J. Math. Kyoto Univ. (JMKYAZ)
39-3 (1999), 421-434

On the area of the complement of the invariant component
of certain b-groups and on sequences of terminal
regular b-groups

By

Hideki MiyacH1

Introduction

Let G be a finitely generated Fuchsian group of the first kind, and 97(G) the
Bers boundary of the Teichmiiller space of G. Let x,, be the canonical isomorphism
from G to the b-group corresponding to ¢ € dT(G) with suitable normalizations (cf.
Section 1.2), and A, the invariant component of x(G). We know that any ¢ € 0T(G)
has a sequence {@,}x-, corresponding to terminal regular b-groups in d7(G) such
that ¢,, converges to ¢, and that the area of C\A,  tends to zero (cf. Remark (2)
in Section 3.3). The main result of this paper is the following.

Theorem 1. Let {¢,}>, = 0T(G) be a sequence corresponding to terminal regular
b-groups such that

(@) For any hyperbolic element geG, there exist €(g), N(g)>0 such that for
n>N(g), if 1,,.(8) is loxodronmic, then |tr’(x, (g))—4|>€(g), and

(b) The Euclidean area of C\A,, tends to 0 as n— .
Then every accumulation point of the sequence corresponds to a totally degenerate

group.

This paper is organized as follows: In section 1, we fix our notations and recall
some basic definitions and facts. Section 2 deals with a lower estimate of the
complement of the invariant component of a b-group which contains triangle groups
as component subgroups. This class of b-groups, by definition, involves the set of
terminal regular b-groups. In Section 3, we give the proof of Theorem 1 and
several remarks about our result.
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Imayoshi for his constant encouragement. He would like to thank Professor Hiromi
Ohtake, Professor Hiroshige Shiga, and Professor Masahiko Taniguchi for their
useful advices and conversations. He also thanks Professor Yohei Komori for
useful and stimulating conversations.
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1. Preliminaries

1.1. For E c C, we denote by MGb(E) the group of Mobius transformations g
satisfying that g(E)=E. Through this paper, all discrete groups in Mob(C) are
torsion free. A finitely generated non-clementary Kleinian group I is called a b-group
if it has precisely one simply connected invariant component Ap of its region of
discontinuity Q(I'). By Ahlfors’ finiteness theorem, a b-group represents a finitely
many Riemann surfaces, each with a finite Poincaré area. By Bers’ second area
inequality (cf.[18]), the total Poincaré area of (I')/T is at most twice the Poincaré area
of Ar/T". 1If equality holds, I' is called regular.

Let I" be a b-group. For an accidental parabolic transformation (A.P.T.)ge T, we
denote by A4, the axis of g (cf. [14,p.611] and [14, Lemma 1]). Let {g;};_, be a basis
for AP.Ts in I'. (cf. [14, p.612]). Let n be a projection mapping from Ap to
R:=Ar/T. Then, a system Cr:={n(A)},.sp1. becomes a partition on A, that is,
Cr is the system of mutually disjoint simple closed geodesics (cf. [14, p.613]). The
system Cr and a components of R\Cp are called the partition with respect to T
and a block of T respectively.

For E < R, a stabilizer group of a component of n~}(E) in T is called a covering
group of E in T (cf. [16, p.251]). A covering group of a block is called a structure
subgroup. We say that a set of structure subgroups {H,};_, of I' is a basis of structure
subgroups of I if each H; are not mutually conjugate in I" and every structure subgroup
is conjugate some H; in I'. A stabilizer subgroup of a component of Q(I')—Ar in
I is called a component subgroup. We say that a Kleinian group I' is a b-group
with no moduli if I is a b-group satisfying either Q(I") is connected or each component
subgroup of I' is a triangle group (cf.[7]), where a Kleinian group is called a triangle
group if it is conjugate in Mob(C) to the principal congruence subgroup of level 2:

{z—z42, zz/(—2z+1)).

A b-group T is called terminal regular if I is regular and has no moduli. A b-group
T is called totally degenerate if (') is connected.

