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The spectral gap of two dimensional Ising model
with a hole: Shrinking effect of contours
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Abstract

We consider the spectral gap of the two demensional Ising model on a
special graph with some special boundary conditions. The special graph is a
finite square with a square hole on its center part, that is, we consider a finite
square of side 2L + 1, and we remove another smaller finite square of side 2L, +1
(L, <L) which has the same center as the finite square of side 2L+ 1, therefore
there is a square hole at the center part of the finite square of side 2L+ 1, we
denote this special graph by A(L,L,). On this graph, the boundary of A(L,L,)
is composed of “inner boundary” and “outer boundary”. We will discuss two
different boundary conditions of the Ising model on A(L,L,), one is that the
outer boundary condition is plus and minus spins’ “mixed” boundary condition
and the inner boundary condition is plus boundary condition; the other is that
the outer boundary condition is plus boundary condition and the inner boundary
condition is an arbitrary boundary condition. On above two different boundary
conditions, in the absence of an external field and at large inverse temperature
B, we will show the upper bound of the spectral gap of Ising model for the first
of above boundary conditions, and the lower bound of the spectral gap of Ising
model for the second of above boundary conditions. These two results show
that if we consider the first of above boundary conditions, and exchange this
inner boundary condition with the outer boundary condition of the Ising model
on A(L, L,), the spectral gap of Ising model will be greately changed. The results
can be extended to some other cases, for example, we can consider some other
boundary conditions and some other graphs.

1. Introduction

In this paper, we consider the spectral gap of the two dimensional Ising model
on some special graph with two different special boundary conditions. This work
originates in an attempt to understand relaxation phenomena of the stochastic Ising
models on porous media, e.g., the lattice Sierpinski Carpet. The special graph is
that, at the center part of the finite square of side 2L+1, we remove another
smaller finite square of side 2L, +1 (L, <L), therefore the original finite square
becomes to a finite square with “a square hole” on its center part, defined as A(L, L,)
(see(2.21)). There are two boundaries on this special graph A(L,L,). We call that
the boundary of the inner “hole” is the “inner boundary” of A(L,L,) (see (2.22)),
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and the outside boundary (that is the boundary of the finite square of side 2L+ 1)
is the “outer boundary” of A(L,L,) (see (2.23)). Together with the inner boundary
and the outer boundary is called the “boundary” of A(L,L,), that is, the “boundary”
of A(L,L,) contains two parts, one is the inner boundary, the other is the outer
boundary. Under two different “mixed” boundary conditions, we will show some
estimations of the spectral gap of the Ising model on A(L,L)).

In the paper [3], in the absence of an external field and at large inverse
temperature f, Higuchi and Yoshida gave an upper bound of the spectral gap for the
two dimensional stochastic Ising model with a general “mixed” boundary condition
on a finite square. In this paper, in A(L, L,) first we consider Boundary Conditions
of Case 1: the inner boundary condition is “plus” boundary condition, and outer
boundary condition is a special “mixed” boundary condition, that is, the plus and
minus spins are arranged alternately’ on the outer boundary. In other words, if
we give clockwise order to the sites {x,,x,,---,} of the outer boundary of A(L, L,),
and first put a plus spin on the site x,, second put a minus spin on the site x,,
next put a plus spin on the site x;,:--. Thus, we have a special “mixed” outer
boundary condition, which is denote by . With this boundary condition 7, we
can get (when f is large enough) the same upper bound of the spectral gap of the
Ising model as in the paper [3], that is Theorem 1, for § large enough, there are
¢(f)>0 and C>0, we have

gap(A(L, L,); B,1)<c(Bexp{— CBL} (1.1)

where L; =[aL]—1 and the constant a<?%.

In the paper [S], in the absence of an external field and at large inverse
temperature f, Martinelli gave out the lower bound of the spectral gap for the two
dimensional stochastic Ising model with the “plus” boundary condition on a finite
square. Now, in A(L,L,) we consider Boundary Conditions of Case 2: the outer
boundary is “plus” boundary condition and the inner boundary is an arbitrary
boundary condition. This boundary condition is also denote by 7 in this
paper. With this boundary condition 7, we can get (when f is large enough) the
same lower bound of the spectral gap of the Ising model as in paper [5], that is
Theorem 2, for B large enough, there are e€(0,4) and C>0, we have

gap(A(L, Ly); B.7)> exp{ — CBLZ*%}. (12)

From above two different boundary conditions, we can see an interesting result
about the spectral gap of Ising model on A(L,L,), for the Boundary Conditions of
Case 1, when we exchange inner boundary condition with outer boundary condition,
the gap is greatly changed. Intuitively, this difference can be explained as
follows. From the boundary condition, these gaps are determined by the time to
get to the equilibrium configuration (+ phase) when the process starts from the
configuration in which all spins are —1. If the boundary condition is of Case 2,
then a large contour appears along the outer boundary and it starts to shrink to
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decrease the energy cost. When the contour shrinks to the inner boundary, the
system reaches to the equilibrium. So, in this case the time evolution always goes
in the direction of decreasing the energy cost. On the other hand, when the
boundary condition is of Case 1, this large contour appears along the inner
boundary. In order to get to the equilibrium, this contour should expand to touch
the whole outer boundary, and this costs more and more energy. The system has
to go through the “bottle neck”, and this gives a similar estimate of spectral gap
as the free boundary case.

We can consider the upper bound of the spectral gap of Ising model on A(L,L,)
with another boundary condition, which is that: the outer boundary condition is
the same outer boundary condition as in Boundary Conditions of Case 1, and the
inner boundary condition is a “mixed” boundary condition. In this case, the
constant ‘@’ in (1.1) will be changed. We also can consider the lower bound of the
spectral gap of Ising model on the lattice Sierpinski carpet with the plus boundary
condition, etc..

2. Notations and definitions

2.1. General definitions. Let Z? be the usual two dimensional square lattice
with sites x =(x,, x,), equipped with the /,-norm: || x| =| x|, =|x,| +|x,| and I -norm:
%]l =max{|x,|,|x,|}. A set A= Z? is said to be || |l,-connected (p=1 or o) if
for each distinct x,yeA, we can find some {x,,---,x,} € A with x,=x,x,=y and
=1l =1 Gi=1,-,n).

