + i te,,>.

Then by the S,,-action, we see that the right side of (3.1) is equal to

- 3 —2 ( j  + ..• + cc„))— fo ld  (2(al + •-• +20+ 2) — fold

T i • • •  T i To • • • To >  =  < P n , 2 ( a i  ••• +ce,,)>•

Next we prove Theorem B .  First we describe <P„,20 (1— 1 )  in  terms
of <P„,o>.

Proposition 3.2. When n= 2m + 1, the number lo
n  2 k /

 ( 1 .k n i-1 )  is  g iv e n  as— ,  
follows.

<T2(cci + ••• + a.)
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(i) For 1<k<m -2 , we have

( m 2

(P.,20=( - 1 )k(2 m  2 )  
i  )  

 <Pno>.
(22N i)

<P„,2m— 2 >  = (  1) + '(2m — 1)<P.,0>.

P ro o f  We shall assume the truth of the following lemma.
Lemma 3.3. When n=2m+1, we have the following equations.

(i) When m is even, we set m =2a. Then

{

(3.4) E7= oC2n7+11)<Pn,2i+ 2p> =0 fo r0 .p < a -1

El= o(m 2+:71 )<Pn,2i-i- 2p> =0 for 0 <a-2 .

(ii) When m is odd, we set m =2a+1. Then

(3.5)
t r ! m+

1 ) / ,

Ok2j+ 11\Pn,2j+ 2p> = 0  fo rO p < a -1
v ,f + =0  for0_<_p<a-1.,-,

J =o■ 2j 1\l'n,2j+ 2p>

Then it is easy to see that n 2 k ,
 in Proposition 3.2 is the general solution of (3.4)

,  

or (3.5). Hence Proposition 3.2 follows.

Proof of  Lemma 3.3. We prove (3.4). By Theorem 2.2 (ii), we have

m+In(z1 + z1) = 0 .
i= 2

We expand this and write as

(3.6) E =0,
1=0

where f i(z2  , •  z m + 1 )  denotes a polynomial of degree j  (here we give the degree 1
to  zi) with variables z 2 , • • . In particular, we have f o (z2  , • •, z„, + 1 ) = 1.

N ow  let m= 2 a .  F o r  every 0 _<,p we multiply ziPzm + 2 • • • Z2 m  _ 1_ 2 p  to
(3.6). Then by Theorem 2.2 (ii) and the S n -action, we have

(  
z +

Î a  +  E  (z 1 fm- 2j— 1(Z2 , . • ' , Z ml- 1)+ f„„ - 2 i (z2, • • ., z,,,,- 1))2q j

i = 0

X (2pZ i  Z m + 2 • • • Z2 m _  _  2 p ) =O.

Note that the numbers of monomials of f,„_ 2i _ i(Z2 , • • •, Z m +  i )  and f m _, ; (z2  , • •• zn ,  ,)
are („,_ 1 )  and (m 2 i ). Hence we have

(z i fm -  2j— 1(Z2 • • •, + 1)+,f,„_ 2 j(Z2 , • • •, Z m 1 ) ) ( Z r  2 P Zm + 2 • • • 
—
Z

2 m  —  1  —  2 p )
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= ((m  —m2j— 1) + (m m— 21))<P "'2"  2 p >

m +1
— (

2 j + 1
)\Pro

'

2j-1- 2p>

Thus the  first equation of (3.4) follow s. The second equation of (3.4) is proved
similarly by multiplying z iP 'z m  + 2  -  •  Z

2 m - 2 p -  
2  ( 0  ..<4, 2) to (3.6).

By Proposition 3.2, we need to determine <p 0 > in order to complete the proof of
Theorem B.

Theorem 3.7. When n=2m+1, we have the following:

( 2, 1 1

<P. 0 > = ‘ m

' 2m —1

P ro o f  Recall that for integers s and t with 1 <s, t < 2m + 1 and s t ,  we defined
a  divisor D„,, of M„ as follows (cf. (2.3)).

