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1-cocycles on the group of diffeomorphisms II

By

Hiroaki SHIMOMURA

§ 1 .  Introduction

In this paper we consider 1-cocycles 0 over finite or infinite configuration spaces
on C-m anifolds M and natural representations connected with 0, which is exactly a
continuation of the previous author's work [22]. Here the 1-cocycle is as a definition
a U(H)-valued function on X x Difft(M), which fulfills the so called cocycle equality,
and U(H) is the unitary group on a finite dimensional Hilbert space over C, DifP(M)
is the connected component of the identity id in the group of diffeomorphisms with
compact supports on M , and X is a collection BL of all n-point subsets in  M , or
X is a  space rm of all infinite configurations on M .  Historically in the first paper
of Ismagilov [7] it is described that every irreducible unitary representation of the
group Difft(T 1) w ith som e additional properties is characterized a s  th e  natural
representation U,0 with a  suitable measure it and a 1-cocycle 0 on a configuration
space or on an analogous o n e .  After this natural representations frequently appeared
i n  o r d e r  to  a n a ly se  o r  to  construct unitary representations o f D iff '(M ). (cf.
[5], [6], [9], [25]) But the study of 1-cocycles have been rather neglected. Recently
the author found that when the configuration space is M  itself, the form of 1-cocycles
is closely connected with a  geometrical structure of M . (cf.[22]) That is, under an
assumption that M is simply connected, every continuous' 1-cocycle 0 has a canonical
form consisting of only 1-coboundary and Jacobian term which are also the standard
examples of 1-cocycles. Besides 0  takes locally the  canonical form without any
assumption on M .  Thus it is thought that a glueing of pieces actually determines
the form of 1-cocycles on M .  Combining these results with [7], we are led  to  a
motivation of the present p a p e r . That is : Is the situation for a general configuration
space sim ilar w ith the previous one?, and the answer is affirmative.

L et us explain our results in m ore d e ta il. The next section begins with five
definitions for regularity of 1-cocycles. Among them a notion of precontinuity is
m ost fundam ental. The principal part of this section is devoted to the study of
precontinuous 1-cocycles 0115 , g )  o n  Irm x D ifft(M ). Since 13"m  i s  a quotient space
of ifin := =  (P 1 , • • P,)E M" " i 0j, P,0 P i l by an equivalence relation, we can always
lift to  M" x Difft(M) as a  symmetric o n e .  So it is reasonable to start our study
at precontinuous, however not necessarily symmetric, 1-cocycles on  itil" x Difft(M).

The result is still true for precontinuous 1-cocycles as will be seen in the present paper.
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The analysis consists of three steps. The first one is  a  preparation for our tools
used in  th e  analysis of D ifrok(M )  from  th e  theory o n  infinite dimensional Lie
g ro u p s . The most important one among them are the primitive Campbell-Hausdorff
fo rm u la  a n d  a  theorem  fo r  denseness which assures that diffeomorphisms of
exponential mappings generated by smooth vector fields w ith compact supports
generate the whole g ro u p . These were already obtained in [22], and as a byproduct
we are naturally led to a simple proof of the fact that the whole group DiR(M)
is generated by local diffeomorphisms. In the second step, the analysis of 1-cocycles
is turned to  a  linear one with a  help of these theorems, and a partition of unity
reduces it to a local consideration of Lie algebras. Finally in Theorem 2.3 a  linear
representation of a  L ie  algebra of smooth vector fields w ill be exam ined. In the
last step a local behaviour of 1-cocycles is first given by these results without any
assumption on  M , and next it is observed in  order to patch up them  globally. It
is the time to need a geometrical condition for M  or more directly for j1 . S im p ly
speaking, we have a  situation closely resembling to analytic continuation. The
1-coboundary term appeared at this stage defines as a rule a many valued function. In
the case of analytic continuation, Principle of monodoromy works so effectively
that this kind of ambiguity is clearly resolved, and we will find that it is also useful
for our case . T h is  is  the  reason why we impose the simply connected condition
on / f r .  T h a t  is  to  say, whenever if/n is simply connected, every precontinuous
takes a  canonical form (Theorem 2.8). In  add ition  a  m ore  general and  precise
statement for cocycle fo rm  is  g iven  i n  Theorem 2.5 fo r  o u r  la te r  discussions.
According to [3] for the simply connectedness on 'M" for every n e N, it is sufficient
that M  is simply connected and dim (M ) 3.

The rest of this subsection is devoted to the study of exceptional cases, that is
to say M= R i , R 2  a n d  V .  In the first case, 13"m  is itself simply connected, and  fi"
has n! connected components which a re  all isom orphic to B .  T a k in g  a  such
isomorphic section we can describe the cocycle form . O f course there are non
canonical 1-cocycles o n  Ia. x Difft(M), a n d  a  later theorem implies that natural
representations corresponding to these 1-cocycles a r e  never irreducible, unless
d im (H )=  1 . S o  in  th is  c a se , a  class o f  irreducible natural representations are
something narrow. Next, if M = R 2 , we will see that there is also an  example of
non canonical 1-cocycle being closely resemble to the one described in the cylindrical
case. (cf. [22]) Finally the last case M =  T T  is more interesting. B'7'. a n d  tn
are  non  simply connected, bu t the  general form of precontinuous 1-cocycles and
an  example of non canonical one are also given.

In  th e  la tte r  half o f  th is  section, w e take up natural representations Ur,  of
D iff(M ) corresponding to a  standard  measure f t  o n  13"m  derived from  a  locally
Euclidean finite smooth measure /.4. on M  and to measurable 1-cocycles a. According
to  [7 ], a  definition for irreducibility of 1-cocycles is given a n d  a  criterion for the
irreducibility of 1-cocycles is obtained in  Theorem  2.12. Further it is assured in
Theorem 2.15 that for the irreducibility of U,5 it is necessary and sufficient that a is
irreducible. It is noteworthy to remark that in the above theorem we assume that
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a is strongly Borelian but it is unnecessary to require that a is canonical. In the
proof we use only the local form of a which was already established in  Theorem
2.4. E quiva lence  of natural representations corresponding to 1-cocycles is stated
in the last Theorem 2.16 in  terms of the cohomologous relation.

In section 3 we assume that M  is non compact, and first consider precontinuous
1-cocycles a over the infinite configuration space F m  . As before we identify a with
a  symmetric precontinuous o n e  6 over :1;/' := Ps= (P, , • • P • • • ) I v i Oj,
{P„}„ has no accum ulation points}. D ifft(M ) acts on if;/  diagonally a n d  each
orbit [P ] containig P cosists of all Oe Mc° whose components are all equal to that
of 15 except fo r finite numbers o f  n, of course under a n  additional b u t natural
assumption on M .  So it is reasonable to first restrict our 1-cocycle 6 to each [A],
i ie :1 2 /' . Then the problem is reduced to the one on finite configuration spaces,
and we gather all the resuts in Theorem 2.5 and  patch up them  by an inductive
lim it m e th o d . I n  particular I f  M  is sim ply connected and dim (M )> 3, every
precontinuous 1-cocycle o n  11^1°3 x Difft(M) takes a  canonical fo rm . However the
canonical form obtained here is someting different from that one obtained in section
2. T h e  Ja c o b ia n  term is the difference between these formulas and it depends, in
the present case, on not only P of course but also the residue class [P ]. (cf. Theorem
3 .2 )  As before we consider natural representations of Difft(M) over Fm which are
a l ik e  t o  t h e  o n e  o v e r  t h e  f in ite  configuration sp a c e . T h is  t im e , however
Difro (M)-quasi-invariant measure on (F M , /3), 93 is the  natural Borel field, is not
uniquely determined (up to equivalence), so we must consider also a factor of such
probabitiy measures i  o n  (Fa  , 13). H e n c e  a  natural representation is a  function
of two variables, measure and 1-cocycle, and also a  definition o f irreducibility of
m easurable 1-cocycles m u s t  b e  g iv e n  i n  te rm s  o f  i , w h i c h  w e  c a l l  i t
17-irreducibility. However the resuts are alm ost parallel to the  finite dimensional
case.

Finally we wish to say a  few words about the dimension of the Hilbert space
H .  As it was pointed out earlier, throughout this paper dim(H) is assumed to be
finite, unless otherwise stated. However most of the  results obtained here seems
to be still (or under some additional conditions) true for the infinite dimensional
space, especially when M  is compact, though I have no proofs yet for them . Perhaps
m ore profound study fo r  th e  differential representation d U  o f  a  given infinite
dimensional representation will derive the proper proof.

§2. 1-cocycles on the finite configuration space

2 .1 .  Five definitions of 1-cocycles. Throughout th is paper, M  stands for
d-dimensional paracompact C-manifold, Diffo (M) is a set of all C-diffeomorphisms
g  o n  M  w ith com pact supports. D iffo (M )  is equipped w ith the inductive limit
topology r  o f T , on  D iff(K ), where K  ru n s  th ro u g h  a ll com pac t se ts  o f M ,
Diff(K):= {g eDif f o(M) I suppg g K} an d  T K  is the natural C c°-topology on it. T h e
connected component of the unit element id of Diffo(M) will be denoted by Difft(M),
and it is noteworthy to remark that Diff'd(M) is also arcwise connected. (cf. [22])
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Hereafter we will work on  Difrt(M), and  in  a  little while we denote Difft(M)
or its subgroup by G .  Suppose that G acts on  a  measurable space (X, 23) from left
a s  a  measurable transformation, gx.

Then we consider a  U(H)-valued function 0(x ,g) o n  X  x G, called 1-cocycle,
which satisfies the following relation.

(2.1) vg , g 2 e G, 0(x, g 1 )0(g I-  x, g 2 ) = 0(x, g ,g 2 ),

for all x e X , where H  is a  complex finite o r infinite dimensional Hilbert space, and
U(H) is  the  unitary g ro u p . W e give a s  below five definitions fo r  regularity of
1-cocycles.