Given A c Z2, we define the interior and exterior boundaries of A as:

OmA={xeA:Ip¢A, |x—y|=1} @.1)
aextAE{x¢A:3yeA’ ||X—J’||=1} (2.2)

and the edge boundary dA as:
OA={{x,y} : x€0iuA, Y€, x—y|=1}. (2.3)

We also denote by |A| the cardinality of A.
The set B of bonds in Z? is defined by

B={{x,y} < Z*:||x—y| =1}, (2.4)
for a set A, we also define
Br={{x,y} c B:(x,y)e A x A}. (2.5)

2.2. The configurations and the Gibbs states. We consider the standard two
dimensional Ising model with configuration space Q={—1, +1}%*, Q,={—1, +1}*
for A= Z? An element of Q={—1, +1}z2 will usually be denoted by o, and we
use the notation o, ={a(x), xe A} for an element of Q,. Whenever confusion does
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not arise we will also omit the subscript A in the notation o,.
Given a finite set A = Z? and a boundary condition (b.c) teQ={—1, +1}%’,
we consider the Hamiltonian

1
Hj(0)=—~ > (@(x)e()—D— 3 (o()e(y)—1). (2.6)

x,yel, || x—y| =1 (x,y)edA

The partition function is given by

ZP¥(A)= ). exp[—BH}(0)]. 27

geQ p
The Gibbs measure associated with the Hamiltonian Hj is defined as
HA%(0)=Z"*(A)" 'exp[ — BH(0)], (2.8)

where >0 is a parameter.

The expectation with respect to the Gibbs measure p4" is denoted by E£*(+). The
set of measures satisfies the DLR compatibility condition, for any two finite subsets
VecAcZ?

pA o)=Y MA@ b’ (o). (2.9)

a'eRp

We introduce a partial order on Q, by saying that o <o’ iff o(x)<0o'(x) for all
xeA. A function f:Q,+— R is called monotone increasing (decreasing) if c<o’
implies f(6) <f(0')(f(0)=f(c")). Aneventis called positive (negative) if its characteristic
function is increasing (decreasing). Given two probability measures pu, u' on Q,,
we write u<p’ if p(f)<u'(f) for all increasing functions f [by u(f) we denote the
expectation with respect to the probability measure u].

In the following sections, we will use the FKG inequalities, which state that:

(1) If 1<7, then phr<puf™.

(2 If f and g are increasing, then E£*(fg)>ES(NEL(g). (2.10)

2.3. Stochastic Ising model. Now we introduce the stochastic Ising model, we
will give brief definitions and notations, for the detials see in [4] or [2]. The
stochastic dynamics that we want to study is defined by the Markov generator

(LA™)o)= . clx,0)[f(0")—f(0)] (2.11)

xeA
acting on L*(Q,duk"), where

a(y), ify#x

ax(y)z{—a(y), ify=x '
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The nonnegative real quantities
{c(x,0);xeZ?, 0eQ} (2.12)

are the franmsition rates for the process.
We suppose the transition rates satisfy the following properties:
(1) Nearest neighbor interactions: If o(y)=0'(y) for all y such that d(x,y)<1, then
o(x, 0)=c(x, a").
(2) Attractivity: If 6 <o’ and 6(x)=0'(x), then

a(x)c(x, 0) > a'(x)c(x, o). (2.13)
(3) Detailed balance:
c(x, o)uh(0) = c(x, )k (0™). (2.14)

(4) Positivity and boundedness: There exist c,(f) and cy(fB) such that

0<c(f)<infe(x, o) <sup c(x, o) < cpy(f) < o0 (2.15)

x,0 x,0

(4) guarantees that there exists a unique Markov process, and (3) implies that p4°® is
reversible with respect to the process. (2) is essential for the coupling of Markov
processes with different bouondary conditions. Finally, we define the spectral gap
of the generator

gap(A; B,1)=gap(LL") = . (1!1; o % (2.16)
where &4°(f, f) is the Dirichlet form associated with the generator L4*
X N= % “%A x; KR (0)e(x, 0)Lf(6*)~f(0)]? (2.17)
and Vark(f) is the variance relative to the probability measure uA*
Vatk()=3 3 im0 S @.18)

aneNA

Now we give the definition of the special graph A(L,L;). Let L, L, be any
integers (L, can depend on L, ie., L;=L(L)), such that L—L,>2, let A(L) and
A(L,) be

AL)={(x;,X;): —L<x, <L, —L<x,<L)}. (2.19)

A(L)={(xy,x)): =Ly <x;<L;, —L;<x,<L}. (2.20)
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We define A(L,L,) as
A(L,L,)=AL)\A(L,). 221

Let 0;,,.-A(L, L,) denote the inner boundary of A(L, L,) and 0,,,.,A(L, L,) denote
the outer boundary of A(L,L,), which are defined as in the following:

Oimer ML, Ly)={x€ A(L,):3ye AL, Ly),  [x—y|=1} (2.22)
Oourer ML, L1)={x¢ A(L):Iye AL, Ly), [Ix—pl=1} (2.23)

Suppose 1 is the boundary condition of A(L,L,), by the definitions in Section
22 and Section 2.3, we can similarly define Hj, . (o) and gap(A(L,L,); B, 7).

3. The upper bound of the spectral gap of Ising model with the special boundary
conditions of case 1

In this section, we will consider the Ising model on A(L,L,). A(L,L,) is not
a simply connected graph, it has a square hole at the center part of A(L), so we
will consider a special boundary condition .

Boundary Conditions of Case 1. 3.1

Inner boundary condition: t(x)=+1; for all xed,,,,A(L,L,).
Outer boundary condition: Starting from (L+1,0), we give clockwise order to
the points in 8,,,,ML,L,), that is {x;}, and set t(x;)=(—1)' according to this order.

Now we give the main rersults of this section:

Theoreem 1. Let d=2, and the boundary condition t be given in (3.1), where
Li=[aL]—1 and 0<a<%. There exist f,>0, C>0 and {c(f)>0: B> B,} such that
for any B>pf, and L>1,

gap(A(L, L,); B, 7) <c(B)exp{ — CBL}. (3.2)

Remark. Comparing this Theorem 1 with the Theorem in [3], for the graphs
A(L,L,) and A(L), and for the same “mixed outer boundary condition”, we can get
the same upper bound of the spectral gaps. This means that, under this circumstances,
when B is large enough, for the graph A(L,L,) the inner plus boundary condition
of A(L,L,) doesn’t change this upper bound (c(f)exp{— CBL}) of the spectral gap.

