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Tauberian theorem of exponential type
on limits of oscillation

By

Nobuko KOSUGI

1. Introduction

This paper is a continuation of the author's previous paper [4], where we gave
a Tauberian theorem of exponential type. In  th e  present article we shall extend it
and obtain some results on limits of oscillation. We first recall the result of [4].
Throughout this paper, let 0  denote the class of decreasing convex functions
p(s) E C i (0, oo) satisfying

lim (v) -  co , lim (s) =O.s-›00

For p E 0 , define

(1.2) (0*(x) = inf {sx p ( s ) } , x > 0.
s>o

Then q)*(x) is  a  non-decreasing concave function on (0, oo), and it holds that

(1.3) p(s) =  sup{ -sx  +  p* (x)}.
x>o

Theorem A  ([4]). Let q  e  0  and def ine yo* as  in  (1.2). Suppose an b e  a
sequence of positive numbers tending to infinity as n co, and Un (x ) be a sequence
of  non-decreasing, right-continuous functions o n  [0, oo) such  that Un (0) = 0.
(i) I f

(1.4) lim  " lo g  I e - `4 dU„(x)= ço(s), f o r all s > 0,
cc a„

then

(1.5) lim  ' l o g  Un (x ) = p*(x), f o r all x > 0.
ci ) a„

(ii) Conversely,

lim sup —
1

log e- " dUn (x ) < oo , f o r all s > 0,
n -0 0  an o

then (1.5) implies (1.4).
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The aim of the present paper is to extend Theorem A and construct Tauberian
theorems that can treat the cases where the supremum and the infimum do not
necessarily coincide. Such cases often appear in  probability theory, a n d  there
have been some works on this subject (cf. [2], [3], and so on), though all of them
treat fixed m easures dU (x). Therefore, in  th e  present paper, w e  sha ll show
theorems o n  lim its of oscillation, tha t can  trea t the cases where the  measures
d Un ( x )  depend o n  n. T h is  paper consists a s  fo llow s: In  S e c tio n  2 , a s  we
mentioned in the above, we give Tauberian theorems on limits of oscillation, and
obtain a  result on multiple convolution by applying one  o f the  theorem s. The
proofs are  given in  S ec tion  3 . In  sec tion  4 , we give other results o n  lim its of
oscillation in which the roles of the origin and infinity are interchanged and show
that our theorems include Kasahara's theorem ([3]), which is a  generalization of
results o f Davies ([2]) and  Nagai ([6]).

2. Main results

We first consider the Abelian p a r t . T h e  following theorem is an extention of
Theorem A(ii).

Theorem 2.1. Let i , ço
a  sequence of  positive numbers
sequence of non-decreasing, right-continuous
W e assume that

1

E 0 , and define and tp* as in (1.2). Suppose a„ be
tending to inf inity  a s  n oo, an d  U „ (x ) b e  a

functions on [0, co) such that U„(0) = O.

OC

(2.1) lim sup —  log
n—cc, an

e- " " 'd U n (x) < oo ,
o

f o r all s > O.

1
(2.2) 0*(x) < lim inf log U„ (X)

an

<  lim sup 
1

— log Un (x)
17 - + X. a,,

(x), f o r all  x >  0,

then

(2.3) 0(s) < lim inf -1- log .1  e 'd U„ (X )
cc an

1

lim sup — log e- " " 'd U n (x ) <  (s ). f o r all s > O.
n—x. an o

Next, we consider the  T auberian  part. N otice  th a t  if  0 (s) <  0 (s ) fo r  all
s > 0, then 0*(x) 0* (x) for a ll  x >  O . For every x > 0, we determ ine (s - (x))
a s  follows: We first define

(2.4) s*(x) := sup{s10(s)+sx x >  O.
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We remark that so < s*(x) < oc, where so is determined by the equation —'(so) =
x. Indeed, since go(so) + sox = (P* (x ), we have i/i(so) + sox ç o * ( x ) ,  which implies
so < s * (x ) .  Next, we define

(2.5) *(s) := i
f  { lyo*( ) — s > O.

(Notice tha t 0  <  * (s) — q)'(s)). Thus,

(2.6) *(,s.'(x)) = infglyo*() — s * (x )  > ip(s*(x))},

and we have

(2.7) .,(s*(x))

We stress here that for every x > 0, (s*(x )) and x are the smallest and the largest
solution of

(2.8) q). * ( ) — s * (x ) =  0(s* (x)).