(3.8) D ,, ,= {P = (a , ,• • • ,a )e M „ :a s = a ,}

We set N i =D i ,2 nD 1 ,3 n•••(-) D ,  and N 2 = D , , , , , ,„± 2 n D „,+1 , „,+3 n • • • ( -)

D m +  1 , 2 m  •  Since M 3 -= {point}, we have

(3.9) A T i n N 2 = { 13  = ( a l  , • ••,a„)e M „:a i = ••• =am  a n d  am + , = • • • =a 2 „,}
= {point}.

Let y: H 2 „_ 8 (M„; R) H 2 (M „;R ) b e  the Poincaré duality homomorphism. Then
(3.9) tells us that

(3.10)

By Lemma 2.4, we have

(3.11)

Using (3.11), we can write (3.10) as

2m

Y (D i.„ ) H  y(Dm+,,,)=1.fm ,,p = 2 q=m+ 2

Y (D )= z s + z t

2 •

1
2m

(3.12) (z, +z„) (zm + i + zo=1.
2 2 m 2  

L o y  = 2 q= m +  2

By the same argument as in the proof of Lemma 3.3, we can describe the left side of
(3.12) in terms of < P „ , 2 k >

T h u s  ( 3 . 1 2 )  i s  e q u i v a l e n t  t o  the following.
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(i) When m  is even, we set m  = 2a. Then

1 a 2 a  y  2 a  ) ,
(3.13)   E Vin,4a — 2i —2j> = 1 .22m— 2 i , i  i  2i— 1121— 1

(ii) When m  is odd, we set m =2a+ 1. Then

1 xa, (2a + 1 y2a + 1) „
(3.14) \Pn,4a— 2i— 2j> = 1 .22m-2LiZ-20 2i 2j

Proposition 3 .1 5 . (3.13) or (3.14) is equivalent to

( 2.m-1 )
Hence <p„,0> =  and Theorem 3.7 follows.

2m — 1

Proof  of Proposition 3 .1 5 . We shall prove the case (3.13). It is easy to see
that (3.13) is equivalent to

1 2a \kx-,— 1 (  2 a  y 2a )
=  1.(3.16) E <Pn,4a-2Ici

2 2 m —  2 k = 2 i= 2i —1A2k —21- 1

From Proposition 3.2, we have

<Pn,4a— 2k>  = ( 1 )
k  (4 a  —  2 ) ( 2 k a 2 2 )  

<P,0>
C R : i)

for 2 <k <  2 a . It is easy to see that

k-
1 ( 2 a  X 2a )  (2 ;44 ,

 2 ) + Ok(k2a0

i= 1 2 i-1  2 k -2 i—  1 2
•

Hence (3.16) is equivalent to

2a
(3.17)

22- 2

(

k 2
 E (Ak+Bo)<p„,0>=1,

- = 

where

A  k  =  (  1 )

k (2a — 1 )( 2ka-- 22 )(2 kf 2)(3,18)
1 i)

and

(2a— 1 X2ka---
22)(k2a1)

(3.19) Bk—
(tc 1 i )



Moduli space of spatial polygons 567

Lemma 3.20. W e have the following equations:

(a) El?̀ 2Ak = 4a — 1.

2 4.-2 ( 2 a  _ 1 )

(b) 2Bk — (4a — 1).(4a2 –a  2)

Proof  of Lemma 3 .2 0 . First we prove (a). From (3.18), we have

A k = ( n k  
4a  — 1  (  2 a

Then (a) follows easily.
Next we prove (b). From  (3.19), we have

(2a— 1)(2k — 3)(4a — 2k + 1
(3.21) B

k
—  

 ( 4 a 2 – a  2 ) k —1 2a—k+1

Note that

vl ,a ( 2 k  —  3)(4a — 2k + 1) 1 4-,
a (2k — 2)(4a — 2k +

=
k =2 k -1  1 2 a— k +1 4 k - 2  k— 1 1 2 a — k + 1  )

1 (2 4 a  2  (4 a ))
4 2 a ) ) .

Hence (b) follows from (3.21).