3.1. Definition of contour. Before we prove Theorem 1, we will give some
definitions and some Lemmas. For Z¢ the number of bonds contained in a set
y < B will be denoted by |yl For a bond b={x,y}, consider a unit (d—1)-cell
b=Q(x)n Q(y), where Q(x)=]]4-[x;—%.x;+31 = R*. Two bonds b, and b, are
said to be adjacent if b, and b, have a (d— 2)-cell in common. It follows that
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any bond b has 6(d—1) bonds as its adjacent neighbours. A set y < B is said to
be connected if for each distinct b,b'ey, we can find some {b,,---,b,} =y with
bo=b,---,b,=b" such that b;_, and b; are adjacent for j=1,---,n. Next we explain
the definition of contours used in this section. We will follow the definitions in
[3], and restrict our attention to the case that d=2. A contuor is a finite subset
y < B with the following properties: there exists a finite subest ® = Z? such that:

(i) Both ® and ©° is /,-connected,

(i) y=00. (3.3)

The set © is uniquely determined by y and hence denoted by ®(y). Since a contour
y is a set of connected bonds, it follows that for each be B and m=1,2, .-,

#{y: contour with |y|=m and bey}<3™". (3.9

If a contouor y is a subset of B, ,VOA(L,L,) for some A(L,L,), we say that y
is a contour in A(L,L,). For 6eQuq,, let €=+ or —, a contour y is said to
be an (e)-contour in A(L,L,) at ¢ if it satisfies:

0:m®) < {xe A(L,L,): a(x)=€l} and,
0,00 < {xe A(L,L,):0(x)= —€el }UA(L, LY. (3.5)

Suppose that y is an e-contour in A(L,L,) at 6€Q,, 1), let Sy, S5, S5, Sy

be the four sides of 8;,A(L). Consider the case that y doesn’t intersect with all
sides 9,,,A(L), of and let {S";} be let be the sides which do not intersect with y. In
this case, there must be a connected component of (B 1,) U 0A(L,))ny which divides

A(L,L,) into two connected components, one of which contains ®(y) and the other
contains {S’;}. Since the two connected components are uniquely determined by

the properties alluded above, we denote the former component by O(y). We
def

decompose the sets y and y=0A(L)ndO(y) as follows;

7=(Ui5 1P)U(Ui5 1P)U(Uis0d) (3.6)
§=(Uiz1pi)U(Ui215i) (3.7

where {p;} are connected components of yJA(L), {p;} are connected components
of yndA(L,), and {§;} are connected components of y\y. We let {1,,4,,---} denote
the set of connected components of By, 1, Ny.

3.2. Lemmas. Next we will show some lemmas:

Lemma 1. Suppose d=2, and y is an (e)-contour in A(L,L,) at 6€Qpq 1, if

the contour y doesn’t intersect with the sides of 0,,A(L,), and if it does not surround
the inner square hole, then we have
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. 2
HA(L,L.)(O')—Hf\(L,Ll)(TyO')Zg Iyl —2, (3.8)

where T,6 € Qu.1,) is defined by

—o(x), ifxe®(y)nA(L,L,)

. . (3.9)
a(x), if xe A(L, L, )\O(y)

T,0(x)= {

Proof. Since the contour y doesn’t surround the inner square hole and doesn’t
intersect the sides of d,,,A(L,), we can use almost the same method of the proof
in the Lemma 3.1 of [3] to prove Lemma 1. Since the proof is not very long,
and its method is important for this paper, we will show the proof. By the definitions
in (3.6) and (3.7), we have following relations;

Hf\(L,L,)(U)_Hf\(L.L,)(TyU)Zz Z |4l =2 Z Z )l (3.10)
i>0 i21 yedextA(L)
{x,y}epi
=3 lod+ Y 16 (3.11)
i1 i1
=Y lpd+ Y 14 (3.12)
i21 i>0

by geometric consideration,

_ 4
Iyl ng- (3.13)
By (3.10) — (3.13),

1Y, X wi=l Y - Y W)
i21 yedextA(L) Yeaextl\gla) i>1 yebexeA(L)
{x,ytepi {x,yley {x,y}ed:

51+Z |6i|=1+|ﬂ_ 2 lpil

i>1 i>1

=1+hl=hl+ 3 14

i20

1
<1—<bl+ X 14 (3.14)

i20

Note that in the proof, by the definition of 7, we use the fact that:

| Y WL
yedexeA(L)
{x,yley
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By (3.10) and (3.14),
2
HywL,y(0)— H'ML,L.)(Tya)zg Iyl —2. (3.15)

Now we finished the proof of Lemma 1.

Lemma 2. Suppose that L, satisfies L—L,>logL, then,

lim sup pjr,

[ Jad)

{ there is a contour y in A(L, L,) at &, which
o:

. S } =0. (3.16)
intersects with sides of 0,,,A(L) and 0,.,A(L,)

Proof. 1If a contour intersects with sides of J;,,A(L) and 0,,,A(L,), whatever it
is (4)-contour or (—)-contour, there is a chain of (—)-contours {y,}*_; such that
{®(y)}t-, disjoint, and y;ny;#0. 7y and y; touch at one point, and Uy; intersects
with sides of 9,,A(L) and d,,,A(L,), so the length of this Uy, is at least 2 logL,
and each contour of {y;}¥=, doesn’t surround the inner hole. So we can change
inside spins of Uy;, that is, let T,, .6 =U(T,0). By the same argument of (3.10)~3.15)
in the proof of Lemma 1 (note that here we use the condition that the inner
boundary condition is plus boundary condition) and the property of Uy;-contour,

Yi

2
Hf\(L,Ll)(U)—Hf\(L.Ll)(Tuy,G)Zg|UV|'| —2. (3.17)

If B is large enough,

. o there is a contour y in A(L, L,) at g, which
FALLONT jhtersects with sides of 0;yA(L)and 0,,,A(L,)

. there is a chain of (-)-contous {y;}*-; in A(L, L,)
SHPAL,LY O . .
at o, Uy, intersects with sides of d,,,A(L) and 0,,,A(L,)

< Y 4(2L+1)23""’exp{—ﬂ(gm—2)}ﬂ:>w0,

m > 2logL

so we complete the proof.