1.2. Let G be a finitely generated Fuchsian group of the first kind acting on
:={zeC||z|>1}. Let B(G) be the complex Banach space of holomorphic functions
¢(z), zeX with norm | ol =sup(z|*—1)*|¢(z)|/4< oo which satisfy the functional
equation of quadratic differentials ¢(g(z))g'(z)> =¢(z), geG. It is well-known that
dim B(G)< o and that for every ¢ e B(G), there exists the local univalent function
W,(z), ze Z such that the Schwarzian derivative {W,,—} of W, is equal to ¢ and
that W, forms

W)=z+ ) bz""
n=1

near z=o00. For ¢ € B(G), we denote by x, the homomorphism from G into Masb(C)
defined by the equation y(g) W,=W,-g, geG.
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The Teichmiiller space 7(G) of G can be identified with a bounded domain in
B(G). We know that for ¢ €dT(G), W, is univalent and G,:=yx,(G) is a b-group
with the invariant component A,:=W,(X). We call 0T(G) the Bers boundary of
T(G) (see [7], [9], and [12]). Let I' be a b-group and f a conformal mapping
from X to A, if {f, —}edT(f~'Tf), T is called a boundary group.

1.3. Assume that f(z)=z+bo+Z{% b,z *is univalent on . Then the following
inequality, called the Golusin’s inequality, holds:

g I/LI2
Y kY bk < Z (1)
k=1 |[1=1
for any 4,eC, (I=1,2,---,N), and
z )
f( éo - Z bklz_kc— (z,{eX).
k=1

(cf. [3,p.91]). The coefficients {b,,},- are called the Grunsky coefficients of f. This
inequality induces the following:

<$=

Z bty
k=

1

03]

for A, meC (k=1,2,---) such that {k™"22 )2, (k™' el

2. The area of the complement of an invariant component

In this section, we will give a lower estimate of the Euclidean area of the
complement of the invariant component of a b-group containing triangle groups as
component groups.

2.1. Let F<Mob(C) be a triangle group so that co e Q(F). Let {A4,B} be a
generator of F such that A, B, and 4B are parabolic. Then, we have

Lemma 1. For g(z)=(az+b)/(cz+d),(ad—bc=1), let c,=|c|. Then the Euclidian
area of the bounded inuariant component of F is more than 4n(ci+ci+cip) L.

Proof. The direct calculation gives that the interior of the circumscribing circle
of the triangle whose edges has lengths x,y, and z has the area

1 1 1 y: 22 x2 )\ !
<2 _x_2+;)_2—+? - 22x2+x2y2+y222 .
Let a, b and ¢ be fixed points of 4, B and AB respectively. By Proposition 12.1
in [11, p.571],
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2|c—b| _ 2]a—(| _ 2/b—a

Cp=—"— p=———, and ¢ p=—-"-—".
le—alla—b|’ la—bllb—c|’ b —cllc—al

Therefore, we have the assertion.
2.2. We have the following lemma (cf. [22, p.372, Section 4]).

Lemma 2. Let Ae MOb(Z) with A(00)# 0 and Mdb(C) a parabolic element.
Suppose that there exists a univalent function f from X into C with normalization
f(2)=z+0(1) near z=00 such that gof=f-A. Then

cg <41 =14 O))/tr*(4)4'0)? 3)

Proof. Let {b,}X-, be the Grunsky coefficient of f. By definition,

8(00) —g ~!(c0)=f(A(c0)) —fid ™ '(c0))

=(A(00)—A_'(00))CXP{— i buA(OO)_"(A_'(OO))"}-
k,=1

Since A(o0)={A(0)}, |4(0)|<1, and |A(0)|=]4""(0)l, {k~"2A(0)},,
{k='2471(0)*}>., are contained in /2. By (2), we have

2
18)_ g (a0) g~ (co)?
Ce

=|A(c0)—A~ 1(OO)IZeXP{ - 2Re( i b A4~ I(0))')}
k

Jd=1

S A0 {—2( SO 2 14° ‘(0)|2">‘/2}
k=1

1+]40) k& k
_trX(A4)|40)| o 2 EAIAO)P
—me"p {21og(1—1A4(0)| )}—m

Since g is parabolic, we conclude (3).