D efin ition  2 .1 . (1) 0 is said  to  be precontinuous, if  f o r any  f ix ed xo e X,
0(x, ,g) is continuous on G(x 0 ):={ geG lgx 0 =x 0 }  as a function of g.
(Of course if G acts transitively, the word "any" can be replaced by "some")
(2) 0  is said to be continuous, if  for any  f ixed x , e X , 0(x 0 ,g) is continuous on G
as a function of g.
(3) 0  is said to be B orelian, if  it is precontinuous and for any  f ixed geG, 0(x ,g) is
0-measurable.
(4) 0  is said to be strongly  B orelian, if  it is precontinuous and 0(x ,g) is jointly
measurable of both variables.
(5) 0  is said to be m easurable, if  for any  f ixed geG, 0(x , g) is 0-m easurable.

In addition it is sometimes expected that the  following condition, a k ind  of
continuity, is imposed, whenever /1 is  G-quasi-invariant, in order that the natural
representation corresponding to 0  is continuous.

(6 )  vh, , h 2  e H, <0(x, g)h, , h 2 > <h , h 2 > ,., in /./, whenever g -+ id.

Anyway the relation between these five notions are as follows.
"Strong Borel" implies "Borel", "Borel" implies "Measurability" and "Precontinuity".'
Also "Continuity" implies "Precontinuity", and sometimes it implies "Strong Borel",
for example Theorem 2 .1 3 . Of course "Continuity plus Measurabilty" implies "Strong
Borel".

2 .2 .  Local form of precontinuous 1 - cocycles. In  this subsection we consider
precontinuous 1-cocycles a on Bnm  x Difft(M), where 117,4 (n= I, 2 ,• .)  is a collection
of a ll n-point subsets P = { P ,,- - ,P „ }  in  M  w ith a  natural action g, g e Difft(M)
from left.

In  order to  observe such cocycles, it is convenient to lift them as symmetric
1-cocycles o n  /a" := {i3 = (P , • • • , P „) M " I v i 0 j ,  P  p i}  o n  w hich Difft(M) acts
diagonally a s  g(f}):= (g(P,), • ••,g(P„)). M oreover a lso  i n  o rd e r  to  p re p a re  for
the discussions in section 3 we will begin more generally with a study of precontinuous
1-cocycles O  on ia 'Al x DifP A (M ), where A := {A n+ 1,A .+2,•••}  is  a n  arbitrary set
(may be empty set) of M  which has no accumulation points, tal := {/3 e ; a n  nA

= } ,  and  Difft, A (M):= 1g e Difft(M) I there exists a  continuous path in
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Difft(M ) su c h  th a t g, = id , g  =g, a n d  gi (A,)= A , for + 1 a n d  v t e [0, 1]}.
Throughout this section iffl will be sometimes denoted by .11L  for simplicity.

The following theorem a n d  its proof is quite  sim ilar w ith  theorem  2.2  in
[ 2 2 ] .  We omit its proof.

Theorem 2 .1 .  Put ro,„(m):= {xE ro(m)1 X(Q)=0 f o r all Q e A 1, where r o(M)
is the set of  all C'-vector f ields on M  with com pact supports, and let {Exp(tX)},E R

be a  1-parameter subgroup o f  diffeomorphisms generated by  X ef,, A (M ) .  Then a
group generated by Exp(X), Xe f o ,,(M ) is dense in Diffr,,,(M).

Remark 2 .1 .  A ctually this theorem is true not only for the above set A  but also
f o r any  general subset of  M.

As an immediate consequence of Remark 2.1 and primitive Campbell-Hausdorff
formula in [22],

Theorem 2 .2 .  L et { VA} E A be any open covering of  M . T hen a group generated
by all subgroups of  local diffeomorphisms, Difft,,(V A), 2 e A, is dense in DifP,,(M).

P ro o f  Take any g from DiffL(M). Then it is approximated by a finite product
of Exp(X), Xe F o ,A (M )  by R em ark 2.1. N ext decom pose X  into finitely many
X i e f o ,A (M), using a partition of unity subordinate to a  locally finite refinement of

X.
the above covering. Thus each Exp ( ,

 n
e N belongs to our local diffeomorphism

n
groups. F ina lly  app ly ing  th e  primitive Campbell-Hausdorff formula to  them
repeatedly. This completes the proof.

In  particular in the case of A=0, Theorem 2.2 assures that a  group generated
by all local diffeomorphisms is dense  in  D iff(M ). It is somewhat well known, but
th e  p roof sta ted  here  ra ther s im ple . N e x t w e  g o  t o  a  key  theorem  i n  this
section.

Theorem 2.3. L e t  H  b e  a H ilbert space ov er C  w hose dimension m ay  be
infinite. For a >0 put

U„:= {x e lxkl <of (k= 1,•••,c1)},
1 1 ';) := { F = ( MX% <k 5d I f k E  C ( U Œ ) a n d  i 0 ) = 0},

where C ( U Œ)  is the test function space in  U„, and
d aG

[F, G] := E Ifk(x) — (x)— gk(x) 
 O F

 (x)1 for all F, G e .
oaXkk=1i f , X 1 ,

Then for any continuous linear representation dU from to S(H):= {T:bdd.op. on
H I T*= — T}, (the toplogy on is the natural one derived from the test function
space and S(H) is equipped with the weak operator topology), there exists a S e S(H)
such that
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d f k

dU(F)=(E — (o) S.
k =  axk

P ro o f  Before begining the proof let us write down explicitly the assumption
on preservation of the Lie brackets;

(2.2) dU([F,G])= —[dU(F),dU(G)]:=dU(G)dU(F)—dU(F)dU(G).

Now take any point x 0 0  in U Œ and  consider a  cubic neighbourhood U(x) not
containig O. E viden tly  C r(U (x )) 5 ,?, so it follows from lemma 3.1 in  [22] that

(2.3) dU I C(U(x))=- O.

In  other words, F e l c? and  0(f suppF imply dU (F)=0 . Henceforth we take and
fix a  4) e CzT(UŒ) satisfying 1 on  a  neighbourhood of O. T h e n

(2.4) dU(F)=dU(49F)

for any Fe HereHere we break off the proof fo r a  little while, since we need the
following lemma.

Lemma 2.1. Let A  be a bounded operator on H and Be S(H), and suppose that
AB—BA=cB holds f or some non z ero ceC . Then we must have B=0.

P ro o f  From the assumption and mathematical induction on n,

AB"— B"A=-cnB" (n=1,2,...)

follows easily. Take the operator norm of both sides in the above equality. Then,

Id,/ Oil . 2 11,4 1111Bn li.

Thus either it holds A =0 , which gives B = 0 o r  it holds B"=0 fo r  a  sufficiently
large n, which also gives B= 0 due to the assumption.

Let us return to the proof of Theorem 2.3. Put

Q 0 ( UŒ):= If e C (T(U,)1 f(0)=0}

and

dUk (f ):=dU(f i k ) ( 1

where i k is an R"-valued constant map whose kth component is equal to 1 and the
other components are all equal to O. Further put

ag af
[f  g]k :=f

 ag
(f, g e C o ( UŒ)).

x, axk

Then
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(2.5) duk(Cf,g1 )= —Eduk(f),duk(g)J,

and for a polynomial with parameter t E Rd '  ; Pt,„(x):= t i x , + *- + tk 1Xk — 1

+ x k + tk  + i x k ,  +  • • •  + ( X  and  fo r all m eN,

(2.6) [P10, 1) ;n tk]k = ( M —  1)P 2.

It follows from the definition of 4) that

(2.7) [duk(P,O),duk(17)]= —on— oduk(PrO).

Therefore for m > 2 we find that

(2.8) dUk(P7`0)=0

by virtue of Lemma 2.1. Consequently

(2.9) dUk(fit ••• x p 0 )= 0

holds fo r  a ll  d -tu p le  (a l , •••, ad )  o f  n o n  negative integers satisfying a i  + ••• +Old

>2.
O n the other hand take any gE C ( U )  and set

.k
h(x):= 4)(x)1 g(x, , • • •, x k _ , ,u, xk , , , • • •, xd )du.

-,,

Then,

Oh
(x)=4)(x)g(x)+g,(x),

where g, E C ( U )  is a function vanishing on a neighbourhood of O. T h u s  for m> 2
an equality

a [Ph ,  C k (x ) = PM x )(h (x ) (x)
a h

4)(x) (x))
cx kc x k

and (2.8) lead to

(2.10) du(Ping)= O.

In  particular for all (a l  , •••, ad ) with a i  + ••• + ad  = 4, we find that

(2.11) dUk(xli ••• 4 g )=  0.

Now take any f e Q 0 (U,c) and choose the above 0  so that it is equal to  1 on
a neighbourhood of suppf u {0 } .  Then it follows from Taylor's expansion o ff  a t 0,

3 ai f p + _f (x )=
f i  8 4f

4)(x) E  7  E   ••• )c 0(x) _ ( t x x i —  t) 3 dt,
3! 0 e t'af t' • • • a x̀ id

axk
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and from (2.9), (2.11) that

d f
dU k (f ) = E (o)duk(x14)).

x 1

By the way for i 0 k , it is straightforward to check that

[dUk(xk O),duk(x i on k = — dUk([xkO,x ick]k)— dUk(x i0),

so we find again that

(2.12) d Uk (x JO)  =

by virtue of Lemma 2.1. Hence

d u k (f)=  
f

 (0)Sk,
axk

in  other words for all FeW OE

°

(2.13)
d  a,

dU(F)= E (°)Slc,
k=1 OCk

where S k :=dU k (X k O  does not depend o n  a  particular choice of 4).
Lastly we show tha t S k  is the same one for all k .  Let A :=(a1 ), B:=(b i ,; ) be

any dx d matrices, and take F=C„f)i<k<d, G=Wi<k<de WOE° such that

a f , agi
( 0 ) = a , , J , and — (0)=b„ ;

ax ; a x ;

for a ll 1 It follows from (2.2) and (2.13) that

d d

(2.14) E E

Thus ai ,j :=(x i bi j  and (xi 5 /3i G C) give [S 1 ,S ; ]=0 , while ai ,i =b i

give that S i o  = Si o  fo r  a ll 1 < io <  d.