For example, let 1//(s) = 1/(4s) and ço(s) = 1/s, then we have yo*(x) = 2Nr y .  From
(2.4), we see that s*(x) = (2 + -0).V7x/(2x), and from (2.6), we h av e  ,,(s '(x )) =
(2 — 13.)4x.

Theorem 2.2. L et ti(s), T(s), ço*(x). an , and Un (x ) be as in  Theorem 2.1. If
(2.3) holds, then f o r every x >  0,

1(2.9) g*(s li*  (x ) ) )  <  m inf —
1  

log Unf i(x ) <  m  sup—log Un (x) (x).n-00 a„ n—,00

w here  * (s * (x )) is as in  the  above.

W e remark that if 1//(s) =  (s), for all s > 0, then s*(x) satisfies —yo1 (s*(x)) =
x, and t h u s  ,k (s*(x)) x, w hich im plies that Theorem s 2.1 and  2.2 include
Theorem A .  W e postpone the proofs of Theorems 2.1 and 2.2 until the next
section, and we state the following theorem, which can be obtained as a corollary
of Theorem 2.2, by adopting the idea of Theorem 2 in the author's previous paper
([4 ]).

Theorem 2.3. Let a >  0, and b„ be a sequence of positive numbers tending to 0
as n o c .  Suppose 0 (x ) be a  non-decreasing, right-continuous function on  [0, oc)
such that o- (0 ) = O. For any  positiv e num bers C I and  C 2 , if

(2.10) C i s ' lim inf e—nsx do .(x )
n—, x , o n 0

lim sup
1

e - "sxdo- (x) C2s ' , f o r all s > 0.
n  c c  O n  0

then
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1/n

n cen f  n
(2.11) ( j2  ) ( -e - )Œ x " nLi do-(xl ) • • • do-(xn )

0<xl +...+x,,

1/n

<  lim sup —1,1•  •  • do-(xl ) • • • da.(xn )
CC U r i

< X

C 2 ( a
—

e
)  xœ, for ev ery  x  > 0 ,

where A1 [/1,2] is  the smallest [largest] solution of

(2.12) a  lo g  — A =  —a log(e/a) log(C 1  /C 2)•

P ro o f  We refer to the proof of Theorem 2 in [4] for details, but appealing to
Theorem 2 .2 , we can obtain

(2.13) C2 ( —

a
)  ( * (s*(x )) OE <  lim

n
— Lnf —bi

n

o<x,+•••+;(„<.,
da(xi ) • • • du(xn)

1/n

n—ac on
• •< l i s p I do-(x, ) • • • do- (x n )

1/n

0 < + • • • +  x„ <  x

e
C2 (— )  f , for every x > 0,

where * (s*(x )) =  in fg la  log — s * (x ) >  —a logs* (x) — log(e/a) log(C ] /C2)}.
Thus it rem ains to show that

(2.14) (s*(x )) =  ( t )  x ,

or equivalently,

(2.15)
(s*(x ))A l

(2.16) a  lo g  — s * (x )  =  —a logs* (x) — a log(e/a) + log(Ci /C2)•

Since (2.16) can be rewritten as

(2.17) log(s* (x) ) — s * (x )  -= log(e/a) + /C2),

x 22

To see (2.15), reca ll tha t * (s* (x)) and x  are the smallest and the largest solution
of
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we see that the ratio of (s* (x)) to x is equal to that of the smallest to the largest
solution of (2.17). Hence, by putting ç  =  /Vs* (x) in  (2.17), w e can have the
assertion.

3. Proofs

According to the assumptions of Theorems 2.1 and 2.2, w e m ay and do
assume that

00
lim sup —

1

log e- ans'd Un (x) < oo , for a ll s >  0,
n— +oo an 0

throughout this section. W e refer to the author's previous paper ([4]) for the
following four lemmas.

Lemma 3.1. Suppose

lim sup —

1  

log f Un (x) ço(s), f o r all s > O.
n  co a n ()

Then

lim sup —

1

log Un (x) < ço*(x), f o r all x >  O.
n co an

Lemma 3.2. Suppose

lim inf —
1

log Un (x) *(x),f o r  all  x >  O.
n- 0 0  an

Then

lim inf —1 log r  C a " '  d Un (x) tp(s), f o r all s > O.
an

Lemma 3 .3 .  Suppose

lim sup —

1

log Un (x ) < T*(x), f o r all x >  O.
• cc a n

For any  f ix ed s> 0,

(i) lim sup 
1

—  log e- u "s x dUn (x) - sy + ço* (y ), f or each 0 < y  < -çV(s),
n  GO an 0

(ii) lim sup 
1

—  log f  e- unsxdUn (x) - sx + ( x ) ,  f o r each  x > -(p '(s).
n  cc an .  x

Lemma 3.4. Suppose

lim sup —
1

log Un (x) yo* (X ) ,
• co an

f o r all  x >  O.
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Then

lim sup 
1

— log f  e - " d Un (x) p ( s )S)
n—, oc an . 0

f or all s> O .

