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The spectral gap of two dimensional Ising model
with a hole: Shrinking effect of contours

By

Jun WANG

Abstract

W e consider th e  spectral gap o f the  two demensional Ising model on  a
special graph with some special boundary conditions. The special graph is a
finite square with a square hole on  its center part, tha t is, we consider a  finite
square of side 2L +1, and we remove another smaller finite square of side 2L 1 +1
(L 1 <L ) which has the same center as the finite square of side 2L +1, therefore
there is a square hole at the center part of the finite square of side 2L +1, we
denote this special graph by A(L,L 1). O n this graph, the boundary of A(L, L i )
is composed of "inner boundary" and "outer boundary". W e will discuss two
different boundary conditions of the Ising model o n  A(L,L,), one  is  th a t the
outer boundary condition is plus and minus spins' "mixed" boundary condition
and the inner boundary condition is plus boundary condition; the other is that
the outer boundary condition is plus boundary condition and the inner boundary
condition is an arbitrary boundary condition. O n above two different boundary
conditions, in the absence of an external field and a t  large inverse temperature

we will show the upper bound of the spectral gap of Ising model for the first
of above boundary conditions, and the lower bound of the spectral gap of Ising
model for the second of above boundary conditions. These two results show
tha t if we consider the first of above boundary conditions, and exchange this
inner boundary condition with the outer boundary condition of the Ising model
on A(L,L 1), the spectral gap of Ising model will be greately changed. The results
can be extended to some other cases, for example, we can consider some other
boundary conditions and some other graphs.

1. Introduction

In this paper, we consider the spectral gap of the two dimensional Ising model
on some special graph with two different special boundary conditions. This work
originates in an attempt to understand relaxation phenomena of the stochastic Ising
models on  porous media, e.g., the lattice Sierpinski C arpe t. T he  special graph is
th a t, a t  the  center p a r t  o f  th e  finite square of side 2L + 1, we remove another
smaller finite square of side 2L 1 +1 (L 1 <L), therefore the original finite square
becomes to a finite square with "a square hole" on its center part, defined as A(L, L 1 )
(see(2.21)). There are two boundaries on this special graph A(L, L 1 ). We call that
the boundary o f the  inner "hole" is the  "inner boundary" of A(L, L 1 )  (see (2.22)),
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and the outside boundary (that is the boundary of the finite square of side 2L +1)
is the "outer boundary" of A(L, L 1 ) (see (2.23)). Together with the inner boundary
and the outer boundary is called the "boundary" of A(L, L 1 ), that is, the "boundary"
of A(L, L 1)  contains two parts, one is  the inner boundary, the  other is the  outer
boundary. Under two different "mixed" boundary conditions, we will show some
estimations of the spectral gap of the Ising model on  A(L, L 1).

In  th e  paper [3 ] ,  in  the  absence  o f an  external fie ld  and  a t  large inverse
temperature fi , Higuchi and Yoshida gave an upper bound of the spectral gap for the
two dimensional stochastic Ising model with a  general "mixed" boundary condition
on a finite sq u a re . In  this paper, in A(L, L 1) first we consider Boundary Conditions
o f  Case 1: the inner boundary condition is  "plus" boundary condition, and outer
boundary condition is a  special "mixed" boundary condition, tha t is, the plus and
minus spins are  arranged alternately' on  the  outer boundary . In  other words, if
we give clockwise order to the sites {x „  x2 , •• .,} of the outer boundary of A(L,L 1 ),
and first put a plus spin on the site x 1 ,  second put a m inus spin on the site x2 ,
next put a  plus spin on the site  x 3 , ..•. Thus, we have  a  special "mixed" outer
boundary condition, which is denote by T. W ith this boundary condition T ,  we
can get (when 13 is large enough) the same upper bound of the spectral gap of the
Ising model as in  the paper [3 ], that is Theorem 1, for $  large enough, there are
c(fl)>0 and C> 0, we have

gap(A(L, L 1 ); fi, T) c(6)exp{ — C'/3L} (1.1)

where L, = [aL] — 1 and the constant a<.+.
In  th e  paper [5 ] ,  in  the  absence  o f an  external fie ld  and  a t  large inverse

temperature /3, Martinelli gave out the lower bound of the spectral gap for the two
dimensional stochastic Ising model with the "plus" boundary condition on a finite
square . N ow , in  A(L, L 1)  we consider Boundary Conditions of  Case 2 : the  outer
boundary is "plus" boundary condition and the inner boundary is a n  arbitrary
boundary co n d itio n . T h is  boundary condition is a l s o  d e n o t e  b y  T  i n  this
p a p e r . W ith this boundary condition T ,  we can get (when 16  is large enough) the
same lower bound of the spectral gap of the Ising model as in  paper [5 ], that is
Theorem 2, for /3 large enough, there a r e  e (0,1) and C> 0, we have

gap(A(L, L 1 ); fi,t) exp{ — C16/4 + E}. (1.2)

From above two different boundary conditions, we can see an interesting result
about the spectral gap of Ising model on A (L ,L ,), for the Boundary Conditions of
Case 1, when we exchange inner boundary condition with outer boundary condition,
th e  gap  is  g rea tly  changed . In tu itive ly , th is d iffe rence  can  be  exp la ined  as
follow s. From  the boundary condition, these gaps are determined by the time to
g e t to  the  equilibrium configuration (+ phase) when the  process starts from the
configuration in which all spins are — 1. If the boundary condition is of Case 2,
then a large contour appears along the outer boundary and it starts to shrink to



Spectral gap of  Ising model with a hole 531

decrease the energy c o s t .  W hen the contour shrinks to the  inner boundary, the
system reaches to the equilibrium . So, in this case the time evolution always goes
in  the  d irec tion  o f decreasing th e  energy c o s t .  O n  th e  o ther hand, w hen the
boundary condition i s  o f  C a se  1, th is  large contour appears a long th e  inner
boundary . In order to get to the equilibrium, this contour should expand to touch
the whole outer boundary, and this costs more and more ene rgy . The system has
to  go through the "bottle neck", and this gives a  similar estimate of spectral gap
as the free boundary case.

We can consider the upper bound of the spectral gap of Ising model on A(L,L 1)
with another boundary condition, which is that: the outer boundary condition is
the same outer boundary condition as in Boundary Conditions of  Case 1, and the
inner boundary condition i s  a  "mixed" boundary c o n d itio n . In  th is  case, the
constant 'a' in (1.1) will be changed. W e also can consider the lower bound of the
spectral gap of Ising model on the lattice Sierpinski carpet with the plus boundary
condition, etc..