For L>7, and e=+ or —, let L,=[aL]—1, where a<?} , we set

(3.18)

there is an (¢)-contour y in A(L, L,)
FL,Ll.ez{aeQA(L,L,): b

at g with |y|>2L +2al

Then,
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Lemma 3. Let I'y, ., 'y, - be given in (3.18) (when e=+ and —), then

lim inf {u} . 1)(Cr.L,,+) +BA@LoTLe, ) L=T7} > 1 (3.19)

[ad-d

Proof. Note that, we choose some special x, € 0;,, A(L)

Z ﬂf\(L,L.)(rL,L.,e) > Z u;\(L,Ll)({J(xo) =l } Nlpp,e)
e== e=*

= =Z+ {Haw.Lo{olxo)=€1}) =y L ({o(xo)=€1} AT 1 )}

>1- Z (B, €) (3.20)
e=*
where

(B, €)=sup upqL,({olxo)=€1} AT 1, ). (3:21)

L,Ly

(1) First, let e=+. For ge{a(xy)=+1}nIL, + and x,€38,,A(L), and by the
definition of I'y ;| , , there is a (+)-contour at o such that x, € ®(y) with [y| <2L +2alL.

By the choice of x, and |y|<2L+2aL, y cannot surround the hole, but y may
intersect with the sides of d,,A(L,), so we consider this problem in two steps:
(1)-(a). Suppose that this (+)-contour y doesn’t intersect with the sides of 0,,,A(L,).

Since y doesn’t surround the hole and |y| <2L+2aL, then y intersects with no
pair of opposite sides of 9;,,A(L), now (3.13) is changed to be

-1
<—yl.
Iyl 2lv|

Following the proof of Lemma 1, we have
Hiyw,(0) = Haw,)(Ty0) 2 7] =2
and thus,
Ly (v appears)<exp{—B(yl —2)}.
Then

KoL, (there is a contour which satisfyies condition (1)-(a))

< Y Haw.L,(? appears)
y:contour in
A((L,L1),x0e0(y)

< Y 4m3™ 'exp{—p(m—2)}. (3.22)

m>4
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(1)-(b). Suppose that this (+)-contour y intersects with the sides of d,,A(L,).

We have known that y doesn’t surround the hole. Because of the special
chosen x,, we see that y intersects with the sides of d,,A(L) and 9,,,A(L,), and
since y doesn’t surround the hole, we can find a chain of (—)-contours {y;}%_, such
that {©(y,)}., are disjointed, and y:ny;#0. y; and y; touch at one point, and Uy,
intersects with the sides of 0,,,A(L) and 0,,,A(L,), by the same argument as in Lemma 2

)

Ui,y (there is a contour which satisfies condition (1)-(b))

< ) 42L+1)*3" 1exp{—,B(%m—Z)}. (3.23)

m> 2logL

Combining above (a) and (b), we obtain

8B, +)=sup i p,{olxo)=+1} AT 1, +)
L.L

<y 4m3"‘"cxp{—ﬂ(gm—-2)}+ Y 4(2L+1)23"“lexp{—-ﬂ(—ém—Z)}ﬂ:»wO.

m>4 5 m> 2logL

(3.24)

(2) Second, for e= —, by a similar argument as above (in fact this case is easier),

o

pa.Lo{olxe)=—1}nTy ., ) - O (3.25)

[ Jadd
By (3.24) and (3.25), which imply that &(f,¢) — 0, so we finish the proof of the
Lemma 3.

By Lemma 3, there exist a f;>0 and e=¢(L, L,,7), such that
PP 1
inf{paw,Ly(CLr, e L) B=B1, L2 7}25- (3:26)

We now set
P =TrrewLn- (3.27)
For 6eQy 1, let
Ci,(0)={y:(e(L, L, ,7))-contour in A(L,L,) at o, |y|>2L+2aL}. (3.28)

Finally, for a contour y, we define
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appears as the maximal element of Cj ; (o) in
FL,Ll(y) {GE FL Ll y pp L, L1( ) }

the sense that if A(#£y) e C}, 1 (o), then 1 = O(y)
(3.29)

Lemma 4. Let T,T; (y)={T/0):06€l",, ()}, where Ly=[aL]—1 and a<%
then

y is a contour in A(L, L,)

lim sup < p} r T,r :
P {#A(L,L.)( Lo Ty, () > 2L+ 24l

’}=0, (3.30)
B
where T(0) is defined in (3.9) of Lemma 1 and 'y ;, is defined in (3.27).

Proof. Note that

O, nT, I, () = {Ty(0)3 oel’L (), T)o)e rL,L;}

- {Ty(a)‘ there is an ¢(L, L'l , T)-contour y: in A(L,L,) at} (3.31)
T\(o) such that y’ = ©(y) and |y'|>2L+2aL
thus
ALy, N T, ()< Z Z Haw.L(Ty(0)). (3.32)

<8(y) a:0el'L L,(y)
|y’ |z 2L+ 2aL v’ appears at T, ()

’

(1) Suppose that the contour y surrounds the hole in A(L,L,) at 6. Then y
doesn’t intersect with sides of 0,,,A(L), and we have:
(i) If 7" intersects with the sides of d,,,A(L,),

Haw,Lo(Ty(0)) <exp(—2p(y'| —8aL — 8aL)uj (T, T(0))
=exp(—2p(1y'| — 8aL — 8aL)uj ., (T, T, (0)). (3.33)
(i) If y' doesn’t intersect with the sides of d,,,A(L,),
Haw,L(T(0)) <exp(—2B(ly'| — 8aL)uiw,L,(Ty Ty(0))
=exp(—2B(1y'| —8aL)up 1T, T, (0)). (334
(2) Suppose that the contour y doesn’t surround the hole in A(L,L,) at o, then
Baw.Loy(Ty0) <exp(—2B |y Duhw.L(Ty T,(0))
=exp(—2B 1y DuacwL(T,Ty(0)). (3.35)

by (3.32)3.35) and the fact that T, maps I'; ; (y) injectively into itself, we have

Y
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> Haa.Lo(Ty0) <exp(—2B(y'| — 16aLujw,p, (T, L1, (7)) (3.36)

a:0elL, L, ()
v’ appears at Ty (o)

By (3.32) (3.36), and a<%

PaaLyT oL | T, ()< , Z exp(—2B(ly'| — 16aL))
lv'yl zy 27,2%1,

< Y 42L+1)*3" 'exp(—2B(m— 16aL))ﬁ—> 0. (3.37)

m>2L+ 2aL
Now we finished the proof of Lemma 4.