We now can prove Theorem 2.1. If we assume (2.2), then Lemmas 3.2 and
3.4 imply (2.3). To prove Theorem 2.2, we prepare a  few more lemmas.

Lemma 3.5. Suppose

lim sup —
1

log U„(x) 15_ q)*(x), f o r all  x >  0,
oc a n

and

(3.1) lim inf " lo g e dUn (x) tfr(s), f o r all s > 0.
n - , 00 an 0

Then, for every x> 0,

lim inf —
1

log Un (x) v * ( ( s ) ) , f o r all s > s* (x).,,-+ cc a „

Proof Choose any y < (s), then by Lemma 3.3 and the definitions of s* (x)
and „(s), we have

1 fY
(3.2)

and

lim sup — log
11— , GO n

e- "ns x dUn (x) - s y + q)* (y) < i/i(s),

OC,

(3.3) lim sup —
1

log e d U„(x) - s x  q )t (x ) < 0(s).
n - 'cc a n

Combining these inequalities with (3.1), we have

(3.4) lim inf —
1

log  I e 'srclU „(x ) tlt(s).
'7-c c  a n

On the other hand, w e have

(3.5) lim inf 1— log
n - , oc a„

Cansxd Un (x) -sy  +  lim inf —
1

log U„(x).
n-co a„

Thus, combining (3.4), (3.5), and from the assumption on y , we see

lim inf 1— log Un (x) sy+ p(s) > (p* (y).
n—, 0 0  an

Letting y Î (s), we have the assertion.

Lemma 3.6. For a f ix ed  s> 0 , let sn >  s  be a  sequence of positive numbers
tending to s as n oo. Then,

,(s ) <  lim sup (sn ).
11—■
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P ro o f  From  the definition of w e have

(3.6) go*( (s„)) - tP(s„).

Put lim sup„„ ,k(sn) = then from  (3.6), w e have

(3.7) q)*(17) 0(s),

w hich im plies ,(s)

Combining Lemmas 3.5 and 3.6, w e have

Lemma 3.7. Suppose

lim sup —
I

log Un (x) go* (X ), f i r  a l l  x >  0,
an

and

(3.8) lim inf= log I e - ansxdU„(x)> f o r all s > O.
a,,J o

Then, f o r ev ery  x > 0,

lim inf 1— log Un (x) go* g (s *  (X ) ) .
n—■ cc a„

We are now ready to show Theorem 2.2. If we assume (2.3), then Lemmas
3.1 and 3.7 imply (2.9).

4. Another asymptotic behavior

In this section, we study the case where the roles of the origin and infinity are
interchanged in  Theorems 2.1 and 2.2.

L et W denote the class of increasing convex functions v(s) E C 1 (0. co) sat-
isfying

(4.1) lim go'(e) =  0, lim go'(s) = -poo.
E— , 0 + S

Define v* (x )  as

(4.2) = inf{go(s) - sx},x >  O .
s>o

Then ço (x ) is non-increasing concave function on (0, a) )  .

Another Abelian theorem is:

Theorem 4.1. L et tlf, q)e W, and define tli* and  q),, as in (4.2). Suppose a, be
a sequence of  positive num bers tending to inf inity  as  n o o ,  and  un (d x ) b e  a
sequence o f  R adon m easures on (0, oo) such that

1
(4.3) lim sup— log e""sx y„(dx) < oo ,

n-cc an o
f o r all  s >  O.
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If

(4.4) 0*(x) < lim inf —
1

log p„(x, oo)
x  a„

<  lim sup —
I

log pn (x, oo) 0 . * (X)
n — ,x  an

Jar all x > 0,

then

1
(4.5) ti(s) < lirn inf — log I e "-"p „ (d x )

U,, Jo

1
lim sup— log p„(dx) <  ço(s), f o r all s > 0.

a n Jo

Next, we state another Tauberian theorem. For every x > 0, we determine
a s  follows: We first define

(4.6) s(x) := inffsitP(s) — sx < yo,(x)}.

Then, we define

(4.7) *() :=  sup{ ( ) + 0(s)}.