2.3. For a Fuchsian group G acting on £ and ¢>0, by the e-thick part
thick,(G) for G we mean that the set of points ze X such that the hyperbolic distance
d(z,g(z)) between z and g(z) is more than e for all parabolic geG. For b-group T,
let f be a conformal mapping from X to Ar. We define the e-thick part thick(I')
for T by flthick,(f ~'Tf).

For a parabolic 4 e M6b(Z) and €>0, the e-horocycle C,, of A is, by definition,
the circle C in X through the fixed point of 4 such that for d(z, A(z)) =€ for ze C. For
a hyperbolic 4 e Mob(X), we denote by L, the axis of A.

We say that a closed curve in X/G is the e-horocycle if there exists a
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Type (1,2)

Figure 1. Pairs of Pants

primitive parabolic ge G so that the curve is the image of the e-horocycle of g by the
projection. For a rectifiable curve C in R:=X/G, we denote by /x(C) the hyperbolic
length of C on R. In this paper, a bordered Riemann surface of finite type (0,7, 3 —/)
whose borders consisting of geodesics is called the pair of pants of type (3—j,j) (cf.
Figure 1)

Let ¢, =2arcsinhl and e<e¢,. Let P be a pair of pants of type (3—j,j). Then
there exist geodesics {y,}7-#, {a}?=,, {di}’-, e-horocycles {y;}}-5_j4,, if j#0, and
the point ¢ as in Figure 1.

The following lemma can be proved in the argument similar to that of Theorem
2.4.3 and 3.1.8 in [8] and Lemma 4.4 in [20]. Hence we omit the proof. The
author would like to thank Professor Toshihiro Nakanishi for teaching about the
joint work [20] with Professor Marjatta Naitinen.

Lemma 3. Let P be a pair of pants of type (3—j,j). Let {y,}i-,, {®;}}-, and
{d}=,, and q as in Figure 1. Let dy be the shortest geodesic connegting vy, and
ag. Let I; and Id) be the lengths of y; and d; respectively. Then
(@) dj passes through q.

(b) Let L;=cosh(/;/2) (1<j<3—j). then
(b-1) If P is of type (3,0), then

L2412+ L3420, L,L,— 1)

cosh(/(d;)) = sinh(/;/2)

, for i=1,23.
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(b-2) If P is of type (2,1), then

Li+L, L, +L
cosh(i(d))=—""2, for j=1,2, and '@ ="1""2
sinh(l;/2)’ Jor J= sinh(e/2)
(b-3) If P is of type (1,2), then
L,+1 L,+1
cosh(i(d,))=—2——, and '@ =
(Ud,)) sinh(,/2) and e sinh(e/2) , for i=

2.4. LetI bea b-group which contains triangle groups as structure groups. We
denote by {P,}j>, the blocks of I'. Let n is the projection from A to R and f
the a conformal mapping from X to Ar.

We may assume that for 1<k <s, P, is a pair of pants of type (3—j;,j,). Let
{7.;}}=1 be boundary curves of thick(G)/Gn P, We assume that for 1<j <3—j,
7,j is a geodesic (see Figure 1).

Lemma 4. Fix 0<e<e, so that oo ethick,(G). Then, for k=1, .- s, there exist
a structure group T, corresponding to P, and generators {C,;}}-, of H,:=f 'I'.f
such that
() For i=1,2,3, if C,, is hyperbolic (resp. parabolic), the the axis (resp. e-horocycle)
of £~ is mapped to y,; by no f.
(i) Ck,3Ck,2Ck,1 =id
(ii)) d(oo, L, ) (resp. d(oo, L, ) <diam(thick (G)/G)+ d(k, i), where d(k,i) is Kd,) as
in Lemma 3 with respect to curves y;:=v,;, i=1,2,3 and P:=P,, and diam(E) is the
hyperbolically diameter of E < R.

Proof. Fix ke{l,---,s}. We only show the case where P, is of type
(3,0). Another cases are proved in the similar manner.