W ith a  help of Theorem 2.1, Theorem 2.3 and primitive Campbell-Hausdorff
formula in [22 ] it enables for us to decide a local form of precontinuous 1-cocycle
ê o n  triA  x Difft) ,A (M ) .  T a k e  a n y  0=(Q 1 ,•••, Q„)elaA a n d  f ix  it, Further put

ro,A,Q (m):= { X er o ,A (M )IX (Q)=0 for 1 and

Diff Q (M):= 1g e Difft, A (M )I there exists a  continuous path {g,} 0 .< 1 , 1 in  Diff(M )
such that g o =id ,g ,=g , a n d  ,(0)= 0, gi(A „ i)=A „, i for vie N and V i E (0, 1]}. Then
Stone's theorem and the primitive Campbell-Hausdorff formula lead  to  a  weakly
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continuous linear representation dU from ro , A, Q to  S(H) such that

(2.15) 6(Q, Exp(X))=exp(dU(X))

for all X e f o ,A ,Q . Decompose X into finitely many X i 's using a partition of unity
so that supp X i is contained in  a  cubic neighbourhood, and next apply the result
in Theorem 2 .3 .  Finally calculating in the same way as in [22 ], we find that

(2.16) dU(X)= \/ —1 E log JE „p ( x ) (Qi)Hi + —  1 log J E . p ( x ) ( A  i )H„
i= i=n+ 1

where {H,} 1 , 1, co i s  a commutative system of self-adjoint operators o n  H  and
JExp(X)(Qi) is the Jacobian matrix of Exp(X) a t Q .

Now take open neighbourhoods V ° (Qi), V 1(Q )  of Q .  ( i= 1, n) which fulfill
the following conditions.
(a) V° (Q ) is diffeomorphic to  Rd ,
(b) V ° (Qi )n r ( Q i )= 0  for v i Of,
(c) V°(Qi) n1kA n+1 ,

 A n+  2  •••} =0 for 1 < vi_<_n,
(d) V W ,) is compact and it is contained in V ° (Q1) for 1 < vi<n.
Put

V° (0):= V °(Q i ) x • • • x V° (Qn) a n d  V 1(0):= V 1(Q i ) x • • • x V 1(Qn ).

It is not hard to see that there exists a  continuous section sp,EDiff',13(V ° ( Q ) )  on
V 1(Qi). That is, sp i (Qi )= P i and a map Pie V 1(Q91- 0sp i e D if f t( r(Q i)) is continuous.
Thus

S t ; : = S p i  0  4 2 0  •  •  •  0  S p n

verifies the following conditions

s -(Q 1)=P i (1 s(Ai) = A i (v n+  1 ), and

a map ; fie 171(0) DiR(V°(Qi)u • • • u 17°(Q.)) is continuous.
Here let us impose the following fundamental condition (*) on (f',g).

(*) For (fi,g)e x D in, A (M), there exists a continuous path {g,} 0 , , , 1 c  Difif10̀ ,A (M)
such that go = id, g 1 =g, and gt

- ' ( f ) e V1(0) for 0  v t 1 .

s ' ios) is defined for such a pair (fi,g) and it gives a  continuous path in
Diff,„, Q (M ) connecting id and o g  s k, , (11) . It follows from Theorem 2.1 and
from (2.16) that

(2.17)Ô ( , 4)=J O ( Q k ) / - 1 1 1 1
jibo 1 H k

k = 1 k=n+1

holds for := 4-1s g _ whenever (fi,g) satisfies the condition ( * ) .  Let us
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introduce any o--finite smooth locally Euclidean measure p. o n  M .  N ote tha t for
1< v i<n

(2.18)
= dp ( P ') d p •P,'  ( g  ( P ') )  d p  ( P i )

dig\ - 1

and that for 1 < v i <n, vj . n +1

(2.19) ,1,-, 0g0Sg (A 1- 1  = c 1 u g  (A i ).p . ) j
d i

Hence from the cocycle equality,

6(f), g)= 6(0, s ) -  6 (0 ,  s  1 og osg _ 4 06(0, s

we have the following theorem with G( ") defined by

(dp s) - - , / - 1
(2.20)

„

CO3).= H Pv,,)
k = 1  ap

Theorem 2.4 (Local form of precontinuous 1-cocycle). Let Ô be a  U(H)-valued
precontinuous 1-cocycle o n  M I x Difft, A (M ) .  Then f o r an y  0e M I there  ex is t a
relatively compact open neighbourhood o f  V '(0 )c  a U(H)-valued m ap C defined
o n  V '(0 ) and a com m utativ e sy stem  of  self -adjoint operators {Hk } i .," OE,  o n  H
such that

l Hfr

(2 .21) 6(f',g)= C(13) - ( d l i g  (Pk)
CO ( d u  ( A  ) ),/-1
H r-g g  1 (P ) ) ,

k = 1 dp k + k

provided that ( f3 ,g ) satisfies the condition (*).
If  moreover Ô is continuous, then so is the m ap C.

2 .3 .  Canonical form of precontinuous 1 - cocycles. N ext w e shall observe a
behaviour of the pair (C,{H k }k ) varying the basic point 0 .  Take an open covering

a  locally finite refinement of the covering {I/1 (0)},d, so that any intersection
of any two sets in this collection is connected unless it is not empty. For example
it is enough to take a simple covering. Moreover take open coverings {V i

3 }1 ,
W I ,  and { V } 1 which satisfy,

V ,  a n d  T c  V i2

Finally take any o n e  o f  W( ) containing V"2 a n d  denote  it by  V 1 . W e  m a y
assume that -17 c V .  L e t  (C,,{H o }k )  be  a  pa ir  corresponding to the relatively
compact open set  V ,  a n d  restrict C, to V ,  which will be again denoted by the
same letter C . I t  is  e a sy  to  se e  th a t for any point i3 =(P 1 , •••, P„) E Vi2 (-) ,  for
any k  and for any ak >0 (k = 1, ,  n ),  there exists a  continuous path {gt}o<tst in
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Diflt, A (M ) connecting id  and  g  such that( P u )  ak , suppg,n(A u {P I , • • •, P k-1 ,

Pk+ 1 5 • • •, P} ) = 0 and gt - =  P for all le [ 0 ,1 ] .  It together with (2.21) lead us to

(2.22) C O ')  i Hk ,i C,(P)= Ci(P) -  1  HkjCi(15 )

for all fie Vi
2 n  V .  Thus (2.21) and (2.22) imply that whenever (f i,g) satisfies the

condition (*) in  w hich v1(0) is now  replaced by 11 o r  V I, and  further satisfies
suppgnA =0, then

(2.23) C,(/3)C;(/3)- 1 = C ,(g  1(/3 ))Ci (g - 1 (P)) -

Hence if Vi2 n 00, using local diffeomorphisms repeatedly, we find that ci(P)C(P) - 1

is constant on Vi
2 n V .  S e t

(2.24) K ij:=Ci(f )C,(P)'.

Immediately (2.22) shows that

(2.25) Hk,i= kiHkjK6 1

holds for 1 <v k <n . Moreover taking diffeomorphisms with small supports which
are alike to similar transformations a t Ak, we find that (2.25) is also valid for all
k >n+1.

The third step is to patch up these results. Put

K,,,..-=C1(1qu•••u V4), Im :={ ieN I1 m n V i
3 00} ,

and
rn = {gEDih', A (M)I there exists a  continuous path 

{ g t } i s t s D i R , A (M) connec-
ting id and g  such that suppg, g. Km , E 1(T )  c  V i

5 , g(V ) c V [L , kt
- 1 (Tii4 )  c  v ,

and g ,(Ï7) V , for v ie Im  a n d  v t E [0, 1]).
Note that suppg, n A  =0 for all t e [0,1] and that m  in ' implies 0/1 0h1m . Finally
put

m(f1):=inf{meN1 f ie iq •• • u I/2}.

It is not hard to see that { (P)1 g e 0144 61 contains a connected open neighbourhood
O f  of is in som e v,.

From now on we assume that tfrAl is simply connected, and use the Principle of
monodoromy. Put

D :=u X Ofl,

and define a  m ap cry,d, ((P, 0)e D) o n  U(H) by

(2.26) cpi.;,d(U)= C i(0) -  C i(P)U, if ( f i ,  0 )e  VP x V .
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This definition does not depend on i by virtue of (2.24). Now in  order to check
the relation,

= ° (14=7,d

le t  (J3 , 0)e Oy x Oj , (0,11)e O f X  Of ,  a n d  (fi, f?)e Oi x Then there exist
g, , g2 e ,,, ( f ) , g 3 ,g4 e 6111,,( f ) and  i,j,k e N so that

fi=g0), 0=g0), 0=g3(fr), fi =k4(1),
O f  Vi6 , , and Oi c .

Put m := max(m(î), m ( 2'». Evidently,

g, c/i„, (s =1, 2, 3, 4), X,YEKm , and  1 ,JEIm .

So taking a continuous path ft g 5 ,110c o r re s p o n d in g  to  g, appeared in the definition
a/1„„ we find that

k 4 ,t4 3 ,t1  o g 2 ,to g l ,t1 (V i ) c  V ? ,

g4,1 4 3- ,t1(ri )  c

and it follows from Theorem 2.4 that

1Hk,i
'0(13 , g)= C i(13 )-  1  11

k=1  (
(P k) ) Ci(É-1(13) ) ,dy

6(fi, g 0 g 1 )= Ci(13 )-  1  n  , g  (Pk)
k =1 \up

y

ditg y -

6(fi,g3 . g4
- 1 )= I (Qk)

k= 1 \ d/2

1

Ci(g2 ° g  V»,

1/4J
Ci(g4 1(15

))
,

where g:=g 1 . g2
- -  1 g  3 . g4

-  .  N ote that QE V rI vf, which together with (2.22)
lead us to

Ci( ) - 1 Hk , iC i ( 0 ) = C i ( 0 - 1 H k jC i(0 ) .

Hence from the cocycle equality we get

(2.27) C,(A)= Ci(0)C3(0) - 1 C; (i2').