2. Notations and definitions

2.1. General definitions. Let Z 2 b e  the usual two dimensional square lattice
with sites x = (x 1 , x2 ), equipped with the 11 -norm: 11.4.=-11x111=1x11+1x21 and lco-norm:
IxL,=max{Ix1I , Ix2I}. A set A  c Z 2 is  sa id  to  b e  11 ' 4-connected (p=1 or co) if
for each distinct x,y e A, we can find some {x 0 , • ..,x„1 c A  with xo = x, x„ =y and
11x; — - 11p= 1 =  

1,
 • • • ,

Given A c Z 2 , we define the interior and exterior boundaries of A as:

aintA {)c e A:3yit A , 11x—y11=1} (2.1)

e x tA {x§tA•RyeA, 11x — yll =1} (2.2) —

and the edge boundary OA as:

an= { { X ,Y }  :X G a i n tA > yeae.,A, 11x-3)11=1 }. (2.3)

W e also denote by 1A1 the cardinality of A.
The set B  of bonds in z 2  is defined by

B= {{x,y} c Z 2 :11x—y11=11, (2.4)

for a set A, we also define

BA = {{x, y} B: (x, y) e A x Al. (2.5)

2 .2 .  The configurations and the Gibbs states. We consider the standard two
dimensional Ising model with configuration space f2  =  —  1, +11' 2, S2A  ={ —1, +1} ^

for A c Z 2 . An element of SI= { —1, +1} z 2  will usually be denoted by a, and we
use the notation EA  = {o-(x), x E A l for an element of f2A . Whenever confusion does
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not arise we will also om it the subscript A in the notation o-
A

Given a  finite set A c Z 2 a n d  a  boundary condition (b.c.) e  = { — 1, + 1} z 2 ,
we consider the Hamiltonian

TrA(6)= 2x,yEAdix-yil =1

The partition function is given by

(a(x)a(y) — 1) — E  (o- (x)t(y)— 1). (2.6)
(x,y)e0A

zPAA)= E  exp[ — filiA,(a)]. (2.7)

The Gibbs measure associated with the Hamiltonian .1-1;, is defined as

pPA 'r(o)=ZPAA)'exp[ — 131-1(o- )], (2.8)

where fl >0 is a  parameter.
The expectation with respect to the Gibbs measure VA' is denoted by Eie,A • ). The

set of measures satisfies the DLR compatibility condition, for any two finite subsets
V c A c Z 2

t1fiA'r(0- ) =  E  [IPAA0 J ))14, 6 '(0"). (2.9)
a'ES2A

We introduce a partial order on OA  by saying that cr<  if  a(x) o-'(x) for all
x e A .  A  function f R  is called m onotone increasing (decreasing) i f  a <
implies f(o- )_f(o- ')(f  f ( o - ') ) .  An event is called positive (negative) if its characteristic
function is increasing (decreasing). Given two probability measures  i , te o n  OA
we write tt._ II' if kt(f). [/ '(f ) for all increasing functions f  [by p(f ) we denote the
expectation with respect to  the probability measure p].

In  the following sections, we will use the FKG inequalities, which state that:
(1) If t <  t ' ,  then pikt<tiV.
(2) If f  a n d  g  a re  increasing, then az (f  g )> at( f )at(g ) . (2.10)

2.3. Stochastic Ising model. Now we introduce the stochastic Ising model, we
will give brief definitions and notations, for the detials see in  [4 ] o r  [2 ] .  The
stochastic dynamics that we want to study is defined by th e  Markov generator

(1 )(a) = E c(x,c)u(0- x)—fian (2.11)
x€A

acting on L 2 (0, where

X(y) to-(y), if y  x
•

— a(y), if y = x
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The nonnegative real quantities

{ c(x ,a);z6Z 2 ,  aeS2} (2.12)

are the transition rates for the process.
W e suppose the transition rates satisfy the following properties:

(1) Nearest neighbor interactions: If o-(y)=cr'(y) for all y  such that d(x, y) 1, then
c(x, a) = c(x, a').
(2) Attractivity: If a  a ' and o-(x )=o -'(x), then

o-(x)c(x, a'(x)c(x, a'). (2.13)

(3) Detailed balance:

c(x, o-),u t(o-) = c(x, ax) (o-x). (2.14)

(4) Positivity and boundedness: There exist c.(13) and cm (16) such that

0 < c,„(13 ). inf c(x, sup c(x, a )  cm (13)<co (2.15)
X,CT X,CI

(4) guarantees that there exists a unique Markov process, and (3) implies that itflA4  is
reversible with respect to  the process. (2) is essential for the coupling of Markov
processes with different bouondary conditions. Finally, we define the spectral gap
of the generator

g a p (A ; f l , - c )= g a p (L p A • t )= in f
gfin 't(f  

f e L 2 ( 0 , d „ 61. ) Varrkt(f)

where S t( f , f )  is  the Dirichlet form associated with the generator L t

eilA 'T (f ;  f )= V1,7,1 E  E  AA0c( x, OU(0-x) —.ROY
z c€Q, xeA

and Varikr(f) is the variance relative to  the probability measure

Var1V)= . E  VAA0-)/213A't(n)U (0 .)— f(n )] 2 .

Now we give the definition of the special graph A(L,L 1). Let L , L i  be  any
integers (L , can depend on L , i.e., L i =L i (L)), such that L —L , >2, let A(L) and
A(L1) be

(2.16)

(2.17)

(2.18)

A(L)={(x1,x2): —L x 1 _ L ,  —L <x 2 <1} . (2.19)

A(L 1)={(x 1 ,x 2): (2.20)
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We define A(L, L 1) as

A(L,L 1 ).= A(L)\ A(L„). (2.21)

Let a m n e r A (L , L 1) denote the inner boundary of A(L, L 1) and ao u t e r A(L, L 1 ) denote
the outer boundary of A(L, L 1), which are defined as in the following:

in „,A(L, 1, 1) {x e A(L 1): Ry e A(L, L1), = 1} (2.22)

outerA(L5 -L1) A(L):]y e A(L, L 1 ), - = 1} (2.23)

Suppose t  i s  the boundary condition of A(L,L,), by the definitions in Section
2.2 and Section 2.3, w e can sim ilarly define 1 1 4 ' 4 0 )

 a n d  gap(A(L, L i ); /3, T).

3 .  The upper bound of the spectral gap of Ising model with the special boundary
conditions of case 1

In  this section, we will consider the Ising model on  A(L,L i ). A (L ,L ,) is not
a  simply connected graph, it h as  a square hole  a t the center part o f A(L), so we
will consider a  special boundary condition T.

Boundary Conditions of  Case 1. (3.1)

Inner boundary condition: r(x) = + 1; f or all x ea tf l„,A(L,L 1).
Outer boundary condition: Starting from (L+ 1, 0), we give clockwise order to

the points in a o u ,A (L , 1, 1 ), that is Ix i l, and set t(x 1)=(—  1 ) i  according to this order.