On P, let {y,}7-1. {o.:}?-1, and {d,;}}-, be geodesics as in Lemma 3. Let
g, be a intersection point of d,;, and d, ,. By Lemma 3, lg(d, )=d(k,i). Take a
geodesic B, in R connecting ¢, :=no f(00) and g, such that /p(8,) <diam(thick (G)/G).
We define the curve B,;c< B,ud,; connecting g, and y,; so that [g(B;)
<diam(thick(G)/G)+d(k,i). We construct a loop ¢ ;=P 7:..fr; With an initial
point g,. We give an orientation for c;; such that [¢; ,1[c; 2][c.3]=1, where [—]
is an equivalence class in 7,(R, g,), the fundamental group of R with the base point ¢, .

We take C,;e fTf~! corresponding to [c;;] by the canonical isomorphism
between m,(R,q,) and fTf~'. Let z,eZ be the end point of the lift of f, whose
initial point is the point at co. Let I', be a structure group which stabilizes the
component of Apr\Ug..p 14, containing f(z,). Then, by definition, the system
{C,.}i-1 generates H, and satisfies the assertion of lemma.

2.5. We prove the following theorem.
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Theorem 2. Let T" be a b-group such that oo €A and that the logarithmic
capacity of the limit set of T is equal to 1. Take 0 <e <€, such that o € thick(I'). Let
{P.)i>, be blocks of T each of which is a pair of pants. Then there exists A(Ar/T,
{PJy, >0 such that the Euclidian area Area(C\Ar) of C\Ar is more
than A(Ar/T, {P}i%,€). Furhermore, for M >0 and some k, if lengths of all closed
geodesics in the boundary of P, are less than M, then there exists A>0. depend only
on Ar/T, M, and €, so that Area(C\Ap)>A.

Proof. The direct calculations shows that if 4 e M6b(Z) is hyperbolic,
|A'(0)] =4/(tr?(A) — 4tanh*(d( oo, L ,)))cosh?(d(c0, L ,)), )
and if A4 is parabolic and oo € thick,({A4)),
|4'(0)] = 1/1 4 sinh?(e/2)e4(=C.2), ®)]

Let f be the conformal mapping from X to Ap such that f(z)=z+ O(1) near
z=00 (cf. [21, p.207, Corollary 9.9]). For ke{l,---,s}. Let H, and {C,;}}-, be
as in Lemma 4. Since oo ethick,({(g)) by Lemma 2, Lemma 4, and (4) and (5),
AAL/T, {P % 1,€)=64nZ,A(Ar/T, P, €) where

AAA, T, P, €)= { S S, (sinh(/2), diamithick,(G)/G)+d(k, i))}_ 1
i=1

and

(x—4)cosh?d((x —4)cosh?d+4)*/x, if 1<i<3—j,
Sy.ix,d):=

16cinh?(¢/2)e?/(1 + sinh?(e/2)e??)?,  otherwise,

(k=1,---,50), satisfies the assertion.

Corollary 1. For a b-group T, let f be a conformal mapping from X to A;. Then
3
I{f, =}l SE{I—A(AF/F, {P i | €0)/m} 1%, where each P, is a block of T which is

a pair of pants.

Proof. Let G:=f"'T'f. Since G is torsion free, for @eB(G), it holds
Il =sup{(lz]* — 1)|¢(z)|/4| z € thick,(G)} (cf. [23, Lemma 1] and [4, p.198,Exercise
8.2]). Hence by an argument similar to that of Lemma 6.7 in [9, p.151](the
Nehari-Kraus theorem), we conclude the assertion.

3. Sequences of terminal regular b-groups

In this section, by using Theorem 2, we study a behavior of a sequence
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corresponding to terminal regular b-groups contained in a Bers boundary. Theorem
1 is proved in Section 3.2.

3.1. Let G be a finitely generated Fuchsian group of the first kind acting on
L. For ¢€dT(G), we denote by C, the partition with respect to G,. We show
the following lemma.

