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Tauberian theorem of exponential type
on limits of oscillation

By

Nobuko Kosuai

1. Introduction

This paper is a continuation of the author’s previous paper (4], where we gave
a Tauberian theorem of exponential type. In the present article we shall extend it
and obtain some results on limits of oscillation. We first recall the result of [4].
Throughout this paper, let @ denote the class of decreasing convex functions
o(s) € C'(0,00) satisfying
(1.1) lim ¢'(e) = —o0, lim ¢'(s) = 0.

e—0+ §—00
For ¢ € @, define
(1.2) o (x) = ing{sx+ o(s)}, x> 0.
>

Then ¢*(x) is a non-decreasing concave function on (0,00), and it holds that

(1.3) o(s) = sug{—sx + 9" (x)}.
D>
Theorem A ([4]). Let o€ @ and define ¢* as in (1.2). Suppose a, be a
sequence of positive numbers tending to infinity as n — oo, and U,(x) be a sequence
of non-decreasing, right-continuous functions on [0, 00) such that U,(0) = 0.

0

.1 * .
(1.4) lim a—logJ e~ "*dU,(x) = o(s), for all s> 0,
H—C n 0
then
.1
(L.5) nli’rga—log U.(x) = p*(x), Sfor all x> 0.

(ii) Conversely, if

. 1 * <
lim sup—log[ e~ "*dU,(x) < o0, Sfor all s >0,

n—o dpn Jo

then (1.5) implies (1.4).
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The aim of the present paper is to extend Theorem A and construct Tauberian
theorems that can treat the cases where the supremum and the infimum do not
necessarily coincide. Such cases often appear in probability theory, and there
have been some works on this subject (cf. [2], [3], and so on), though all of them
treat fixed measures dU(x). Therefore, in the present paper, we shall show
theorems on limits of oscillation, that can treat the cases where the measures
dU,(x) depend on n. This paper consists as follows: In Section 2, as we
mentioned in the above, we give Tauberian theorems on limits of oscillation, and
obtain a result on multiple convolution by applying one of the theorems. The
proofs are given in Section 3. In section 4, we give other results on limits of
oscillation in which the roles of the origin and infinity are interchanged and show
that our theorems include Kasahara's theorem ([3]), which is a generalization of
results of Davies ([2]) and Nagai ([6]).

2. Main results

We first consider the Abelian part. The following theorem is an extention of
Theorem A(ii).

Theorem 2.1. Let i, ¢ € &, and define " and ¢* as in (1.2). Suppose a, be
a sequence of positive numbers tending to infinity as n— oo, and U,(x) be a
sequence of non-decreasing, right-continuous functions on [0, 00) such that U,(0) = 0.
We assume that

(2.1) lim supailogj e~ dU,(x) < o0. for all s> 0.
n— oG n 0
If
. o]
(2.2) U (x) < lim 1nf;l—log Un(x)
n—oC n
< lim supailog U,(x) < o™ (x), for all x>0,
n—aoc n
then

IA

(2.3)  ¥(s) < lim infllogJ‘e-"w*ﬁ"du,,(x)

n—aoC (l,, 0

1 * N
< lim sup—logJ e “*dU,(x) < o(s), for all s> 0.

n—oc  Un 0

Next, we consider the Tauberian part. Notice that if (s) < ¢(s) for all
s> 0, then y*(x) < ¢*(x) for all x> 0. For every x > 0, we determine ¢, (s*(x))
as follows: We first define

(2.4) 57 (x) := sup{sly(s) + sx < " (x)}, x> 0.
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We remark that sy < s*(x) < oo, where s is determined by the equation —¢’(so) =
x. Indeed, since ¢(so) + sox = ¢*(x), we have Y(so) + sox < ¢*(x), which implies
so < s*(x). Next, we define

(2.5) E.(s) == inf{&lp" (&) —sE = Y(s)},  s>0.
(Notice that 0 < &,(s) < —¢'(s)). Thus,

(2.6) &.(s7(x)) = inf{lp" (&) — " (%) = ¥(s™(x))}.
and we have

2.7) ¢.(s7(x) < x.

We stress here that for every x > 0, £.(s*(x)) and x are the smallest and the largest
solution of

(2.8) 9" (&) — 5™ (x)¢ = Y(s*(x)).

For example, let ¥(s) = 1/(4s) and ¢(s) = 1/s, then we have ¢*(x) = 2y/x. From
(2.4), we see that s*(x) = (2 + v/3)y/x/(2x), and from (2.6), we have &,(s*(x)) =
2 -v3)*x.