In other words,

Ck (f?) - 1 Ck(J3 ) = Ci(fi) - 1 C1(f) = Ci (A) - 1 C; ( O)C1(0) - 1  Cps),

and the desired result follows. (The first equality is an immediate consequence of
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P, f  e 1/7 n i l  and (2.24).)
In conclusion we h a v e  a  U(H)-valued m ap C  o n  th e  whole of !CIA   so that

0)e D n (11  x  VP) implies

(2.28) Ci(0)-1Ci(P)C(13)- = C(0) - 1 .

It is straightforward to check that the continuity of C follows from that of c .
L et us go  to  th e  next step succesively. F o r  1 <k < co define H k  on M A  by

(2.29)1 - 4 ( f i )  : =  C(13)Ci(f ) - k , iC  i ( 1 3 )C (f ) — 1 , if F e  Vi2

It is well-defined by virtue of (2.25) and

(2.30) Hk(f)= IM O

for all (fi, 0)e D n(V i
6 x  V P). Hence Hk(f3) is locally and therefore globally constant,

say H k , due to the connectedness of /I/A . Consequently (2.21) in Theorem 2.4 now
becomes

n y — 1Hk ao y  —  I n k

(2.31) e( g) = (/3) f '=g (Pk) 1 1 t=  k) C r k  (PA
k= 1 du k=„4- du

provided that (i3,g)e /tifA  x Difft, A (M) fulfills the following condition (**).

(* * ) F or ( f ',g )  there exists a  continuous path {g,} 0 , , , Difft, A (M) connecting
id and g and an  A> e /12/A  such that

gt
- i(A e 0 11 f o r  v t e [0, 1].

Put

C(fi,g):= the right hand side of (2.31).

We claim that a t the final stage. L et K  be any compact set of M  and
set Diff*(K):= 1g eDifft(M)1 there exists a  continuous path {g,} 0 , , ‹  connecting id
and g such that suppg, g K  for Vt e [0, 1]}.
Then for any 13 e if lA  there exists a  neighbourhood co f  i d  i n  Diff*(K) so that
g e * " ;  implies '( P ) e O . N o w  ta k e  a n  arbitrary g eDifft, A (M )  w ith  the
corresponding path {g,} 0  ,,<, Difft, A (M ) . B y  a  property of inductive  limit
topology there exist a compact set K of M  such that suppg, K for all t e [0, 1]. W e
claim that

T:= {t e [0,1] I (P ,  g)= C(f3, g i)}

co inc ides w ith  [0 , 1 ]. F irst w e  sh o w  t h a t  i t  i s  o p e n .  L e t  re T  a n d  p u t
Pt := gt- l (f'). Take a 5 > 0 such that Is— tl < 6  implies gs:=gt - l g s  11 K A .  Thus
(I3„q s )  satisfies the condition (**) and it follows that
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Cl(f" „qs )=C(13„ q ) .
In  other words,

0(fi,g)=0(1s,g)0(P„q)

=C(fi,g)C(f'„q s)

=C(f ',g).

for all Is — tl< S. The closedness of T is similary proved, so the conclusion follows,
since T9 O. B y  the above we have the following theorem.

Theorem 2.5 (Global form of precontinuous 1-cocycle). (1) Suppose that ICI'A' is
sim ply  connected. T hen f o r  an y  precontinuous U(H)-valued 1-cocycle 0 on
X i x Difr A (M ), there exists a  U(H)-valued m ap C on 11;PA' and a commutative system
of self-adjoint operators {H k }k  o n  H  such that

ati c° u l Hk

(2.32) OW, g)= cy3)-  [1 ,  g  (P k )) H  
d

(AO) q g  l (P))
k= 1att k=n+1 aft

f o r all (fi,g)e ifFAT x Difro', A (M).
If  is continuous, then so is the m ap C.

(2) A ssume that .11;PA' is connected. L et 0 be given by  (2.32) with (C,{Hk }k ) and let
(C',{ H} k )  be  ano ther such  pair. T hen  there  ex ists som e T e U(H) such that

C'(13)=T C (P) f o r  v  e  A-4-A, a n d  II, =T H k T - 1  f o r  1< v k <co.

P ro o f  We need only prove the uniqueness p a r t .  To this end we again take
diffeomorphisms which were used in  the just behind  of (2.25). It follows from
them that

(2.33) C(P) - i ll -
k C( 3) = C(115) — H I C '(.13 )

for vk > 1 and vi3 e MA , and  further

(2.34) C'( g  '( i3))= C(J3)c( 3) -- ' g g - '(13))

for all g E Difft,A (M ) .  Thus the assertion follows from the transitivity of Difft,A (M)
on M A .

Corollary 2 .6 .  I f  some connected component W  o f  "a; is simply connected,
though i t s e l f  i s  n o t  so, we have the same assertions in Theorem 2.5 as for 1-cocycles
on  Wx Diffk,(M).

P ro o f  It is  c a rr ied  o u t  in  a  quite sim ilar w ay w ith the  above one, only
changing the open coverings { Vfl o f  if/A  to  those  of W (s =1, ••., 6).
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N ow  it is  im portant to search for sufficient conditions to  assure the simply
connectedness of M A , and accoding to  [3 ], thanks to  Dimension theory, such a
condition, for example, is given as follows.

Theorem 2.7. Under the assumption that A  has no accumulation points,
(1) if  dim(M)> 2 and M  is connected, then so is M. 'A' f o r every ne N.
(2) if  dim(M)> 3 and M  is simply connected, then so is M 'A' f o r every ne N.

P ro o f  (1) is derived from corollary 12.5 in [3] and from mathematical induction
on n. (2) is also assured from them, however using lately proposition 12.6 and its
proof in [3].

Hereafter till the end of this section we assume that A = 0 .  In this case, we have

A = A;In a n d  DifQ,A(M) =  Difft(M),

and (2.32) becomes

(2.35)
(chi

g(13 ,g)=C(13) - 1 g (Pk) c(k -
k =

Definition 2 .2 .  It is said that 1-cocycle Ô has canonical form, or Ô is canonical,
if  (2.35) holds f o r all (fi,g)e.lan x Diffit,(M). (If  i t  is  so , then sometimes 0  will be
explicitly denoted by g(C,Hk))

Thus a s  a  special case of Theorem 2.5,

Theorem 2 .8 .  Suppose that M " is simply connected. (For example it holds good,
if  so  is M  and dim (M )>  3) Then every precontinuous 1-cocycle on Mn x Difft(M)
is canonical.

A t the  end  o f this subsection we consider 1-cocycles g  o n  Bnm  x DifP(M) to
which there corresponds a symmetric 1-cocycles Ô o n 'A ;f"  x  D iff( /) . Of course,
is said to be symmetric if and only if,

(2.36) 0("3, , g ) =0(13 ,g)

for all (13 ,g)e M" x Diff(M), where

(P a(1) , • • • (70) (o- e 0„),

and On i s  the group of permutatins on {1, ...,n}.

Theorem 2.9. S uppose th at M " is connected. T hen to ev ery  precontinuous
1-cocycle a on 137,,f  x Difft,(M) the corresponding symmetric 1-cocycle is canonical, that
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is, Hk) an d  th e  p air (C,Hk)  fulf ills the condition below  w ith a  unitary
representation (T,H) of  0„,

v a e 0 „ , C(P)= T (o-)C(13 , )  f o r  V II e rn and

Hk= T(cr) -  H o oT(o- ) f o r  1 <vk <n.

P ro o f  It is straightforward from the uniqueness in Theorem 2.5.

2 .4 .  Further study of 1 - cocycles in the exceptional c a s e . In  this subsection we
consider 1-cocycles when the manifold M  is 1?1 ,  le  o r T 1 . First let M =R 1 . Then
.13"k i  is simply connected with the natural topology, and /a" consists of n! connected
components which are all isomorphic to B .  So applying C orollary 2.6, we have
the following result.

Theorem 2.10. Let M = R ' an d  tak e an  isomorphic section t  f ro m  E lm  to
Then the general form of precontinuous 1-cocycles on 13"m  x Difft(M) is as follows.

(2.37) Ci(P,g)= c(Pr ( d t ig  «T(P»k)) qg '(P »,k,

w here C is a  U(H)-valued m ap and 111,1k i s  a com m utative system of self-adjoint
operators on H.

If  the  1-cocycle a is continuous, then so is map C.

R em ark 2.2. Of course even in the case H =C , there exists a non  canonical
1-cocycle o n  -11.I" x Difft(M) corresponding to the one given by (2.37).

The second case is that M = R2 . Here ifin is connected contrary to the previous
case, however it is not simply connected for n> 2, and there exists a non canonical but
symmetric 1-cocycle as will be seen in the following example, n = 2 and H= C.

F or any (P,g)e ii 2  x Difft(M), take an  continuous angular function 9(t, P) of
a path, t e [0, '(P,)— gt- 1 (P 2 ) e R2 \ 14  where {g,}0 , , , ,  is a  continuous path
in  Difft(M) connecting id and g, and put

(2.38) (P, g) := (p(1, 13)— cp(0, P).

Actually this definition does not depend on a particular choice of {g,} 0 1 (1)
is a  continuous function of g  for each fixed P. Set for SI e R,

(2.39) CdP,g):=exp(\/ — 100(fi, g)).

Then the continuity, symmetry and cocycle equality are easily checked, however C, is
not canonical unless S2 e N .  For, take any point /3 = (P, , P2 ) E iil 2  and take an open
disk U,(0) centered at the origin which contains P , and P 2 . Integrating a  smooth
vector field with compact support, we have a g e Diffst(R2 ) which gives 1 rotation
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around 0 on  U,.(0). Therefore g  acts identically near at Pi ( i=  1, 2). Nevertheless,
C0 (15 , g )  1, since we have (1)(P,g)=- 2m.

The last case M  T 1 T  is more interesting. Let a be a precontinuous 1-cocycle
on /37. x DifI(T), and Ô be the corresponding symmetric one on t"  x Diffc*,(T).
and t "  are non simply connected, but they are connected. Now consider a set

/:= {(z i , • •• z„)e arg l zk < arg l zk + (k = 1 , - ,n -  1)1,

where the value of the argument is taken so  as to  b e  in  [0, 2m). I is connected
open and Difro (T)-invariant. Take any point Â =- (a, , • • a„)e  I  and fix it. Then
the  following lemma gives a  continuous section s( z i ,...,z o  e Difft(T)= Diff*(T) on
I. That is, s( z i ,...,z ) (ak)= zk f o r  1 < v k <n , and s  is continuous from I to Diff*(T).