Now we give the main rersults of this section:

Theoreem 1. L et d=2, and the boundary condition t be giv en in (3.1), where
L 1 =[aL ]-1  and 0 < a <1,-. There exist 110 > 0, C > 0 and {413)> 0 : /3 13 0 } such that
f or any /3 f i o  and L > 1,

gap(A(L, L 1 ); c(/3)exp{ — C13L}. (3.2)

R em ark . Comparing this Theorem 1 with the Theorem in  [3], for the graphs
A(L, L i ) and A(L), and for the same "mixed outer boundary condition", we can get
the same upper bound of the spectral g a p s . This means that, under this circumstances,
when 13 is large enough, for the graph A (L,L,) the inner plus boundary condition
of A(L, L 1 ) doesn't change this upper bound (c(fi)expl — C A I)  of the spectral gap.

3 .1 .  Definition of contour. Before we prove Theorem 1, we will give some
definitions and  som e Lem m as. For Z d, the  number of bonds contained in a set
y c  B  w ill be denoted by lyl. F o r  a  b o n d  b = {x, y}, consider a  u n it  (d-1)-cell
6= Q(x) r Q(y), where Q(x)=1-11 ,[x  —  ,x  +  c R d

. T w o  bonds b 1 and  b 1 a re
said  to  be adjacent if 5 ,  and 62  h a v e  a  (d— 2)-cell in  com m on. It follows that
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any bond b has 6(d— 1) bonds as its adjacent neighbours. A set y c  B  is said to
b e  connected if for each distinct b, b' ey, we can find some {b 0 , •••,b„} c y with
bo  -=b,•••,b„=b' such that 1)1 _ , and bi  are adjacent for j= 1, • • n. Next we explain
the definition of contours used in this section. We will follow the definitions in
[3], and restrict our attention to  the case that d= 2. A contuor is a finite subset
y c  B  with the following properties: there exists a finite subest 0 c Z 2  such that:

(i) Both 0  and CY is 1 1-connected,
(ii) y = a ) . (3.3)

The set 0  is uniquely determined by y and hence denoted by 0 (y ).  Since a contour
y is a set of connected bonds, it follows that for each b e B  and m=1, 2, •••,

it{y: contour w ith ly1=m  and b  y}( 3 . 4 )

If a contouor y is a subset of BA ( L ,L o u aA (L,L ,) for some A(L,L 1), we say that y
is a contour in A(L,L 1). For o-e S2A ( L ,L i ) , let 6= +  or —, a contour y  is said to

be an (c)-contour in A(L,L i ) a t a  if it satisfies:

Of„,0 (y ) { x e  A(L, L i ): o-(x)= e l l  and,

aextO(Y) I x e  A(L, L 1): a(x)= —611u A(L, L (3.5)

Suppose tha t y is  an c-contour in A (L ,L ,) a t  o-ES2A ( L ,L 1 ) , let S'1 , S 2 , S 3 , S 4

b e  the four sides of 0 , 1A (L ). Consider the case tha t y doesn't intersect with all
sides ai A(L), of and let {S' i } be let be the sides which do not intersect with y. I n
this case, there must be a connected component of (BA ( L ,L o t.)0A (L,))ny which divides
A (L,L,) into two connected components, one of which contains 0(y) and the other
contains S i n c e  the two connected components are uniquely determined by
the properties alluded above, w e denote the former com ponent by ()(y). We

def
decompose the sets y and y-  =0A (L )n0(y ) as follows;

= (u i>  tP i)u (u i>  1 O u (u 1 > 0 2 1) (3.6)

Y IP )O u i>  1 6 i) (3.7)

where lp,}  are connected components of y n an(L), {0 are connected components
of y naA (L,), and {(51}  are connected components of -ry \y. We let P o , 2, ,•• •1 denote
the set of connected components of BA ( L ,L o n y.

3 . 2 .  Lemmas. N ext w e w ill show some lemmas:

Lemma 1. Suppose d=2, and y  is an  (0-contour in A (L ,L ,) at a eS2A ( L ,L ,) ,  if
the contour y doesn't intersect with the sides of  Oe „,A(L i ), and if  it does not surround
the inner square hole, then we have
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2
-1-1,(L,L,)(0 ) — HTA(L,L1)(TY)

5
IA —

where T y rr o- - --A (L,Li) is defined by

— o- (x), if x e 0(y) nA(L, Li)T o-(x)=
{ 0 4 if x e A(L, L 1)\ ®(y) •

P ro o f  Since the contour y doesn't surround the inner square hole and doesn't
intersect the sides of ae x t mLi ), we can use almost the same method of the proof
in  the  Lemma 3.1 of [ 3 ]  to prove Lem m a 1 .  Since the  proof is not very long,
and its method is important for this paper, we will show the proof. B y the definitions
in (3.6) and (3.7), we have following relations;

H rA(L,Li)(a) — HIA(L,Lig r a )  2  E 21 E E  r(y)I
O 1 yek,tA(L)

(x,Y}EP,

E E 1A11

by geometric consideration,

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

By (3.10) — (3.13),

E  E = E  '4y)- E  E
1 yee,,tA(L) yeextAiL) I  y ea „ t A(L)

{x,Y}EPf {x,y}ey (x,y)ebi

E 16,1=1+Fl- E Ipil

(3.14)

Note that in  the  proof, by the definition of T, we use the fact that:

E
{x,y}ey
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at a with II  2 L  + 2aL
there is an (0-contour y in A(L, L i )}
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By (3.10) and (3.14),

2
"TAM, L 0 ( 0  I I TA (L ,L i) (T y a )  —

5  
iY1—  4

.

Now we finished the proof of Lemma 1.

Lemma 2. Suppose that L i  satisf ies L— L i l o g  L, then,

there is a contour y in A(L,L Oat a, which
lim  sup 

f e , „ ( L , L , )
= O .

intersects with sides of i A(L) and 0 A(L ,)

P ro o f . If a contour intersects with sides of a i A(L) and ae „,A(Lo, whatever it
is ( +)-contour o r (—)-contour, there is a  chain of (—)-contours { v } '  th a t
{0(y )} =1 disjoint, and y i ny i  0 0 . y i an d  y i  touch  a t one point, and uy, intersects
with sides of 0i A(L) and  O A(L,), so  the length of th is  uy i is  a t  le a s t 2 log L,
and each contour of doesn't surround the inner ho le . S o  w e can  change
inside spins of uy i , that is, let T„ y ,a- = u(Tv ,a). By the same argument of (3.10)—(3.15)
in  th e  proof o f  Lem m a 1  (note tha t here  w e use the condition th a t th e  inner
boundary condition is plus boundary condition) and the property of uy i-contour,

2 ,
iuy i i —2.

5

If 13 is large enough,

there is a contour y in A(L, L 1 ) at a, which
114,L ,){a: intersects with sides of a, A(L) and ae „,A(Li )

{ifit(L,Li) cr: at a, uy, intersects with sides of 0 i A(L) and Oe x ,A(L 1)

E 4(2L + 1)2 3m — A -
2

m —2)} —■ 0,
m  2logL 5

so we complete the proof.