Now from (3.17) and Lemma 3.20, we have

1 24a-2 (2a-1 )

Since m= 2a, this is equivalent to

1 2 2 m  – 2 ( 2 m
1 < > =  1 .2 2 m 2 ( 2 m - 1 )m

Thus Proposition 3.15 holds for the case (3.13. case (3.14) is proved similarly.

4. Proof of Theorem C

We prove Theorem C  using Theorem 2.11. Recall that in Section 2, we set
_ 3 = ttn(M n), where tin : M „  /V ' is  g iv e n  in  (2.9). First we describe A n _3 (cf.

(4.2)). We set R + ={.)ceR :x.. 0}. We use the following notation.

2

n =2 2 m 2 ( 4 a –  2 ) <P,0> 1 .
2 a  
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Definition 4 . 1 .  F o r x ,y e ll, , we use the sym bol A (x,y,l) to denote that x
and y satisfy the conditions

x y +  1 ,  y _ x + 1  a n d  1  x + y .

Thus (x , y, 1) denotes the conditions that there exists a triangle whose edges have
lengths x, y and 1.

Let P =(a i , • • •,a „ )E M „. For 1< j<  n— 3, we set xi = lEit t lad . Then from (2.9),
it is easy to see that A n _ 3  is given as follows.

(4.2) A„_3={(x„•••,x„_3)E(R+)n-3:0 x, 2,0_<_x„_ 3 _ 2  and

A(x i  , x 2  9 1), A(X2 , X 3  , 1), • • •, A(x„_ 4 , Xn _ 3  9 1)1.

Note that for (x 1 , •••,x„_ 3)E An _ 3 , (4.2) tells us that 0 <x i <j+1 .
Let kEN and le t teR + s a t is f y  0 < t< k + 2 .  F o r  such t, we define a  convex

polytope 11„,, in  le  as follows.

(4.3) nk,t= {(x1 • • - , ck)e (R +)k : x 1 2  and

A(Xi , , 1), L(X2
 , x 3  , 1), *, A(Xk — 1 9 Xk 9 1)5 AOCk 5 t5 01.

We write the volume of fl k  in  le  by V,(t). Thus:

V,(t)=Vol(fl k ,r).

Let t=1  a n d  we consider fl k ,1 • I n  this case, the condition A(x k ,1,1) implies
tha t 0< x k <2. Thus from  (4.2) and (4.3), we have

S-4, 1 = A.

Hence by Theorem 2.11, we have

(4.4) v = (n — 3)!V„ _ 3 (1).

In the following, we determine Vk (t) for k e N and t ER , with 0 < t < k + 2. The
method of calculations is a s  follows. W e prove a  recursion formula which gives
Vk+ 1 0 ( 0  + 3) from V (t) ( 0  t +  2) (cf. Lemma 4.5 and Theorem 4.6). Then
we solve this (cf. Theorem  4.8). F o r that purpose, it is convenient to decompose
the interval [0,k +2] as follows.

(i) When k=21+1. W e decom pose

[0 ,k + 2 ]= [0 ,1 ]u [1 ,3 ]u • • •u [k -2 i,k + 2 -2 i]u • • •u [k ,k + 2 ] .

(ii) When k =21. We decompose

[0, k + 2] = [0, 2] k..) [2, 4] u • • • u[k — 2i, k + 2 — 2i] • • • u[k, k +
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When k =21+1, we define V  k + 1(t) o r  Vk ,i(t) (0 < i< /)  to  be the restriction of
Vk (t) (with respect to  the variable t) to [0,1] or [k - 2 i ,k +2 - 2 i] (0.• / /). When
k=21, we define Vk ,i(t) (0 t o  b e  the restriction of Vk (t) to  [k -2 i,k +2 -2 i]
(0 _ i<1 ) . Thus:

(i) When k =21+ 1.

V  + 0 < t< 1
Vk , i(t) 1< t< 3

Vk (0= Vk ,i(t) k - 2 i< t<k +2 - 2 i

Vk , i(t) k - 2 < t < k
Vk,o(1) k <t<k +2 .