Lemma 2.2. L e t  0 <a,<a 2 < ••• <a n <1  an d  0< b i <b 2 < ••• <b ,< 1. Then
there exists a  4),,,,e Difft(R 1 )  which satisfies
(1) &, b( x ) = x ,  if .x. 0  or 1,
(2) 0 , 1 , 0 7 0 =  bk (k  = 1, • • • , n), and
(3) a m ap , (a,b )(a i ,•••,a„,b i ,•••,b„)1-+(/),,,b e Difft(R 1 ), is continuous.

P ro o f  Take a  Cc°-function p o (x) on IV such that Po 1 on
po _.0 on [1, cc), and put

P (x): -  Po ( x
a —

ii)Po (
— yx - y)I3 (5 

(a</3<y<S).

Clearly we have pOE, p, ,,, 67- 0  o n  (- oo, u  [6, oo), and P Œ fl 1 o n  [6, y]. Now
consider a  diffeomorphism

d
g(x ) -='• ExP(X.)(x), X(x) := (bn - an)Po,.(a„,b„),m(an,b„),i(x)—

d x

,

where

M (a,b„):= ExP( Y )(b„), m (a,b„):=Exp(Z„)(b„) and

Y„(x):= a „P -  -a„„,i(x)
d

d x '
Z„(x):=(an-1)Po,.„,i,.„+1(x)—

d

.
dx

It is easy  to  see  that 0  <  m(a„,b„)<a„, M(a„,b„)< 1  and that g„ satisfies

(2.40) 5g (x )=x , if  x _ <0  or x> 1,

„(a„)= b„ •

M oreover b,,' _ : (a 1<bn - 1 , n since g „ i s  monotone inc reasing . N ex t take  a
diffeomorphism
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Exp(X_,)(x),

X„ _ ,(x):= (b _  1 — b„' _ lo1,, o,m,0;,_ _

where

b' b _  \
nii(13;,-1,bn-i:b„):=m ( ,  b  ,  and b„ : b„):= M(  b n  1

b„ ) bbnb „

Then g„ _ 1 satisfies

fgg„_ 1( x ) =x , if x < 0  o r x >b„,
.  -  i ( b .' - 1) — b. - 1 •

Thus we have

Lg„ -1  . g„(x )= x , if x __13 o r x >1 ,

. - 1  ° g .(a „) =  b„ , g„_ 1 0 gn(an _ 1) — b„ _ 1

and the proof follows from the above procedures repeated (n -1 )  times.

By virtue of the discussions on the local form o f 1-cocycle and of using this
global section we find that

" ( (zo
'1
di/ \'1 - 1 "k(2.43) 0.(15,g)= C(I3 ) -  ri g )

k=1 4

for all /)̂--(z , , •••,z,,)e/ and ge Diff*(T), where C is a  U(H)-valued map on I, {11,} k

is a commutative system of self-adjoint operators on  H  and it is  a  Haar measure
o n  T. Put

T :-= 
(1 2 •• •

3 ••• 1)

Since I  is invariant under T  and 0 is symmetric,

(2.44) 6(i3,g)= C(13 ,) -  1  f iT ( c i
d

[ i g  (2.k+ 1)Y  1 1 4 - P 11
k= 1 E4

where of course z„„ 1 :=z 1 . Taking a  diffeomorphism which acts as a translation
near at each zk (k =1, • • • , n), we see that C(z2 ,z 3 ,•••,z,,,z 1)C(z,,z 2 , •••,zn) - 1  is locally,
hence globally constan t. P ut

(2.45) C(z2,z3, •••,z„,z,)= TC(z, , z 2 , • • •, Z u ) ( ( Z  , Z 2 , • • •, Z n ) e/).

It follows that

(2.46) T" = id,

d
dx

(2.41)

(2.42)
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and

(2.47) " k =  T - (k- 1)H i T(k- 1)

for 1 < v k <n.
Conversely, suppose tha t a U(H)-valued m ap  C  on  I ,  a commutative system

tHk I k  of self-adjoint operators on  H  an d  a  T E U (H )  are given so that they satisfy
(2.45), (2.46) and (2.47). Then for P e 131. we oder its elements zk  (k = 1 ,.. . ,n )  in such
a  way that ../3 :=(z 1 , • • z„) belongs to l and define

n

(2.48) g):= C(13)-1  f l  ( g (zo qg '(.15 )).
k=1

Although there are many, exactly n , ways of this ordering, the definition does not
depend on  them, and actually it gives a precontinuous 1-cocycle on B7. x Difr(T).
Thus,

Theorem 2.11. The genera l form  of precontinuous 1-cocycles on 137. x Diff*(T) is
g iv en  b y  (2.48).

N o w  a  question arises : Is every sym m etric precontinuous 1-cocycle on
t n x Diff*(T) canonical ?
The following example gives u s  a  negative answer.

Let n = 4  and H =C 2  and  pu t

H i= H 3 : =
( 1  0

0  0 ) '
0 1

H 2 = H 4 : = (0  0 ) .

Finally for any point (z, , z2 , z 3 , z4)e I, put

C(Z3,Z2,Z3,Z4):—  1
z1—z3Z 2 —  Z 4

O Z„•••,ZO e I).
Olzi — z312 +1z2 — z412 ) — ( 2 . 2 — Z 4 )  Z 1 — Z 3

T h e  t r ip le t  (C, {Hk }k , T )  satisfies t h e  a b o v e  conditions, s o  th e y  d e f in e  a
1-cocycle. However it is not canonical, as is easily seen.

2 .5 .  Natural representations I. As before we fix a  smooth locally Euclidean
measure pt on M , and additionally assume that it is finite. Let ft = fin be the product
measure on 1121" and ft be the image measure of ft by the map 7E, FE  H  F e  B .  Up
to  the equivalence ü is the unique measure on  .13m  being Difr,(M)-quasi-invariant
under a  natural assum ption that M  is connected . I n  th is  section, we consider
natural representations of Difft,(M) associated with

j d u-

(2.49) N g ): f ( P ) e  Lii(Bnm  , H)1—) (P)6(P,g)f (g- '(1 ))eL,i(13"m  , H),
dri
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Or

4/-(2.50) f (P) ", (15)0(15, g)f(g. - V )) e iiii(;12/" , H),

where a( ) is a U(H)-valued measurable (symmetric measurable) 1-cocycle, respectively,
and Iiii(trin, H) is the set of all square summable H-valued symmetric functions on
/ f r .  Of course the representations (U,, ,  H)) and (C ,  H ) )  are mutually
equivalent, if a and (3 correspondes to each other. W e will use more convenient
form of (2.49) or (2.50) alternatively. First of all let us introduce the following
definition according to [7].

Definition 2 .3 .  (1) A  measurable 1-cocycle a is said to be irreducible, if  for
any U(H)-valued measurable map V(P) there exists some complex constant k such that

V(P)= kId

f or p-a.e.P, povided that

(2.51) TAP(I-5,g)=a(15,g)v(g-1(P))

for fi-a.e.P.
(2) A parallel definition for a symmetric measurable 1-cocycle Ô is given, in which V(P) is
replaced by a symmetric measurable map V(F).

Theorem 2 .1 2 .  A ssume that :1;In is connected and that a  strongly Borelian
symmetric 1-cocycle 6(C,1-1,) has the canonical form (2.35). Then in order that Ô is
irreducible, it is necessary and sufficient that the representation (T, H) appeared in
Theorem 2.9 and {Hk }k  satisfy  the following condition (c.1).

(c.1) A  unitary operator A  on H is a scalar one, provided that

(2.52) A T(a) = no-) A  f o r  v  o- e Os,, a n d

(2.53) A Hk=HkA  f o r 1 < v k<n.

P ro o f  First we prove the necessity without the assumption on connectedness.
To this end take on operator A  satisfying (2.52) and (2.53) and put

V(i5):= C (P ) A -  ' C(P).

If follows from Theorem 2.9 that for any o- E

V(P,7 )=- WV 1 T(G)A - 1 T(cr) - 1 C(13 )= V(13),
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and (2.51) is  a direct consequence ot (2.53). The measurabilty of V  follows from
that o f C, which is assured by the  strongly Borelian assumption. Hence by the
assumption we have V(f')= 3kId m od2 , i n  other w ords A  i s  a  scalar operator.

Next we prove the sufficiency. Let V(P) be a symmetric U(H)-valued measurable
map satisfying the relation being parallel to (2.51). Take any P= (P i , • • P,,)e /tir
and take an open neighbourhood U„(Pk )  of P„ for each 1 <k <n  such that

(a) U„(Pk )n Uk .(P , ) =  0  w henever k  k ' ,
(b) Uk (Pk ) is diffeomorphic to a  connected open set G,, in  l e  via  a  m ap (p„, and
(c) the im age measure III Uk (Pk ) . I  coincides with the Lebesgue measure dx k on Gk .

Then for any hk eDiff t(G k ) (1 the equation (2.51) now becomes

(2.54) P(x)-6 (x )- fl (JAxik k
(h(X

)
) fAh(x)) -  1

k=1

= 0(x) -  1 1-1 vh k(xk)) - iHk(h(x))
k= 1

for dx 1 x • • • x dx„-a.e.x = (x i , • • x„), where h(x):= (h i (x 1 ), • • • , h„(x„)), e(x):= 1(x 1 ),
• • •, 0 ; 1(x„)) and f/(x) := V (4) '(x i ), • • 0 ;  '(x n )). Taking parallel displacements with
small lengths as the diffeomorphisms hk a n d  using Fubini's theorem, we find that
0 (x )P (x )(x ) ' is  a lm o st a ll e q u a l to  a  constant A e U(H) on G i x G 2  x • • x  G .
Hence globally

(2.55) C(P) V(P)C( f') = A

holds for P-a.e.f' by the assumption on connectedness. (2.52) and (2.53) are direct
consequences of the symmetry o f V and (2.54). Thus the condition (c.1) is fulfilled,
and the rest of the proof follows from (2.55).