For L > 7, a n d  = + o r  —, let L, = 1, where a<4  ,  we set

(3.15)

(3.16)

(3.17)

there is a chain of (-)-contous tyX= in A(L, L i )

CO

(3.18)

Then,
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Lemma 3. L et F L , L i ,  ,  F L , L , , -  be given in  (3.18) (when c = + and  —), then

urn inf { P rA(L,Li ) -0+  tt zA(L,Li)(rl„Li,— ):
13— '

P ro o f  Note that, we choose some special x o e ai„,A(L)

E E tirA(L,L0(
t a

(

x 0 ) =  c l l  n

E = e= ±

= E tittA(L,L0({0 - (x0)=c1})— ifAcc,L0110 (X0)=61 1
e= +

> 1 —  E  (5(fl,c)
e = ±

where

6(I3,c)= sup ii,v1„L1)({a(xo)= cl} n
L,Li

(1) First, let c =  + .  F o r a e {a(x0)= +1} n rc",, 4.  and x o e A(L), and by  the
definition of FL , L i , + , there is a ( +)-contour at a. such that xo e 0(y) with IA <2L + 2aL.

By the choice of xo and  lvi <2L + 2aL, y cannot surround the hole, but y may
intersect with the sides o f a e x ,A(Li ), so we consider this problem in  two steps:
(1)-(a). Suppose that this ( + )-contour y doesn't intersect with the sides of ae „,A(Li ).

Since y doesn't surround the hole and lyl <2L + 2aL, then y intersects with no
pair of opposite sides of ai„,A(L), now (3.13) is changed to be

Following the proof of Lemma 1, we have

WA(L,L 0(0 trA(L ,L  YU) — 2

and thus,

ten(L,L i )  (Y appears) < exp{ — —

Then

(there is a contour which satisfyies condition (1)-(a))

appears)
y:contour in

AUL,L11,xoce(y)

(3.19)

(3.20)

(3.21)

E  4m3m- l exp{ —fl(m — 2)}. (3.22)
m
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(1)-(b). Suppose that this (+)-contour y intersects with th e  sides of a e x t A(L i ).
W e have known that y  doesn't surround the  hole. Because of the  special

chosen x 0 , we see that y  intersects with the sides of 3 111 A (L) and ae x t A(L,), and
since y doesn't surround the hole, we can find a chain of (-)-contours such
that {0(y)}:_, are disjointed, and yi n yi 0 () . y i and y ;  touch at one point, and uy i

intersects with the sides of ai„,A(L) and ae x t mLi ), by the same argument as in Lemma 2,

(there is a contour which satisfies condition (1)-(b))

<  E  4(2L + 1) 23' e x p {  -  f3(-
2

m - 2)}.
m_..21og L 5

(3.23)

Combining above (a) and (b), we obtain

S(fl, +)=suP AL/4)0(x°) = + 1} n +)
L,L1

fl - , 00< E 4m3m l exp{ - fl(-
2

m - 2)} + E  4(2L + 1)23' exp{ - /3(-
2

m - 2)} -* 0.
m> 4 5 2logL 5

(3.24)

(2) Second, for c= -, by a  similar argument as above (in fact this case is easier),

a-.
Prita.,L0({6 (xo) = 1 n - ) 0. (3.25)

By (3.24) and (3.25), which imply that 6(11,c) 0, so we finish the proof of the
Lemma 3.

By Lemma 3, there exist a /3 1 >0 and c = c(L, L I , t), such that

inf{tI TA(L,Li ) FL,Li ,E(L,Li,t)) fl f it,
1

(3.26)

We now set

L ,L i
=  F

 L,LI,E(L,Li,r) • (3.27)

For 0" E flA(L , L i ) let

Ci„L1(0= {Y (c(L, L i  ,r))-contour in  A(L,L i )  a t r , ly1 2L + 2aLl. (3.28)

Finally, for a contour y, we define
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(3.29)

Lemma 4. L et T y l- L ,L i (y)= {T y (a): o-  el" L ,L i (y)}, where L 1 =[aL ] - 1  and a <
then

lim  s u p  ur. (1-
y is a contour in A(L,

=  0 , ( 3 . 3 0 )L,Li
13— ■ co 2L + 2aL

where T y (a) is defined in (3.9) of Lemma 1 and F L ,L i  is defined in (3.27).

P ro o f  Note that

L L i  n Ty F L ,L i (y) c {Ty ( u ) :  E FL,L1 (Y), Ty (T(ci) FL,Li}F ,  

{
there is an E(L, L 1 , .0-contour y' in A(L, L 1 ) atTy (a) :
T y (o- ) such that y' c 0(y) and ly'l 2L + 2aL

(3.31)

thus

tenu„14)(1"t„LinTyr t„Li(Y )). E /14 ,L o v y (0 ) .

iy1,2L+ 2aL y  appears at Ty(e)

(3.32)

(1) Suppose th a t the  con tour y  surrounds th e  hole  in  A (L ,L ,) a t (r . T h en
doesn't intersect with sides of Oi A(L), and we have:

(i) If y' intersects with the sides of Oe x ,A(L 1 ),

A(L,L,)(Ty (a))_ exP( — 2 13(1Y'i - 8 aL — 8
aL))4(L,L 1)(Ty

,T7 (a)) 

), T= exp( — 2 16(IY'l — 8aL — 8a L M (L,L1 ( y T  (6 ) •

(ii) If y' doesn't intersect with the sides of OextA(Li),

ptA ( L ," ( T y (a)) exp( — 213(ly'l — 8aL))//k ( L . L 1 ) (Ty ,T y (a))

= exp( — 2 11(1Y'i — 8a4A(L,Li )(Ty Ty
,(o)).

(2) Suppose tha t the contour y doesn't surround the hole in A(L, L I )  a t  a , then

kena.,1.0(Ty (a))< exP( — 2,6 IY1)114 ,L 1)(Ty
,Ty (a))

= exp( — 2ti IY'DA(L,L i )(TyTy(a))- (3.35)

(3.33)

(3.34)

by (3.32)—(3.35) and  the  fact that T y , maps F 1 ( y )  injectively into itself, we have
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E 14L,L i ) (Ty (o_exp(-2,6(iy'l — 16aLwiTA (L,Li)(Tyr L,Li(Y))
6 :crerE ,L ,,(y )

y '  appears at T,(a)

By (3.32) (3.36), and a<4

prA(L,L, F L ,L , I Ty rL,L,(y)) E exp(-213(1y1 —16aL))
y'w =ow17 , i 2L+2aL

fi-co
E 4(2L + 1) 2 3m- l exp( — 2)3(m — 16aL)) 0.

m>2L+2aL

Now we finished the proof of Lemma 4.

Let CL, Li  b e  the set o t all contours in A (L ,L ,) which satisfies IA >2L+ 2aL,
and y intersects with at most three sides of „,A (L).