Theorem 2.2. Let y(s), ¢(s), ¢*(x), an, and U,(x) be as in Theorem 2.1. If
(2.3) holds, then for every x > 0,

1
(2.9) e (£,.(s"(x))) < lim infallog U,(x) < lim supa—log Uy(x) < 9™ (x),

n—0oC n
where &,(s*(x)) is as in the above.

We remark that if y(s) = @(s), for all s > 0, then s*(x) satisfies —¢'(s*(x)) =
x, and thus ¢&,(s*(x)) = x, which implies that Theorems 2.1 and 2.2 include
Theorem A. We postpone the proofs of Theorems 2.1 and 2.2 until the next
section, and we state the following theorem, which can be obtained as a corollary
of Theorem 2.2, by adopting the idea of Theorem 2 in the author’s previous paper

(4D

Theorem 2.3. Let a > 0, and b, be a sequence of positive numbers tending to 0
as n — . Suppose a(x) be a non-decreasing, right-continuous function on [0, )
such that o(0) =0. For any positive nhumbers C, and C,, if

oC
(2.10)  Cis™* < lim infbij e da(x)

n— n Jo

. L[> .
< lim sup—J e "™ do(x) < Cps™*%, Sfor all s> 0,

n—oc nJo

then



786 Nobuko Kosugi

1/n
/1] * e x 2 .. |
(2.11) (1—2) Cz(&> x* < llnrrllogfb— JJ do(x1) - - - do(x,)

§ O<x|++x, <X
I/n
< lim supi JJ do(x) ---do(x,)

h—oC n
0<x )+ X, S

£
e
<G (—) x*, for every x >0,
x

where A [A2] is the smallest [largest] solution of
(2.12) alogd — A = —alog(e/a) + log(C,/Cs).

Proof.  We refer to the proof of Theorem 2 in [4] for details, but appealing to
Theorem 2.2, we can obtain

1/n
(2.13) C2(§>1(¢*(s*(x))a < liminf—l— JJ do(xy) - --da(x,)

0<x+-4x, <x
1/n
< limsupi JJ do(x;) - --do(xy)

n—oc bn
0<x| 44X, <X

o
<G <E> x* for every x > 0,
a

where &,(s*(x)) = inf{|alogé — s*(x)¢& > —alogs*(x) — alog(e/a) + log(Ci/C>)}.
Thus it remains to show that

A
(2.14) E (s (x) = <;L—;)x
or equivalently,
S(s7(x)) _ A
(2.15) T T n

To see (2.15), recall that &,(s*(x)) and x are the smallest and the largest solution
of

(2.16) alogé — s*(x)& = —alogs™(x) — alog(e/a) + log(Ci/Ca).
Since (2.16) can be rewritten as

(2.17) alog(s*(x)¢) — 5" (x)¢ = —alog(e/a) + log(Ci/ ),
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we see that the ratio of &,(s*(x)) to x is equal to that of the smallest to the largest
solution of (2.17). Hence, by putting &= A/s*(x) in (2.17), we can have the
assertion.

3. Proofs

According to the assumptions of Theorems 2.1 and 2.2, we may and do
assume that

1 © .
lim sup—logj e~ *dU,(x) < oo, for all s >0,

n—oo  dp 0

throughout this section. We refer to the author’s previous paper ([4]) for the
following four lemmas.

Lemma 3.1. Suppose

. 1 ® .
lim sup—logj e~ YdU, (x) < o(s), Jor all s> 0.

n—o dn 0

Then

. 1
lim sup—log U, (x) < ¢*(x), for all x> 0.

h— o0 a"
Lemma 3.2. Suppose

.1
lim inf —log U,(x) = ¥ (x), for all x> 0.

n—o dy

Then

o] * .
lim mf—logj e~ XdU, (x) = Y(s), Sfor all s> 0.

h—oC (1” 0

Lemma 3.3. Suppose
. 1

lim supa—log U,(x) < p*(x), Sor all x> 0.
H—0C n

For any fixed s >0,

N 1 4 ,
(i) lim sup—logJ e~ *dU,(x) < — sy + " (p), for each 0 < y < —¢'(s),
0

h—aoC an

o 1 « .
(i) lim sup—log[ e dU,(x) < —sx+ ¢*(x), for each x > —¢'(s).

n—oc  dn Jx

Lemma 3.4. Suppose

. 1
lim sup—log U,(x) < ¢*(x), for all x> 0.

n—oo Ay
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Then

. | * .
lim sup — log [ e "dU,(x) < ¢(s)  for all s> 0.

n—oc  dp Jo

We now can prove Theorem 2.1. If we assume (2.2), then Lemmas 3.2 and
3.4 imply (2.3). To prove Theorem 2.2, we prepare a few more lemmas.