Here let us see the following property of 1-cocycles.

Theorem 2 .13 . If  a 1-cocycle Ô on f l" x Difft,(M) is continuous, then it is strongly
Borelian, and the same assertion holds for a 1-cocycle on B"m  x Diff'(M).

P ro o f  T o  th is  end  it is  enough  to  show that Ô is measurable. M oreover
using cocycle equality, the continuous assumtption and Remark 2.1, we need only
check that (j(• ,g) is measurable, whenever g = Exp(X), Xe F o (M ) . P u t  g,:= Exp(tX),
and take a set V 1(0) appeared in the arguments on the local form of 1-cocycles. W ()
is approximated by an  increasing sequence of com pact sets. Let K  be any one of
these compact sets and fix it. Then there exists a (5> 0 such that

i (K )  V' (0) for 0  < v t <S.

Hence (13 ,g (3), f ie K  satisfies the condition (*) and it follows from (2.21) that 0(• ,g6)
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is measurable on K .  Now we claim that ek• ,g,a ) is measurable on K  for all k eN
by mathematical induction. Assume that it is O.K. for a ll 1, • ••, k. Since we have

(IS  g (k + 1 )b) (fi g k (gr. k 1 (1 . )1 g3),

it is enough to show tha t 6(• ,g0) is measurable on kk
-
6

1(K ) . To this end note that

gt- 1 (g6 1(10 )  g k a'(V 1( )) for 0  < v t <

and that there is a continuous section on the whole set1 (V'()) transformed from
the section s  on  v v .  Thus the similar proof works on with the above one and
the claim  has been proved. In  other words, C)(f',g) is measurable on  K .  As K
and v1( ) are àrbitrary, the measurability is proved.

A  criterion for irreducibility is obtained for 1-cocycles of another type, for
example given by the formula (2.37).

Lemma 2 .3 .  Assume that M = IV . T hen a strongly Borelian 1-cocycle 0(C,11„)
on Bnm  x Difft(M) given by the formula (2.37) is irreducible if  and only if  the {H,} ,
satisfies the following condition (c.2).

(c.2) An A  e U(H) is a scalar operator, provided that

A H ,=H ,A  for 1 < v k <n.

P ro o f  The proof of necessity is similar with it in Theorem 2.12.
The converse also goes in the same way, and we find an A e U(H) which satisfies

C(P)V(15)=A C (P) f o r  ft-a.e.P, and hence

AH,=11,11 for 1  < v k <n.

Thus A =3k Id and the conclusion immediately follows.

Theorem 2.14. Under the same assumption of  Lemma 2.3, a is irreducible if
and only if  dim(H)= 1.

Proo f . Since {Hk}k is  commutative, the condition (c.2) implies that each H k  is
a  scalar operator, hence so is every bounded operator.

Theorem 2 .15  (Irreducibility). L e t a b e  a  strongly Borelian 1-cocycle on
1114 x Difft(M) and (CIT,(g), Lii(Bnm  , H)) be the corresponding natural representation given
by (2.49). Then (C4(g),L ii(B",,H)) is irreducible, if  and only if  so is a.

P ro o f  The necessity is obvious, so let us assume that is irreducible, and
consider (N g), f ( i% ,H ))  g iv en  b y  (2.50). T a k e  a n  o p e n  se t G  o f  M .  Put
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I f e H )I C 4 ,(g )f =f  fo r  vg e Difft(G)I,

and
AG := {/5 e /VIP n GI =O}.

Throughout the proof we identify f H )  with the corresponding function on
L(B"m , H ) .  N ow  Theorem  2.4 leads us to  th a t f  belongs to  H G (06), whenever
f (P) = 0  for ti-a.e.fie AS.

Let us prove the converse, so  suppose that f  e HG ( Û). T ake any  re la tively
compact open subset Y of G  and put for each 1 <k <n

Y k := {13 e 11-1 l'IP n  P1=1 and P k  e Y}.

Further take any point 0e Y k and a neighbourhood W (), a U(H)-valued m ap C
defined on V '(0 ) and a commutative system {H k }k of self-adjoint operators on H
assured by Theorem  2.4. If necessary, taking a smaller neighbouhood, we may
assume th a t V 1(0)= V1 (Q 1 ) x • •• x Vk(Qk ) x ••• x V„(Q„), Vk (Qk )  being diffeomorphic
to a connected open subset of R', such one as in (c) of the proof of Theorem 2.12,
Vk(Q0 g  Y and Vi(Q ,)  c  f c  for all i 0 k .  Then by virtue of Theorem 2.4 we have
for any g e Difft( Vk (Qk ))

(2.56)
dy iHk

\1611"± g  (P k )C (11 -
(

g  (P k ) ) C(P , • • • , g  (P k ), P „) •
dn dit

f (P1 ,•••,g— '(Pk ),•••,P.)=f (15)

for ft-a.e.fie V 1-(0). As before considering local translations, we find that

(2.57)
C(13) -  C(P , • • • , Pk -  R k  Pk+ I PrOf(P1 , • • •, P k- 11 Rk , Pk+ 1 , •", Pn ) =  f ( 13)

for p, x fi-a.e.(R k , Vk(Qk) x V 1(0 ) , and the le f t h a n d  s id e  o f (2.57) is jointly
measurable. So by virtue of Fubini's theorem there exists an Ake Vk(Qk) such that

(2.58)
C(I3) -  1 C(P , • • • , P k - i , A k , P n )f (P 1 , •  • • , Pk-1 ,21 k, P k + 1 , — , PO =  f ( 13 )

for itia.e.f'e 1/'(0). Of course (2.58) is also valid for g  ( P  k )  in place of P k  due to
the Diff11/k (Qk ))-invariance. Thus, substituting (2.58) to (2.56) w e get for any
g eDiff t,(V k (Q k ))

(2.59)
\idy, ( d i t

dp
g  lP n( P 5  Aid = A ki

for ft-a.e.f'e V 1(0), where

h ( f i , A k ) : =  C ( P 1, • • • 5 Pk-1 , A k ,P k + 1 , •• •, P n ) f ( P l ,  •  P k - 1 , A k , P k + 1 , • • • , P a).
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Moreover the left hand side of (2.59) is continuous as a function of Pk  for each fixed
(Pi , • •  .5  P k - 1 , Pk + 1 '  •  " 5 Pn ,A k), so (2.59) holds for every Pk . In  particular taking a
diffeomorphism which is alike to a  similar transformation a t  Pk  a n d  taking the
norm of both sides of (2.59), we find that h(/3 ,A k)=0  and it follows from (2.58) that

(2.60) f(.15)= 0

mod it-  o n  vi(0) and hence o n  Y k .  Now

"13  e AcG "  im plies that " 31c, Y,13 E  Y k " ,

and we can take such many Yk from a  countable collection, so the desired result
follows from .(2.60).

Let A  be an intertwining unitary operator of the natural representation and
put

(P AG f)(15 ):=XA G (P)f(P) e , H)),

where xA G  i s  the indicator function of the set A G . Then by w hat w e have seen,

(2.61) APAG=PAGA

for all open sets G of M .  Besides a collection 0 := 42: Borel set of Blf AP 0 =P 0 A1
forms a Borel field and {A G , G: open set} generates the natural Borel field 0(/3).
(cf. p600-601 in  [2 0  Thus,

(2.62) A P0=P0A

for every SI 0(B"m ). It follows easily that there exists a  U(H)-valued measurable
m ap V(P) defined on Bi'm  such that

(2.63) A W (P)= V(P)(f( is ))

for and it leads to

V (P)a(P,g)=a(F.,g)v(k - 1 (P))

holds for p-a.e.P. The rest of the proof is obvious.

Theorem 2.16 (Equivalence.). Let ai(P,g) (i =1,2) be strongly Borelian 1-cocycles
and (CIL(g), ( i =  1,2) b e  the corresponding natural representations. Then
the representations are equivalent, if  and only  if  the  1-cocycles are  1-cohomologous.
That is, there exists a  U(H i ,H 2 )-valued measitrable m ap V(15 ) on Bnm  (U(H 1 ,H 2 )  is
the set of  all unitary  operators from  H 1 t o  H 2 ) such that

(2.64) 0 i ( 3 ,  g)= V  (P)a2 (P , g) K g  (15 ))

f o r rt-a.e.P.
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P ro o f  The sufficiency is obvious. For the necessity, we proceed in the same
manner as before and first we get a relation correponding to  (2.62), where A  is an
intertwinig unitary operator from (r4 1(g), L (B "m , H i )) to  ( C/62 (g ), L,i(B"m , H 2)). It
follows that a  U(H i  , H 2)-valued m easurable m ap V(P) o n  11"m  is  de fined  a n d  it
satisfies the relation (2.63) for f i-a.e.P. This gives us the  cohom ologous relation.

§3. 1-cocycles on the infinite configuration space

3.1. Canonical form of precontinuous 1-eocycles. Throughout this section M
is assumed to be non com pact. Let

AI := 1.13 =(P , • • • , P „ , • • •)e M ' I P , P i  for V 1  {Pk }, has no accumulation points},
and  0 °0 b e  the infinite permutation group on  the  se t N .  Define a n  equivalence
relation — on  /'2is° by

if and only if R e t
,s . t . , = := (Pc,( , ) , • • •, P,7 0 0 , • • •).

The quotient space F m  := /12/")/ — is called infinite configuration space (over
M ), its element is generally denoted by 15 ={ P 1 ,••• ,P,„..•} , and  the  natural map,

P  is  d en o ted  b y  7E. A s before D ifrt(M ) ac ts  on M c  o r  F m  a s  k  o r  g,
respectively. Consequently 1-cocycles (plus continuity, measurability o r  etc.) on

x Difft(M) or F m  x Difft,(M) are defined similarly, and they are denoted  by  or a.
Next let us consider a  new equivalence relation o n  /1 '  defined by,

0, if and only if P„= Q„ for all n > N.