Lemma 5. For y eC L ,L , , L, = [aL ]-1 (a<4), and let

PL , L 1 ,y)= inf{11,4 L 0 (a )— H 4 L 0 (7',(o-): o e (3.38)

T here is #2 < co, such that for 13 4 2 ,  w e can f ind c 1 (#)>0 and C 1 >0, such that

E  I YlexP( — TIPIL,L1,y)).c1( (3)exp( —  CJIL). (3.39)

P ro o f  (1) Let
 C L L 1

 (a subset of CL L1) be  the set of all contours in A(L,L,)
which don't intersect with sides of 0,„1A (L ). By the same argument as in (3.33) and
(3.34)

E L1, Y)) E 4m(2L +1) 2 3(m- "exp( — 2[1(m-16aL)).
y ect, L , m?:.2L+ 2aL

(3.40)

(2) Let C L I (a subset of C L L1 ) be the set of all contours in A(L, L 1) which intersect
with sides of Of „,A(L), but do not intersect with sides of Oe x t A(L 1 )
(2)-(a). Suppose that the contour y E C L 1 doesn't surround the hole in A(L, L 1) at
u. We can follow the proof of Lemma 1, since we have the condition "y intersects
with at most three sides of 01 1A (L )". So (3.13) is changed to be

and IA _.2L +2aL , by the same methods of (3.10), (3.14) and (3.15)

(3.36)

(3.37)
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21-/jvc,14 )(5 )—  Â ( L , L y a )  —

4
Iy I —2. (3.41)

(2)-(b). Suppose that the contour y e CZ,L ,  surrounds the hole in A(L,L i ) at a, and
y intersects with no pair of opposite sides o f  in t A (L ). Then (3.13) is changed to
be

and IA 6 aL . Thus,

1/ ( L ,L 1 ) (o- ) —H (L ,L o (Ty a) Iy1-16aL  — 2. (3.42)

(2)-(c). Suppose that the contour y surrounds the hole in A (L, L,)e C1
2,,L , at o-, and

y intersects with one pair of opposite sides of „,A ( L ) .  Then (3.13) is changed to
be

and IyI 4L+4aL

1
Hiv i ,,L 0 (0- ) —H (L ,L i ) (T ycr) -

2
1Y1— 16aL —2.

By (2)-(a)(b)(c)

E iyiexP(—flITL,Li , Y)) E 4m(2L +1) 2 3( m-  I )  exp( — fi(-
2  

m —2))
y€CL,L, + 2aL

+ 4m(2L +1) 2 3(m-  I )  exp( — — 16aL — 2))
m> 2L+ 6aL

+ E 4m(2L +1) 2 3(m - 1 ) exp(— )6(-m-16aL — 2)).
m>4L+4aL 2

(3) Let C L i  (a subset of CL ,L i ) be the set of all contours in A(L,L 1) which intersect
with sides o f  m t A (L) and sides of 8 A(L 1). Then we have

H(L,L 1)(0) - 1 - 1 1ka.,L1g yo-) 2 E 11ii-21 E E T(0-2 E PIi,o i, 1 yeae .„t A(L) 1
(x,Y}EPi

1-Td= E E

(3.43)

(3.44)

(3.45)

(3.46)
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1—a L

              

Figure L

 

1— L

  

Figure 2.

M= E Ipil + E lad + E 1/4
1 0 1

by (3.45)-(3.47),

E  E  T(y)1= I E TO1—  E E r(01
1  y e A(L) y ea„tA L L ) 1  y€ 0 ,,tA (L )

fx,Y)eP, (x,y)edi

(3.47)
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(3.48)

(3)-(a). Suppose that Ei , i lpj 4aL.
i) If y intersects with three sides o f  , A(L), then we have Iyl__.4L+2(1 -  a)L,

and (see Figure 1),

171'1-  2(1 _ - a)L
2

so we have
+ 2 ( 1  a ) L

•2

By (3.46)-(3.48)

E  E 1 + 

y1 + 2 (1  -  a ) L  

b'I+ E + E
i , 1 yeao.tA(L) 2

(x,y)Epi

Hence, by (3.45)

H4,L0( 6
) - H(L,Lo(T y

0):IY I - 2 (1 - c)L  - 4 E 1N - 2

-.1Y1- 2(1 - a)L -  16aL -  2, (3.49)

here we use the condition Ei , 1 1/4 . 4aL  in  the last inequality.
ii) If y intersects with only one pair of opposite sides o f  i A(L), then we have

lvi .4L, and

- IYI
IYI

by the same method as

114, L 1 ) (o-)-1-1,4,"(Tyo-) Iyi -16aL-2. (3.50)

iii) If y  intersects with no pair of opposite sides of a i A (L), by the condition
that yEC , L 1 , we have lyl 2L + 2aL, and,

- IYI

Hir, ( L,L 0 ( 0 ) - 1/ 4 , L o (T ya) ly1 — 16aL -2.( 3 . 5 1 )
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(3)-(b). Suppose that E i , I p  >4aL .
i) If y intersects with three sides of a A(L), then we have II+ 2 ( 1  —a)L+4aL,

and (see Figure 2)

- 2(1 — a)L‹ —a)L
2

so we have

Y-1+2(1 — a)L
2

and

IYI — —a)LE  E  x(y ) 1  + E + E IN.
yo„tA(L) 2 o 1

{x,Y }EPi

By (3.45), we have

1/;, (L ,L o (o-)—H (L ,L i ) (Ty cr) iyi — 2(1 — a)L -4  E II —2

— 2(1 — a)L -32aL -2, (3.52)

here we use the condition 8aL ...E1 > lit);1 4aL  in  the last inequality.
ii) If y intersects with only one pair of opposite sides of 0, A(L), then we have

+ 4aL, and

so we have

E  E 1 E + E
yee.xtA(L) i>0 i >1

,Y1EP

and

11 (L ,L o (o- )— 117,(L ,L i ) (Ty o- ) IYI — 4 E II - 2

IYI— 32aL — 2. (3.53)

iii) If y intersects with no pair of opposite sides of 0, A(L), but intersects with
two sides of Oi„A(L), then we have I I  4 L +4 aL , and
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by above ii)

IvL ,L0 (0-) — Hit(L,Lo(Tya) IYI — 32aL —2.( 3 . 5 4 )

iv) If y intersects with only one side of ai„Ao, then we have IyI>2L+4aL, and

Y- I I — 2L
IYI 2

H;, ( L,Li ) (0 )-1 -11( L,L, ) (T y (7) .1yI +2L — 32aL —2.( 3 . 5 5 )

By (3)-(a) apd (3)-(b), we have

E  lylexP(—M L , ,Y))
y C j L

E 4m(2L + 1)2 3(m-  "exp(— — 2(1—a)L— 16aL — 2))
tn 4L-1-2(1—a)L

+ E  4m(2L +1)2 3(m-  1 exp(—f3(m-16aL-2))
m?._4L

+ E  4m(2L +1) 2 3" -  nexp(—)q(m —16aL —2))
rn ..2L +2eiL

+ E 4m(2L +1) 2 3(m-  "exp(—[1(m-2(1—a)L —32aL — 2))
tri 4L+ 2(1— a)L+ 4aL

+ 2  E 4m(2L +1) 2 3("1 -  "exp(— fl(m —32aL — 2))
rri •_4L+ 4aL

+ E 4m(2L+1) 2 3" - "exp(—fl(m +2L  — 32aL — 2)). (3.56)
m ?:2L+ 4aL

Combining (1) (2) (3), by (3.40), (3.44) and (3.56), there is a  /12 < oo, when fi>13 2,
we can find c1(M>0, C 1 >0

E  1YlexP( — )6 F(L, L1 , Y)) M ex p( C  f l L ). (3.57)

Now we finished the proof of Lemma 5.