Lemma 5. Let {¢,}x-, < 0T(G) be a sequence corresponding to terminal regular
b-groups. Then there exist a subsequence {@m;} 21, @ maximal partition {C,}J273*"
on R:=Z%/G, a number koe{0,1, ---,3p—3+n}, and homeomorphisms {f;}?>, of R
onto itself such that

(1) For j>1, C, ,={f(CIRLT*>"",
(2) If ko>0, then Ig(f{C,)) = o0 as j— oo for 1<k<k,, and
(3) If ko<3p—3+n, then f(C))=C, for k>k,

If, in addition, Area(C\A,_ )— 0 as j— oo, then it also holds that

Pmj

(4) No component of R\U,,,C, is a pair of pants, and hence ky>0.

Proof. Since the number of graphs induced by the maximal partition on R
is finite (cf.[2],[11]), we may assume that all graphs induced from {C, }w_, are
the same. Let us denote C, ={C;}27°*". Then, there exist homemorphisms
{h,}2- of R onto itslf such that C,,.={hu(C)}2273*" (cf[8, Appendix]). By taking
the subsequence of {h,}r-, and renumbermg the curves {CiJR27**" if necessary,
we may suppose that there exist koe{0,1,---,3p—3+n} and M>0 such that if
ko >0, then Ig(h,(C;)) = 00 as m — oo for 1 <k <k, and that if ko <3p—3+4n, then
Iph(CH<M for ky<k<3p—3+n and m>1.

Since the number of closed geodesics in R whose hyperbolic length are less
than M is finite (cf.[2]), there exists a subsequence {¢,, } 2, such that h, (C;)=h,,(C)
for j,I>1 and ky<k<3p—3+n.

Let f;=h,o(h,)” "' and C,=h,(C;) for j=1 and 1<k<3p—3+n. Then, by
definition, the subsequence {¢, )72, the partition {CJi27°>*" on R, the
number k, and homemorphisms {f;}3, satisfy (1)-(3) in this lemma.

From now on, we assume that Area(C\A,, ) — 0 as j— co. Suppose that there
exists a component P; of R\U;>;,C: such that P, is a pair of pants. Since
{Ci>ko < C,,, for each j>1 and P; does not contain the simple closed geodesic
which is not homotopic to boundary components of P;, P; is a block of G, _, for
every j>1. Hence each G, , contains a triangle group as a structure group
corresponding to P;.

Take €>0 so that oo ethick (G) Since the lengths of all closed geodesics in
the boundary of P; are less than M, by Theorem 2, there exists 4 >0, depend only
on R, M, and € such that Area(C\A,, )< A forj>1. This contradicts the assumption.

Pmj
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3.2. To prove Theorem 1, it suffices to show the following proposition.

Proposition 6. Let {¢,}2-, be a sequence corresponding to terminal regular
b-groups in dT(G) satisfying (1)~(3) in Lemma S with respect to a partition {C,}327>*",
a number k,, and homeomorphisms {f,}%-, of R:=X/G onto itself. Suppose that
the sequence satisfies (a) in Theorem | and converges to ¢,€0T(G). Then G, is a
b-group with no moduli such that C, ={Ci}i>w,- Especially, if no component of

R\Uy»,Ci is a pair of pants, then G, is a totally degenerate group.

Proof. We prove the case ko<3p—3+n. The case where ko=3p—3+n is
proved by the similar manner.

Let g,eG be primitive hyperbolic elements corresponding to C, for
1<k<3p—3+n. We denote by {P;}i2, the components of R\u,,,,C; €ach of
which is not a pair of pants. Let {P;}{2,,, be components of R\(U;»;,C,LuUi,P).
Fix a stabilizer group H; corresponding to P;in G. Let G; ,,= x,, (H;) for m>0. For
mx1, since G, is a terminal regular b-group and, P; is not a pair of pants for
1<i<s,. G, is also a terminal regural b-group such. that Ag  /G;,, is
homeomorphic to P; if 1 <i<s, (cf.[11]). By definition, for i>s, is a triangle group.

We first show that {G;,}iL, is a basis of the structure groups of G,,. It is
clear that for k>ky, x,,(g) is an AP.T. in G, .. Since G; o=y, (H)), it suffices to
show that y,(g) is loxodromic for any hyperbolic element g e G which is not conjugate
to a power of g, for any k.