(ii) When k=21.

V k ,i(t)

V k  - 1(0

V k ,i(t)

V k , 1 (t)

V k ,o(t)

0 < t< 2
2 < t< 4

k - 2 i<t<k +2 - 2 i

k - 2 < t < k
k <t<k +2 .

v,(t)=

Now we give the recursion formula. For the initial condition, we have the
following:

Lemma 4.5. We have the following formula for V i (t).

= 2t 0< t< 1
V1 ,0 (t)=3—t 1< t< 3 .

P ro o f  By the definition, we have

and A(x 1 ,t,1)1.

Consider the domain in (x, ,t)-plane surrounded by four lines t = —x 1 +1, t =x , +1,
t =x , —1 and x 1 = 2 . F o r  each t, we cut this domain by a line through (0, t), which
is parallel to the x r axis.

(i) If 0 < t 1, then we must have 1—t<x 1 < 1+ t .  Hence V1 ,1 (t)= (1 + t) — (1 — t)
=2t.

(ii) I f  1 < tt h e n  w e  m ust have t - 1 < x , < 2 .  Hence V1 ,0 (t)=2— (t-1)
=3— t.



f t

k + 2

V k +1,0 (t)  = Vk,O(X k + 1)dX k + 1
-1

k+1<t<k+3.
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Hence the result follows.

Next we give the recursion formula which gives Vk + , ( t )  from  V„,,(t).

Theorem 4.6.

(i) When k=21+1. (In this case, we have k +1=2(1+1))

(a) When i=1+1.

f il  - t l / k  1+1(X
.1

k+ i)dX k  4. ,  +Pi ± ty k , i ( x )k + 1.dX k + 1
V k +1,1+ JO =

 f i  i v
'
‘

i t -  1 r k ,1+1(X k i_ i)dX k  _F. 1- - I -  f li +  t  V kd(X k A. i)dX k 4. 1

(b) When 1<i<1.

0<t<1
1 < t < 2.

k +2 -2 1 +

V k + 1 ,i(t) = V k ,i(X k  i)dX k  + _  i(X k  i)d X  k
t - 1 f ti t +2 -2 1

k + 1 -2 i< t< k + 3 -2 i.

(c) When i=0.

(ii) When k=21. (In this case, we have k+1=21+1.)

(a) When i=1+1

1 + t

V k+ 1,1+ JO= V k j(X k  i)d X k 0<t<1.
1- t

(b) W hen 1

k+2-2 i t+1

V  k + 1 ,i(t) = V k .i(X k +i)d X k +1 + i)dX k + 1
1 -  1 fk + 2 -2 i

k + 1 -2 i< t< k + 3 -2 i.

(c) When i=0.

k+ 2

V  k + 1 ,0(t) = V k ,o (X k  i)dX k k+1<t<k+3.
-

P ro o f  This theorem is proved in  th e  same way a s  in  Lemma 4.5. As an
example, we show (i)(b). Consider the domain in (xk + ,,t)-plane surrounded by four
lines t= —xk + , +1, t=x k + , +1, t=x k + , —1 a n d  xk + , = k + 2. F o r  each  t  with
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k + 1 — 2i < t <k + 3-2i, we cut this domain by a line through (0, t), which is parallel
to the xk + 1 -axis. Then we must have t —1<x k + i < t + 1 . Hence we have

t+1
(4.7) V k +

 1 ,1 ( t )  = V k(X k + 1)11X k + 1
t - 1

(We think of t  as X , + 1  in  th e  definition of Llk ,, in  (4.3).) N ote that we have

k -2 i< t -1 < k +  2— 2 i< t+ 1 < k + 4 -2 i

Then by the definition of Vo (t), we can write (4.7) in the form of (i)(b). Hence the
result follows.

Now the solution of the recursion formula in Theorem 4.6 under the initial
condition Lemma 4.5 is given as follows.

Theorem 4 .8 .  For keN , V k ,i(t) is given as follows.