Lemma 3.5. Suppose

. 1
limsup—log U, (x) < 9" (x), for all x>0,

n—oc an
and
l oC
(3.1) lim glfa—logj e dU,(x) = Y(s), for all s> 0.
h—= n 0

Then, for every x> 0,

lim infllog Un(x) = 0*(E,(5)). Sfor all s> s*(x).

n—aoc  d,

Proof. Choose any y < &,(s), then by Lemma 3.3 and the definitions of s*(x)
and &,(s), we have

. | Y !
(3.2) lim supa—logJ e dU,(x) < —sy+ o (y) < yY(s),
n—oo n 0
and
1 o
(3.3) lim supa—logj e dU,(x) € —sx+ 9" (x) < Y(s).
nh—o0 n X

Combining these inequalities with (3.1), we have

(3.4) lim inf -~ log J e AU, (x) = Y(s).

n—oC a" v

On the other hand, we have

"' - .1
(3.5) lim infllogj e U, (x) < —sy + 11)1111 ngfa—log U,(x).

h—ao  dy, y

Thus, combining (3.4), (3.5), and from the assumption on y, we see

lim infilog Ui(x) = sy +§(s) > 0" (»).

n—oo  dy
Letting y 1 &,.(s), we have the assertion.

Lemma 3.6. For a fixed s >0, let s, > s be a sequence of positive numbers
tending to s as n — . Then,

E.(s) < limsup &,(sn).

n—oC
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Proof. From the definition of £,, we have

(3.6) @ (& (sn)) — $n&.(Sn) = Y (sn).
Put limsup,_ . &.(s,) =7, then from (3.6). we have
(3.7) 9" (n) = sn = (s),

which implies &.(s) < #.
Combining Lemmas 3.5 and 3.6, we have

Lemma 3.7. Suppose

lim supllog Uy(x) < 9™ (x). for all x>0,

n—oo  dn
and
1 o
(3.8) lim infa—logj e dU,(x) = Y(s), for all s> 0.
H— 0 n 0

Then, for every x >0,

lim inf ~log Uy (x) > ¢ (& (5" (x)).

n—oc dy

We are now ready to show Theorem 2.2. If we assume (2.3), then Lemmas
3.1 and 3.7 imply (2.9).

4. Another asymptotic behavior

In this section, we study the case where the roles of the origin and infinity are
interchanged in Theorems 2.1 and 2.2.

Let ¥ denote the class of increasing convex functions ¢(s) € C'(0.c0) sat-
isfying
(4.1) lim ¢'(e) =0, lim ¢'(s) = +oo.

-0+ S0

Define ¢,(x) as
(4.2) 0. (x) = i.r>1£{(p(s) — sx}, x> 0.

Then ¢,(x) is non-increasing concave function on (0, c0).
Another Abelian theorem is:

Theorem 4.1. Let , p € ¥, and define , and ¢, as in (4.2). Suppose a, be
a sequence of positive numbers tending to infinity as n — oo, and p,(dx) be a
sequence of Radon measures on (0.00) such that

1 S
(4.3) lim sup—log[ e, (dx) < oo, for all s> 0.

n—oc Uy 0
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I
(4.4) v (x) < limglf(ll"log;t,,(,v, o0)

< lif’n s;upailogﬂ"(x, o) < p,(x). for all x>0,
then

1 *o
(4.5) Y(s) < lim inf—logJ e, (dx)
(

n—oc d, )

IA

. 1 * !
lim sup—logJ e, (dx) < o(s). for all s > 0.

n—oc Uy 0

Next, we state another Tauberian theorem. For every x > 0, we determine
E"(s«(x)) as follows: We first define

(4.6) s (x) = 1inf{s|(s) — sx < o, (x)}.

Then, we define

(4.7) £ (s) = sup{le. (€) + ¢ = Y(s)}.
Thus,

(48) £ (5.(x)) = sup{&lp. (&) + 5. (x)¢ > Y(s. (x))}.
Remark that from (4.8), &*(s.(x)) is the largest solution of
(4.9) 0.(6) + 5.(x)E = Y(s.(x)).

and from (4.6) and (4.8), x is the smallest solution of (4.9).

Theorem 4.2. Let y(s), o(s), ¢.(x), a,, and w,(dx) be as in Theorem 4.1. If
(4.5) holds, then for every x > 0.

(4.10) 0, (& (s.(x))) < lim infi log 14, (x. 0)

n—x d,

1
< lim supl—log/z,,(x. ) < @,(x).

n—oc  dn
where £'(s.(x)) is as in the above.