If the geodesic corresponding to g meets C, for some k>k, then y,(g) is
loxodromic. Hence we can take e(g), N(g) satisfying (a) for g in this theorem. Thus
we assume that the geodesic corresponding to g is contained in some P,. By (2)
in Lemma 5, there exists N(g)>0 so that y,(g) is loxodromic for m>N(g). By
assumption (a), there exist €(g)>0 such that for m> N(g), inequalities

Itr?(x,,(8) — 41> €(g)

hold. Since yx,, (8) = X,o(g) as m — 0o, we have that trz(x¢o(g))#4. Since y,, is
an isomophism and G is torsion free, x,,(g) is loxodromic.

Thus, if 1<i<s,, G;, is either a quasi-Fuchsian group or a totally degenerate
group without A.P.T.s (cf.[15], [17, p.225, Theorem D.21], and [17, p.268, Theorem
C.25]). We assume that G, , is a quasi-Fuchsian group for some i. By the arguments
above, for m>1, the isomorphism y, oz, from G;, onto G, is allowable in the
sense of Bers (cf. [5, p.574]). Since g, °x,, converges to the identity on G;, by
the quasiconformally stability for quasi-Fuchsian groups (cf. [5, Proposition 6]), G; ,,
is quasi-Fuchsian for sufficiently large m. This is contradiction. Thus, G;, is a
totally degenerate group without AP.T.s for i=1,---,5,. Thus, G,, is a b-group
with no moduli such that C,,={C\}i>4,-

3.3. Remark. (1) Any sequence corresponding to terminal regular b-groups
which conveges to ¢,e€dT(G) corresponding to totally degenerate group without
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A.P.T.s satisfies (a) and (b) in Theorem 1.

(2) For any ¢ €dT(G), there exists {¢,,} -, in dT(G) corresponding to terminal
regular b-groups such that (2-i) Area(C\A, ) tends to zero, and (2-ii) {@,}2-,
converges to ¢, .

(3) Any totally degenerate group G,, with AP.T.s has {¢,}2-, in T(G)
corresponding to terminal regular b-groups which converges to ¢, such that (3-i)
Area(C\A,, ) tends to zero, and (3-ii) it does not satisfy (a) in Theorem 1.

(4) If dim T(G)>1, there exists {¢,}X-, corresponding to terminal regular
b-groups in 07(G) satisfying (a) in Theorem 1 such that {G,}%-, converges to a
b-group but not a totally degenerate group.

Proof. Before proving (1)(4) above, we note that {¢,}>-, corresponding to
terminal regular b-groups in d7(G) which converges to ¢, dT(G) corresponding to
a totally degenerate group without A.P.T.s satisfies that Area(C\A, )—0 as
m— o0, Indeed, it follow from the following two facts: (1) The measure of
Q\A,,=A(G,,) is zero by Thurston’s theorem (cf.[18], and (2) {A, }>_, converges
to A,, in the sense of kernel convergence with respect to oo (cf. [21, Theorem 1.8]).

Let us prove Remark (1)+(4).

(1) By the argument above, the sequence satisfies (a) in Theorem 1. Since
G,, has no A.P.Ts, that also satisfies (a) in Theorem 1.

(2) Since the set of differentials corresponding to terminal regular b-groups
and the set of those corresponding to totally degenerate groups with-out A.P.T.s
are dense in dT(G) (cf.[19] and [S, Theorem 14]), by the standard arguments and
Remark (1), we find a sequence satisfying (2-i) and (2-ii). This remark was pointed
out to the author by Professor Hiroshige Shiga.

(3) Let {g};=, be hyperbolic elements in G so that {x,(g)}i- is a basis of
AP.Ts of G,,. Take L,>0 so that 2 cosh (Ly/2):=maxr,tr(gi)l. By applying
the argument in Lemma 5 for {y,}®_, corresponding to totally degenerate groups
without A.P.T.s in 0T(G) which converges to ¢,, there exists a terminal regular
b-group G, such that lyG(C)>mL, for each CeC,, , ll¢,—Yul<1/m, and that
Area(C\A, )<1/m for m>1. By the definition of L,, x,, (g is loxodromic for
eachm>1and k=1,---,s5. Since x,,(g) is parabolic, {,,} -, satisfies (3-i) and (3-ii).