3 .3 .  Proof of Theorem 1. We will prove Theorem 1 in  two steps:
(1) Suppose L _ 7 , L  =[aL ] — 1 and a < , ly , for a e F L , L i (see (3.27)), let A(L,L 1

= {x E A(L, L 1): a x  r,„,,,} 0, then we have the following properties:

(i) there exists an unique 6(L, L 1 , r)-contour y  Au) in  A(L,L 1 ) a t  a such that
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iYi 2L +2aL ,
(ii) y intersects with at most three sides of Oi n t A(L),
(iii) IA(L, L1 , 0)1 (3.58)

If there were two contours satisfying (i), it would be impossible that ea LL j for
some x. (iii) is obvious. (ii) can be seen as follows: For x e A(L, L I ), consider a
set of contours in A(L, L i )  a t (rx such that lyi l < 2L  + 2aL  and x e yi , say C , that
is

}f  y  is an E(L, L 1 ,T) contour in
C x  = IY 1

 '  •  . . '  
Y i } = tY : A(L, L i ) at ax, x e y

Note that

y ul= i yi ufbeB:xebl.

Then we can see, for any xe A(L, L I ), the contours in Cx  intersect with at most
three sides of ai n t A(.0.

Let CL , L i b e  the set of all contours in A(L, L 1) which satisfies lvi > 2L + 2aL,
and y e CL , L 1 intersect with at most three sides of 0,„,A(L), and let FL ,L i (y) be given
in (3.29). We want to prove that:

E iyi .gap(A(L, L 1 ); f l t)  6 c  m ()q) A (L ,L iF L ,L ,(y »

YEcL,L, li tA(L,L)(1 "1„L,)

Let Zr :— A(L,Lt) { 0 5  1 }  be  the indicator function o f 1-" ,  ,  by (2.16) and
(3.26), there is a  fi, >0, such that for fl , we have

n t( f ,  f )gap(A(L, L A O =  inf
feL 2 (0 , 4 0 )  V a r (f)

cm(fl) 
1 (L,LIF L ,O / 4 (L ,L 1 )(P i,L 1 )

E E prA(L,L, )(c)xL,L,(0-) I xL,L,(ax)—xL,Li(oi
x e A (L ,L i)  a

3cA, (M  E
x6 A (L ,L t) a e r, ,t i r A ( L , L 1 ) ( 1 1 . , , j , 1 )

= 3 cm(fl) E A(L, L, , 0-)1  1 4 ^(L,L 0( 6 )  

PTA(L,Li )(PL,L,)

6cmo  E  iyi PTA(L,L, F L ,L ,( y ) )

yecL,,,, itrA(L,L,)( cL,L,)

(3.59)

41.,Lo(u)
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Now we have proved the inequality (3.59).
(2) For y E CL , L 1 ,  let

F(L, L 1 y)=inf{H(x.,14 )(6 ) —  1114,L 1g y a); a 6  FL,Li(Y )}.

Then,

Y rA(L,L L, L 1(Y)) l i zA(L , L i )( T y r L , L (y))exp{ —  /3F(L, L 1 , y)} .

By Lemma 4, since y e C L ,L i ,  there exists a  )63 >0, such that

{
fi > [3 3 , y is a contour in A(L, L ,), 1

id  prA (L ,L o (FL ITy r " i (y)): > —
IA _ 2L +2aLS 2

then,

ken(L,L I )("L ,L ,(Y ))  F I TA(L,L i
)(T

y FL,L,(Y)) exp{ —  fiT(L, L 1 , y)}
tik(L,LI)(TL,L1) PrA(L,L1)(1'i.L1)

(3.60)

 

1

 

exp{—AFIL,L, , y)}

 

A(L,Lo(F cr„Li I TyrL,LI(Y))

. 2exp{— fiF(L, L i  , y)}. (3.61)

By (3.59) and (3.61) we have

gap(A(L, L i ); fl, 12 cm(P) E lYlexPI Li , y)}.
yEc ,L ,

By Lemma 5, there is a  /32 < oo, such that when fi >#2 ,

gap(A(L, L 1 ); f i  -c) < 12e m ( M c i ( M e x p { — C 1 / 3 L } . ( 3 . 6 2 )

If fi >max{fl 1 ,,62 ,fi}, there are c(i3)>0, C>0,

gap(A(L, L 1) ;  16, T ), ' c(Mexp{—C#L}. (3.63)

We finished the proof of Theorem 1.

4 .  The lower bound of the spectral gap of Ising model with the special boundary
conditions of case 2

4 .1 .  Boundary conditions and main results. In  this section, we will consider
th e  Is in g  m odel o n  A(L,L i ) w ith  another special boundary  condition T.

Boundary Conditions of  Case 2. (4.1)

Inner boundary: an arbitrary boundary condition.
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Outer boundary: r(x)= +1; f or all x e a Louter - ,— , — 1 ,•

549

In  th is section, we will use the same definitions and notations coming from
[5], and use the argum ent of [5 ] .  W e let (+ )  and (—) denote the  two extreme
configurations in DA ( L ,L i )  identically equal to plus and minus one respectively, and

for any rectangle R  whose sides are pararell to  the x-axis and y-axis, let litit t 1 . " ' ' 4

denote the G ibbs measure o n  R  with the  boundary conditions t 1 ,  t 2 ,  r 3 , T4  on
the outer boundary o f its  four sides ordered clockwise starting from the  bottom
side. We use the usual convention that, if one of the configurations Ti is identically
equal to + 1 o r  —1, then we replace it by a  +  o r  — s ig n . Thus for example t 1 ,  ,

— ,  +  means t1 boundary condition on the bottom side, plus boundary condition
on the vertical ones and m inus boundary cond ition  on  the  top  one . Whenever
confusion does not arise we will also om it the subscript A (L ,L ,) in  the notation
C A(L,Li) •

Now we state the m ain result in  this Section.