Let Cp,, be the set ot all contours in A(L,L,) which satisfies |y|>2L+2aL,
and y intersects with at most three sides of 9,,A(L).

Lemma 5. For yeCp, , Li=[aL]—1 (a<%), and let
AL,L,,y)=inf{H} 1, (0)—Hip 1)(Ty0):0€l ;1 ()} (3.38)

There is f, <o, such that for f>B,, we can find c,(f)>0 and C,>0, such that

Y. |ylexp(—BAL, Ly, y)<c,(Blexp(— C,BL). (339
VECL,L,
Proof. (1) Let Cp (a subset of Cp ;) be the set of all contours in A(L,L,)

which don’t intersect with sides of d;,A(L). By the same argument as in (3.33) and
(3.34)

Y. Wlexp(—BRAL,Ly,y))< Y. 4m(2L+1)*3"~ Yexp(—2p(m— 16aL)).

VEC;_,L, m>2L+ 2aL

(3.40)

(2) Let C} ., (asubset of Cp ) be the set of all contours in A(L, L) which intersect

with sides of 9;,,A(L), but do not intersect with sides of 9,,,A(L,)
(2)-(a). Suppose that the contour ye C}; doesn’t surround the hole in A(L,L,) at

6. We can follow the proof of Lemma 1, since we have the condition “y intersects
mA(L)”.  So (3.13) is changed to be

with at most three sides of ¢,
-3
<

Iyl < 4Ivl

and |y|>2L+2aL, by the same methods of (3.10), (3.14) and (3.15)
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T T 2
HA(L.L;)(U)—HA(L,Ll)(Tya)ZZ [y|—2. (3.41)

(2)-(b). Suppose that the contour ye CZ;, surrounds the hole in A(L,L,) at ¢, and

y intersects with no pair of opposite sides of d,,,A(L). Then (3.13) is changed to
be

-1
<-
Iyl 2Ivl
and |y|>2L+6al. Thus,
Hipp0)—Hi 1, (T,0)=>[y|—16aL—2. (3.42)

(2)-(c). Suppose that the contour y surrounds the hole in A(L,L,)e CZ,, at ¢, and

y intersects with one pair of opposite sides of 9,,,A(L). Then (3.13) is changed to
be

-3
<=
byl < 3 Iyl
and |y|>4L+4al

1
Hiy 1)0)—Hiqp L, (T,0)= 3 [y| —16aL — 2. (3.43)

By (2)-(a)(b)c)

1
Y. lexp(=BAL, Ly, y)< Y 4m(2L+1)23""'”€Xp(—ﬁ(§m—2))

')'GC}‘_LI m>2L+ 2aL

+ Y 4m(2L+1)*3"™" Yexp(— p(m— 16aL —2))

m>2L+6aL

+ Y 4m(2L+1)*3" Vexp(— ,B(%m —16aL —2)). (3.44)

m>4L+4aL

(3) Let C? ., (a subset of C; 1 ) be the set of all contours in A(L, L,) which intersect
with sides of 9;,,A(L) and sides of d,,A(L,). Then we have

Hippy@)—Hiwoy(Ty0)22 Y 1A1=21 3 ¥ w)I=2 % Ipi (3.45)
i20 i21 ye(ie;},é\p({,) i>1

=2 lpd+ 'le5.'! (3.46)

i>1
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2

(1—a)L e(y)

Figure 1.

/ y
(1-aL o)
%//
Figure 2.
i=Tlol+ T Iki+ T i (3.47)

by (3.45)(3.47),

12 X wW0I=l ¥ w-Y ¥ w0

i>1 yedoxeA(L) y€dextA(L) i21 yedextA(L)
{x.y}epi {x.y}ey {x,y}ed;
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<1+ ) [0d=1+yl— Y lpi. (3.48)
i>1 i>1
(3)-(a). Suppose that X, |pi| <4aL.
i) If y intersects with three sides of 9,,,A(L), then we have |y|>4L+2(1 —a)L,
and (see Figure 1),

m_z(l_a)ng,
so we have
fl< [y|+2(1 —a)L
ST
By (3.46)(3.48)
+2(1—a)L
DR DI U LW JPYIN )
i>1 yedextA(L) i20 i1

{x,ylepi

Hence, by (3.45)

HX1y(0)—Hip L (T,0)=ly)—2(1 —a)L—4 2 lpil —2

i>1
z|yl=2(1-a)L—16al -2, (3.49)
here we use the condition X, ,|pj|<4aL in the last inequality.

ii) If y intersects with only one pair of opposite sides of d;,A(L), then we have
ly|=4L, and

-
<=
Iyl 3
by the same method as i),
HEL1)0)—HiqL,)(T,0) 2yl —16aL—2. (3.50)

iii) If y intersects with no pair of opposite sides of J;,,A(L), by the condition
that ye C2,,, we have |y|>2L+2aL, and,

<
Iyl < 2

Hiwpy(0)—Hiw ) (T,0) =yl —16aL —2. (3.51)
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(3)-(b). Suppose that X, ,|pi|>4aL.
i) If y intersects with three sides of d,,,A(L), then we have |y|>4L +2(1 —a)L +4aL
and (see Figure 2)

]

L M=2i-aL

Y| —2(1— ,
[y —2(1—a) 5
so we have
- +2(1—-a)L
|y|s|y| (1—-a)
2
and
—2(1—a)L .
1Y T <t e S
i1 yedextA(L) 2 i>0 i>1

{x,y}epi

By (3.45), we have

Hiw,1(0) = Hiw, L, (Ty0) 21| =2(1—a)L—4 3 |pi| -2

izt
>y —2(1—a)L—32al -2, (3.52)
here we use the condition 8aL>ZX,, |pj]>4aL in the last inequality.

ii) If y intersects with only one pair of opposite sides of d;,,A(L), then we have
|y|>4L +4alL, and

- _Il
s_
Il 3
so we have
Iyl ,
1Y Y wI<t=2+ Y|4+ Y Ipil
i>1 yedontA(L) 2 5o i>1
{x,y}epi
and

HK(L,Ll)(O')—Hf\(L,L,)(TyO')Z [y —4 Z loil —2

i1

>|y|—32aL—2. (3.53)

iii) If y intersects with no pair of opposite sides of 9,,,A(L), but intersects with
two sides of 9,,,A(L), then we have |y|>4L+4aL, and