,
v k ,i(()=- E  ( -  OP(

k  +  2

)(k + 2-2p— t)k

k! p. 0p

P ro o f  This theorem is proved easily by induction on k. As an example, we
assume the truth of Theorem 4.8 for k=21+1 and show the case V ",,, + ,(t). We
must treat the cases 0<t < 1 and  1 <t < 2 .  But as the calculations are similar, we
treat the form er case. By Theorerm 4.6 (i)(a) and the inductive hypothesis, we have

(4.9)
C1 1 1+1( k + 2

Vk + 1,1+ 1(t)
=E  ( -  i y )(k+ 2 — 2p — xk+ i)kdxk +1

1-tid p=o p

± fi+t i  I k +2
,,  E (-0K )(k+ 2 — 2p — xk +1)kdxk +1

i M • p = 0 p

1
(k+1)! 

(A + B),

where
1+1

(4.10) A = E (-1)P(
k + 2

) (k + 1 -2 p + t) k +1

P= 0

and

(4.11) B= — ( -1 )P ( k + 2 ) (k + 1 -2 p — t)" 1.
P=0 P

About (4.11), it is easy to see that
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1-1-1
(4.12) B = E (- 1)q(

k +  2

)(k + 3 — 2q — 
+ 1 .

q=1 q —1

About (4.10), it is easy to see that

k +2
(4.13) A = —  E (- 1)q(

k  +  2

)(k +3 — 2q— t)k + 1 .
q=1+2

The following lemma is proved easily.

Lemma 4 .1 4 . Let x be a variable and n e N . L e t  r e Z satisfy 0  < r  < n -1 . Then
we have the following equation.

( — 1)q(
n

)(x — 2q)r = O.
q=0 q

Now we use Lemma 4.14 for x=k +3— t, n=k+ 2 and r= k  + 1 . Then from
(4.13), we have

i+1
(4.15) A = E (- oq(

k  + 2

)(k +3-2q—
olc+1.

q =0

From (4.9), (4.12) and (4.15), we see that

Vk+1,1+1(t)— 
1  1 1

(  1 ) g 5(k+2) + (k+2)1 ( k + 3 o k + 1
(k+1)!,=,3 q  ) —1) j

1 1+ 1

 E  ( -0 q (
k  + 3

)(k + 3 -2q— t)k±1 .
(k+1)L7 =0 q

This completes the proof of Theorem 4.8.

N ow  w e p rove  T heorem  C .  F ro m  (4.4), w e  h a v e  v„= (n-3 )!V n _ 3 (1). If
n = 2 m + 1 , th e n  n— 3=2(m— 1). B y  th e  definition o f  VIP ) ,  w e  h a v e  V„_ 3 (1)
=

 Hence by Theorem 4.8, we have

m-1
y

(n _ 1
„=  E (- 0P )0-2-2pr 3 .

p =0

Thus Theorem C holds for n  2m  +  1. The case for n = 2 m  is proved similarly.

5 .  Alternative proof of Theorem C for odd n

In  this section we set n= 2m+  1. By Theoorem 2.12, we have [a„]=E7= 1zi .
Hence in order to calculate vn = f m „conn ' ,  it suffices to determine Im n (z1 + -• +z„)J '  .
The essential ideas fo r calculations a re  first to expand (z, + ••• +z„)" -3 ,  then to
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apply Theorems A  and B .  These calculations are somewhat long, but each step is
easy. So w e just mention the steps for calculations.

STEP 1. Since dim crlin =n — 3, the equation vn =  m n (z, + • • • + z ) 3  is equivalent
to

(5.1) vn = (n— 3)!j'  exp(z, + • • • + z,,).
14„

We set f (z )= Er= 06 $  and g(z)= E,= 0 (2, +2 ' 1)1 , where z  is a  v a riab le . Then we have

exp z=f(z)+zg(z).