Theorem 2. L e t  e (0, 1) be given, and L , L , be any integers such that L— L 1 > 4

and L , >2 L 1 ', then there exist flo <oo and C >0 , when 13> 130  w e have

gap(A(L, L 1), exp(— CP/4+ E). (4.2)

Remark 1. Comparing this Theorem 2 with the Theorem 3.1 in  [5], for the
graphs A(L, L 1) and  A(L) and for the  same plus "outer boundary condition", we
can get the same lower bound for the spectral gaps. This means that, under this
circumstances, when # is  large enough, for the graph A(L, L I )  the inner arbitrary

boundary condition of A(L, L 1)  doesn't change this lower bound (exp(— csri+e))
of the spectral gap.

Remark 2. Although we consider the condition  L 1 >2L i n  Theorem 2, for

L 1 < 2 L ,  by using almost the same argument, we can get the same result as that
of Theorem 2 .  But in this case, we should do a little modification on the updatings
and proofs.

4 .2 .  Block- Glauber dynamics for Ising model. In this subsection, we will briefly
introduce the notations for Block-Glauber dynamics, for the detail, see [5 ] [6 ]. Let
V c Z 2  b e  a  given finite set, t  ,2 be the boundary condition and a' the Gibbs
measure. We will also consider a more general version of the finite volume dynamics
disscussed so far in which more than one spin can flip at once . L e t { V ,,••., Vn }
be a  covering o f  V, i.e., V= u i Vi . Then we will denote by block dynamics with
blocks { V1 , ••., V„} the  continuous time Markov chain in  which each block waits
an exponential time of mean one and the configuration inside the block is replaced
by a  new configuration distributed according to the G ibbs measure of the block
given the previous configuration outside the  b lock . M ore  precisely, the generator
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of the Markov process corresponding to g  is defined as

(Ltv ." 1 f (o -
v )----- E E 1LiA"v)(1)[f(04) —flay)] (4.3)

1=1 n E f 2 , , ,

where (W V ) denotes the configuration in fl z 2 equal to t outside V and to o-
v  inside

V , while cfl, is  the configuration in Qv  equa l to  17 in  Vi a n d  to  o-, \„, in  V \ V .
We will refer to the Markov process generated by Lfv ." 't as the {Vil-dynam ics. The
operator L {v ihfl'T is self-adjoint on / 2 (2 ,d 4 ), i.e., the block dynamics is reversible
with respect to the Gibbs measure Then,

gapv({ Vi}) = inf
feL2(s-2,,d49V ar(f )

where

g(f, E  E  PP(av)i "v )(q)Ef(01%)—f(0-072

av

1
V ar(f)= -  E Pft(a)/411/T(n)U.(0)—f( i)] 2 .2

The coupling for the {V 1}-dynamics is essential in this section, for the details,
see §4 Section 1 in  [5].

Next we introduce a  Lemma, which comes from Lemma 3.1 in  [5 ] , we will
omit the proof.

Lemma 6 . L et us call S N =  { t 1 , • • • , iN }  an ordered sequence of  updatings if  for
any  i=1,•••,N :

i) at tim e t i the  dynamics updates the rectangle V ,
ii) there are no updatings between times t i and 4 + 1 .

Then, for any  N  large enough (independent of t):

tN -N )
. (4 .7 )P(there ex ists n o  ordered sequence i n  [ 0 ,  t ] ) .  e x p

2

The following Proposition comes from the Proposition 3.4 in [6 ], we also omit
the proof.

Proposition 1. L e t g ={ V 1 ,•••, V„} be an arbitrary  collection of finite sets and
V = u i Vi . For any given boundary condition T e e ,  let LVT be given in (2.11), and
let L w .P'" be given in (4.3). Then we have

(4.4)

(4.5)

(4.6)

gap(Lf;t) gap(LI'd'P'T)inf inf gap(a 9 )(sup#{i: V1 n X ) ) —
 1 . (4.8)

(pEsz .Ev
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Let /=2[L1 + ] ,  w h e r e  e(0 ,4), suppose t h a t  L >L 1 > 1 .  W ithou t lo ss  of
generality, we can suppose that L I )  1  is  an in te g e r . For i=1 , ...,N ,  w e
define seven kind of rectangles:

A i =fx e Z 2 : — L <x , L,

BN , ; =Ix e Z 2 : L— (i+1)4<x2<L— (i -1)1} ,

C2 N + ,={xeZ 2 :

D3 N + i ={ x eZ 2 :

0 ={ x e Z 2 :

and

C2 N + i
=f x e Z 2 :L — (i+1)-..x , L,

/53 N + ,= IxeZ 2 : — L+(i+1)1,
(4.9)

and let {Q} ={A 1 ,B 1 , C1 ,D1 , 0 ,i=1,— ,N }. B y the above definition, {Q} is  the
covering of A(L, L 1 ), and by (4.3), we can construct the {Q}-dynamics.

We will do the updatings in the following order:
(a) first, we do the updating of {,41}, in the order of A ,,A 2 ,•••,A N ,
(b) second, we do the updating of {/31} in the order of B N + 1 ,B N + 2 ,• • • ,B 2 N ,

(c) third, we do the updating of {Ci}, in the order of C 2 N + 1 ,C 2 N +  2 ,  • •
* 1  C3N ,

(e) next, we do the updating of {Di } in the order of D 3 N + 1 ,D 3 N + 2 ,• • • ,D 4 N ,

(f) a t last, we do the updating of Q.
(4.10)

The idea why we do above updatings comes from [5 ], we want to enforce the ( +)
spins and (—) spins agree after the updatings, and by Lemma 6, we see that with
large probability, we have this updatings. Now we introduce a Lemma, it comes
from Theorem 6.4. in [6].

Lemma 7 .  Let Q  be def ined as in (4.9), then

1
inf gap {Q, T} cmexp(-41i • 2,/20

101
(4.11)

where 1-=2[L1 + 8 ] and the constant cm has been def ined in (2.15)

P ro o f  The proof is almost the same as the proof in Section 2 of [5 ] or the
proof of Theorem 6.4 in [6]. But we will modify the proof of Theorem 6.4 in [6];
we give a new definition about the order of sites in A(L,L1).
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Let x,y e A(L, L 1), we order the sites in A(L, L 1) as follow:

x<y, i f  x 1 +x 2 <y 1 +y 2 ,  o r x i  +x 2 =y, +y 2 , x 2 <y 2 , (4.12)

where x = (x i , x 2 ), y
The rest of the proof is almost the same as that of Theorem 6.4 in  [6].

Next we intouduce an important proposition, which comes from Proposition
3.1 in  [ 5 ] .  We omit the proof, too. Let R  be the rectangle

R ={ x eZ 2 : —L3 ._x2 _<_./,3 } (4.13)

with L2 > L3 > EVE

Proposition 2. Let m > 0  and cc (0,1) be given, then there ex ists 160 -=flo (c, m)

independent o f  R  such  that f or all ,843 0 an d  all x e R  w ith x 2 L 3 ---11,3 ,  w e

have:

4'+'+'+(o-(x)=1)—  /4' + ' - '+ (o-(x)=1)<exp(—mLic). (4.14)

4 .3 .  Probability estimate of special sequence of updatings. L et us use  the
following convention:

A i , 1 <i < N,

131 , N  + 1 < i <2N ,

Vi =  C i , 2N  + 1 < i <3N ,

Di , 3N +1<i<4N ,

0, i = 4 N +  1.