-
<=
[7] 5
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by above ii)
Hi o Ly(0)—HipL(T,0) =y —32aL —2. (3.54)
iv) If y intersects with only one side of d,,A(L), then we have |y|>2L+4aL, and

- _lyl—2L
<
Iyl 5

HK(L,L;)(G) - HIK(L,L])(TYG) 2 h’l + 2L - 32aL - 2. (3.55)

By (3)-(a) apd (3)-(b), we have

Y. lylexp(—BRL,L,y))

'yeC,3_',_1

< Y 4m(2L + 1)23~ Vexp(— f(m —2(1 —a)L — 16aL — 2))

m>24L+2(1-a)L

+ Y 4m(2L+1)*3" Vexp(— f(m— 16aL —2))

m>4L

+ Y 4m(2L+1)*3"™ Yexp(— p(m— 16aL —2))

m>2L+ 2al

+ ¥ 4m(2L +1)23m~ Yexp(— f(m —2(1 —a)L — 32aL —2))

m>4L+2(1 —a)L+4aL

+2 Y 4m(2L+1)*3"" Yexp(— f(m—32aL—2))

m>4L+4al

+ Y 4mQ2L+1)*3" Vexp(— f(m+2L—32aL—2)). (3.56)

m>2L+4al

Combining (1) (2) (3), by (3.40), (3.44) and (3.56), there is a f}, <oco, when f>8,,
we can find ¢(8)>0, C;>0

Y. Ilexp(~BRAL,Ly,y) <cy(Bexp(— C,pL). (3.57)

TECL,L,

Now we finished the proof of Lemma 5.

3.3. Proof of Theorem 1. We will prove Theorem 1 in two steps:
(1) Suppose L>7, L, =[aL]—1 and a<4%, for o€’y (see (3.27)), let A(L,L,,0)

={xeA(L,L,):0*¢T, 1} #0, then we have the following properties:

(i) there exists an unique (L, L, ,t)-contour y=1y(o) in A(L,L,) at ¢ such that
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|y|=2L+2alL,
(ii) y intersects with at most three sides of d;,A(L),
(iil) |A(L,L,,0)|<2ly]. (3.58)

If there were two contours satisfying (i), it would be impossible that c*¢ T ; for

some x. (iii) is obvious. (ii) can be seen as follows: For xe A(L,L,), consider a
set of contours in A(L,L,) at ¢* such that |y,|<2L+2aL and xey;, say C,, that
is

yisane(L,L,,t)contourin
Cx={v1,---,v,~}={vz ! -

AL,L))ato* xey

Note that

yc Ul pu{beB:xeb}.

Then we can see, for any xeA(L,L,), the contours in C, intersect with at most
three sides of 0,,A(L).
Let Cp;, be the set of all contours in A(L,L,) which satisfies |y|>2L+2alL,

and ye Cp, intersect with at most three sides of d,,A(L), and let ', ; (y) be given
in (3.29). We want to prove that:

y r
gapAL. L) f.0<6ey(p) Y fyi2henl i) (3.59)
veCp 1, “A(L.Lx)(rL,L,)
Let xr, , :QaqLy— {0,1} be the indicator function of I'y; , by (2.16) and
(3.26), there is a f, >0, such that for f>f,, we have

B,z
gapAL L) )= inf AUS)
seLa@.aut) Vark(f)

cmlB)

_.u:\(L,Ll)(rL,Ll)/‘;\(L,Ll)(Fi,Ll)

X Z Z AL L)L, () xL,1,(6%) = x1,1,(0)|

xeA(L,Ly) o

<3cu(B) Y y M)

T
xeAL,Ly) oeTy , axer, , MawLy(TL.L,)

Ha,L)(0)
= 3CM(B) Z ' A(L7 Ll s a)l_#l)c—
oclp p paw.LyTLL,)

ac.LoTLe,()
<6¢,(B) Z | IﬂAiL,L) L,cL
76Cp 1, Uae,LyTLL)
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Now we have proved the inequality (3.59).
(2) For yeCyp,,, let

HL,L,,y)= inf{H/t\(L.Ll)(a) - HK(L,L,)(TyO') ; O€ FL,Ll()’)}-
Then,
M. Lo L. < taw,Ly(Ty L, (v))exp{ — BAL, L,, 7)}. (3.60)

By Lemma 4, since ye C 1, , there exists a f3>0, such that

B> B5,7is acontourin A(L,L,),}> 1
2

inf Lo 1T, L., )
{ﬂA(L,Ln)( LT L, ) [y|>2L+2aL

then,

o Cti) T biD) o g, L, )
”A(L,Lx)(ri,h) ”A(L,Ll)(FL,Ll)
1
= " " €X
Pac,LoTLe T, ()
<2exp{—pAL,L,,y)}. (3.61)

By (3.59) and (3.61) we have

p{ _ﬁF(L’ Ll ,')’)}

gap(A(L,L,); B,0)<12cy(B) Y. Ivlexp{—BAL,L,,y)}-

)'EC,__LI

By Lemma 5, there is a §, <00, such that when f>§,,

gap(A(L,Ly); B,7)<12cpy(P)e,(Blexp{—C,BL}. (3.62)
If B>max{pB,,pB,,p}, there are ¢(f)>0, C>0,
gap(A(L,L,); B,7)<c(Plexp{— CBL}. (3.63)

We finished the proof of Theorem 1.

4. The lower bound of the spectral gap of Ising model with the special boundary
conditions of case 2

4.1. Boundary conditions and main results. In this section, we will consider
the Ising model on A(L,L,) with another special boundary condition 1.

Boundary Conditions of Case 2. 4.1)

Inner boundary: an arbitrary boundary condition.



Spectral gap of Ising model with a hole 549
Outer boundary: t(x)= +1; for all x€0,4,A(L, L,).

In this section, we will use the same definitions and notations coming from
[5], and use the argument of [5]. We let (+) and (—) denote the two extreme
configurations in Q,. ;,, identically equal to plus and minus one respectively, and

for any rectangle R whose sides are pararell to the x-axis and y-axis, let pg:r™®

denote the Gibbs measure on R with the boundary conditions 7,, 7,, 73, 74 on
the outer boundary of its four sides ordered clockwise starting from the bottom
side. We use the usual convention that, if one of the configurations t; is identically
equal to +1 or —1, then we replace it by a + or — sign. Thus for example 7,, +,
—, + means 1, boundary condition on the bottom side, plus boundary condition
on the vertical ones and minus boundary condition on the top one. Whenever
confusion does not arise we will also omit the subscript A(L,L,) in the notation

OA(L,Ly)*
Now we state the main result in this Section.