Thus,

(4.8) *(s*(x)) sul*14 0,-()  + ,s',(x) 0(s*(x))}•

R em ark that from  (4.8), *(s,(x)) is the largest solution of

(4.9) yo„( ) + s* ( x )  =  0(s* (x)),

and from (4.6) and (4.8), x is  the smallest solution of (4.9).

Theorem 4 .2 .  L et IIi(s), (o(s), q)* (x), a„, and fin (dx) be as in  Theorem 4.1. If
(4.5) holds, then Jr ev ery  x > 0,

(4.10) (o,,(C (s*(x ))) < lim inf 1— log p„ (x, oo)
n x

lim s u p -
1

log p„(x, oo ) 0 * (X ) ,
n—+,x

w h e re  .'(s„(x )) is as in  the  above.

P ro o f  Since the proofs of Theorems 4.1 and 4.2 are essentially the same as
that o f Theorems 2.1 and 2.2, w e om it the details.

As we mentioned in section 1, we study the relationship between our theorems and
some results on limits of oscillation which are already know n. A t first, we recall
Kasahara's Tauberian theorem ([3]).
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Theorem B  ([3]). S e t 0  <  <  1 .  L e t 0(x ) b e  a positiv e function varying
regularly  at co w ith ex ponent a  ( c f  [1]) and  r(x ) b e  the asymptotic inverse of
x 1 0 (x ). Suppose p(dx ) be a f inite Borel measure on  (0, co). Then,
(i)

(4.11) - oo  <  -A 1 <  lim  inf -
1

log p(0(x), co)
x

< lim sup-
I

log ,u(0(x), o o )  <  - A 2  0
x

implies

(4.12) (1 -  ot)(al < _412) log fo
x  e j 'p(dx )

< lim scup r (

1

2 )  log  t p(dx) (1 - a)(al A2) 7 1 ( I  1 )  •

(ii) Conversely, if  (4.12) holds w ith 0 < A2 A I < oo, then

(4.13)- A2 <  lim inf -
1

logp(0(x), oo)x-x.

<  lim sup-
1

log,u(qi(x), 0o) - A2,
X

where A i [22] is  the smallest [largest] solution of

(4.14) -  A 2  =  ( I  -

Remark that the latter half of Kasahara's theorem is a  generalization of the
result of Davies ([2]). Furthermore, if we consider the special case where A] = A2,
then it includes Nagai's Tauberian theorem ([6]) which was derived from Minlos-
Povzner's theorem ([5]). From Proposition of the author's previous paper ([41), we
know that if the infimum and the supremum coincide, then Theorems 4.1 and 4.2
contain Theorem B. F o r  0  <  A2 < A 1, suppose (//(s) =  (1  -  oc)(a/A i r / (1 ' )s1/ (1 - ' ) ,
and q)(s) = (1 - a)(OE/A 2 ) /(1 ' )s1/( 1

- "). Then ç ( x )  =  - A2 x'/Œ, and thus
ço,,(C (s.(x))) =  y (x) x  W (s ,(x ))/ x ),  where ( x ) )  i s  as in Theorem 4.2. It is
easy to see that Theorem 4.1 includes Theorem B(i). We now consider the Tauberian
case. L e t  [ 2] be the smallest [largest] solution of

(4.15) + s,,(x g =  (//(s,,(x)).

Then, as we mentioned before, i  =  x  a n d  2  =  * (S (X )) . T h u s , to  show that
Theorem 4.2 includes Theorem B(ii), it suffices to show the following proposition.

Proposition 4.3. L et a, A i and 2 2  be as  in  Theorem B. F o r  a  f ix ed  s> 0,
solve the equation

(4.16) sœ  -  A 2  =  (I - cx)( ) 1 / (1  2 ) s i / ( I - 1 ) 'A i
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a n d  le t  i [ 2 ] b e  the smallest [largest] solution of  (4.16). Then,

1 .

P ro o f  Since our problem is to figure out the ratio of the solutions, we may
p u t  =  c C  a n d  consider the  ra tio  of the  so lu tions of

(4.17) sc'C' — A2c (I — pc)(± ) )s 1/( 1- a)
.

Ai

Since (4.17) can be rewritten as

(4.18) cA2 ( -
A C' C )  =  (1  —  oi) (a± ) sl/(1-a)

AI

if  we p u t  c = (s/ A2) ,  then (4.18) means

(aA 2)
c ( / ( 1 - 2 )

(4.19) C" — = (1 — Ai

which proves the assertion.
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Added in  proof. Throughout the paper, "convex" and "concave" should be read a s  "strictly
convex" and "strictly concave", respectively.