L e t  S 4 N + i=  { t i  5 • • •, iN  , IN+ 1 •  • ,  t2N  t2N  + 1 , • • •, i3 N , t3 N + ,  • t4N + 1} b e  a
fixed ordered sequence with 1 1 = 0, let olFht be the configuration of {Q}-dynamics
(see Section 4.2) at time ti starting from the initial configuration a, and the i-th updating
occurs in the box  V .  F o r  m=1,•••,N ,

4 + „,=-{xeu i , n ,BN + i :x 2 L—(m+1)1+[4]}1JR,

RS + „ , =  e , C  2 N  + i :x i (m  + 1 )- 1+ [1]1  U  MIN ,

l e 1 N + , ,=  t X E U  i < m D 3 N +i: — L+(m +1)-1 [4]} uR5 N ,

k iN +1 =0 u 4 N =

For i= 1, • ..,4N+ 1, let

A(L,L 1).
(4.15)
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R i e , • • •, 10, ' 1 N +  1
 , • • • , v + 1 , • • • , v+ 1, • • • , ,le t N  R9p 7  + 11 ,

for example, R 2 N  = . Next, we define the events:

F1(x)={ (+)!FL '(x)0(— )ht(x)} , i =1,— ,4N  +1, (4.16)

Fi =  u
(x€R,}

In particular, we have

i =1,•••,4N + 1 (4.17)

F4N + 1
=

F 4 N  +  1 ( X ) .
x cli(L ,L i)

Let qi =P(Fi), i= 1, 2,•• 4N+ 1, then we have for every n<4N ,

4N

qi + 1 - q1 +P(F1 + 1 n F f )  E P(F„± i n F)+P(F,) .
n= 1

Hence by induction, we have

N - 1 2N  - 1 3N  - 1
q4 N  + 1  E  P(F„ + 1 n E  P(F„+  I n F,)  + E  P(F„,. n F,)

n = 1 n =N n=  2N

4 N  -1

+  E  P(F„ F,)+ P(F + P(F4 N  + n
n = 3N

Next we will show that

q4 N + 1 4N(2L+1) 2 exp( — mL 2 ').

First, we consider the third term, I n
3 N_ 2- 1,1 P(F„ + n F„̀ ).

P(F„ + F , ) E
xER.+, +

gE r
2
 A(L,L,)

lenct.,L1 )16 )

x P(Fn+ i(x)n Eny.R„{( + )!,? } AY)= - k?} Ay)= 01,?'0)}]),
where n E  { 2 N ,  •  •  3N - 1}. Then the summand in the right hand side of (4.21) can
be estimated from above by:

(.21J
PrA (L ,L i)( 0 -)E (11(x)=1)— Pa% r (I1 (X ) = 1)],

(4.22)

(4.18)

(4.19)

(4.20)

(4.21)

where E is the expectation over the random configuration o t " t .  Since the dynamics
is reversible with respect to  

A ( L , L i ) ( 0 . )  and  by the DLR property,
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L (0)E1i6LQ).%+ ,a;Q).%,i(Q),
trEnA(L,L l)

( 0 )  1 )

= E 0-)4.',a lrgx)=1)
Q A (L , L

E + '+ ( 0 4 ; ; - (x)=1)
crES2c,,, ,

='» +•+ ( 11(x ) .=  1 ).

Similarly we obtain following;

0401,, 0 .(Q1r ,

E itrA(L,L,)(0.)Epc + ,  —  
o f Q )

(n(x) = 1)
aEs? A(L,L„

4„' ; 4" ' 4. Mx) = 1 ).

By Proposition 2, we have

E Di4:+
±

i '+ '+ (q(x)=1)—p ; + '+ (ii(x)=1)] _(2L+1) 2 exp(—mL2 '),
xeR„+InC„1-1

(4.25)

where m-=,m(P), which diverges as 16' —+ a). T h u s ,  fo r 2N <n <3N —1, w e have

P(F„,_ n P„) (2L+1) 2 exp(—mL 2 '), (4.26)

and
3N— 1
E  P(F„,_ 1 n N(2L + 1)2 exp( —  mL2 ').

n= 2N

We can use the same method to estimate E,t%;,-P(F„, 1 nF„̀ ),

4N— 1
E  P (F „  n  F  N (2 L  +  1)2 exp(—mL2 e).

n = 3N

Note that, by the definition of {Q}-dynamics, we have P(F4 N + 1  n  fI v ) = 0 .  We can
follow the proof in Section 3  of [5 ], or use a similar argument of above proofs,
we can get

N — 1
E  P(F ±  n N(2L + 1)2 exp(—ML2 E).

n= 1

2N— 1
E  P (F „  n  F )  N(2L + 1)2 exp(—mL2 ').

n = N

(4.23)

(4.24)

(4.27)

(4.28)

(4.29)

(4.30)

where m ----m(16'). Similarly we can estimate P(F 1 ). Thus, we finally obtain (4.20)
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4N+ 1 .4N(2L +1) 2 exp(—mL 2 c).

4.4. Proof of Theorem 2. Given a sequence 5 4 N  1 =  { t1 , • • •, 
1 4 N +

 o f  updatings
we say that S 4 N  is good sequence if  S4N + 1 is ordered and the event FN + j  occurs
a t the end of the sequence. Because of (4.20) we know that the  probability that
a n  ordered sequence o f updating S  4N + 1 is also a  good sequence is larger than

1 — (4N + 1)(2L+ 1)2 exp( — mL2 ') >-
2
1 (4.31)

for L  large enough. Thus, using Lemma 6, we get that if  T=exp(LT) and L  is
large enough:

P(there exists a  good sequence in  [0, 7 ])> -
1

3
(4.32)

We conclude by observing that, if there exists a  good sequence in  [0, a  then,
by monotonicity, at the end of the sequence, the configurations (+ ) 1 and  (—)1"'
will be identical. Therefore we can estimate

+ )1"t 0( — e h r) ( 42 ) E n ( 4 . 3 3 )

which immediately implies that

gap({ Q
}
, T 'l o g ( 3 ) = exp( —LI V)log ( 3 ) . (4.34)

By Proposition 1, we want to estimate th e  term " ( s u P . O t { i :  V i x} ) -  i ", by  the
construction of covering defined in (4.9), we have ( s u P ,m v # I i :  17i DO  3, so by (4.8),
(4.11), (4.32) and (4.34), we have

1gap(A(L,L 1); inf gap(Ll)gap({Q},T)
3

> -1 (2L +1) - 2 cex p( — 8 \/2,62/J+ E)exp(— L E)log (-3 ) (4.35)
3 2

so we can find some C>0, when 13 large enough
exp(— CpL1 + (4.36)

Now we complete the proof.
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