Theorem 2. Let e€(0,1) be given, and L, L, be any integers such that L—L,>4
and L, >2L%+‘, then there exist fo<oo and C>0, when B>, we have

gap(A(L, L,), B, 1) > exp(— CBLE*). 42

Remark 1. Comparing this Theorem 2 with the Theorem 3.1 in [5], for the
graphs A(L,L,) and A(L) and for the same plus “outer boundary condition”, we
can get the same lower bound for the spectral gaps. This means that, under this
circumstances, when f is large enough, for the graph A(L,L,) the inner arbitrary

boundary condition of A(L,L,) doesn’t change this lower bound (exp(—C/i’L%”))
of the spectral gap.

Remark 2. Although we consider the condition L, >2L3*¢ in Theorem 2, for

1 .
L, <2L2*¢ by using almost the same argument, we can get the same result as that
of Theorem 2. But in this case, we should do a little modification on the updatings
and proofs.

4.2. Block-Glauber dynamics for Ising model. In this subsection, we will briefly
introduce the notations for Block-Glauber dynamics, for the detail, see [5] [6]. Let
V < Z? be a given finite set, 1€, be the boundary condition and uf* the Gibbs
measure. We will also consider a more general version of the finite volume dynamics
disscussed so far in which more than one spin can flip at once. Let 2={V,,---, V,}
be a covering of V, i.e., V=u,;V;. Then we will denote by block dynamics with
blocks {V,,---,V,} the continuous time Markov chain in which each block waits
an exponential time of mean one and the configuration inside the block is replaced
by a new configuration distributed according to the Gibbs measure of the block
given the previous configuration outside the block. More precisely, the generator
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of the Markov process corresponding to 2 is defined as

(LY floy)= Y T WS oh (o] (43)

i=1 neﬂ‘,‘

where (tgy) denotes the configuration in Q. equal to t outside V and to o, inside
V, while o} is the configuration in Q, equal to # in V; and to gy, in V\V,.
We will refer to the Markov process generated by L!V9-#* as the {V;}-dynamics. The
operator LV*P* is self-adjoint on L%(Q,du}), i.e., the block dynamics is reversible
with respect to the Gibbs measure pf*. Then,

. e )
V= f .
gapy({V:}) s o Varth) (4.4)
where

1

&S, )= 3 Z Y ; (e LS (0% —f(0v)]? 4.5)
1

Var(f)= 2 Y i (o) LS (o) —f(n)]> (4.6)

The coupling for the {V;}-dynamics is essential in this section, for the details,
see §4 Section 1 in [5].

Next we introduce a Lemma, which comes from Lemma 3.1 in [S], we will
omit the proof.

Lemma 6. Let us call Sy={t,,---,ty} an ordered sequence of updatings if for
any i=1,---,N:

i) at time t; the dynamics updates the rectangle V;,

ii) there are no updatings between times t; and t;, .
Then, for any N large enough (independent of 1):

(NN
P(there exists no ordered sequence in [O, t])Sexp(— 5 ) 4.7

The following Proposition comes from the Proposition 3.4 in [6], we also omit
the proof.

Proposition 1. Let 2={V,,---,V,} be an arbitrary collection of finite sets and
V=u,V;. For any given boundary condition 1€, let L{* be given in (2.11), and
let LY3% pe given in (4.3). Then we have

gap(L{7) = gap(LY ) #%)inf inf gap(L{®) sup#{i: Viax})~". 4.8)

i e xeV
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Let l=2[L%+‘], where €€(0,), suppose that L>L,>[ Without loss of
generality, we can suppose that N=2L7Ld_ 1 is an integer. For i=1,---,N, we

define seven kind of rectangles:

Ai={x€Z?: —L<x,<L, —L+(i—1)}{<x,<—L+(i+1)},
Byii={x€Z?: —L<x,<L, L—(i+1);<x,<L—(i—1)}},
Consi={x€Z* L—(i+1)<x,<L+(i—1)%, —L,—I<x,<L,+1},
Dyyyi={x€Z?: —L+(i—1)3<x;<—L+(i+1)j, —L,—I<x,<L+1},
O={xeZ? —L,—I<x,; <L+, —L—I<x,<L,+I\A(L,),

and

Con+i={x€Z*:L—(i+1)}<x,<L, —L<x,<L},

Dyyyi={xeZ?: —L<x;<—L+(i+1)}, —L<x,<L},
(4.9)

and let {Q}={4,,B,,C;,D;,0,i=1,---,N}. By the above definition, {Q} is the
covering of A(L,L,), and by (4.3), we can construct the {Q}-dynamics.
We will do the updatings in the following order:
(a) first, we do the updating of {4,}, in the order of 4,,4,,-, Ay,
(b) second, we do the updating of {B;} in the order of By,;,By4+3, B,
(c) third, we do the updating of {C;}, in the order of Coy;1,Cons2,* Csns
(e) next, we do the updating of {D;} in the order of Dyy,,D3y42,* Dan,
(f) at last, we do the updating of Q.
(4.10)

The idea why we do above updatings comes from [5], we want to enforce the (+)
spins and (—) spins agree after the updatings, and by Lemma 6, we see that with
large probability, we have this updatings. Now we introduce a Lemma, it comes
from Theorem 6.4. in [6].

Lemma 7. Let Q be defined as in (4.9), then
inf gap {0, 1} zliQ_Ic,,,exp(—w -2/21) (4.11)

where | =2[L%+‘] and the constant c,, has been defined in (2.15)

Proof. The proof is almost the same as the proof in Section 2 of [5] or the
proof of Theorem 6.4 in [6]. But we will modify the proof of Theorem 6.4 in [6];
we give a new definition about the order of sites in A(L,L,).
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Let x,ye A(L,L,), we order the sites in A(L,L,) as follow:
x<y, iff X, +x,<y;+y,, ofr X1+x,=y1+y2, X<V, 4.12)

where x=(x;,x,), y=(1,¥2).
The rest of the proof is almost the same as that of Theorem 6.4 in [6].