(4) Let R=%/G and C={C,}i_, a maximal partition on R. Let {P}5L, be
the components of R\U,,C such that C; < P,;. Since d=dim T(G)>1, we may
suppose that s, >1 and that P, is a pair of pants. Let R, be the infinite Nielsen
extension of P, (cf.[6]), I'; the Fuchsian group of R, and (I';),, a totally degenerate
group without A.P.T.s such that y,edT(I';). We define {¢,}--, of a sequence
corresponding to terminal gerular b-groups and ¢,e dT(G) satisfying the conditions
(a), (b), (c), and (d) in Theorem 3 in Section 3.4 for the partition C, so=1, and
F,=(Ty)y,. Then {¢,}x_, satisfies the assertion.

If dim 7(G)=1, then G, has an A.P.T. if and only if G, is a terminal regular
b-group. By Remark (1) and the proof of Proposition 6, we have
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Corollary 2. Suppose that dimT(G)=1. For a sequence ® corresponding to
terminal regular b-groups in 0T(G) which converges to ¢y € 0T(G), the following three
conditions are equivalent:

(1) G,, is a totally degenerate group.

(2) @ contains a subsequence with (a) and (b) in Theorem 1.

(3) ® contains a subsequence consisting of mutually distinct elements and satisfies
(@) in Theorem 1.

3.4. To complete the proof of Remark (4) in the previous subsection, we will
show the following theorem.

Theorem 3. Let G be a finitely generated Fuchsian group of the first kind
acting on £ and R=X/G. Let C={C}t>, be a partition on R and {P}3 | the
components of R\U'2,C, each of which is not a pair of pants. For i=1,---,5,, let
F; be a boundary group such that Ag [F; is homeomorphic to P;. Then there exist
0o €0T\G) and corresponding to terminal regular b-groups such that

@ @,— @, as m— 0,
(b) CcC,, for m>0, and

(c) A covering group of P; in G, is quasiconformally conjugate to F;, If, in
addition, each F; is a totally degenerate group without A.P.T.s, then

(d) @ satisfies (a) in Theorem 1.
This theorem is proved in Section 3.6.

3.5. The following lemma is well-known. However, the author has never seen
what is stated in this form.

Lemma 7. Let R and S be a hyperbolic Riemann surface of type (p,n). Let P
be a domain in R such that P is homeomorphic to R and that the inclusion mapping
i from P to R is homotopic to a homeomorphism of P onto R. Then, for K>1,
there exists Ko=K, (K, P,p,n)>1 such that if a K-quasiconformal(q.c.) mapping h
from P into S which is homotopic to a homeomorphism from P onto S exists, there
exists a Ky-q.cmapping g from R to S so that goi is homotopic to h.

Proof. Let T(R) be a Teichmiiller space of R (cf. [9, p.120]). Let M be a
Riemann surface of type (p,n). If there exists a K-q.c.mapping k), from P to M
homotopic to a homeomorphism of P onto M, then there exists a g.c.mapping
fi.xkm from R onto S such that fp g uoi is homotopic to h,. We denote by
X(P, K) the closure of the set of such [M, fip x u] in T(R). Let i be a homeomorphism
form P to R homotopic to i. Let {y;})_, be a system of simple closed geodesics
fill up R (cf. [10, p.249]). By the decreasing property for the hyperbolic metric
and Wolpert’s Theorem (cf. [8, p.1531), X, Is(fip k(¥ ST 1klp(i ™ '(y)). Hence
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X(P,K) is compact (cf. [10, Lemma 3.1]). Let d, be the diameter of X(P, K) with
respect to the Teichmiiller distance of T(R) (cf. [9, p.125]). Then, K,:=e" satisfies
the assertion.