Since z7 = z.,2 by Theorem 2.2 (i), we have

(5.2) exp(z, + • • • + zn)= 11 (f(z i)+zig(zi)).
i=t

Since n  is odd, dim c M  = n —  3 is even. Hence using the S n -action (as in Section
3, S„ denotes the symmetric group), (5.1) and (5.2) imply the following:

. - 1 n )
(5.3) v„ =- (n— 3)! E f(Z 2ig(Z1)21Z2Z3 • • • Z2i+

i =  0  ( 2 i i i 'm n

STEP 2. Let a n .  2 1 2 j  b e  the coefficient of Zn—  3  — 21 in  f ( z r  - zig(z x  ,2rj which is
regarded as a  formal power series. Then w e can describe the right side of (5.3) in
terms of 60, ,  n,2m— 2 —2i> and a 2 m +  ,  2i , 2i . AS < P n , 2 k >  is given in Theorem B, we can
calculate the right side of (5.3). T o  s ta te  the result, we define Am  and B„, as follows.

Am= ( - 0 - 1
(2m — 2)!(2m + 1)! — 1 ) a2m + 1 —2i,2iE(m— um! i=o2 m  —  2 i

and

B m =(—  1 )m  

(2m — 2)!(2rri + 1)!. ( m  —  1 —2i,2iE  (  u
(m-1)!m! 1=0 ) 2m + 1 — 2i

Then we have from (5.3) that

(5.4) v„=Am+Bm.

S T E P  3 . N o te  th a t f (z )= cosh z  an d  g(z )—  sinh z
z •  H e n c e  w e  c a n  regard

a2 m +  1 — 2i,2i as the coefficient of z 2 "' 2 in  c o sh ' +  -  2 'z sinh 2 iZ. Since

m_ — 1 )  I
E (-1 i cosh2m+1- 2 1 z sinh 2 ' z
i= ) i ) 2 m  — 2i
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cosh z 
m - 1

—  2 m 0  ( — 1)'(
7

)cosh , m- , iz sinh 21 Z

(1 + ( — 1)m ± sinh2 m z),

we calculate Am as follows.

=
( -1)'''' (2m + 1)!

(5.5)A m  
2 m!m! •

STEP 4. We determine B m • W e  set

(5.6) = oi
m - m — 1 c o sh ' +  -  2 i z sinh 2 ' z

4)(z) E (— 
i = 0 1 2m + 1 — 2i •

Since
c/4)„,(z )

— sinh z cosh' z —(m— 1)(sinh 2z)4) _
dz

we can prove the following equation by induction on m.

(5.7) c/m(Z) =  E i coshpi+ oz
i= 0

with

      

I m ,2 j+ 1
=

 

(— 1)i+ (m —1)!m! (2m + 1)
2 (2m + I)! \ m —j )

1< j<m

j=0 .

  

1

    

2(m + 1)

      

Note tha t a2 m +  _  2 0 i  is  the coefficient of z2 m-  2  in cosh 2 '  2 i Z sinh 2 ' z  (cf.
STEP 3). Hence (5.6) tells us that the term ET_- 01(m  1rt++ 11-  2 t t  i7  in B,,, is equal
to  the coefficient of - 2 in  0„,(z). Then by (5.7), we can write Bm as follows.

(—
(5.8) Bm=

1)'" (2m  +  1)! ( - 0 '1  m .(2m + 1 )
( 2 j +  1 )

2
m

- 2
.E2 (m — 1)!(m + 1)! 

+

2 j= 1 m

STEP 5. By (5.5), we see that

o f  ( 5 . 8 ) =  ( 1 ) ' "  1(2m +Am  ± the first term
2 m  )  •

Hence by (5.4), we have

cosh z
2m
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(— 1)m. ( 2 m  + 1)
( 2 j +  1 ) 2

m 
- 2

.(5.9) P,, = E —
2J o M

I t  is easy to see that (5.9) is equivalent to

1 m
(5.10)v =  — - E — (2m+ 1

. )(2in + 1 — 2i ) 2 m  2 .2 i= 0

Using Lemma 4.14, it is  easy  to  see  tha t (5.10) equivalent to Theorem C  for
n = 2m +1.
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