Next we intouduce an important proposition, which comes from Proposition
3.1 in [S]. We omit the proof, too. Let R be the rectangle

R={XGZZ:—‘L2SX1SL2, —L3SXZSL3} (4.13)
with LzzLazLéﬂ,

Proposition 2. Let m>0 and €€(0,3) be given, then there exists o= o€, m)

independent of R such that for all B>p, and all xe R with xZSL3—%L§”, we
have:

gt o)== pg 7 (o) = 1) < exp(—mL3) (4.14)

4.3. Probability estimate of special sequence of updatings. Let us use the
following convention:

4, 1<i<N,
B, N+1<i<2N,
Vi= :» 2N+1<i<3N,
D, 3N+1<i<4N,
0, i=4N+1.
Let Suvei={lis " Instnat> - mlanslaness s tanstaners o lanstan+1) bE 2

fixed ordered sequence with ¢, =0, let ¢{2"* be the configuration of {Q}-dynamics
(see Section 4.2) at time ¢, starting from the initial configuration ¢, and the i-th updating
occurs in the box V;. For m=1,.--N,

Ri={x€U;cpd;:x, < —L+(m+1)5—[4]},
RE = {X€UjcmBrn+ji x> L—(m+ D5+ [Z1} VRS,
RSy im={x€U;cmConsjix = L—(m+ )5+ [4]} URSy,
ROyvsm={x€U;cnDsnjiX; < —L+m+ 1) —[F1}URSy,
RgN+ 1=QUR=AL,L,).
(4.15)

For i=1,---,4N+1, let
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R,.E{Rf, ~~~,R’,$,Rg“ s ""RgN’RgN+1 s ""RgNngN+l s ""RQN’R2N+I}’

for example, R,y,;=RSy+,. Next, we define the events:

F)={(H)2"(x) # (=)@ x)}, i=1,-,4N+1, (4.16)
Fi= U F(x), i=1,-,4N+1 4.17)
{xeRy}

In particular, we have

Finvr= U Fuyiy(®). (4.18)
xeA(L,Ly)

Let ¢;=P(F), i=1,2,.--,4N+1, then we have for every n<4N,

4N
4i+1<qi+P(Fis nF)< Y P(F,.NF)+ P(F)).

n=1
Hence by induction, we have
N-1 2N-1 3IN—-1
Qan+1 < Z P(F, 1nF)< Z P(F, s 0 F)+ Z P(F,,NF)
n=1 n=N n=2N
4N-1
+ ) P(F, 1 0F)+P(F)+P(Fyy. N Fiy) 4.19)
n=3N
Next we will show that
Gan+ 1 <4NQL +1)%exp(—mL?). (4.20)

First, we consider the third term, Z3¥; 1 P(F,, , N FY).

P(F, 1 nF,)< > Haw,L,)(9)

x€Rn+1nCn+1
€ AL,L,y)

X P(F, 1 1() 0 [0yer, {(H)2°0) = (=2 (0) = 02" (1)} 1), (4.21)

where ne {2N,---,3N—1}. Then the summand in the right hand side of (4.21) can
be estimated from above by:

{0}t (@)t L{Q)t {Qhr _ {Q)s (O)e
Ba@Lo@E [uge, 757 (qx) = 1) — pge s %" (n(x) = 1)],
4.22)

where E is the expectation over the random configuration ¢!2*. Since the dynamics
is reversible with respect to uj ., . ,(0) and by the DLR property,
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4m{+,pm'pm
Y HA@rLoOEug, T (q(x) = 1)

I7eQA(L,LU

= Y HAwLoOmE o mx)=1)

U‘EQA(L,LI)

< Y wuEhttowEt o mx=1)

oeQc,
=pd, T x)=1). (4.23)
Similarly we obtain following;

(@bt _ (Q)r (O}t
Y HawLy@Eug, T (n(x)=1)

A(L,Ly,

2p; 7t (k) =1). (4.24)

oe

By Proposition 2, we have

Yo &R =0 —pd () =1)]1 < (2L 4+ 1)*exp(—mL>),
x€Rn+1NCh+ 1
(4.25)

where m=m(f), which diverges as f — oo. Thus, for 2N<n<3N—1, we have

P(F, ., A FS)<(QL+1)’exp(—mL%), (4.26)
and
3N-1
Y. P(F,.,nF)<NQL+1)%exp(—mL>). 4.27)
n=2N

We can use the same method to estimate N33 P(F,, N FY),

4N-1
Y P(F,,,nF)<NQL+1)%exp(—mL>). (4.28)

n=3N

Note that, by the definition of {Q}-dynamics, we have P(Fyy,{NFiy)=0. We can
follow the proof in Section 3 of [5], or use a similar argument of above proofs,
we can get

N—-1
Y. P(F,.; nF)<NQL+1)’exp(—mL?). (4.29)
n=1
2N-1
Y P(F,,,F9)< NQRL+1)%exp(—mL?). (4.30)
n=N

where m=m(f). Similarly we can estimate P(F;). Thus, we finally obtain (4.20)
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Gan+1 <ANQL + 1)%exp(—mL*).
4.4. Proof of Theorem 2. Given a sequence Sy 4, ={fy, """, L4n+1} Of updatings
we say that S,y is good sequence iff S5+, is ordered and the event Fgy,, occurs

at the end of the sequence. Because of (4.20) we know that the probability that
an ordered sequence of updating S,y., is also a good sequence is larger than

1 —(4N+ 1)2L + 1)*exp(—mL*) >% (4.31)

for L large enough. Thus, using Lemma 6, we get that if T=exp(Ll—;“£) and L is
large enough:

1
P(there exists a good sequence in [0, T])Zg 4.32)

We conclude by observing that, if there exists a good sequence in [0, ], then,
by monotonicity, at the end of the sequence, the configurations (+)!¢* and (—)!2~
will be identical. Therefore we can estimate

N\[L
P((+)$Q"'#(—)SQ"')5<§)[T] (4.33)
which immediately implies that
1 3 1+e 3
gap({Q},0)=>T logi =exp(—L 2 )log 5) 4.34)
By Proposition 1, we want to estimate the term “(sup,. #{i:V;2x})"!”, by the

construction of covering defined in (4.9), we have (sup,.,#{i: V;3x}) < 3, so by (4.8),
(4.11), (4.32) and (4.34), we have

1. .
gap(A(L,L,); B, t)zgn?f inf gap(L¥?)gap({Q}, 1)
i @

1
z§(2L+1)-2c,,,exp(—sﬁﬂzL%“)exp(—L‘?”)log (%) (4.35)
so we can find some C>0, when f§ large enough
>exp(— CBLI*Y) (4.36)
Now we complete the proof.
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