Put for any Â = (A  , • • A „, • • •)e

1121 1 :=V e /1 ;1 "I f '',-.z.-,A}.

C learly /al° is DiffoK(M )-in v a rian t. Using the notation in section 2 , we find that

(3.1) A;f1 = u,°■°-1 117/:41- x (A n+1,A .+2, - .),

where A ":= { A „ , A „, 2 , • • •}, a n d  a  sequence of the above sets is increasing. So
the  inductive  lim it to p o lo g y  TeA°  o n  /12PA° is  g iv e n  v ia  t h e  n a tu ra l o n e s  on
/(//:̀,„ x (A „, , A „ + • • • ) ,  and it will be used o casio n a lly . Hereafter we will write fl;PA'
instead of i f f l ,  for simplicity.

Theorem 3.1 . (1 ) Suppose that la is simply connected for an A = (A , , • •, A,,, • • .)
e  M "  and  f o r every  ne N .  Let Ô  b e  a  U(H)-valued precontinuous 1-cocycle on
1121,1° x D if f t ( M ) . T hen there ex ists a  U(H)-valued m ap  C=- C A  on A  and  a
commutative system  {H k } { li }k of  self -adjoint operators on H  such that

- 1H k

(3.2) Ô(fi,g)= C(P)
(d it - 1 g  (P qk )) g

k = ap
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f or all ti e M I  and geDif f t(M ).
Moreover if  Ô is continuous, the map C  is continuous on (M I

(2) For the uniqueness of  the above pair (C, { H} ,), we only assume that if f 'A'  is
connected for every n e N .  Then for another pair (C',{ H k' }k ), there exists a T e U(H)
such that

(3,3) C'(fi)= TC(13) for v i3 e if/j,c,") and

(3.4) = TH'k4 T - 1  f o r  1< v k <oo.

P ro o f  For each n, put

6 „115.58 ):- 0 (13„ A n +  A n+2, • —, g ) ((P n,g)G x Diff A ,„(M)),

where D il ls * , A , (M)=-_- Difft,,A „(M ) which was already defined in section 2. Then On0  n ,
is precontinuous 1 -cocycle and hence the assumption of simply connectedness and
Theorem 2.5 yield a map c„ on la  and a commutative system {H71 of self-adjoint
operators on H  so that

(3.5)

6,7(1% , g)= g

n  ( d t t

(Pk)
1-  H Z  co ( d u _ ),/ —

(A k ) C n (k - 1 ( 15' n ))
k = n +  1  dti

for all (P ,g )e A  x  D i f f t , A , n ( M ) .
 S i n c e  Difrt,A,n(M) ,A,n+ -(M ) and 6 ,,(13,,,g)k, 

.6 „-E1(13 ,A „±1,g), so by virtue of the uniqueness in  Theorem 2.5 there exists a
e U(H) such that

+ i(fin , An + 1) =  TnCn(13n) for V fin e and

H 1 =T„11:7;,- 1  f o r 1 <vk <n.

Thus changing C 1 t o  Tn
- 1 C„ ±  ,  it yields

(3.6) Cn+1(13„,An+1)= QPn)

for all fin e Aii, and

1 1 :+ 1 = H : for 1 <v k <n.
Put

(3.7) C(P):= lim C„(P i , P„) (P G ii ),
n . OD

and

(3.8) Hk := H (k e N).
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These are well-defined, and  since for any (F,g)eICI x D iff(M ) there exists an  N
such that (f i,g)e x (A „,, ,A „, 2 ,-.)x Dif f t,„,„(M ), we find that

(dp r  l l i k(3.9) 6(15,g)= lim (5„(P, , -.., P„,g)=C(I3)-1 fl — g  (Pk) Clk - '( 13))-
n—, co k = 1  d p

Moreover if (5 is continuous, C  is continuous on  ( ) a ,, , t ;et° ), since CO5„, An+ i ,
An+25.—)= C (P )  for all fin e MI by virtue of (3.6) and (3.7). The uniqueness follows
from the relation,

C'(fi)= T„C(43) for all Pe iff  x  (A „+1,A ,,+2,•"),

where T e  U (H ) is some constant operator assured by Theorem 2.5.

Theorem 3 .2 .  ( 1 )  Suppose that M  is simply connected and dim (M )> 3. Then
the general form of precontinuous U(H)-valued 1-cocycles o n  '11;1' x D in(M ) is as
follows.

(3.10)
cln) • / - 1 1 4 P 1

0(f i,g)= co-3)-1 n ,
( g

 (
p )

c(k-1(13»,
k = 1  am

where C  is a U(H)-valued m ap on .11^1 ',  a n d  {W i }k  i s  a com m utative system of
self-adjoint operators on H  depending on the residue class [I]e t o  w h i c h  13

belongs. Moreover if Ô is continuous, C is continuous on (la ,T ,T) for each A e M .
A s before we call Ô given by (3.10) canonical 1-cocycle.

(2) For the uniqueness of  the above pair (C ,{ H r} k )  we assume that
(t) M  is connected and dim(M) > 2.
Then f o r another pair (C ',{ H k'En} k ) , there exists a U(H)-valued m ap T  on
such that

(3.11) C'(fi)= 71[11)C(P)

f o r all 13  e 1171°° and

(3.12) l i r  = 7 ([11) 1 0  i ( [P ]) - 1

f o r 1 <.v  k < oo and v  fie M ".

P ro o f  It is  a direct consequence of the above theorem.

Theorem 3.3. Under the assumption (t), a canonical 1-cocycle Ô on /121"'' x Difft(M)
is sy m m etric i f  a n d  only  i f  th e  p air (C ,{ H r} k ) satisf ies the follow ing tw o
conditions.

(3.13) C(fi) = R([13],a)C(13„.)
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f or v  f' '11;1°D and v  e (5 0 0  , where R  is a  1-cocycle on ;1;1 I xtYi 0 . Namely,

V[p] ,  Va, R([13],o-)R (E P,J,T )=R ([P],ar), and

(3.14) Ifin = R([11), o-)Hr--11
00 R([13], a) -

f o r 1 <vk  <oo, v [P] e I -,•:• and v  a c

P ro o f  It is obvious.

3 .2 .  Measurability of canonical 1-cocycle.

Theorem 3 .4 .  Let tI be a canonical 1-cocycle given by (3.10). Then it is strongly
B orelian if  and only if

(3.15) C(P)-1H,r1C(13) is measurable f o r 1< v k <oo ,

and

(3.16) C(./3) - -  ' ( f i )) is jointly  measurable on ;1;Ic° x Diff,t(M).

P ro o f  The sufficiency is obvious. L et us prove the converse . To this end
note that /a' is covered by at most countable sets of the form, ifix n(G  x GC x • • • x
G` x • • .), where G is an open set being diffeomorphic to R d .  S o  for the measurability
of C(i3 ) - 1 HrIC(P) we need only assure it on these sets. Now take a compact sets

G such that

••• K,, Kn°± , •••.

Then for any Qe K „ and any a e / e there exists g Q eDif f t(K „, I) such that

g f i a ( Q )  Q ,  d i t g Q . „( Q )  a ,

clit

and a m ap, (Q ,a)eK „x F-4 g Q ,„ Difq,(K„, i ) is continuous.
Thus d ( f' ,g2 ,a) is jointly measurable with respect to  (fi, Q ,a), and so is

6(/3, gpi ,a ) = lco/ -  'Firm s ),

w ith  re sp ec t t o  (fi,a). It f o l l o w s  t h a t  C(i3 ) - 1 1-iir iC (f1) is m e a s u ra b le  on
1.1;1°D n(K„xG` x • • • x GC x • • .) and the conclusion follow s. The rest of the proof is
straightforward.

3 .3 .  Natural representation II. I n  th is subsection  w e consider natura l
representations of Difft(M) on F,,,, which are alike to the one on the finite configuration
space. H ow ever Difft(M)-quasi-invariant measure o n  (FA,,, 0 ) ,  0  is  the  natural
Borel field, is  no t unique in this case, so w e must consider also a factor of such
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probabitiy measures S on (F M , ). I t  i s  k n o w n  in  [25] th a t to  such  a  f) there
corresponds a Difft(M)-quasi-invariant pobability measure 9 on  (if;PD,W), ' is  the
natural Borel field on J% , such that

(3.17) 13(E )=  E c(o-)(s9)o-(E)

for all EE Ç', where I:51 := c(o-)>O, E,E,B :o c(o-)=1, s is a  measurable section,
and  (si-lo- is  an im age measure o f 17 b y  a  m a p , Pl— qs(P)),. N ote  th a t fo r any
symmetric measurable function f  on

f(15)9(d15)= f  f ( f )9 (d15),
f rm

where we use a natural identification f  with the corresponding function on  Fm .

Definition 3.1. (1) A  measurable 1-cocycle (f on F m x Dikt(M) is said to be
9-irreducible, if' for any U(H)-valued measurable map V on Fm  there ex ists a constant
k e C  such that

V(P)=kId

f o r 9-a.e.I3 , provided that

(3.18) V(P)6(P, g)=0.(fi,g)v(g - I (P))

f o r 9-a.e.f'.
(2) A  parallel definition f o r a symmetric measurable 1-cocycle is given, in  which
V(15)  and S  are  replaced by  a  sym m etric m easurable m ap V(13 )  and 9, respectively.

Remark 3 .1 . (1 ) O f  course a is 9-irreducible, if  th e  corresponding is  9-
irreducible and vice versa.
(2) I f  a 9-irreducible 1-cocycle ex ists at any  rate, 9 m ust be Difft(M)-ergodic.

Theorem 3.5. L e t  Ô=Ô(C,Hk)  b e  a  canonical strongly  Borelian symmetric
1-cocycle. Then in order that it is 9-irreducible, it is necessary  and sufficient that

f o r any  U(H)-valued m ap A ([11) defined o n  'a ' I  w h ic h  satis f ie s  the conditions
(3.19) and (3.20) below, there exists a  constant k  eC such that

A ([11)=kId

f o r 9-a.e.f'.