3.6. Let us prove Theorem 3. We only show the case where s,=1. Another
cases are proved by the similar manner.

Let R, be the infinite Nielsen extension of P,. Since Ry:=Ap /F, is
homeomorphic to P,, there exists a K,-q.c.mapping h, from R, onto R,. Let
Q:=hy(P,), i an inclusion mapping from Q to R;. Then, by definition, i is homotopic
to a homemorfphism from Q onto R,. Let f be a conformal mapping from X to
and A, and Ty =f""'F,f. We take {{,}2-, in 0T(';) corresponding to terminal
regular b-groups which conveges to y,:={f, —}edTI",). Let C,,={C; ,}iL, and
C,.m the geodesic in P, (and hence in R) such that iohy(C, ,) is homotopic to C;,,
for k=1,---,k;. Then, C,:={C;,,,Ci}i= ...k, j=1,...ko iS @ maximal partition on R
for m>1. Take the terminal regular b-group G, so that C, =C,, (cf[1, Theorem
6]). We may suppose that ®:={¢,,} 2, converges to some ¢,€d7(G). By definition,
and satisfy (a) and (b) in this Theorem.

We prove that satisfies (c). Let n be the projection from X to R and P, a
component of 7~ '(P,). We may assume that coe P,. Let H, be the stabilizer
subgroup of P, in G and G,,:= Xon(Hy) for m>0. Then for m>1, G, is a covering
group of P, in G, and is a terminal regular b-group (cf.[11]).

Let S,,=Ag, /G, and =, the projection from A; to S,. Then there exists
the injective holomorphic mapping 4, from P, to S, such that 4, -7l ==, W, |5, .
By definition, A, is homotopic to a homeomorphism from P, to S,, (cf.[14]). Hence,
by Lemma 7, there exist K=K, (K,,Q,p,n)>0, and the K,-q.c.mapping g,, from
R, to S,, so that g, i is homotopic to A, (help,) "

Fix the lift /&, of iohg|p, from P, into Z. h, defines the isomorphism ¢ from
H, to T, by &h)ohy=hyoh for he H,. By definition, h,, induces the isomorphism
Xonlu,- Since for m>1, g, ciohglp, is homotopic to A, there exists the lift g, of
g. from X onto A; so that the isomorphism #, from I'; to G, defined by
(V)= &myém ' satisfies that i, o &=y, |, -

Let w,=g,° W, '. Then w, is a K,-q.c.mapping from A, onto Ag and
defines the isomorphism 7, from G, to G, by n,(g)=w,gw,'. Then, n, satisfies
that 7,,=x,,|n, ° (X, ©€)~'. Since g, i is homotopic to h,,, 1,, is type preserving.
Since G,,, and G,, are terminal regular, by the rigidity of triangle groups, w,, can
be extended to the K,-q.c.mapping on € compatible with G,,. This extension
denoted by the same symbol w,, for short.

To prove (c) in Theorem 3, it suffices to show that the family {w,}>_, contains
a subsequence which converges to a K,-q.c.mapping w, on C. Indeed, since
WGy Wi =1,(G,, ) =G,, for m>1, woGy wo ' =G,.

Take primitive hyperbolic g,,g,€ H; so that g, is not conjugate to g, in H,
and that a; o:=yx,,(g) and B;o:=xy,°¢(g) are loxodromic. Let «;,=x,,(g) and
Bim=1xy,.°(g). Then there exists N, >0 such that for m>N;, «, and B;, are
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loxodromic. For m>N,, let {ay;_y a3, and {by;_; ,..b5;,} be the set of the
fixed points of «; ,, and f; ,, respectively. By discreteness, the cardinality of {a; ,}{-,
and {b;,}i-, are equal to 4 for m>N, or m=0. Since a;,, — %, and B;,, = Pio»
we may suppose that there exist No > N, and d> 0 such that k(a; ., a; o), k(b; . b; o) <d
for j=1,---,4 and m>= N, and that k(a; o,4; ), k(b; o, b; o) >4d for i #j, where k(—, —)
is the spherical distance on C. Let B;={zeClk(z,a;,)<d}. Since w,({a;.}i-,)
={b;.}i=1 by applying an argument similar to that of Theorem 4.2 in [13, p.70]
for domains {C\B,U B}, j» there exists a subsequence {w,, }%>; and a K,-q.c.mapping
wo so that converges uniformly to w,.

It is easy to observe that if each F; is a totally degenerate group without
A.P.Ts, then {@,}2_, satisfies (d).
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