Proof. Since the proofs of Theorems 4.1 and 4.2 are essentially the same as
that of Theorems 2.1 and 2.2, we omit the details.

As we mentioned in section 1, we study the relationship between our theorems and
some results on limits of oscillation which are already known. At first, we recall
Kasahara’s Tauberian theorem ([3]).
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Theorem B ([3]). Ser 0 <a < 1. Let ¢(x) be a positive function varying
regularly at oo with exponent a (c¢f [1]) and t(x) be the asymptotic inverse of
x/d(x). Suppose u(dx) be a finite Borel measure on (0,00). Then,

(i)
(4.11) -0 <-4 < li.{‘]ligrclf’lclogy(qﬁ(x),oo)

< lim sup—log;t(¢( x),0) < -4, <0

X— 0

implies

«
(4.12) (1 - a)(a/Al)“/“"“ < llm inf — logJ e* u(dx)
imw T(4) 0

IA

llmsuleog e’“;t(dx) < (1 = o) (o) A2) 7).
i T(4)

(ii) Conversely, if (4.12) holds with 0 < Ay < A; < o0, then

1
(4.13) —%Az < lim inf;logy(qﬁ(x)‘ 0)
1 xX—L X

1
< limsup;logu(qﬁ(x), ) < —A»,
X—oC
where Ay [Aa] is the smallest |largest] solution of

(4.14) £ — Apé = (1 — a)(a/Ap) !,

Remark that the latter half of Kasahara’s theorem is a generalization of the
result of Davies ([2]). Furthermore, if we consider the special case where 4; = A4,
then it includes Nagai’s Tauberian theorem ([6]) which was derived from Minlos-
Povzner’s theorem ([5]). From Proposition of the author’s previous paper ([4]), we
know that if the infimum and the supremum coincide, then Theorems 4.1 and 4.2
contain Theorem B. For 0 < 4, < 4, suppose y(s) = (1 — a)(a/Al)d/(l'a)s'/("“)‘
and  ¢(s) = (1 — a)(a/A5)""s1/0=% Then ¢,(x) = —4>x'/*, and thus
0. (& (54(x))) = 0, (x) x (E*(s. (x))/x)'/“, where £ (s.(x)) is as in Theorem 4.2. Ttis
easy to see that Theorem 4.1 includes Theorem B(i). We now consider the Tauberian
case. Let &, [£;] be the smallest [largest] solution of

(4.15) 9.(S) + 5. ()¢ = ¥(s:(x)).

Then, as we mentioned before, & = x and &, = £*(s,(x)). Thus, to show that
Theorem 4.2 includes Theorem B(ii), it suffices to show the following proposition.

Proposition 4.3. Let o, A\ and 1, be as in Theorem B. For a fixed s > 0,
solve the equation

o af(1—a)
(4.16) SE* — Ayé = (1 —a) (A_) sl/(1=2)
1
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and let &) [&,] be the smallest A[Iargesr] solution of (4.16). Then,

h_t
A&

Proof. Since our problem is to figure out the ratio of the solutions, we may

put & = c¢{ and consider the ratio of the solutions of

(4.17) 5% — Ayel = (1 — a)(A_i)m/(l—z)sl/(l—a).
I

Since (4.17) can be rewritten as

o1 N
) PR R 3 J(1=2)
(4.18) ¢A2< ¢ c) (1 - a) (A1> s/0=2),
if we put ¢ = (s/42)"/"", then (4.18) means
. oA af(1-a)
(4.19) = —a)(A—2> ,
I

which proves the assertion.
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(2]
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FACULTY OF SCIENCE
OCHANOMIZU UNIVERSITY

References

N. H. Bingham, C. M. Goldie, and J. L. Teugels, Regular variation, Cambridge University
Press, Cambridge, 1987.

L. Davies, Tail probabilities for positive random variables with entire characteristic functions of
very regular growth, Z. Angew. Math., 56 (1976), 334-336.

Y. Kasahara, Tauberian theorems of exponential type, J. Math. Kyoto Univ., 18 (1978), 209—
219.

N. Kosugi, Tauberian theorems of exponential type and its application to multiple convolution,
J. Math. Kyoto Univ., 39 (1999), 331-346.

R. A. Minlos and A. Ja. Povzner, Thermodynamic limit for entropy, Trudy Moskov. Mat. Obsc.
17 (1968), 243-272.

H. Nagai, A remark on the Minlos-Povzner Tauberian theorem, Osaka J. Math., 14, (1977),
117-123.

Added in proof. Throughout the paper, “convex” and “concave” should be read as ‘“strictly

convex” and “strictly concave”, respectively.