(3.19) A  m a p , /5 1-- C(f') - 1 A ([P])C(P) is m easurable  a n d  it c o in c id e s  w ith  a
symmetric measurable map V(13) for i3-a.e.f',

and
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(3.20) vk e N, A (E n )H r=H riA ([P ])

for fi-a.e.f). A s  before, the necessity requires no condition on M but for the sufficiency
we assume that M satisfies (t).

P ro o f  Necessity. Take a symmetric measurable map V(/5) which satisfies (3.19).
Then,

V(11)6(15, g)= d(P, g)v(g - 1(A)

holds for f-a.e.fi , as is easily seen. Thus V, hence A  is almost all equal to a  scalar
operator.

Sufficiency. Let V(i5)  be a  symmetric measurable map satisfying the relation
being parallel to (3.18). For each n e N let rc„, nn be natural projections,

f7r.: = P., ...)E ° -  „ = ( I ) P „ ) E  /an

tir":/3 =(/3
1 , — , P„,•••)e/ac°1 - 4 " = (P ,,, , ,• • • )e ïa c e ,

and put

v ,,:= rc„- v "  : = (70) -  .

Then we know that

(3.21) v v„ x v".

(cf. [2 1 ] or [25]) It follows that there exists a Borel set S2" with v (2 " )= 1  such that
for all fin e Sr

(3.22) vo5n 1116 (f3 n pn g )K g  105 n finn— 6(13 f in  g)

for i)„-a.e.fin . Let us fix a  k e g ' ,  and use again the discussions in the proof of
Theorem 2.12, especially taking each neighbourhood Uk (Pk)  so  a s  to  b e  disjoint
from the set Pn . Then they give an A71(15")e U(H) such that

(3.23) n  
131 17(15„ fi")= (Pn

)

for „-a.e.fin E Û:= U i (P 1 ) x ••• x Un(P„), and

(3.24) A7,(P")Hr1 =HrIA 7/(fin)

for 1 e k  < n .  Since

11.41. := {WI P.)e Ia nP  n }  n Y ”  = 0 }

is connected by the assumption (f), we can connect any two such sets 0 1 , (.72 o f
ift;,, by a  finite chain of the  CJ's. Thus 2,17,(P") does not depend o n  CI, denoted
simply by An(f'"), which satisfies
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(3.25) AV") = n , 13") V(i„ , f'")C -  1 (i n , P")vn(din).

Next let us observe the measurability of the function,

(3.26) C(13)-1An(fin)C(P).

For it, it is enough to show tha t C(/3) - ' q i „ , /3") is jointly measurable with respect
to  (i3,4 ) .  Take a  countable open base { Wk}k in  ifi" so  tha t each  W, is equal to
a set of the form, U, x ••• x Un , where Ut a re  all diffeomorphic to  R° and  they are
disjoint, and set

W,1, e Wi, 0 ,  u 1 W i , n  PT = 01.
Then taking suitable diffeomorphisms on each W , we find that

C(/3 „ , fin) - 1 C(0, , /3"), COI , /3") - 1C(0 2 , /3"), ••• , C(Os _ fin) - 1 C(i„ , /3n)

are all jointly measurable on (Wti W 12) x ••• x ( WG  i n WO with respect
to  the variables (P, T h u s  th e ir  p ro d u c t y ie ld s  the  measurability
o n  n i i , . . . , i s  a n d  hence o n  th e  w hole space. It follow s from  (3.23) a n d  Fubini's
theorem that

V(P)= C(f ) 'A "( .13")C(13 )

for f)-a.e./3. Finally put

lim A"(13"),

A(E11) := f n  °Id,
(3.27)

if the limit exists.

otherwise.

The well-definedness is obvious, C(/3) - 1 A (E n C (/3)  is measurable, and

C(/3) - 1 A (EPDC(i3), a n d  1 vk < c c ,  A ([/3])H r =H rIA ([/1 )

holds for 1)-a.e.P. In  other words the assumption (3.19) and (3.20) are fulfilled and
we have

A ([11)= 91c Id

for 1)-a.e.i3. Hence the same holds for V(P).

Let 17 be a  Difft(M)-quasi-invariant measure on ( E M ,  3) and  a be a measurable
1-cocycle o n  Fm  x D ifft(M ). Hereafter we consider natural representation  T ,
I4(Fm ,H)) depending on  these factors,

(3.28) U g ) :  f ( 3) c Q (F m  , H)i—÷ Id
d

v  (P)a(P,g)f  (g - '(P))e L(F , , H).
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As before there correspondes a representation on the set L ii(iff" , H) of all square
summable H-valued symmetric functions on iff defined by

(3.29) f(15)e Q ( / a  , H)i—* .i c i
c

vl(P)6 (f i,g )f (g - 1 (I3))6L (M ' ,H ).

Theorem 3.6 (Irreducibility). The natural representation given by (3.28), where
w e assume that a is canonical and strongly  Borelian, is irreducible if  and only  if
so is a.

P ro o f  The necessity is obvious. The sufficiency is proved in  a  similar way
with that of Theorem 2.15. Take any open set G of M .  Put

IIG (U ):= { f E L ii(r m  , ( 4 ( g ) ( f ) = f  fo r  vg e Difft(G)},

and

AG :={Per m l PnG=0} .

It is  no problem to see that f  e H 0 (U,7,9-), whenever f (P)= 0 for ii-a.e.PE ÀG .
Conversely suppose tha t f  e H G (Ui-,,j). W e w ish  to  p rove  tha t f (P)=0  for

A .  T a k e  a  relatively compact open subset Y of G being diffeomorphic
to  a connected open subset of Rd , such one as in (c) of the proof of Theorem 2.12,
and put

1131,:=IY YVIYI=n1.

We have a natural decomposition

°Br x FM Y

o f  w hich  th e  f ir s t  and the  second pro jec tion  are  d e n o te d  b y  tr'n a n d
respectively. Put

v:= 1 1 137, x rm\r/fin 1);,:= v.° (7r) and := v„ 0(7r)

where f3 := x \y ).
 It follow s from  lem m a 1 in  p.13 in  [25] that

17= E v Fr= (3 i (ttx  v ) + E f l v x v .
n = 0 n 1

Using the natural m ap T  defined by

(3.30) T:tp(P)c L ii(Fm  , H)1—*
d i j  

(P)yo(f)e L,1(Fm  , H),
dh
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we have

(3.31) h := T f e HG (U ) ,

and for any g eDifP(Y)

\ du
(3.32)

tilt 
g  (PI

)
Y ) . -  g (P ))

, / - 1 H k[ P ]  

C(P , • • Pk -  , g  '(P k), P k + 1 • • *) •

h(P , • • Pk - I 9g P k  + 1 • • • ) = h ( 13 )

for ti-a.e.f' e Y  k ,  where a s  usual we identify h  with the corresponding symmetric
function on  11 , and

Y  k  := { IS E 11Pn )1 = 1  a n d  P k e Y }.

Thus considering local translations as before, we find that

(3.33) C (P)'C (P i , • • • , P k - )  Q k  Pk + 1 9 • • •)11(P 1 9 • • • 9 Pk -  1  Q k  Pk + 1 9 • • ') = h ( 13 )

fo r  i  x ri-a.e.(Qk , P)e U x Yk (U), where U  is  a  sufficiently small neighbourhood of
any point in Y and Yk(U):= Yk n {fie A7P° IPk  e  U }. It follows from Fubini's theorem
that there exists an A k e  U so that

(3.34) C(F)h(P) = h(f) , A k)

for ii-a.e.fie Yk(U), where

h(fi, A k) := C(P , • • • , P k -1  9A k  P k +1  9  •  •  •) h ( P 1  •  •  • IP k -1  9  A k  P k +1  9  •  •  • ) .

Thus substituting (3.34) to  (3.32), we get for all ge Ditro'( U)

\ IdPg ( p k i Cittg (poy.- 1H r
h( f' , k ) = h(13  , k),

for ii-a.e.fie Yk(U ) . It follows that  h(P)= O and  hence f (F) ==O for ii-a.e.fie Yk (U)
v ia  th e  sam e pocedure a s  before. Therefore w e have  show n that f(P)=  0 for

{OEFM  I I n Y =
 1 } 9 whenever f  E H G ( U )  and  hence f (P)= O modi o n

AcG . N o w  w e  h a v e  g o tte n  a  resu lt corresponding  to  (2.61), a n d  th e  same
arguments work on  with those parts after (2.61). This completes the proof.

Theorem 3.7 (Equivalence). Let f i (i = 1,2) be Difft(M)-quasi-invariant probability
measures o n  (Fm  , 23) a n d  a, be canon ica l, s trongly  B orelian 1-cocy cles on
Fm X DifQ,(M). Then (U,7 , i , Q i ( f m  , H 1 ) )  and  (t 4,2 ,6 2  , Q 2 (1-

 m  , H 2 )) a r e  equivalent
if  and only if

(3.35)

and
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(3.36) a ,  and (72 are cohomologous.

P ro o f  The sufficiency is obvious. In  order to  check the necessity take any
Bore set Q of I -

34 and put

P it?: f ( F) 6 X 0 ( 1 5 ) f ( 1 3 ) E “ S r  m  ,  Hi),

as the projections. Then for an intertwing unitary operator A  between the natural
representations,

(3.37) PLA =A PI?

is  a  d irec t consequence o f the  preceding argum ents. Therefore v 1(0)=0 implies
v2(0 )= 0  and vice versa. This proves (3.35).

Next put

Then we have

T: f(P)E 112,)1— f(F)
di, _ 2
( P ) G  Lç,2 (rm H2).
d172

(3.38)P C =  CPL

fo r a  map defined by C:=A ' T .  It follows that there exists a U(H 2 ,H,)-valued
measurable map V(/3) defined o n  F l y  such that for any f , H 2 )

(3.39) q f ) (15)= 17(13)(f(15))

for 17 r a.e.P. By the definition of A  and T,

Uv ° C - C  (Iv 9 2 ,

in  other words

V(P)172 (P ,g )=  i (P,g)1/(g.  -  II

holds for 17 c a .e .P . T h is proves the assertion.
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